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Figure 5. In vitro iron release from Fe(III)-Ybt complexes. HPLC-purified Fe(III)-Ybt (5µM) 

were mixed with BPDS (Bathophenanthrolinedisulfonic acid, 2.5mM) and excess reducing 

agents (50mM) in PBS buffer pH7.0 for 2 hours. Addition of reducing agents, ascorbic acid and 

glutathione, showed significant increase in (A) Fe(II)-BPDS complex formation (λmax = 533nm), 

as well as (B) apo-Ybt determined through apo- and Fe(III)-Ybt ion chromatogram peak ratios 

using LC-MS/MS. Results are shown as mean ± s.d.; n=3; ****P < 0.0001. 

0.0 0.1 0.2 0.3 0.4
Abs 533nm

Fe(III)-Ybt

Fe(III)-Ybt + BPDS

Fe(III)-Ybt + BPDS
+ ascorbic acid

Fe(III)-Ybt + BPDS
+ glutathione

*

**** ****

0 50 100 150 200
[apo-Ybt] / [Fe(III)-Ybt]

NS

**** ***

Fe(III)-Ybt

Fe(III)-Ybt + BPDS

Fe(III)-Ybt + BPDS
+ ascorbic acid

Fe(III)-Ybt + BPDS
+ glutathione

A

B



 135	
  

 

Figure 6. Direct LC-MS/MS detection of supernatant and cell-associated Ga(III)- and apo-

Ybt in FyuA and YbtPQ-expressing UTI89. Bacteria grown in media containing 0.1µM 

Ga(III)-Ybt were extracted to quantify supernatant and cellular Ga(III)- and apo-Ybt levels using 

LC-MS/MS with a 13C-labeled Fe(III)-Ybt internal standard. (A) Supernatant Ga(III)-Ybt 

remained extracellular in transport-deficient UTI89ΔybtA. (B) Cellular Ga(III)-Ybt levels were 
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not significantly different in UTI89ΔybtA pfyuA and UTI89ΔybtA pfyuA pybtPQ. (C) Apo-Ybt 

was not detected (ND) in the supernatants of strains tested. Results are shown as nanomoles, 

mean ± s.d.; n=3; ****P < 0.0001.    
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Figure 7. Direct LC-MS/MS detection of supernatant and cell-associated Cu(II)-, Ni(II)- 

and apo-Ybt in FyuA and YbtPQ-expressing UTI89. Bacteria grown in media containing 

0.1µM Cu(II)- (left) or Ni(II)-Ybt (right) were extracted to quantify supernatant and cellular 

Cu(II)-Ybt Ni(II)-Ybt
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Cu(II)-, Ni(II)- and apo-Ybt levels using LC-MS/MS with a 13C-labeled Fe(III)-Ybt internal 

standard. (A, B) Supernatant Cu(II)- and Ni(II)-Ybt remained extracellular in transport-deficient 

UTI89ΔybtA. (C, D) Exogenous FyuA expression in UTI89ΔybtA significantly increased cell-

associated Cu(II)- and Ni(II)-Ybt levels, but expression of both FyuA and YbtPQ resulted in 

decreased cellular Cu(II)- and Ni(II)-Ybt levels. (E, F) Apo-Ybt was recycled to the supernatant 

in UTI89ΔybtA pfyuA pybtPQ. Results are shown as nanomoles, mean ± s.d.; n=3; ****P < 

0.0001.    
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Figure 8. Direct detection of 64Cu from cellular 64Cu(II)-Ybt. Bacteria grown in media 

containing 0.1µM Cu(II)-Ybt and 64Cu(II)-Ybt were extracted to quantify cellular 64Cu levels. 

Cellular 64Cu levels were not significantly different in UTI89ΔybtA pfyuA and UTI89ΔybtA 

pfyuA pybtPQ. Results are shown as counts per minute, mean ± s.d.; n=3; *****P < 0.00001. 
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5.1 Summary of the Thesis 

This thesis describes the interactions between the yersiniabactin siderophore system and metal 

ions in the context of uropathogenic Escherichia coli (UPEC) pathogenesis in the urinary tract. 

