Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-88-31

1988-10-01

A Transaction System for the NCUBE

Kenneth C. Cox and Gruia-Catalin Roman

We present the design of a transaction system which supports tuple-oriented database
operations in the concurrent environment. An implementation of this system for the NCUBE
Corporation NCUBE-7 hypercube processor is described. The implementation includes both the
basic kernel to support the database operations and two software packages to assist users of
the system.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Cox, Kenneth C. and Roman, Gruia-Catalin, "A Transaction System for the NCUBE" Report Number:
WUCS-88-31 (1988). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/788

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F788&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F788&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F788&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F788&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F788&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/788?utm_source=openscholarship.wustl.edu%2Fcse_research%2F788&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

A TRANSACTION SYSTEM FOR THE NCUBE

Kenneth C. Cox and Gruia-Catalin Roman

WUCS-88-31

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899

A Transaction System for the NCUBE

Kenneth C. Cox and Gruia-Catalin Roman

Department of Computer Science
WASHINGTON UNIVERSITY
Saint Louis, Missouri 63130

Abstraet

We present the design of a transaction system which supports tuple-criented database
operations in a concurrent environment. An implementation of this system for the
NCUBE Corporation NCUBE-7 hypercube processor is described. The implementation
inclndes both the basic kemnel to support the database operations and two software
packages to assist users of the system.

TABLE OF CONTENTS

1. INEFOGUCHON 1urveverierrnseesesrarernsssssonarsassseresssassssssssensassssesraresssssssssssssanenenss senss sensssssasensesaresessasansesessresrassrasssrsereanas
2. Transaction SYSIEIM DVEIVIBW ..vcvcivecvievsrervivsssesesrssesissmssesessessssesssssssessssasstererssmsassasstsassstanssesssssssesssssasesasanen

3. Transaction SYSLEM KEIMIELccovir s creiniirnisrresrsnsssssss e sessssessssesnsss s snsssssassssssssssssssseststatsssssansasarasssansses
3.1, Kernel FUNCHONALEY ..ovviviervcimsrensarinsrrestsssaromsssserssarssrenasssrasesasssesssassssasessesasssnns sessssnssansassesasassssssaseesasses
3.2, USer PACKAZE ..uceveeveeceeeecevecancs s nesraseresessensesens

4. Kernel Implementation Of INCUBEcicoiicinersiereseereessrssrasssess seesssssssesssssessessssssessessssssssssssssssssensesssnsesensns
4.1, USEE DACKAEE .viviviiisisimsssrsirssninirsisersinssssassassestsorsnssesassasassesassnsses sesns e saesssessesnss sests e ssesassnstasassssstassennases
4.2, DAtADASE PIOCESSES teurvvrvrrsrussssesrmrsusirmranssesmsassesmssssss bussessssesmnesssssanessess saesarsssnesessnsre st ssesnesssssssesns srensasseses

S.TUSEI PACKAZE 1 iiiiiiciiiisiii s itissrsriens e sesnssesesisst st sntanssessnmasasessasssnsntessesese sassssesen sesssennassess saesteresssssssseennas

6. User PACKAZe 2 oueovevecemenrnsssrensirernenenanns
6.1. NCUBE Implementation

1. Introduction

A transaction system is a software package which maintains a database and provides functions whereby user
programs can access the database, The sysiem described in this paper is designed to operate in a concurrent
environment where many independent processes can simultaneously access the system. The system maintains a
distributed database of content-addressable entities called tuples, which may be thought of as vectors of arbitrary
data.

The basis of the system is a kernel which maintains the database and provides low-level functions for access.
Two packages of functions for users are also provided; the first is intended for experimenters and provides only
minimal support, while the second is intended for less sophisticated users and encapsulates very compléx operations
to provide a simple interface to the database. An implementation of the system on the NCUBE Corporation NCUBE-7
hypercube processor is in progress. The system is being implemented as a number of C functions and programs.
The major design decisions for the implementation are discussed.

This paper begins with a logical overview of the transaction system. The system kernel, a package of functions
and programs which supports the system and provides low-level operations on the database, is then described. The
next section discusses implementation of the kernel on the NC-7. The higher-level software packages and their
implementation are then discussed.

2. Transaction System Overview

The ransaction system maintains a distributed database in a concurrent environment, in which many mutually
independent processes run simultaneously. User processes are user applications programs which need to access the
information in the database, Database processes, also called sifes, maintain the database and service user process
access requests. Processes communicate by means of message-passing; we assume message-passing may be
performed asynchronously with other computations.

