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ABSTRACT OF THE DISSERTATION

Improving Resource Efficiency in Cloud Computing

by

Jiayi Song

Doctor of Philosophy in Computer Science

Washington University in St. Louis, 2022

Professor Roch Guérin, Chair

Customers inside the cloud computing market are heterogeneous in several aspects, e.g.,

willingness to pay and performance requirement. By taking advantage of trade-offs created

by these heterogeneities, the service provider can realize a more efficient system. This the-

sis is concerned with methods to improve the utilization of cloud infrastructure resources,

and with the role of pricing in realizing those improvements and leveraging heterogeneity.

Towards improving utilization, we explore methods to optimize network usage through traf-

fic engineering. Particularly, we introduce a novel optimization framework to decrease the

bandwidth required by inter-data center networks through traffic scheduling and shaping,

and then propose algorithms to improve network utilization based on the analytical results

derived from the optimization. When considering pricing, we focus on elucidating conditions

under which providing a mix of services can increase a service provider’s revenue. Specifi-

cally, we characterize the conditions under which providing a “delayed” service can result

in a higher revenue for the service provider, and then offer guidelines for both users and

providers.
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Chapter 1

Introduction

1.1 Motivation

Cloud computing has experienced explosive growth and become the computing platform

of choice for an increasingly diverse set of users. By judiciously taking advantage of this

growing diversity, e.g., differences in job requirements, tolerance to delay and interruption,

job duration, data location, etc., the service provider can realize a more efficient system.

In fact, most service providers, like Amazon1 , Google Cloud2 and Microsoft Azure3, offer

multiple options to accommodate customers’ heterogeneity. Among these services, reserved,

on-demand and spot instances4 are of most relevance to this work.

All reserved, on-demand and spot instances let users dynamically subscribe compute capac-

ity at certain time granularities. Reserved and on-demand instances are similar, except that

1Retrieved 2022, Jan 2, from https://aws.amazon.com/ec2/pricing.
2Retrieved 2022, Jan 2 from https://cloud.google.com/compute/docs/instances/preemptible.
3Retrieved 2022, Jan 2 from https://azure.microsoft.com/en-us/blog/low-priority-scale-sets/.
4Different providers may have different names for similar services. We adopt Amazon’s notations in this

proposal.
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reserved instance has a much longer subscription time. To compensate for the longer dura-

tion, reserved instance has a considerably lower unit price compared with the corresponding

on-demand instance. Both on-demand and spot instances have a relatively short subscrip-

tion time, yet they exhibit two major differences. The first is that while the price of the

on-demand instance is fixed, the price of the spot instance can vary over time. The second

is that spot instances can be unexpectedly terminated. In exchange for the possibility of

termination, spot instances are available at a significant discount compared to on-demand

instances.

Users diversity can clearly take many different forms, and we focus on two core aspects with

direct influence on a user’s choice of whether to adopt the service, namely, job value and

timeliness of job completion or sensitivity to delays caused by service delays or/and inter-

ruptions. The value of a compute job is obviously of relevance when it comes to determining

what a user is willing to pay to have it executed. Potentially more interesting in the context

of this work is a job’s sensitivity to any delay in its execution, as by offering customers with

low delay sensitivity a ”delayed” service, i.e., a service with a longer delay in exchanging for

a lower price, the service provider potentially can meet more customer needs, and therefore,

increase its overall revenue.

In this work, we propose to improve the efficiency in cloud computing taking advantage of

customer heterogeneity regarding job value and sensitivity to delay. We first study the role

of pricing in realizing improvements and leveraging heterogeneity. After that, we explore

methods to boost utilization of infrastructure resources, where we particularly focus on the

network side. Specifically,

2



• For the pricing part, we characterize the conditions under which providing a “delayed”

service is beneficial, i.e., results in a higher revenue, for the service provider, and then

offer guidelines for both users and providers.

• For the infrastructure part, we consider the inter-data center network that carry flows

with different latency requirements, and then explore methods to decrease the required

(inter-data center) network bandwidth without violating each flow’s deadline (delay

target). Particularly, we propose to rely on scheduling and shaping of traffic flows in

a manner that accounts for their delay requirements, so as to decrease the minimum

required bandwidth for inter-data center networks.

Contributions from this thesis have resulted in several publications, with results related to

pricing appearing in [171, 174], while [173] documents network optimization results in the

single-node case with extensions to the multiple nodes cases forthcoming [172].

1.2 Organization of Thesis

This thesis presents the research of two interesting factors in improve cloud efficiency: pricing

factor and network factor. In the following chapters, both topic will expanded in details.

In Chapter 2, we consider a cloud provider that seeks to maximize its revenue by offering

services with different tradeoffs between cost and timeliness of job completion. Spot instances

and preemptible instances are examples of such services, with, in both cases, possible service

interruptions delaying a job’s completion. Our focus is on exploiting heterogeneity across jobs

in terms of value and sensitivity to execution delay, with a joint distribution that determines

their relationship across the user population. We characterize optimal (revenue maximizing)

pricing strategies and, in the case of spot instances, optimal bidding strategies as well as

3



identify conditions under which bidding at a fixed price is optimal.We show that correlation

between delay sensitivity and job value needs to exceed a certain threshold for a service

offering that differentiates based on speed of execution to be beneficial to the provider. We

further assess the results’ robustness under more general assumptions, and we offer guidelines

for users and providers.

In Chapter 3, we consider traffic flows between datacenters over private networks. The

operators of those networks have access to detailed traffic profiles with performance goals

that need to be met as efficiently as possible, e.g., realizing latency guarantees with minimal

network bandwidth. We focus first on the most basic network configuration, namely, a single

link network, and then extend our one-hop results to more general, multi-node networks. We

study the extent to which traffic (re)shaping can be of benefit. Specifically, for the single

link network we explore different types of schedulers of varying complexity in the form of

optimal solutions, whereas for the multi-node network we propose algorithms for different

types of schedulers. Our results demonstrate how judicious traffic shaping can help lower

complexity schedulers perform nearly as well as more complex ones.

In Chapter 4, we first conclude our research about using pricing and network to improve

resource efficiency in cloud computing. Then we discuss the expectations and suggestions of

future work.
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Chapter 2

Pricing Strategies for Delay

Differentiated Cloud Services

2.1 Background and Motivations

Cloud computing has experienced explosive growth and become the computing platform of

choice for an increapricingsingly diverse set of users. Cloud providers have responded to this

growing diversity by offering different types of services, each with its own pricing scheme.

For example, Amazon, the largest cloud provider [33], offers multiple pricing options5 to

accommodate customers’ heterogeneity, i.e., differences in job requirements, tolerance to

delay and interruption, job duration, data location, etc. Among these options, on-demand

and spot instances are of most relevance to this work, as they embody different trade-offs

between cost and characteristics of the service.

5Retrieved 2019, March 1, from https://aws.amazon.com/ec2/pricing.
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Both on-demand instances and spot instances let users dynamically request compute capacity

one hour (or one second for Linux instances6) at a time but they exhibit two major differences.

The first is that while the price of on-demand instances is fixed, the price of spot instances can

vary over time. The second and more important is that spot instances can be unexpectedly

terminated. Specifically, spot prices are updated every hour, though after Amazon’s recent

changes to the service [19] they now typically change less frequently7, and users register

a bid that represents the maximum price they are willing to pay. When a user’s bid falls

below the spot price, its instance is terminated following a two-minute interruption notice.

In exchange for the possibility of termination, spot instances are available at a significant

discount compared to on-demand instances, and Amazon’s Spot Instance Advisor8 offers

users advice and historical data on pricing and frequency of interruption for different instance

types. Spot instances are, therefore, a potentially attractive option for jobs that can or have

been instrumented to tolerate interruptions9, and are willing to trade a lower cost for a

possible delay in completing their execution. In this work, we focus on jobs that fall in this

category.

Besides Amazon, Alibaba Cloud10 and Packet11 also offer services similar to spot instances

(called preemptible instances and spot market, respectively), where the customer specifies a

maximum price (bid) per hour for a specified instance type. If the bid is no less than the

current market price, the instance is billed according to the current market price; otherwise,

the instance is automatically released and restarts only when its bid again exceeds the market

6Retrieved 2019, March 1 from https://aws.amazon.com/blogs/aws/new-per-second-billing-for-
ec2-instances-and-ebs-volumes/.