Yersiniabactin (Ybt) confers a gain-of-function to UPEC through its interactions with both iron 

and copper ions during infection, and Ybt’s interaction with copper has been shown to protect 

UPEC against host copper ions as well as oxidative stress (1, 2). However it has been unclear 

whether UPEC imports Cu(II)-Ybt complexes similar to Fe(III)-Ybt, and how Ybt transport 

impacts UPEC pathogenesis.  

 

We investigated the interactions of Ybt with other physiologic transition metals and whether 

non-ferric metal-Ybt complexes were transport substrates of FyuA, the Fe(III)-Ybt outer 

membrane importer (3). Using a constant neutral loss LC-MS/MS screen, we showed Ybt 

complexes with nickel(II), cobalt(III) and chromium(III), in addition to previously described 

complexes with iron(III), gallium(III) and copper(II). All stable metal-Ybt complexes were 

transported through FyuA to the periplasm in TonB-dependent manner. Of these, Cu(II)-Ybt was 

the only complex not to competitive inhibit Fe(III)-Ybt transport. We next investigated the role 

of Ybt inner membrane transporters YbtP and YbtQ during UPEC pathogenesis. Using an 

experimental murine chronic cystitis model, we found that the YbtPQ-deficient strain showed a 

significant, million-fold competitive defect against the wild type in high titer bladder infections. 

We next examined the fate of metal-Ybt complexes upon transport through YbtPQ to investigate 

whether Ybt delivers metal ions in addition to iron. We found that in presence of both FyuA and 

YbtPQ, Fe(III)-, Cu(II)- and Ni(II)-Ybt import leads to the metal being released from Ybt and 

the resulting metal-free apo-Ybt recycled. 
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These findings support a model in which Ybt acts as a metallophore that can deliver select 

physiologic metal ions to UPEC (Fig 1). The Ybt system may therefore be fine-tuned for varying 

host environments to provide a gain-of-function for UPEC. Overall, studies in this thesis present 

a unique paradigm for E. coli copper transport and homeostasis in the urinary tract.  

 

5.2 Perspectives on metal availability in the urinary tract 

For pathogenic bacteria, adaptation to host environments is a vital component for establishing an 

infection and persisting within the host. To defeat the intruding pathogen, the host can 

deliberately limit the availability of specific transition metals to prevent pathogens from 

acquiring these vital cofactors, while also increasing the availability of metals such as copper as 

an antimicrobial strategy (4–6). Therefore depending on the circumstances, the pathogen must 

sense and counter these changes in the microenvironment. The experimental cystitis model used 

in this thesis is characterized by a robust inflammatory response and populations of intracellular 

UPEC within urothelial cells, macrophages and neutrophils (7, 8). Results from this thesis show 

Ybt import providing a fitness advantage to UPEC in these conditions, suggesting the acquisition 

of metals through Ybt is important for overcoming the effects of nutritional immunity by the 

host. Furthermore, previous works have shown Ybt-mediated protection through sequestration of 

copper ions and interfering with the reactive oxygen species responses in intracellular 

compartments (1, 2). The findings in this thesis are consistent with these observations as Fe(III)-

Ybt is preferentially imported in high Cu(II)-Ybt conditions to prevent excess copper import 

while maintaining iron transport (3). By protecting UPEC while selecting for iron transport, Ybt 
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may allow UPEC survival and persistence within immune cells, which in turn may permit 

dissemination beyond the urinary tract.  

 

In contrast to the copper-rich environments as described above, there may exist 

microenvironments with low copper availability that may require copper delivery through Ybt. It 

is interesting to note that Cryptococcus neoformans, an opportunistic fungal pathogen encounters 

varying copper availability during different stages of infection. Upon dissemination to the brain, 

C. neoformans encounters an environment deprived of copper and in response, expresses copper 

transporters (9–11). Although it is unclear whether UPEC encounters a similar host environment, 

it does suggest a potential strategy used by the host where copper availability is limited as 

opposed to in excess. Further studies investigating the metal availability and host responses 

within urinary tract environments will allow better understanding of Ybt’s role in UPEC 

pathogenesis.    