The entities stored in the database are content-addressable ruples. Each tuple consists of an arbitrarily-long
sequence of data elements. In effect, the tuple data is a vector in which each element can have any of a number of
primitive types; the length of the vector and the types used in the vector are called the fuple structure. Each tuple
also has a unique site and position. Together these form the fuple identifier, which is unique over the entire system.
The tuple identifier and structure are determined when the tple is created, and do not change during the tuple’s
existence. The contents of the tuple (that is, the data stored in the tuple) is permitted to change.

The basic operations which can be performed on the database are assert (add a tuple), guery (inspect a mple),
modify (alter a tuple), and retract (remove a tuple), The interaction of a user process with the system is called a
iransaction. A transaction is gtomic: the database accesses and modifications associated with the transaction appear
to be performed without any interleaving with other transactions.

A pattern is a predicate which is used for tuple access. Patterns must specify the structure of the tuple. They
may optionally specify constraints on the identifier and contents; 2 number of simple relational operations are
permitted, e.g. accept the tuple if a particular element is less than 10. The process of searching the database for a
tuple which satisfies a pattern is called matching. Matching may be performed by query, modify, and retract
operations, which collectively are called matching transactions. A matching operation finds at most one tuple
which matches the pattern; if no matching tuple is found, the match is said to fail.

3. Transaction System Kernel

The system kernel is implemented in two parts: a package of C functions which allow user programs to access
the transaction system, and a program which manages the tuples at a site. Both the user package and the sile
program share a set of datatype packages. These definitions give the structure of tuples, tuple identifiers, patterns,
interprocess messages, and similar data, and permit manipulation of these types in an object-oriented fashion. These
definitions are omitted from this paper to save space, and the types site, fuple-id, tuple, pattern, and so on are taken
ag primitives. Each data type has at least one value which cannot represent an actual object, called the failure for

the type.

3.1. Kernel Functionality

The basic interaction between & user process and a site is called a dialog. A dialog consists of either two or three
messages. The user program first sends a request to a site. At some later time the site performs the request and
returns a reply. The reply may complete the dialog, or the user process may be required to send a confirmation.
These actions occur asynchronously, so the user process is free o continue with other processing after issuing a
request. A dialog-id is a type of object which identifies a dialog (request, reply and confirmation). Any object of
type dialog-id is unique over the entire transaction system, When a user program issues a request, it receives a
dialog-id.

Each site maintains a list of tuples. When a tuple is asserted, it is appended to the list. A position counler is
nsed to assign a new, unique position to each tuple as it is asserted. Tuple matching starts at a particular position
and traverses the list until a matching tuple is found or there are no more tuples. Tuples at a particular sites are thus
ordered; further, sites have an order, so the entire collection of tuples can be placed in a single ordering. Note,
however, that assertions or deletions may add or remove tuples anywhere in this ordering,

Requests may be issued in a number of modes which alter the manner in which the site processes the request.
These modes are: gperation mode, which determines the behavior of matching requests if the initial scan of the list
fails; lock mode, which permits the request to lock a tuple and require a confirmation before completing the
operation; and block mode, which determines the behavior of the request when it reaches a locked tuple.

The operation mode may be either immediate or pending. In immediate mode, the request scans the tuple st
only once, then replies. If no matching tuple is found, the reply indicates failure of the match. In pending mode, the
tuples are scanned; if no matching mple is found, the request is retained by the site until a matching tuple becomes
available and the reply is made. A pending request may be released to convert it to the immediate form, causing it
to reply even if no matching tuple is available.

The lock mode is either non-lock or lock. Lock mode specifies the manner in which the tuple is locked. When a
non-lock request matches a tuple, the operation is immediately performed and the reply is sent; the dialog is then
complete. ‘When a lock request matches a tuple, the locking is performed and a reply is sent. The user process must
complete the dialog by sending a confirmation. A confirmation may be either a comnit or a cancel. A commit
performs the operation and unlocks the tuple; a cancel unlocks the tuple.

The block mode is one of biock, non-block, or ignore. Both block and non-block modes have parameters
describing what the request considers to be a lock; biock mode has additional parameters which describe how the
tuple mark is modified if the request blocks. Block mode causes the request to block, or stop scanning the tuple lst,
if it finds a tuple that (according to the parameters) is locked; the request modifies the tuple locking information, so
other requests can test to see if a request is blocked at a tuple. Non-block mode causes the transaction to skip any
locked tuples; it does not re-examine the tple if it reaches the end of the tuple list. Ignore mode causes the
transaction to ignore the tuple Iocking.