7Quoting from [14]: “The Spot price may change anytime, but in general, it will change once per hour
and in many cases less frequently.”

8Retrieved 2019, March 1 from https://aws.amazon.com/ec2/spot/instance-advisor/.
9We also note that spot instances can be attractive for short jobs that can complete before the spot price

can be updated to create an interruption.
10Retrieved 2019, March 1 from https://www.alibabacloud.com/help/doc-detail/52088.htm.
11Retrieved 2019, March 1 from https://support.packet.com/kb/articles/spot-market.
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price. Additionally, Microsoft Azure and Google Cloud, the two largest cloud providers after

Amazon [33], offer services that can be viewed as offering a similar trade-off ([99] makes

a similar claim, arguing that Amazon’s new version of its spot service is now closer to

these offerings from Google and Microsoft). Specifically, low-priority VMs12 (Microsoft) and

preemptible instances13 (Google) are available at a lower price than standard on-demand

instances, though one that is now fixed (the aspect of bidding is absent in both services). As

with spot instances, this lower price is in exchange for the possibility of service interruptions

through preemption. For simplicity, in the rest of the work we refer to the service offerings

from Google and Microsoft as preemptible instances or VMs.

This work is concerned with a cloud computing offering that contemplates such a mix of

services, and aims to develop a better understanding for when and why they may be of

benefit to a cloud provider, i.e., help it maximize its revenue, and for the pricing strategies

that can then realize those benefits in the presence of diversity in jobs’ profiles. Specifically,

our primary goal is to elucidate conditions under which a cloud provider can increase its

revenue by offering services that allow users to trade-off a lower cost for the possibility of

service interruption, and therefore delays in jobs’ completions. In addition, when bidding is

involved, as is the case with spot instances, we also seek to devise effective (for cloud users)

bidding strategies. As stated in Section 3.3.1, our focus is primarily on this latter scenario,

i.e., the variable prices of spot instances (at least their original version). This is because

such a system is more general and, as argued in [99], offers greater benefits, including to

users who, through their bidding, can chose the trade-off between price and performance

that best fits their applications’ profiles.

12Retrieved 2019, March 1 from https://azure.microsoft.com/en-us/blog/low-priority-scale-
sets/.

13Retrieved 2019, March 1 from https://cloud.google.com/compute/docs/instances/preemptible.
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2.1.1 Assumptions and Limitations

Job Profiles

Diversity in a job’s profile clearly takes many different forms, and we focus on two core aspects

with a direct influence on a user’s willingness to pay, namely, job value and timeliness of

job completion or sensitivity to delays caused by service interruptions. We acknowledge that

many other factors influence both users and provider’s decisions, e.g., geographic constraints,

type of compute instances, scheduling options, etc. However, a job’s intrinsic value and the

extent to which it is time-sensitive (or not) represent fundamental aspects of how cloud users

and providers interact.

The value of a compute job is obviously of relevance when it comes to determining what

a user is willing to pay to have it executed. Potentially more interesting in the context of

a spot service, or more generally any service where a job’s execution can be interrupted,

e.g., through preemption, is the job’s sensitivity to delays in its successful completion. This

sensitivity can be expected to affect a user’s willingness to pay for different services, and

in the case of dynamic prices, as with spot instance, the user’s bidding strategy, i.e., high

bids ensure immediate execution while low bids are more likely to be interrupted multiple

times and incur large completion delays. In such an environment, an important question for

a provider seeking to maximize its revenue, is how to account for differences in job value and

sensitivity to delay across users when deciding what services to offer and how to price them.

The first step in accounting for those differences is obviously for the cloud provider to learn

about them. Job profiles are typically private information, but the cloud provider can acquire

knowledge of the profiles’ distribution over the user population. This information can be

derived through methods from market research [144], e.g., customer interviews, surveys and

8



questionnaires [41]. For example, a common approach for eliciting customer preferences along

multiple dimensions, e.g., value and delay sensitivity, is conjoint analysis [22, 165, 81], which

relies on surveys and statistical techniques to assess customers valuations across different

attributes in their purchasing decisions.

The details of our model for job profiles can be found in Section 3.3.1, but it allows for jobs

with different sizes (total execution time), value generated per unit of execution time, and

sensitivity to delay in execution completion. Heterogeneity across jobs is captured by making

those quantities random variables with different distributions, and more importantly by

introducing correlation between them. To keep the analysis tractable, correlation is present

only between job value and sensitivity to delay, and we assume that both are independent

of a job’s size. This still allows for short jobs to be more valuable than large jobs, i.e., by

having a higher unit value, and for large jobs to be either more or less sensitive to service

interruptions than short jobs. However, it does not allow for scenarios where large jobs

are systematically associated with higher (or lower) unit value than short jobs, nor does it

accommodate situations where large jobs are more (or less) sensitive to interruptions than

short jobs. In spite of those limitations, the model still allows for a meaningful investigation

of how heterogeneity in jobs’ (unit) value and sensitivity to interruptions affects a cloud

provider’s revenue from different services and how to price them.

Pricing Strategies

Pricing is generally a function of both offer (provider’s capacity) and demand (user). In this

work, we make the assumption that pricing is not responsive to demand. The arguments on

which we predicate this assumption are two-fold, but both rely on the scale of the facilities

that host modern cloud services.

9



First, we assume, as others have done [114], that the provider capacity is large enough (near-

infinite) to accommodate most demand. In particular, there is empirical evidence [193] that

cloud providers know how to provision their resources to accommodate surges. As a matter

of fact, this “auto-scaling” property of the cloud is often put forward as one of its main selling

points [21, 149]. More generally, the assumption of near-infinite capacity is not unreasonable

given the size of modern cloud computing facilities, and the fact that powered-down servers

can be quickly brought online when needed [117, 134, 148]. More specifically, modern data

centers usually range from 50, 000 to 80, 000 servers14, and this sheer scale means that the

odds of a new typical request finding a “full” system are very small. For example, assuming

for simplicity that all instances require an entire server (this is likely conservative as most

instances consume only a fraction of a typical server) and arrive according to a Poisson

process, a simple approximation [87] for an 80, 000-server system with a load factor of 90%

gives a blocking probability upper-bounded by 10−4.

In practice and in spite of large transient spikes in load, cloud systems commonly15 operate

at an average utilization well below 90%, e.g., of the order of 65%16, which translates into

even smaller blocking probabilities. Furthermore, cloud providers typically run multiple,

geographically distributed data centers, e.g., today Amazon has over 50 data centers in

the US and more than 100 worldwide17. Although data co-location requirements or even

limitations imposed by the cloud provider can affect a job’s ability to run across multiple

data centers, the availability of such an option can increase by two orders of magnitude the

14Retrieved 2019, March 1 from https://www.forbes.com/sites/johnsonpierr/2017/06/15/with-
the-public-clouds-of-amazon-microsoft-and-google-big-data-is-the-proverbial-big-deal/

\#7c225a482ac3.
15Google cloud may be an exception, as its cloud computing offering runs on the same infrastructure that

Google uses internally to run its own end-user products. The latter can often soak-up much of the spare
capacity available.

16Retrieved 2019, March 4, from https://aws.amazon.com/about-aws/sustainability/.
17Retrieved 2019, March 1 from https://www.sdxcentral.com/articles/news/wikileaks-publishes-

the-location-of-amazons-data-centers/2018/10/.
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number of servers accessible by jobs without such constraints. This in turn decreases their

blocking probability by approximately the same factor.

Our second argument in support of pricing that is not responsive to demand is the combi-

nation of scale and the ever finer (time) granularity at which cloud resources are allocated

and billed (recall the per second billing of EC2 Linux instances); a trend that is expected to

continue [25]. This makes demand aware short-term price adjustments increasingly complex.

In the case of Amazon spot instances, early empirical studies [24, 196] hinted at pricing that

was often not responsive to demand. The recent change to Amazon spot service [19] points

to even lesser variability, and therefore responsiveness (to variations in demand), with spot

prices reflecting “long-term trends in supply and demand for EC2 spare capacity18.” Like

Amazon, Alibaba cloud makes historical pricing data available for its own spot service, and

while we did not carry out a detailed investigation of their variations, observations based on

a one-month window (February 23, 2019 to March 23, 2019) revealed trends essentially sim-

ilar to those of Amazon’s updated offering, i.e., relatively regular patterns of small changes

with occasional larger shifts likely caused by provisioning decisions. And clearly, the fixed

prices of Google preemptible instances and Microsoft low-priority VMs are not responsive to

short-term fluctuations in demand.