 

5.3 Implications and outcomes of metallophore transport  

The process of siderophore import and metal acquisition requires multiple steps (12–14). The 

data presented in this thesis provides new insight into our understanding of Ybt’s recognition and 

transport by membrane transporters as well as its intracellular fate. Although multiple metal-Ybt 

complexes are recognized and imported by the TonB-dependent outer membrane transporter 

FyuA, the preference for Fe(III)-Ybt over Cu(II)-Ybt import suggests distinct binding 

interactions between metal-Ybt complexes and FyuA. This is consistent with theoretical 

structural modeling data supporting a distinctive Cu(II)-Ybt structure from those of other metal-

Ybt complexes including Fe(III)-Ybt (3). Although residues in the core β-barrel domain are 
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heavily conserved among numerous TonB-dependent transporters (TBDT), the extracellular 

loops are essential for distinct cargo recognition (12). Furthermore, binding of a siderophore to 

these receptors transduces a signal that may trigger conformational changes and reveal new 

binding sites (15, 16). Structural analyses investigating the interactions between different metal-

Ybt complexes and FyuA could provide insight to FyuA’s Cu(II)-Ybt-specificity. TBDT have 

been the subject of numerous structural investigations to engineer transport substrates that 

specifically target Gram-negative pathogens (12, 17). Novel binding sites by metal-Ybt 

complexes may therefore act as targets for future TBDT-dependent inhibitors.  

 

In addition to FyuA, iron acquisition using Ybt requires the inner membrane transporters YbtP 

and YbtQ (18). The findings in this thesis support a model in which metal-Ybt transport through 

FyuA and YbtPQ results in metal release and Ybt recycling. Overall, FyuA has been studied in 

greater detail compared to YbtPQ, in terms of both infection and mechanistic studies. As such, 

there are several unanswered questions regarding YbtPQ and the fate of metal-Ybt complexes 

that may provide further insight to this system. Compared to other siderophore systems in E. coli 

such as enterobactin, enzymes associated with metal release from Ybt have yet to be identified 

(19, 20). Results from this thesis show metal reduction as a potential mechanism of metal release 

from Ybt. Reduction of Fe(III) to Fe(II) is a proposed model of iron release for several 

siderophore systems in Gram-negative bacteria, including pyoverdine in Pseudomonas 

aeruginosa and mycobactin in Mycobacterium tuberculosis (21, 22). Recent work describing a 

novel siderophore reductase YqjH in E. coli that can release iron from hydrolyzed enterobactin 

and other catecholate siderophores suggest specific reductases may exist for structurally similar 

siderophores (20). It is unclear whether yersiniabactin, a phenolate siderophore, is a substrate of 
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YqjH. Furthermore, as several Gram-negative pathogens including uropathogenic E. coli, 

Klebsiella pneumonia and Yersinia pestis synthesize yersiniabactin (1, 14, 23), it will be of 

interest to investigate whether a putative Ybt reductase is conserved in these pathogens away 

from the Yersinia high pathogenicity island. Identification of a Ybt reductase that is conserved 

among these pathogens may provide an additional therapeutic target.  

 

The intracellular dissociation of Fe(III)-, Cu(II)- and Ni(II)-Ybt complexes results in an intact 

Ybt molecule and a metal ion. Due to the reactive properties of these metals, they may be rapidly 

bound to chaperones upon release from Ybt. In the case of iron, the classic cargo for 

siderophores, previous works have shown glutathione or phosphorylated sugar derivatives as the 

Fe(II) chaperone prior to transfer to the iron storage protein ferritin or to iron-dependent enzymes 

(24, 25). However as for copper and nickel, the mechanisms of storage and distribution to 

metalloproteins is unclear. E. coli have several copper defense mechanisms that are extremely 

sensitive to changes in intracellular copper levels (5, 26, 27). Therefore UPEC must have 

mechanisms to maintain balance of intracellular copper. Similar to Fe(II), glutathione has also 

been proposed as a cytoplasmic copper chelator (28). Recent discovery of metallothioneins in 

Mycobacterium tuberculosis suggest these efficient copper chelators, previously studied in 

eukaryotes models, may also be present in bacteria (10, 29, 30). From these chelators, it is 

unclear how copper is delivered to E. coli cuproenzymes, which are to date, all periplasmic or 

embedded in the inner membrane (31–33). Recent work suggesting copper efflux ATPases as 

copper delivery pumps for the Salmonella Cu, Zn-superoxide dismutase, suggests novel 

pathways for copper delivery from the cytoplasm to periplasmic or inner membrane 
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cuproenzymes (34). Investigating mechanisms of copper acquisition and incorporation by these 

cuproenzymes would expand our understanding of bacterial copper homeostasis and transport.  