When a tuple is unlocked or altered, any requests blocked at the tuple are permitted o continue the scan of the
tuple list. The requests resume scanning starting with the tuple; if the tuple was retracted, they proceed to the next.
(Note that the request may immediately block on the same tuple, if when it resumes scanning it still matches the
pattern and the tuple is stil locked.)

Any request may be aborted or deleted. The effect of an abort or delete is to prevent the request operation from
being performed, provided it has not already been performed; aborts and deletes do not undo operations. If the
abort of a request is successful, a failure reply in a form appropriate to the original request is sent. Note that
whether the abort succeeds or fails (because the request had already been performed), exactly one reply is sent for
the request. The delete does not send a reply.

3.2, User Package

The functions of the user package are summarized in Table 1. The notation gives the type of the function and of
its arguments and the input/output status of each argument; of course this does not represent the actual C

declaration. The functions fall into six categories. Functions which send reguests initiate a dialog and return a
dialog-id. Functions which test for replies allow examinination of the replies that have arrived. Functions which
receive replies get the data from the replies. Functions which send confirmations are used when the dialog requires
a cancel or commit. Functions which change fransaction status send abort, delete, or release messages.

Functions to send requests:
Sassert { inSite: site; inTuple: tuple; inLock: lock-mode } : dialog-id

Squery(inSite: site; inPos: position; inPattern : pattern; inOp: operation-mode,
inLock: lock-mode; inBlock: block-mode) : dialog-id

Smodify(in Site: site; inPos: position; inPattern: pattern; inOp: operation-mode;
inLock: lock-mode; inBlock: block-mode; inMod: modification) : dialog-id

Sretract (in Site: site; inPos: position; inPattern: pattern; inOp: operation-mode;
inLock:lock-mode; inBlock: block-mode) : dialog-id

Sbounds (inSite: site) : dialog-id

Fanctions to test for replies:
Tavail(inDid: dialog-id) : boolean
Tiirstreply (inD7T:dialog-type) : dialog-id
Tnextreply (inDT: digiog-type) : dialog-id

Functions to receive replies:
Rassert(inDid:dialog-id; outSite: site; ontPos: position; outStatus:integer) : boolean
Rquery (inDid: dialog-id; ouiSite: site; outPos: position; out Tuple: tuple; outStams:integer) : boolean

Rmodify (inDid: dialog-id; outSile: site; outPos: position,
outTuple; :tuple; out Tuple,: tuple; outStatus:integer) : boolean

Rretract (inDid: dialog-id; outSite: site; outPos: position; out Tuple: tuple; outStatus:integer) : boolean
Rbounds (inDid: dialog-id; outLow: position; outHigh: position) : boolean

Functions to send confirmations:
Scancel(inDid: dialog-id) : boolean
Scommit(in Did: dialog-id) : boolean

Functions to change transaction status:
Sabort(inDid: dialog-id) : boolean
Sdelete (inDid:dialog-id) : boolean
Srelease (inDid: dialog-id) : boolean

Miscellaneous functions:
LoadDB (inChannel: infeger; Order: integer; Flags: array of bytes) : boolean
EnterTrans() : boolean
ExitTrans() : boolean

Table 1. Kemel Functions.

3.2.1. Functions to send requests

These functions generate a new, unique dialog-id which identifies the dialog. The dialog-id is returned as the
function value. This dialog-id must be used to receive the reply, send a confirmation, or send messages which
change the transaction status.

Sassert
Sends a request that the Tuple be added to the database at the given Site. If a Lock is required, it is applied
when the tuple is asserted and the transaction requires a confirmation to complete the action.

Squery
Sends a request that a query be performed at the Site for a tuple matching Patiern, starting at the position
Pos. Op is either immediate or pending mode. Lock and Block affect the searching as desciibed above.

Smodify
Sends a request to medify a tuple. The first six arguments have the same meaning as in Squery. Mod
specifies a single operation to be performed on ¢ne tuple data field. Modifications do not aiter the tuple
identifier.

Sretract
Sends a request 1o retract a tuple; the arguments have the same meaning as in Squery.

Shounds
Sends a request to Site to reply with a pair of positions such that (at the time the reply is made) all ples at
the Site have positions falling in the range specified by the pair.

3.2.2. Functions to test for replies
These functions allow examination of the replies which are available to the user process.

Tavail
Returns true if the reply for the dialog associated with Did is available, false otherwise.