In summary, we assume that the scale of the infrastructure and the complexity of implement-

ing and managing demand responsive pricing at this scale combine to create an environment

where the pricing of cloud services is not responsive to short-term variations in demand. In

other words, the infrastructure runs out of resources so rarely that the potential benefits of

demand responsive pricing do not justify the added cost. Instead, pricing reflects differences

in service characteristics, and in particular how those characteristics affect the timeliness

18Retrieved 2019, March 1 from https://docs.aws.amazon.com/aws-technical-content/latest/cost-
optimization-leveraging-ec2-spot-instances/how-spot-instances-work.html.
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of service completion, e.g., because of the possibility of service interruption as captured by

spot instances (Amazon, Alibaba, and Packet) and preemptible instances (Google and Mi-

crosoft). Note that we do not mean to imply that cloud demand never exceeds capacity. In

particular, some of the cloud’s largest tenants can generate peak workloads that may at time

exceed available capacity, or transient imbalances across regions could occasionally deplete

resources in a given geography. Our primary argument is that such occurrences are rare and

not reflected in short-term price variations.

As alluded to earlier, under these assumptions, our focus is on exploring how a cloud provider

should select and price the services it offers towards maximizing profit, given information on

the profiles of potential jobs. Specifically, given information regarding market segmentation

along jobs’ value and sensitivity to delay and how they relate to each other (are correlated),

what services should the provider offer and at what price. The family of services under

consideration involves adding uncertainty regarding resource availability, e.g., through vari-

ations in pricing as in spot services or through direct preemption, in exchange for a lower

price, potentially akin to the “damaged good” approach originally used by IBM in its high-

speed printer offerings [61]. In exploring pricing strategies, we also leverage the cloud’s scale

and neglect the impact of the few cases where demand may exceed capacity. In other words,

given information on jobs’ profiles, prices are set so as to maximize the demand offered to

the cloud, i.e., the set of jobs that, given the services offered by the cloud and their pricing,

derive value from using the cloud. The question we address is whether introducing a “lower

quality” (because of the possibility of interruptions) but lower price service can help the

provider increase its revenue.

We make this more formal in Section 3.3.1, but assuming that services are characterized

by a price and a probability of interruption, i.e., being unable to run in a given “slot,” a

pricing strategy then involves selecting both. In the case of spot instances, the provider
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selects the spot prices and when to change them. Together, these determine the probability

of interruption associated with a given service cost, with more expensive services (higher

bids) having a lower probability of interruption. Historical pricing data can then, as we

shall see in Section 2.4, allow users to select the best bidding strategy given their profile. In

the simpler case of preemptible instances with fixed prices, the provider again sets the price

and controls preemption decisions. Neither the odds and timing of preemptions nor how

quickly preempted instances can typically restart are explicitly stated by either Microsoft or

Google19, though mechanisms are available that, at least for Google20, can let users estimate

them from empirical data, and therefore evaluate the benefits of the service, i.e., estimate

how much longer a job may take to complete.

In exploring the benefits of offering such combinations of services, our investigation reveals

several interesting features. In particular, we identify that introducing services that offer

a trade-off between cost and timeliness of execution, as spot instances and preemptible in-

stances do, is of benefit, i.e., increases the provider’s revenue, only if the correlation between

jobs’ value and their sensitivity to execution delays exceeds a certain threshold. Further, a

pricing strategy that simply assigns different odds of interruption to services with different

prices (and correspondingly select those prices), can in many of those cases (see Section 2.5.1)

successfully extract most of the value from the market. In the case of a spot service for which

both pricing and bidding are relevant, under the simplifying assumptions that jobs that bid

do so till completion and have a utility that decreases linearly as a function of their execution

delay, we also find that a fixed bidding strategy, i.e., a strategy that repeatedly bids at the

same fixed value, is optimal for users that decide to bid, and the decision to bid or not is

19Google mentions that preemptible instances are preempted at least once every 24 hours with preemp-
tion rates that vary between 5% and 15% over that period (https://cloud.google.com/compute/docs/
instances/preemptible\#preemption process, retrieved 2019, July 24).

20Retrieved 2019, July 24 from https://gatkforums.broadinstitute.org/firecloud/discussion/
10513/preemptible-instances-historical-data-of-google-compute-engine-vm-running-time-

before-preemption.
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solely a function of the job’s value. The robustness of the results is investigated numerically

under more general conditions, including allowing job termination prior to completion and

simple forms of convex and concave delay penalties.

The need for a strong correlation between job value and sensitivity to delay offers cloud

providers useful insight by illuminating when the deployment of a multi-price system can

realize an effective market segmentation and increase revenue. Conversely, when such a

multi-price offering is provided through multiple (randomly21) varying prices, as in a spot

service, our investigation provides intuition for simple bidding strategies under different

combinations of job value and sensitivity to delay, including when bidding at a constant

price is effective and conversely when and why changing one’s bid can improve the odds of

a favorable outcome.

The rest of the work is structured as follows. Section 3.2 briefly reviews previous works of

relevance. Section 3.3.1 introduces our model more formally. Section 2.4 investigates user’s

bidding strategies under the general framework of a spot service, while Section 2.5 explores

the provider’s pricing strategies. The robustness of the results are tested numerically under

more general assumptions in Section 2.6. Section 2.7 summarizes the work’s findings and

identifies potential future directions. A glossary summarizing the notation used in the work’s

main body is provided in Appendix A.1.

2.2 Related Works

In this section, we briefly review the vast literature on pricing in computing systems and

highlight a few recent relevant works, including works that have explicitly targeted developing

a better understanding for spot pricing and its benefits.

21At least from the user’s perspective.
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The idea of using pricing for resource allocation in computing systems with jobs that are

heterogeneous in either value or sensitivity to delay is not new. It dates back to the 1960’s

with pricing for shared computing time e.g., [62, 177]. In this early context, computing

resource were typically constrained, with pricing used to realize an allocation of resources

that maximized a global utility function across heterogeneous users. The finite resource

assumption naturally lent itself to a queueing system formulation very different from that of

this chapter. The 1990 paper by Mendelson and Whang [140] offers a representative example.

It considers an M/M/1 queue with multiple classes of jobs with different valuations and

sensitivity to delay, and investigates pricing policies that maximize utility (social welfare)

across classes. Conversely, [3] considers the provider’s revenue maximization problem, and

demonstrates that the damaged goods strategy of [61] also applies in this context.

However, while ideas of pricing regularly surfaced in the academic computing literature,

their use in practice was limited [167] as pricing was never really necessary for the continued

development and operation of large computing systems. Most such systems were centrally

controlled, e.g., by the organization running the mainframe, which made defining usage poli-

cies easy, so that the complexity and cognitive overhead of mechanisms that price resources

were not justified. Thus, research focused on scheduling algorithms to maximize utilization

of shared resources rather than pricing policies to achieve explicit social goals [167].

The emergence of the cloud, with computing as a utility, changed this with pricing emerging

as a major control knob, e.g., see [116, 130] for recent surveys of related pricing schemes,

and [108] for a discussion on the role of pricing in cloud computing. Users became accustomed

to thinking about paying for individual jobs, with timeliness part of their assessment.

In this context, the most relevant works are [199, 205], [1, 114, 164, 64, 97] (see also [2] for

an updated and expanded version of [1]), and [51].
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Both [205] and [199] focus on deriving optimal (spot) bidding strategies that minimize the

users’ overall price paid for the service. However, neither explicitly considers the impact on

a job’s utility of the delay penalty associated with different strategies. Specifically, [205] tar-

gets fixed bidding strategies in an infinite-capacity market, when jobs incur a recovery cost

each time they are interrupted. Too many interruptions can result in a job never completing

if the recovery overhead of each interruption exceeds the average amount of work performed

in each round. The paper identifies an optimal bidding strategy that minimizes cost while

guaranteeing a finite execution time. [199] comes closest to incorporating some aspect of

delay sensitivity by exploring bidding strategies when jobs have deadlines (a deadline con-

straint is a special case of the convex delay penalty we investigate in Section 2.6.3). In that

context, it devises a dynamic bidding strategy that minimizes a job’s cost while meeting its

deadline.