 

The metabolic cost that goes into synthesizing siderophores may be significant during an 

infection where pathogens are under stress to survive. Recycling of intact siderophores, including 

Ybt, allows pathogens to conserve scarce resource without constantly synthesizing new 

siderophore molecules (35, 36). In the case of UPEC, which can encode several siderophore 

systems, Ybt recycling could perhaps be an additional pathogenic gain-of-function in contrast to 

enterobactin, which is hydrolyzed prior to iron release. Siderophores as common goods within a 

bacterial community may suggest these class of recyclable siderophores to benefit the entire 

bacterial population with relatively minor initial costs. However the evolution of cheater strains 

as well as counter measures to prevent siderophore piracy suggest a strong relationship between 

siderophores and bacteria resource management (37, 38). Further investigations comparing the 

metabolic costs of virulence-associated siderophore systems as well as the prevalence of 

siderophore cheater strains in polymicrobial infections would expand our understanding of the 

process of acquiring new siderophore systems or losing components of existing ones by 

pathogens.  

 

5.4 Methodology development and applications 

The methodologies developed in this thesis provide new approaches to unanswered questions in 

the siderophore field and other areas. The constant neutral loss screen developed by Chaturvedi 

et al., and expanded in this thesis, allow an effective screen to identify stable metabolites with 

known fragmentation properties that may interact with different metal ions (1, 3). Using the 
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constant neutral loss screen, we were able to identify novel metal-siderophore complexes and 

characterize Ybt’s metal profile. Taking these newly identified stable metal-siderophore 

complexes, we developed a quantitative multiple reaction monitoring method to accurately detect 

and quantify these complexes. This could be applied to numerous conditions that require 

sensitive detection such as urine or controlled culture conditions. Metabolite profiling and 

comparisons between clinical isolates using mass spectrometric techniques can provide novel 

insight to the pathogenicity of numerous pathogens (39–41).  

 

Previous works investigating siderophore transport and metal acquisition have utilized 

radiolabeled metals or the fluorescent properties of the siderophore (42–45). The quantitative 

mass spectrometric approached developed in this thesis allows direct comparisons between 

different metal-bound complexes using non-radioactive metals. Furthermore by specifically 

quantifying both metal-bound and apo-siderophore complexes in the same medium, we could 

tract the siderophore as opposed to the metal to describe new mechanisms in siderophore 

localization, dissociation and recycling. This in combination with radiolabeling approaches as 

done in this thesis allow comparisons between the fate of the siderophore and the released metal. 

While the mass spectrometric techniques allow further investigation of mechanisms of 

siderophore dissociation, radioactive metals can also be used as sensitive tools for identifying 

novel co-factors or protein that interact with the imported metal.  

 

5.5 Concluding remarks 

The diversity and physiological functions of small metabolites secreted by pathogenic bacteria 

are areas of great unknowns and interest. This dissertation expands our understanding of the 
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multi-functional properties of bacterial metabolites in the context of metal homeostasis in the 

host-pathogen interface. Examining the balance between metal requirements and availability by 

pathogens may provide a better understanding of the strategies used by pathogens to survive in 

diverse host environments. This thesis also presents an improved understanding of siderophore 

systems and raises new questions on the mechanisms of bacterial metalloenzymes, which remain 

largely uncharacterized (46, 47). With global concerns for rapidly growing antibiotic resistance 

(48), further examination of the relationship between metabolites and microbial systems may 

yield novel functions and therapeutic potentials.  
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CHAPTER FIVE: FIGURES 

 

Figure 1. Metal transport and delivery by the yersiniabactin metallophore system. 

Extracellular apo-Ybt interacts with select transition metals (light blue). Stable metal-Ybt 

complexes are transported through the TonB-dependent outer membrane receptor, FyuA, and 

ATP-binding cassette inner membrane transporters, YbtP and YbtQ. Select metal ions are 

released from intracellular metal-Ybt complexes and apo-Ybt is subsequently recycled to the 

extracellular matrix.  
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