Tfirstreply
Initiates a search of the available replies of the indicated dialog type. Returns the dialog-id of the first such
reply, or a failure indication if none is available.

Tnextreply
Continues a search for replics of a particular type from the last such reply returned by Tfirstreply or
Tnextreply. Returng the dialog-id of the next reply, or a failure indication if none is available.

3.2.3. Functions to receive replies

These functions receive replies, returning the reply information through the arguments, All retarn a boolean,
which is true if the reply was available. The values returned through the arguments are valid when the function
returns true. On return, the Status field is a value indicating if the transaction succeeded, succeeded and requires
confirmation, failed, or was aborted.

Rassert
Receives the reply to the assert request of the dialog associated with Did, returning the Site and Pos of the
asserted tuple. Together these form the tuple id.

Rquery
Receives the reply to the query request of Did, returning the Site and Pos of a matching tuple and the Tuple
data itself. These are all failures if no match could be found.

Rmodify
Receives the reply to the modify request of Did. The Site and Pos of the modified tuple are returned, as
well as both the old Tuple, and new Tuple, data.

Rretract
Receives the reply to the retract request of Did. The return values are the same as in Rquery.

Rbounds
Receives the reply to the bounds request of Did. The Low and High values bracket the range of tuple
positions at the site,

3.2.4. Functions to send confirmations

These functions must be used with wansactions issued in lock mode to complete the operation, remove the lock, and
allow any blocked transactions to continne. They return a boolean, which is false if the transaction does not exist,
was not issued in lock mode, or has not yet replied.

Scancel
Send a cancel for the transaction.

Scommit
Send a commit for the transaction.

3.2.5. Functions to change transaction status
These functions return a boolean, which is false if the operation could not be performed.

Sabort
If possible, immediately stop the transaction. If the abort succeeds, the reply associated with the trans-id
will be a failure indication which is recognizable as an abort (and not just a failed match). The function
returns false only if the transaction does not exist.

Sdelete
If possible, immediately stop the transaction. No reply is made if the abort succeeds.

Srelease
Change the transaction status from pending to immediate. The function returns false if the transaction does
not exist or if it was not issued in pending mode.

3.2.6. Miscellaneous functions

LoadDB
This function is used only by the program running on the NCUBE host. It loads the database program on the

subcube associated with the Channel, which is of the indicated Qrder. The Flags contains 2% bytes; the
database program is loaded on logical node i iff the i entry of Flags is non-zero.

ExitTrans
Initializes the transaction system package data structures. This function must be called by the user program
before performing any other transaction system functions.

ExitTrans
Compleies any outstanding transactions for the calling database process by aborting them; any locks held
by the process are canceled. This should be called by the user process when it finishes interacting with the
system,

4. Kernel Implementation on NCUBE
4.1. User package

Each user process has a table which maps the logical sites to the physical database-node addresses. With this
package, the generation of this able (as well as starting the appropriate process on each NCUBE node) is the user’s
responsibility. Each user process also has an internal counter for each of the database nodes which it uses to
generate the trans-ids. System-wide uniqueness is guaranteed by concatenating the counter with the address of the
user process node to create the trans-id; both the address and the counter portions can be recovered from the trans-
id.

When processing an S-class (send request) function, the user process first performs any necessary error-
checking. It then generates a trans-id and prepares a message containing an integer encoding the transaction type,
the trans-id, and the function arguments. The message is sent to the database node corresponding to the site. The
trans-id and information about the transaction (including the transaction modes) are stored on the cutstanding list.
Finally, the function returns the trans-id.

When processing any of the package functions, the user process first reads any iransaction-systermn messages
(replies) which have arrived at the node. Any that do not correspond to outstanding transactions are discarded. The
others are added to the available list and the entry on the outstanding list is changed to show the reply is available.
The Tfirstreply and Tnextreply functions implement a list-traversal mechanism on the available list. The Tavail
function simply examines the outstanding list.

‘When an R-class (receive reply) function is performed, the outstanding list is examined. If the reply is available,
the reply contents are copied into the function arguments and the reply is removed from the available list. If the
transaction was issued in non-lock mode, it is removed from the outstanding list; otherwise the outstanding list entry
is modified to indicate the reply has been received.

When an Scancel or Scommit is issued, the outstanding list is checked to ensure that the transaction reply has
been received. If it has, the confirmation is sent and the entry is removed from the outstanding list.