The works of [1, 114] explicitly target cloud computing services under a (mostly) infinite ca-

pacity setting, while seeking to understand how job value and sensitivity to delay affect cloud

service offerings. [64] relates closely to [1] as both rely on a queueing-theoretic framework,

but it assumes a finite cloud capacity and accounts for operational costs on the provider side

and preemption costs on the customer side. Both offer interesting initial insight, especially

conditions under which a spot service can or cannot outperform an on-demand service, but

leave several questions unanswered, in particular regarding the role of correlation between

a job’s value and its sensitivity to delay. As we shall see, this plays an important role in

determining to what extent a spot service can add value to an on-demand service offering.

[164] is more qualitative in nature, but its main observation that a simple fixed bidding strat-

egy is useful in practice echoes our result of Section 2.4. [97] studies a cloud market with

unit demand, risk-averse bidders, and shows that a market with both on-demand and spot
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services generates higher revenue and higher welfare than systems with only spot service. It,

however, does not explicitly incorporate delay into its utility function.

The setting of [51] is different in that it considers an inventory management system with

customers that seek to purchase a single type of product, e.g., furniture, but the coupling of

product valuation and sensitivity to delivery delay bears similarities to the trade-off cloud

computing users face when bidding for spot instances, i.e., bid high in exchange for a lower

execution delay. There are, however, enough differences between the two environments, e.g.,

the presence of an inventory cost and the requirement that a user’s delay disutility rate be

perfectly positively correlated with her valuation, that the results of [51] are not readily

applicable to our problem.

2.3 Model Formulation

Because of its greater generality, our investigation is carried out under the auspices of a

spot service, for which both pricing (by the provider) and bidding (by the user) are rel-

evant. Specifically, we consider a setting with a single cloud provider, i.e., a monopoly22

environment, where, as alluded to earlier, the provider is assumed to have access to “in-

finite” compute resources, with prices set independent of the (instantaneous) demand. In

other words, we assume that the provider offers a spot service with spot prices drawn from

a set of n prices ppp = (p1, p2, ..., pn), p1 < p2 < ... < pn, with a probability distribution

πππ = (π1, π2, ...πn).

Spot prices are updated periodically by randomly selecting a price from ppp according to πππ,

with, as we shall see, such a randomized pricing strategy offering a simple revenue enhancing

22Even if as of today (2019) Amazon does not dominate the cloud market as it once did, it remains bigger
than its next 4 largest competitors [33]. In addition, the switching cost of migrating from one provider
to another, i.e., moving data, learning a different API, etc., remains relatively high, so that a monopoly
assumption for existing customers is not unreasonable.
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option. Throughout the chapter, we denote as a “slot” the (fixed) time between successive

instances of possible price updates by the provider. Jobs with bids at or above the spot price

pay the spot price and are allowed to execute, but their execution is stopped whenever their

bid falls below the spot price23.

We note that under this framework and as discussed in Section 3.1, bidding at a given

price translates into a corresponding probability of service interruption, i.e., the probability

that the spot price exceeds the bid, and a given (average) service price, i.e., as realized

over a typical instantiation of spot prices. We also note that with this definition of a spot

service, bidding at the highest price all but eliminates the possibility of service interruptions,

i.e., is equivalent to an on-demand service24. In other words, a spot service with a single

price is de facto equivalent to an on-demand service with no delay and/or interruptions in

the execution of a job. Correspondingly, if the optimal spot pricing policy involves only one

price, the conclusion is that there is then no benefit (to the provider) in offering such a service

in addition to an on-demand service. Last but not least, as alluded to earlier, we also note

that the special case of only two (spot) prices is essentially equivalent to the combination of

an on-demand service (bidding at the highest spot price) and a service akin to Google’s and

Microsoft’s preemptible instances, with a preemption probability equal to the probability

that the spot price is at its high value. Appendix A.6.5 formalizes this equivalence.

Demand for computing services is heterogeneous and originates from a large job population.

Each job is characterized by its its profile (t, v, κ), which consists of its total computation time

or length t > 0, its value v per unit of computation time, i.e., the value of a job of length t is

23We note that in 2015 Amazon introduced a spot service, Spot Blocks, where users can specify a duration
of up to 6 hours during which they are guaranteed not to be interrupted. The pricing of this service is,
however, different from that of standard spot instances, i.e., in the form of a discount relative to on-demand
pricing. We leave investigating this additional option as future work.

24In practice though, the highest spot price would be set to exceed the on-demand price, if only to avoid
offering a semantically similar service (no interruption) but at a lower (average) cost.
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vt, and a measure of its sensitivity to computation delays, as captured by a parameter κ. For

example, a value of κ = 0 corresponds to jobs that are completely insensitive to execution

delays, e.g., a batch job used to run in the background, while as κ increases so does the job’s

sensitivity to delay. In other words, κ determines the scale at which a job’s utility decreases

when its completion time increases because of interruptions. Users are assumed to know

t, v and κ for all their jobs. For notation purposes, a job is represented through its triplet

(t, v, κ), with (v, κ) denoting the profile of all jobs with unit value v and delay sensitivity

κ. Job lengths are assumed independent of v and κ, and are drawn from a probability

distribution with density function25 f(t). Note that the independence of v and t implies that

a long job with a small v can be less valuable than a short job with a large v. Conversely,

jobs’ value and sensitivity to delay are drawn from a distribution with joint density function

q(v, κ). Hence, we allow for correlation between v and κ, e.g., high value jobs can be more

sensitive to delay (positive correlation). The assumption that t is independent of v and κ,

however, implies that, as pointed out in Section 2.1.1, we cannot capture situations where

a job’s size affects its per unit value or sensitivity to delay. Extending the investigation to

include more complex correlation such as those would be of interest.

Users are aware of ppp and πππ, e.g., from data published by the cloud provider (as with Amazon

or Alibaba spot instances), and use this information to select bidding strategies for new

jobs. A bidding strategy Γp,πp,πp,π(t, v, κ) (denoted simply as Γ or Γ(t, v, κ) when unambiguous)

is a function of ppp and πππ as well as (t, v, κ), and specifies both a first bidding price, as well

as bids at subsequent bidding instances, possibly as a function of spot prices realizations.

This makes for a complex strategy space though it includes simple strategies. For example, Γ

could be a state-dependent strategy whose next step only depends on the number of previous

winning bids, or Γ could be as simple as bidding at the same price until the job completes,

25The description assumes that t, v, and κ are continuous random variables. Similar expressions are readily
available for discrete random variables.
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i.e., a fixed bidding strategy. Given a bidding strategy Γ and a realization of spot prices

< p >r< p >r< p >r, the utility of a completed job (t, v, κ) is of the form

ur(t, v, κ,Γ,< p >r< p >r< p >r) = vt− pr(t, v, κ,Γ,< p >r< p >r< p >r)− dr(t, v, κ,Γ,< p >r< p >r< p >r),

where vt is the realized job’s value upon completion (there is no partial value for incomplete

jobs), pr(t, v, κ,Γ,< p >r< p >r< p >r) is the total price paid by the job under strategy Γ and spot prices

realization < p >r< p >r< p >r, and dr(t, v, κ,Γ,< p >r< p >r< p >r) is the delay penalty incurred by the job given

its delay sensitivity κ, its use of strategy Γ, and spot prices realization < p >r< p >r< p >r.

Intuitively, the delay penalty dr(t, v, κ,Γ,< p >r< p >r< p >r) should be an increasing function of κ and

of the execution delay tr(t, v, κ,Γ,< p >r< p >r< p >r) experienced by the job26 beyond its execution

time t (the delay is 0 when bidding at pn and maximum when bidding at p1). There are

many possible choices for such a function, and in Section 2.6.3 we experiment with con-

cave and convex increasing functions, albeit specialized to simple cases of piece-wise linear

functions. However, for analytical tractability, we assume here a linear function of the form

κtr(t, v, κ,Γ,< p >r< p >r< p >r), so that

ur(t, v, κ,Γ,< p >r< p >r< p >r) = vt− pr(t, v, κ,Γ,< p >r< p >r< p >r)− κtr(t, v, κ,Γ,< p >r< p >r< p >r).