When an Sabort is issued, the outstanding list is again checked, The function returns false if the transaction is
not on the Iist. If it is on the list, the reply status is checked. If the reply has not yet arrived, an abort message is
sent to the site, Note Sabort returns trae even if the reply has arrived,

The function ExitTrans deletes all transactions on the outstanding list; depending on the transaction status, this
may involve sending a delete message. (A delete message aboris the transaction and cancels any lock it holds, but
no reply is made by the database process.) No further initialization is performed.

When an Srelease is issued, the ountstanding list is checked. The function returns false if the transaction is not
on the list or is not pending. Otherwise the reply status is checked, and if the reply has not yet arrived a release
message is sent to the site. Finally, the transaction mode is changed to immediate.

4.2, Database processes

The database process loops, continually reading messages from user processes and performing the indicated
action, perhaps sending a reply as a result. When it receives a message the process first reads all messages quened
in the NCUBE system and places them in an internal queue.

Any abort, release, cancel or commit messages are processed first. Transaction requests from a particular user
process are performed strictly in order of trans-id. If a request arrives out of order, it is held until the intervening
requests are obtained and processed. The process keeps the largest trans-id (as determined by the counter portion) it
has received from each of the user processes.

All transactions are stored on a master outstanding list; each enfry contains all the information associated with
the transaction. A number of other lists of transactions are described below. These are implemented as lists of

pointers to entries of the outstanding list, so the data for a transaction only appears once. These other lists have the
property that a transaction appears on at most one other list. A part of the outstanding list entry indicates what other
list, if any, the transaction is on.

The tuples are stored in a muple list. In addition to the tuple data, each list element contains the position, a mark
used for locking, and a block list of transactions. The process maintains a counter which is used to generate
positions. When an assert is performed, the tuple is appended to the tuple list with a new position, a zeroad
(unlocked) mark, and an empty block list.

To support pending ansactions, the process maintaing a pending list of unserviced requests. Any transaction
issued in pending mode which does not produce results when first processed is appended 1o the list, After
performing any transaction (including a pending one) which asserts, modifies, or unlocks a tuple, the pending list is
scanned for a transaction which matches the tuple. If such a transaction is found, the fransaction is removed from
the Iist and performed. If the transaction had no affect on the tuple, the scanning of the pending list continues from
the transaction. If it modified the tuple (including modification of the mark), a new tuple results and the scanning of
the pending list starts from the beginning. If it retracted the tuple, scanning halts.

When a release request is processed, the largest trans-id is examined. If the transaction to be released has not
been processed yet, the release request is held until the transaction is received, at which time it is changed to
immediate mode. If the transaction is not on the outstanding list, the release is ignored. If the transaction is on the
pending list, it is removed from the pending and outstanding lists and a reply containing a failure indication is sent.
(The pending-list scan algorithm maintains the invariant ‘transaction on pending list = no matching tuple exists’; a
final scan of the tuple list is therefore not necessary.) Finally, if it is blocked at a tuple its status is changed to
immediate and when it is unblocked it is processed as such.

When a transaction pattern matches a tuple, the results depend on the blocking-mode in which the ransaction
was issued. If the transaction was issued in ignore mode, or the fransaction was issued in non-block or block mode
and the tuple is not locked, then the appropriate action is taken (either the operation is performed or a lock is
applied) and a reply is sent. If the transaction was issued in non-block mode and the tuple is locked, the transaction
proceeds to the next tuple. If the transaction was issued in block mode and the tuple is locked, the transaction
becomes blocked.

When a transaction is blocked at a tuple, the transaction is appended to the tuple’s block list. The execution of a
cancel, commit, modify, or retract on the tuple frees the transactions on the block list to continue searching, If the
tuple was retracted, searching continues with the next tuple in the tuple list; otherwise the transaction tests its pattern
against the tuple again (and may immediately reblock). Processing of the blocked transactions occurs before
examination of the pending Hst.

Tuple locking and transaction blocking are carried out using the tuple mark, The mark consists of lwo elements,
a bitficld B and integer /. The transaction may examine both elements to determine if the tuple is locked.

The effect of a block or lock is to set some bits of the appropriate mark’s bitfield and increment the mark’s
integer by some amount, while undoing a block or Iock clears the same bits of the bitfield and decrements the
integer by the same amount. The test for blocking examines the mark and blocks if particular bits are set or if the
integer is greater than some value.

Issuing a transaction in either block and non-block mode requires the specification of a test to determine if the
tuple is locked. This test consists of two values, a bitfield b, and an integer i, Block mode also requires the
specification of an alteration to be applied to the block mark if the transaction is blocked. This alteration consists of
two values, a bitfield b, and integer i,.

Issuing a transaction in lock mode requires the specification of an alteration to be applied to the lock mark if the
transaction succeeds in locking the tuple. This alteration consists of two values, a bitfield b, and integer i,.

Let ® be bitwise AND, ® be bitwise OR, and a be logical NOT (of a). Then the lock/block actions are:

A transaction considers a tuple locked if
(BRb)z0)v{I>i)

When a transaction blocks on a tuple, it performs
B—B®b, feT+1,

‘When a transaction is unblocked, it performs
B« B®b, Te1I-i,

‘When a transaction locks on a tuple, it performs
B« B@®b, TeI+i

When a transaction unlocks a taple (by cancel or commit), it performs
B« B®b, T I-i

When a transaction applies a lock to a tuple, the transaction is placed on a confirmation list. When a
confirmation message (cancel or commit) is received, this list is searched for the transaction; if it is not found the
confirmation is ignored. If it is found, the transaction operation is applied to the tuple (for a commit), the tuple is
unlocked, and the transaction is removed from the confirmation and outstanding lists. The block list for the tuple
and the pending list are then processed as described ahove.

When an abort is received, the largest trans-id is examined to determine if the transaction has been processed. If
it has not, the abort is held until the transaction is received, at which time the failure reply is made. If the
transaction has been processed, the outstanding list is examined. If the transaction is found, the failure reply is
made; otherwise no action is taken,

5. User Package 1

This package provides a simple set of protocols for dialogs, concealing the mechanisms of lacking, blocking,
and confirmations. A transaction consists of two messages, a request and a reply. After issning a request, the user
process is free to continue with other processing. A new data type, the frans-id, is nsed to identify the transaction.
The functions available at this Ievel are listed in Table 2; except for the absence of locking and blocking and the use
of trans-ids insiead of dialog-ids, the function arguments are the same as those of the kernel. The LoadDB,
EnterTrans, and ExitTrans functions of the kernel are also still available.

Matching takes place at only one site, using a pattern and start position supplied by the user program. The
pattern may specify constraints on the position. Matching transactions may be issued in either immediate or pending
mode; pending transactions may be released. The user program is also able to abort transactions; however, the
transaction operations is not undone if it has already been performed.

All requests are issued in non-lock and non-block mode. This means that when a matching tuple is located, the
operation is performed and the reply made immediately. No locking is performed, so no confirmation is required.
Implementation of these protocols is simple, requiring only a single table data structure to translate transaction ids
into the corresponding dialog ids.

6. User Package 2

This package provides a more complex set of protocols for dialogs and further conceals the message-based and
site-oriented implementation. A transaction consists of a request, made by calling a function. The function blocks
until the request is completed or until a specified amount of time has elapsed. If the request completes, the results
are returned through the function arguments. The transaction system handles the details of tple site management
for the user.

The available functions are listed in Table 3. A fimeout is a specification of an amount of time which the
package is to wait for a reply to a request. The amount specified may be ‘infinite’. If the indicated time elapses
before a reply is obtained, the transaction is aborted.

Functions to send requests:
Slassert { inSite: site; inTuple: tuple;) : trans-id
Slquery(inSite:site; imPos: position; inPattern: pattern; inOp: operation-mode) : trans-id

S1modify(inSite: site; inPos: position; inPaltemn: pattern; inOp: operation-mode;
inMod:modification) : trans-id

Slretract (inSite:site; inPos: position; mPattern: pattern, inOp:operation-mode) : trans-id

Functions to test for replies:
Tlavail (inTid: trans-id) : boolean
Tlfirstreply(inDT:didlog-type) : trans-id
TlInextreply (inDT: dialog-type) : trans-id

Functions to receive replies:
Rlassert(inTid: trans-id; outSite:site; outPos: position; out Status:integer) : boolean
Rlquery(inTid:srans-id; outSite:site; outPos: position; outTuple: tuple; outStatus:integer) : boolean

Rimodify(inTid: rans-id; outSite: site; ontPos: position;
outTuple, : tuple; out Tuple, : tuple; outStatus:integer) : boolean
Rlretract(inTid: trans-id; outSite: site; outPos: position; out Tuple: tuple; out Status: integer) : boelean

Functions to change transaction status:
Siabori(inTid:rans-id) : boolean
Sldelete (inTid: trans-id) : boolean

Slrelease(inTid: trans-id) : boolean
Table 2. User Package 1.