Note that a linear delay penalty implies a linearly decreasing utility function (when jobs are

not executing), which implicitly assumes that customers are risk-neutral. This ignores the

possibility of risk-averse customers (with strictly concave utility functions), as introduced

in [97]. The extensions of Section 2.6.3 address this issue to some extent by, among other

things, considering convex delay penalties (that map to concave utility functions).

26We define tr(t, v, κ,Γ,< p >r< p >r< p >r) only on completed jobs.
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Returning to our model, given ppp,πππ, and job profile (t, v, κ), a user selects among bidding

strategies to maximize the job’s expected utility, where expectation is computed over spot

prices realizations. When the maximum expected utility is negative, the user refrains from

bidding. In this case, the expected utility is taken to be zero. Otherwise, the job’s proceeds

to bid according to the strategy Γ∗ that maximizes its expected utility. We make two

assumptions regarding bidding strategies. The first is that once bidding starts it continues

until job completion, i.e., early termination is not allowed27. The second is that bidding

strategies are restricted to always bid at p1 (the lowest spot price) or higher. Bidding below

p1 is equivalent to not bidding, and could therefore bypass our requirement that bidding

continues until job completion. We call strategies that satisfy both assumptions persistent

strategies.

Those assumptions are in part motivated by the fact that a strategy’s expected utility is

computed over all possible spot price realizations. Hence, under a given realization even the

best strategy needs not always realize a non-negative utility for a given job, e.g., unlucky

sequences of spot prices can readily produce a negative utility. This could in turn produce

(dynamic) strategies that at some point determine that the best option is to stop bidding (or

constantly bid below p1). This would then result in some jobs not running to completion,

which adds significant complexity to the derivation of a strategy’s expected utility. The above

two assumptions allow us to circumvent those complexities, which we explore numerically

in Section 2.6.2 that considers strategies that allow a job’s termination when the expected

residual utility from continuing to bid stops being positive28.

27This is not unreasonable given the sunk cost associated with deploying and initiating a job.
28In such cases, the (non-positive) utility contributed by a terminated job consists solely of the execution

payments made prior to termination, i.e., there is neither partial value nor delay penalty for the job’s
incomplete execution.
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Under those assumptions, a job’s expected utility under bidding strategy Γ is of the form

Up,πp,πp,π(t, v, κ,Γ) = vt− Pp,πp,πp,π(t, v, κ,Γ)− κTp,πp,πp,π(t, v, κ,Γ), (2.1)

where Pp,πp,πp,π(t, v, κ,Γ) is the expected execution price of the job under bidding strategy Γ, and

Tp,πp,πp,π(t, v, κ,Γ) is the expected delay beyond the job’s execution time t under Γ.

Given a pricing configuration (p, πp, πp, π), selecting an optimal bidding strategy Γ∗p,πp,πp,π(t, v, κ) for a

job (t, v, κ), therefore, consists of solving the following problem:

Γ∗p,πp,πp,π(t, v, κ) = arg max
Γ

Up,πp,πp,π(t, v, κ,Γ), (2.2)

with the user proceeding to bid iff Γ∗p,πp,πp,π(t, v, κ) yields a non-negative expected utility.

While users are interested in knowing how to select an optimal bidding strategy given p, πp, πp, π,

and (t, v, κ), a cloud provider seeks to select ppp and πππ given some knowledge about job profiles

and strategies, so as to maximize its expected per job revenue Rf,q(Γ
∗(p, πp, πp, π)), i.e., solve

(p∗, π∗p∗, π∗p∗, π∗) = arg max
p,πp,πp,π

Rf,q(Γ
∗(p, πp, πp, π)), (2.3)

where the notation Γ∗(p, πp, πp, π) seeks to indicate the dependency of the users’ strategy on ppp and

πππ, and Rf,q(Γ
∗(p, πp, πp, π)) is given by

Rf,q(Γ
∗(p, πp, πp, π)) =

∫∫∫
t,v,κ

f(t)q(v, κ)Pp,πp,πp,π(t, v, κ,Γ∗)dt dv dκ.

In solving the optimization of Eq. (2.3), we assume that the triplets (t, v, κ) are private

information, but that the cloud provider knows f(t) and q(v, t), e.g., through the kind of

methods mentioned in Section 3.1.
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In the next two sections, we proceed to first characterize Γ∗ and then (p∗, π∗p∗, π∗p∗, π∗) under the

above assumptions. Note that this can be cast as a standard Stackelberg game: The service

provider chooses and announces (p∗, π∗p∗, π∗p∗, π∗) to maximize its revenue based on users’ behavior,

and this is followed by users choosing to bid according to Γ∗p∗,π∗p∗,π∗p∗,π∗ so as to maximize their

utility.

2.4 Optimal Bidding Strategy

In this section, we show that given our previous assumptions, an optimal fixed bidding

strategy, i.e., a strategy that bids at the same value until job completion, always exists and

only depends on κ.

Since jobs that start bidding are not terminated, from Eq. (2.1) maximizing utility is equiv-

alent to minimizing total expected cost

Cp,πp,πp,π(t, v, κ,Γ) = Pp,πp,πp,π(t, v, κ,Γ) + κTp,πp,πp,π(t, v, κ,Γ), (2.4)

For ease of presentation, we also assume that job lengths are integer multiple of the slot

length, and w.l.o.g. assume the slot length to be 1. We narrow the strategy space to those

with bid values in {p1, ..., pn}, which as per Lemma 24 in Appendix A.3 does not affect the

optimal strategy.

2.4.1 Characterizing the Optimal Bidding Strategy

The derivation of the optimal strategy involves a number of technical steps, starting with

jobs of length one-slot for which we establish that the optimal strategy is a fixed bidding

strategy, i.e., a strategy that bids at the same value until the job completes. We relegate
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those technical steps to Appendix A.3, and proceed to state our main result that identifies

the structure of the optimal bidding strategy for jobs of arbitrary length. Specifically,

Proposition 1. [OPT BID] Given a pricing strategy (p, πp, πp, π) and a linear penalty function for

a job’s execution delay, among persistent strategies, a strategy that bids at b∗(v, κ) in every

slot is an optimal bidding strategy for job (t, v, κ), where b∗(v, κ) is the optimal bid for job

(1, v, κ).

The proof of Proposition 1 is in Appendix A.4. It establishes not only that a fixed bidding

strategy is optimal, but also shows that the optimal bid, b∗(v, κ), is independent of the

job length t. This is in part because under the assumption that bidding once started does

not terminate, the bidding decision that maximizes the expected utility going forward is

unaffected by the outcome of previous bids. Additionally, this “memorylessness” also means

that maximizing the expected utility from successfully completing one unit of work extends

to multiple units of work.

Given the result of Proposition 1, the next step is to characterize b∗(v, κ), or more precisely,

b∗(κ), since, as we shall see, the optimal bid only depends on a job’s sensitivity to delay κ.

The job’s value, v, however still plays a role in determining whether or not to bid, i.e., v

does not influence the bid value, but it is instrumental in deciding whether to bid (or not).

Note that b∗(κ) can exceed v, as the expected payment for any bid value b > p1 is smaller

than b. In characterizing b∗(κ), we also show that it can be computed using a simple linear

search.
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If a user bids for a job (t, v, κ) using a fixed bidding strategy with a bidding price b, the

expected fraction of time or probability that the job is active, i.e., wins its bid, is

0 < α(b) =
∑
pi≤b

πi ≤ 1. (2.5)

The expected payment per unit of time given that the job is active is then

b =

∑
pi≤b πipi

α(b)
, (2.6)

so that the expected payment is

P (t, v, κ, b) = bt. (2.7)

and the average job completion time is

t+ T (t, v, κ, b) =
t

α(b)

⇒ T (t, v, κ, b) = t

(
1

α(b)
− 1

)
(2.8)

Substituting Eq. (2.7) and Eq. (2.8) in Eq. (2.4), the expected total cost (payment plus delay

penalty) C(t, v, κ, b) for the strategy that bids at b is given by

C(t, v, κ, b) = t

(
b+ κ

(
1

α(b)
− 1

))
. (2.9)

Note that for a given b, C(t, v, κ, b) is proportional to t (as is U(t, v, κ, b)). Note also that the

optimal bidding price need not to be unique. W.l.o.g, assume that users bid at the lowest
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optimal price. Recalling that p1 < p2 < . . . < pn, the optimal fixed bidding price is then

b∗(v, κ) = min arg min
i∈{1,2,...n}

C(t, v, κ, pi)

= min arg min
i∈{1,2,...n}

C(1, v, κ, pi),

where the second equality comes directly from C(t, v, κ, b)’s proportionality to t (and/or

Proposition 1). The next proposition offers additional insight into a job’s optimal bid as a

function of its profile.

Proposition 2. Under persistent strategies, a job’s optimal fixed bid b∗(κ) is independent

of v and t, and non-decreasing in κ. Specifically, a job with κ ∈ (κ̃i−1, κ̃i] will bid at pi if it

bids, where κ̃i =
∑

j≤i(pi+1 − pj)πj for i ≥ 1, and κ̃0 = −ε < 0,

where κ̃i is a threshold in a job’s delay sensitivity associated with a change in the value of

a job’s optimal bid to pi.

The proof is in Appendix A.4, and the proposition provides and explicit value for a job’s

optimal bid as a function of its delay sensitivity and the set of prices advertised by the

cloud provider. We also note that the property that a job’s optimal bidding price increases

with κ is intuitive, as a higher delay sensitivity implies a greater willingness to pay to avoid

delays. Additionally, although Proposition 2 states that a job’s valuation v plays no role in

its selection of an optimal bidding price, v affects its decision to bid and, as we shall see in

Section 2.5, the distribution of v plays a role in the choice of the provider’s pricing strategy.

The results of Proposition 2 can also be used to determine a job’s optimal bidding price

using a simple search procedure, as stated next.

Corollary 3. A job’s optimal bidding price under a persistent strategy can be determined

using a simple search, e.g., a binary or a Fibonacci search.
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The result is a direct consequence of the proof of Proposition 2, which characterizes the

evolution of a job’s utility as bids increase from p1 to pn. It shows that a job’s utility

function admits a single maximum as bids keep increasing. This maximum can, therefore,

be discovered with a simple search, e.g., a basic binary search or a Fibonacci search [113].

The corollary’s proof is constructive in nature and takes advantage of the structure of a job’s

utility characterized in Proposition 2, which shows that it admits a single maximum as a

function of the bidding price.

2.4.2 Numerical Examples

In this sub-section, we introduce a few numerical examples to illustrate the properties of

the optimal bidding strategy under a given pricing strategy. We, therefore, fix the pricing

strategy to (p1, p2, π) = (2, 4, 0.5), i.e., two prices that are equally likely with p2 twice as

high as p1, and we vary job configurations.

In exploring possible bidding strategies, we note that given the memoryless nature of spot

price selection, any policy can be decomposed into a sequence of individual (possibly differ-

ent) policies to be followed after each winning bid (or when the job is first created), i.e., a

policy that determines the job’s bidding behavior until the next win. Furthermore, in this

simple two-price setting, because bids can only take two values, p1 or p2, and a bid at p2

is guaranteed to win, the space of possible strategies is limited. Specifically, a job can only

choose from three possible strategies between successive wins: 1) bid at p1 until the next

win, 2) bid at p2 (a bid at p2 is guaranteed to win), and 3) bid at p1 for up to l slots (for some

l > 0), before switching to a bid at p2 if all l bids at p1 fail. We use the following notation

to capture all three strategies: Denote as Γ(l), l ≥ 0, the strategy that bids at p1 for l slots

and if unsuccessful l times switches to bidding at p2. Γ(∞) is the strategy that bids at p1

until success, and Γ(0) immediately bids at p2. The strategy space for a job of length t,
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therefore, consists of the 3t possible combinations of the three base strategies Γ(∞),Γ(0),

and Γ(l), 0 < l <∞.

Since, as mentioned earlier, maximizing expected utility is equivalent to minimizing expected

cost, we focus on the latter. Recall that cost has two components: payments and delay

penalty. The expected costs under Γ(∞),Γ(0), and Γ(l), 0 < l <∞, can be readily obtained

as follows:

C(Γ(∞)) = p1 + κ

(
1

π
− 1

)
C(Γ(0)) = πp1 + (1− π)p2

C(Γ(l)) =
l−1∑
i=0

π(1− π)i[p1 + κi] + (1− π)l[πp1 + (1− π)p2 + κl]

In other words, bidding at p1 is preferable to bidding at p2 only if the expected delay penalty

κ(1/π− 1) is smaller than the expected cost increase of (1−π)(p2− p1), i.e., κ < π(p2− p1).

The hybrid strategy Γ(l), 0 < l < ∞, offers an intermediate trade-off, but as established in

Proposition 1, is never able to outperform the better of either Γ(∞) or Γ(0).

To illustrate this, we compare the expected utility for the 9 different combinations of base

strategies for job (t, v, κ) = (2, 2, 0.5). The resulting values are in the next table.

Γ(∞) Γ(0) Γ(l2)

Γ(∞) −1−1−1 −1.5 −1
2

l2+1 − 1

Γ(0) −1.5 −2 −1.5− 1
2

l2+1

Γ(l1) −1
2

l1+1 − 1 −1.5− 1
2

l1+1 −1
2

l1+1 − 1
2

l2+1 − 1

where entry, say, (Γ(∞),Γ(0)), gives the expected utility if the job starts with strategy Γ(∞)

and switches to Γ(0) after its first win, and l1 and l2 denote the value of l, 0 < l < ∞, for

the Γ(l) strategy used for the job’s first and second work units, respectively.
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From the table, we see that repeatedly bidding at p1 yields the highest expected utility. This

is expected since κ = 0.5 < π(p2 − p1) = 1, and consistent with Proposition 1, i.e., a fixed

bidding strategy is “optimal.” However, because the resulting expected utility is negative,

the job will refrain from bidding.

This outcome can be changed simply by increasing the job’s value to v = 4. Specifically,

considering job (t, v, κ) = (2, 4, 0.5), the expected utilities across the different combinations

of base strategies are now as follows:

Γ(∞) Γ(0) Γ(l2)

Γ(∞) 333 2.5 3− 1
2

l2+1

Γ(0) 2.5 2 2.5− 1
2

l2+1

Γ(l1) 3− 1
2

l1+1
2.5− 1

2

l1+1
3− 1

2

l1+1 − 1
2

l2+1

As expected from Proposition 2, the optimal bidding strategy (bidding at p1) is unaffected

by the increase in value, but the larger job value now results in a positive expected utility.

Hence, the job proceeds to bid at p1.

Next, we illustrate the influence of κ on a job’s bidding strategy. For that purpose, consider

job (t, v, κ) = (2, 4, 2) with the same size and value as job (2, 4, 0.5) but a higher κ value. The

next table gives the job’s expected utility under different combinations of base strategies:

Γ(∞) Γ(0) Γ(l2)

Γ(∞) 0 1 1
2

l2

Γ(0) 1 222 1 + 1
2

l2

Γ(l1) 1
2

l1 1 + 1
2

l1 1
2

l1 + 1
2

l2

The table shows that increasing κ from 0.5 to 2 has decreased the expected utility of bidding

at p1 from 3 to 0, so that the optimal bidding strategy is now to bid at p2.
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Our last experiment involves illustrating that a job’s length, t, does indeed not affect its

bidding strategy nor does it affect its decision to bid or not. For that purpose, we reuse the

previous job profile but reduce its length from 2 to 1, i.e., we focus on job (t, v, κ) = (1, 4, 2).

Its expected utility under the three base strategies is reported below

Γ(∞) Γ(0) Γ(l)

U(1, 4, 2,Γ) 0 111 1
2

l

which shows that the optimal strategy is still to bid at p2, and remains positive.

2.5 Optimal Pricing Strategy

In this section, we turn to characterizing how a cloud service provider should price its spot

service i.e., choose its prices and price distribution, to maximize its expected revenue given

that users bid according to the optimal bidding strategy of the previous section. Of interest

are conditions identifying when a spot service is effective in helping the provider increase its

expected revenue over an on-demand service.