assert (inTuple: tuple; in Timeout: integer; out Tuid: tuple-id; outStats:integer) : boolean
query (inPattern: pattern; in Timeout:integer; outTuid: tuple-id; out Tuple: tuple; out Status: integer) : boolean

modify (inPattern: pattern; inMod: modification;in Timeout: integer; out Tnid: fuple-id;
outTuple; : tuple; out Tuple, : tuple; outStatns:integer) : boolean

refract (inPattern: pattern; in Timeout: integer; outTuid: tuple-id; out Tuple: tuple; onfStaws: integer) : boolean

seteut (inCut:integer) : boolean

Table 3. User Package 2.

6.1. NCUBE Implementation
6.1.1. Allocation of NCUBE nodes to processes
The first aspect of sife management handled by this package is the allocation of NCUBE nodes to user and

database processes, with the attendant mapping from logical sites to physical nodes. In a host program, the user
specifies the total number of nodes to be used, the number of user process nodes, and the program(s) to be run as

10

user processes. The host package automatically loads the processes on the correct nodes and imitializes the
necessary intemal tables.

6.1.2. Automatic tuple site selection

The second aspect of site management is the determination of the site at which a tuple is to be stored and the
site(s) where tuples matching a pattern may be stored. This is accomplished by two mapping functions (hash
functions). The first function F, maps a tuple to a single site; the second function F, maps a pattern (o a non-empty
set of sites. These functions are selected in such a way that

F(uple) e F, " (pattern)
for any pattern whlch matches tuple.

When a fuple is asserted, the system places it at site F(fuple). When a pattern is o be matched, the system
generates [7, (pattern) and attempts matching at each of these sites; if a tuple matching pattern has been asserted,
then by the Bbove property of £, and F, its site is examined.

The use of this method speeds up the process of searching for a tuple. However, it also requires that at all times
F (tuple) be the site where tuple is stored. Since the tuple site does not change once the tuple is asserted, the manner
in which the tuple contents may be modified is restricted. A tuple can only be modified if the new contents has the
same [}, as the old contents,

The method used to guaraniee this behavior uses the fact that tuples are vectors of dala elements. A user
program selects a number called the cut. Once a user process has asserted a tuple, it cannot change the value of the
cat. Any data elements whose position in the tuple is at or before the cut can be modified; data elements whose
position is after the cut cannot be modified. The functions ¥, and F, use only information about positions after the
cut to generate their results; the desired behavior is thus guaranteed

Although the required property of F, and F, appears difficult to realize, it is actually quite simple to develop
appropriate functions. Assume that there are 2 database nodes; then each is assigned a (logical) base-2 number
consisting of n bits. Given a tuple to assert, an n-place vector of values is constructed by taking tuple data elements
in order from after the cut (if there are not # tuple elements, the are repeated as necessary; if there are no tuple
elemenys after the cut, the vector is filled with a constant). A hashing function which produces 0 or 1 is then applied
1o each vector element, producing an n-digit binary number which is used as the (logical) node address.

A similar method is used for mple matching. Each position of the pattern after the cut is either specified (must
be the atom ‘pixel’, must be a 7} or unspecified. The same method as above is used to construct an s-digil number
in which the specified pattem positions are 0 or 1 (as produced by the hashing function) and the unspecified
positions are left empty. The set of possible tuple sites is generated by filling in the empty positions in all possible
ways with 0 or 1.

Adaptations for the above scheme when there are not exactly 2" database nodes are simple. To further add
efficiency, the number and type of the data elements are used to fill in several slots of the hashing vector; since this
information is known for both tuples and patterns, it reduces the number of unspecified slots and hence the number
of sites which must be searched.

6.1.3. Data structures for multiple-site searching

A trans-id is a reference 1o a transaction record, which contains the information associated with the transaction.
As discussed below, this information includes the transaction type and operaton-mode, a stains indicator, the
lower-level trans-ids, and the iransaction reply.

When a iransaction is requested a new transaction record is generated and added to the transaction list. The
transacticn status and mode are set appropriately and the transaction reply is made a failure indication. The
protocols described in the next section are then followed to initiate the trangaction,

11

The protecols generate a number of simultaneous dialogues. Each of these dialogunes is implemented using the
lower packages and thus has an associated frans-id and entry on the outstanding list of the user process. During the
initiation of a (ransaction, these trans-ids are collected into a list and entered in the transaction record.