For simplicity, we limit ourselves to binary job profiles with only two job values (0 < v1 < v2)

and delay sensitivities (0 ≤ κ1 < κ2). We call this a binary system. As pointed out in

Section 2.1 and as we shall see next and more formally in Appendix A.6.5, a spot service

with only two prices, as is ultimately the case for a binary system, can be viewed as equivalent

to the combination of an on-demand service and a preemptible instance service. In this case,

the preemption probability (for jobs that bid at the low price) is given by the probability

assigned to the high spot price. While obviously a simplification, this system still captures

job heterogeneity along two key dimensions, value and delay sensitivity, and allows us to
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incorporate correlation between them. As we shall see, the latter plays an important role in

the structure of the optimal pricing configuration.

We start with a simple result that limits the number of prices the provider needs to consider

in a binary system. For ease of exposition, we again relegate all proofs to appendices.

Lemma 4. In a binary system with 0 < v1 < v2 and 0 ≤ κ1 < κ2, the optimal pricing system

needs at most two prices.

Denote the two prices of a two-price strategy in a binary system as p1 and p2, where 0 <

p1 < p2, with π the probability of p1 being selected29. Our goal is to characterize p1, p2,

and π, as functions of v1, v2, κ1, κ2 and the correlation between them. In this base setting,

our original question boils down to identifying under which conditions a bona fide two-price

strategy (a strategy with two distinct prices, both advertised with non-zero probability, i.e.,

0 < π < 1, and used for bidding purposes by different sets of customers) outperforms30 all

one-price strategies? As a starting point to this investigation, we first characterize the best

optimal one-price strategy in a binary system.

Lemma 5. In a binary system, the per unit of work expected revenue of the best one-price

strategy is of the form

R = max{v1, (1− r)v2} (2.10)

where 1− r is the fraction of v2 jobs in the system.

In other words, the best one-price strategy either has a price p∗ = v1, in which case all jobs

bid at p∗ for an expected unit revenue of v1, or it has a price of p∗ = v2 that only v2 jobs

can afford, and correspondingly an expected unit revenue of (1− r)v2.

29When π = 0 or 1, the system defaults to a single price system.
30For the sake of definiteness, a two-price strategy outperforms one-price strategies if and only if it yields

a larger expected revenue per unit of work than any one-price strategy.
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A two-price strategy will seek to leverage price discrimination to increase revenue. In par-

ticular, it will try to set p1 and p2 to extract close to v1 and v2 from jobs with value v1 and

v2, respectively. Unfortunately, the introduction of a delay penalty makes this impossible.

In particular, even if p2 can be set close to v2, p1 will have to be set to a value lower than v1

to compensate for the value lost to delayed execution when bidding at p1 (a function of π).

In general, a two-price strategy will entice high-value, high-delay sensitivity jobs, i.e., (v2, κ2)

jobs, to bid at p2, but high-value, low-delay sensitivity jobs, i.e., (v2, κ1) jobs, will bid at p1.

Additionally, while low-value, low-delay sensitivity jobs, i.e., (v1, κ1) jobs, also bid at p1 (if

set properly), low-value, high-delay sensitivity jobs, i.e., (v1, κ2) jobs, will be priced out of

the system as they can neither afford p2, nor tolerate the delay associated with p1.

Hence, for a two-price strategy to outperform the optimal one-price strategy of Lemma 5,

revenue increases from some job categories must exceed the losses incurred from other cat-

egories. The outcome depends on both the structure of the best one-price strategy and

the relative proportion of jobs from different types. In the next sub-section, we make this

intuition more precise and characterize under which conditions a two-price strategy may be

able to outperform the best one-price strategy. In particular, we highlight the role of the

correlation coefficient ρ (see Eq. (A.4) in Appendix A.6.1 for a precise definition) between

job value and delay sensitivity.

2.5.1 Characterizing Two-Price Strategies

To study the role of ρ, we consider binary systems with fixed marginals, and assume that

jobs have value v1 with probability r and delay sensitivity κ1 with probability s. The next

proposition characterizes the optimal pricing strategy in this configuration. In particular, it
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identifies the presence of a correlation threshold ρ∗, which will be formally characterized in

Corollary 7.

Proposition 6. [CORR THRESH] Given a binary system with fixed marginals for job value

and delay sensitivity, either there exists a value ρ∗ such that for ρ ≤ ρ∗ a one-price spot

service is optimal and for ρ > ρ∗ a two-price service is optimal, or else either one-price or

two-price is optimal independent of ρ.

As we shall see in Section 2.6, Proposition 6 appears to hold under more general conditions

than those of this section.In particular, Section 2.6 considers three types of relaxations of

our assumptions. They include allowing early termination of a job’s bidding, e.g., because of

too many unsuccessful initial bids; considering (piece-wise linear) convex and concave rather

than linear delay sensitivity functions; and finally allowing for more complex job profiles than

those allowed by a binary system, e.g., jobs whose value and delay sensitivity span a range

of continuous values. Interestingly, while Proposition 6 appears robust to those relaxations,

the same does not apply to results of Section 2.4. In particular, a fixed-price bidding policy

does not remain optimal whenever terminations are allowed or delay sensitivity is not linear

anymore.

In addition and as alluded to earlier and formalized in Appendix A.6.5, Proposition 6 can

also be shown to be applicable to preemptible instances that trade-off a lower price for the

possibility of interrupted/delayed execution. Alternatively, note that trading off a lower price

for a longer execution time can also be realized by controlling the “speed” of the processors

available for different types of instances, using either CPU throttling techniques [30] or

hypervisor schedulers, e.g., Xen’s credit scheduler31. The challenge for the provider is then

to select the set of processor speeds to offer so as to maximize its revenue based on customer

31Retrieved 2019, March 22 from http://wiki.xen.org/wiki/Credit Scheduler.
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affinities. In all these cases, customers trade-off a lower price for a possibly delayed job

completion time.

Returning to Proposition 6, the next corollary shows that it can be strengthened and also

offers an explicit expression for ρ∗ that we subsequently use to gain additional insight.

Corollary 7. Given a binary system with fixed marginals r and s for job value and delay

sensitivity, and a given correlation coefficient ρ between job value and delay sensitivity, there

exists a value ρ∗ ≥ 0 given by

ρ∗ =
max{1− r, v1

v2
} − s(v1κ2−v2κ1)

v2(κ2−κ1)
− (1− r)(1− s)√

rs(1− r)(1− s)
(2.11)

such that

• when ρ∗ ∈ [0, 1), then for ρ ≤ ρ∗ a one-price spot service is optimal, and for ρ > ρ∗ a

two-price spot service is optimal;

• otherwise a one-price spot service is always optimal independent of ρ.

Both the proposition and the corollary state that a threshold exists in the correlation between

value and sensitivity to delay, below which a spot price (two-price) solution never outperforms

an on-demand service (one-price). In other words, unless a sufficient fraction of jobs are high-

value and high-delay sensitivity, the market segmentation associated with a spot service

does not improve revenue. This is consistent with our discussion at the beginning of this

section, and is reasonably intuitive. A larger ρ implies a job market that is more clearly

segmented between high-value, high-delay sensitivity jobs, i.e., (v2, κ2) jobs, and low-value,

low-delay sensitivity jobs, i.e., (v1, κ1) jobs. This greater polarization of job profiles makes

the price discrimination of the two-price strategy more effective. A similar intuition holds

for preemptible instances/VMs and offerings of processors with different speeds.
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In particular, from Proposition 2 and Lemma 28 in Appendix A.6, we know that under an

optimal two-price strategy (p∗1, p
∗
2, π

∗), (v1, κ1) and (v2, κ1) jobs will bid at p∗1, while (v2, κ2)

jobs will bid at p∗2, and (v1, κ2) jobs will not bid. Hence, the revenue loss or gain that a

two-price strategy generates over the best one-price strategy is a function of the relative

proportion of those three types of jobs. Because ρ affects those proportions, it is intuitive

that it should play a role in the efficacy of a two-price strategy.

Another property worth highlighting is that while ρ plays a role in determining whether a

one-price or a two-price strategy yields a higher revenue, it does not influence the optimal

prices. We state this result more explicitly in the next proposition.

Proposition 8. In a binary system with given job values, delay sensitivities, and correspond-

ing marginals, the prices used in the best one-price and two-price strategies are independent

of the correlation coefficient ρ between job value and delay sensitivity.