A Iransaction can have at most one reply. When a reply for a dialogue amrives, the associated entry in the
transaction record’s list is marked. The reply is then tested with the current transaction reply according (o the
protocols of the next section; the new reply may be discarded or the old reply may be replaced. Depending on the
protocol, some of the cutstanding dialogues may be aborted, canceled, or committed. When all the dialogues have
completed (including through aborts), the reply is placed on the available list and the entry in the transaction record
is changed to reflect this.

6.1.4. Protocols for multiple-site searching

The protocols described here are used for all database searches, even if only one site needs to be interrogated.
The transaction involves sending a request to each site in £ ; this is called a broadcast. Similarly, multiple replies
may be received before one is selected to be supplied to the user process; the selected reply is called the response.

When lock or bleck modes are specified, the parameters used are as follows: lock sets a particular bit in the mark
bitfield, while block blocks if this bit is set but makes no changes itself. Note that this protocol permits only one
transaction to hold a lock on a tuple.

A transaction is issued in one of eight configurations as determined by the transaction type, operation-mode, and
search-mode. The type may be either Query or Alter (modify or retrac). The operation-mode may be either
Immediate or Pending. The search-mode may be either Unordered (any or only) or Ordered (first or next).

Query, Immediate, Unordered
The user process broadcasts in immediate, non-lock, ignore modes. As replies arrive the sites are noted.
The first positive reply to arrive is taken as the response; delete messages are sent to all sites from which no
reply has been received. If all sites reply negatively, the response is a failure indication.

Query, Immediate, Ordered
The user process broadcasts in immediate, non-lock, ignore modes. When a positive reply arrives, delete
messages are sent to all sites following the replying site in the site ordering which have not replied.
Among the positive replies to arrive, the first in the site ordering is taken as the response. If all sites reply
negatively, the response i a failure indication.

Query, Pending, Unordered
The user process broadcasts in pending, non-lock, ignore modes. The first positive reply to arrive is taken
as the response; delete messages are sent to all other sites.

Query, Pending, Ordered
The user process broadcasts in pending, non-lock, ignore modes. When a positive teply arrives, delete
messages are sent to all sites following the replying site in the site ordering and release messages are sent
to all sites preceding it. The replies from the preceding sites are examjined, and the first (in the site-
ordering) positive reply is taken.

Alter, Immediate, Unordered
The user process broadcasts in immediate, lock, block modes. As replies arrive the sites are noted. The
first positive reply to arrive is taken as the response and a commit is sent to that site. Delete messages arc
sent 10 all sites which have not replied (recall that a delete message also cancels any existing lock). If alf
sites reply negatively, the response is a failure indication.

12

Alter, Immediate, Ordered

The user process broadcasts in immediaze, lock, block modes. The first positive reply to arrive is taken as
the temporary response and delete messages are sent to any sites following it. Each subsequent positive
reply is compared with the temporary response. If it follows the temporary response in the ordering, it is
discarded; if it precedes the temporary response, it replaces the temporary response and delete messages
are sent 1o any sites following it (including that of the old temporary response). When all sites preceding
the current temporary response have replied negatively, the temporary response is taken as the response
and a commit is sent. If all sites reply negatively, the response is & failure indication.

Alter, Pending, Unordered
The user process broadcasts in pending, lock, block modes. The first positive reply to arrive is taken as the
response and a commit is sent o the site; delete messages are sent to all other sites.

Alter, Pending, Ordered
The user process broadcasts in pending, lock, block modes. When a positive reply arrives, it is taken as the
temporary response; delete messages are sent to all sites following it, and release messages are sent to all
sites preceding it. The protocol described above for Alter, Immediate, Ordered is then used to select the
response.

The action taken when the user releases a transaction depends on the status of the transaction. In all the Pending
protocols described above, there is a point (the receipt of the first reply) at which release and/or delete messages arc
sent to the sites. If the release request occurs before this point, the release messages are sent and the corresponding
Immediate protocol is followed. If the release request occurs after this point, it is ignored.

The action taken when the user aborts a transaction also depends on the status. In a Query type of transaction,
delete messages are sent to all sites and the response to the transaction is taken as a failure-abort. In the Alter type,
there is a point at which the response is selected from among the replies which have been received and a commit is
sent to the site. If the abort occurs before this commit is sent, delete messages are sent to all sites and the response
is taken as a failure-abort; otherwise, no messages are sent and the selected response is used. false if it timed out.

	A Transaction System for the NCUBE
	Recommended Citation

	tmp.1460750766.pdf.dtt30