The proposition is made more explicit in the next sub-section, where we characterize the

optimal two-price strategy and explore how it is affected by different factors, but we provide

some intuition for the result. As just stated, under the optimal two-price strategy, jobs of

type (v1, κ1) and (v2, κ1) bid at p∗1, jobs of type (v2, κ2) bid at p∗2, and jobs of type (v1, κ2)

do not bid. The price p∗1 is set just low enough so as to entice the (v1, κ1) jobs to bid (at

p∗1) in spite of the resulting execution delays, while the price p∗2 is set so as to entice the

(v2, κ2) jobs to bid at p∗2 rather than incur the delay penalty associated with bidding at p∗1.

Neither of those decisions are affected by the value of the correlation coefficient ρ, which only

influences the relative proportion of jobs of each type, and therefore the revenue generated

by the optimal two-price strategy. Hence, the result that the prices of the optimal two-price

strategy do not depend on ρ.
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Last, while it is obvious that when ρ = −1, i.e., the only two types of jobs are (v1, κ2) and

(v2, κ1), a two-price strategy can never be effective, the extent of ρ’s influence is unclear. For

that purpose, we explicitly explore next the case ρ = 1, i.e., the only two types of jobs are

(v1, κ1) and (v2, κ2), as a means of revealing the possible influence of other factors. This is

the subject of the next proposition.

Proposition 9. When in a binary system job value and delay sensitivity are perfectly pos-

itively correlated, i.e., the system only has (v1, κ1) and (v2, κ2) jobs, where 0 < v1 < v2 and

0 ≤ κ1 < κ2, then using s to denote the fraction of (v1, κ1) jobs, we have

• When κ2(1− s)− κ1 > 0 and v1κ2 > v2κ1, a two-price spot service is optimal;

• Otherwise, a one-price spot service is optimal.

The proposition highlights specific additional conditions that need to be satisfied for a two-

price strategy to be effective even under perfect market segmentation. In particular, κ2(1−

s) − κ1 > 0 implies (1 − s) > κ1

κ2
and v1κ2 > v2κ1 gives κ1 < κ2

v1

v2
. Hence, the proposition

states that for a two-price spot service to generate a higher revenue, the fraction (1− s) of

(v2, κ2) jobs must exceed a certain threshold, and the (v1, κ1) jobs must have a low enough

delay sensitivity κ1. This is again intuitive. The former ensures that enough jobs are willing

to pay the higher price, while the latter indicates that the jobs that bid at the low price

p1 are sufficiently insensitive to delay to tolerate the long delay caused by the low winning

probability of p1 bids32. subsectionDiscussion and Insights

This section is devoted to exploring properties of the optimal two-price strategy, when it

exists, and how it is affected by different system parameters. Our focus is on developing

32Recall that the average unit revenue from a job bidding at p2 is πp1 + (1 − π)p2. Keeping this unit
revenue high, i.e., close to v2, typically calls for a small π, and consequently long delays for jobs bidding at
p1.
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insight into how the optimal two-price strategy is affected by different system parameters,

and we relegate the more technical exploration of how ρ∗ varies as a function of those

parameters to Appendix A.6.6.

Lemma 32 (see Appendix A.6) provides a starting point to this investigation in that it offers

explicit expressions for the optimal two-price strategy, namely,

(p∗1, p
∗
2, π

∗) =

(
κ2v1 − κ1v2

κ2 − κ1

, v2 + κ2 − ε,
κ2 − κ1

κ2 − κ1 + v2 − v1

)
, (2.12)

where 0 < ε is an arbitrary small but strictly positive quantity.

Structure of the Optimal Two-Price Strategy

To better understand the structure implied by Eq. (2.12), note that since a job bidding at

p∗2 pays an expected unit cost of π∗p∗1 + (1−π∗)p∗2, simple algebraic manipulations yield that

under this strategy its expected unit cost is v2 − ε. In other words, the pricing strategy

extracts nearly all the value from jobs with unit value v2 and bidding at p∗2. Conversely, the

expected unit cost of a job bidding at p∗1 is p∗1 + κi(1/π
∗ − 1), i = 1, 2, which after algebraic

manipulations transforms to v1 for jobs with delay sensitivity κ1, i.e., the pricing strategy

extracts all the value from jobs with unit value v1 and bidding at p∗1. This is consistent with

our earlier intuition that a two-price strategy would seek to leverage price discrimination to

extract as much value as possible from jobs with different valuation.

Also of interest is the difference ∆∗21(v2, κ2) in expected cost between bidding at p∗2 and

bidding at p∗1 for (v2, κ2) jobs, i.e., the type of jobs that a two-price strategy wants to

see bidding at p∗2. Specifically, using the fact that the costs of bidding at p∗2 and p∗1 are

π∗p∗1 + (1 − π∗)p∗2 and p∗1 + κ2(1/π∗ − 1), respectively, simple algebraic manipulations yield
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an expression of the form

∆∗21(v2, κ2) = ε
(v2 − v1)

κ2 − κ1 + v2 − v1

(2.13)

In other words, under the optimal two-price strategy, the benefit for (v2, κ2) jobs of bidding

at p∗2 over that of bidding at p∗1 has an infinitesimal margin, i.e., ∆∗21(v2, κ2) < ε.

In hindsight, this is reasonable. The service provider has three control parameters at its

disposal, p1, p2, and π. Increasing the first two improves the value extracted from jobs

bidding at those prices, but if set too high can either prevent jobs from bidding altogether

or entice a high value job to bid at the lower price p1 (if the delay penalty is low enough).

The third parameter π controls the delay penalty of bidding at p1. A large gap between the

expected costs of bidding at p2 and p1 for (v2, κ2) jobs would allow the provider to increase

both π and p1, and therefore its revenue from (v1, κ1) jobs, while adjusting p2 to remain

revenue neutral (keep πp1 + (1− π)p2 constant) for (v2, κ2) jobs.

The previous remarks notwithstanding, we also note that an optimal two-price pricing strat-

egy need not always be feasible (let alone perform better than a one-price strategy). In

particular, the expression for p∗1 yields p∗1 < 0 when κ2

κ1
< v2

v1
. In other words, for a two-price

strategy to be effective, the relative delay penalty of delay sensitive jobs needs to exceed

the relative value advantage of high value jobs. Consider an extreme scenario where this

is violated, namely, κ1 = κ2. In this scenario, Proposition 2 (see also Proposition 23 in

Appendix A.2) that states that a job’s bid does not depend on its value or length, implies

that the price discrimination ability of a two-price strategy is ineffective, and all jobs bid at

only one price irrespective of the pricing strategy. In general, a small value for κ2

κ1
, i.e., a

small difference in delay sensitivity, forces a small π to ensure that high value jobs bid at
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p2. As π becomes too small, the large delay penalty makes bidding at p1 unattractive to v1

jobs, while they cannot afford p2. Hence, a two-price policy cannot be effective.

Another interesting property confirmed by Eq. (2.12) is that, as stated in Proposition 8,

the optimal two-price strategy is independent of ρ. As discussed earlier, this is because ρ

only affects the magnitude of the revenue realized under the optimal two-price strategy, and

not how to realize it. Specifically, under fixed marginals, increasing ρ decreases the number

of jobs of type (v1, κ2) and (v2, κ1) to proportionally increase the number of jobs of type

(v1, κ1) and (v2, κ2). The increase in (v1, κ1) jobs is revenue neutral since those added jobs

compensate for fewer (v2, κ1) jobs (they both bid at p∗1), while the increase in (v2, κ2) jobs is

revenue positive since those jobs replace (v1, κ2) jobs that previously did not bid. Hence, as

ρ increases so does the revenue generated by the optimal two-price strategy, so that it may

eventually exceed that of the optimal one-price strategy. This is illustrated in Figure 2.1,

which plots the expected unit revenue under the optimal pricing strategy for a representative

configuration. In this configuration, a one-price strategy is optimal when ρ ≤ 0.3, but is

outperformed by a two-price strategy when ρ > 0.3. Once ρ exceeds ρ∗ = 0.3, revenue under

a two-price strategy grows linearly33 with ρ as the fraction of (v2, κ2) jobs increases.

Dependence on System Parameters

Next we explore the impact of job parameters, i.e., v1, v2, κ1, and κ2, on the optimal two-

price strategy (as per Lemma 5, their impact on the best one-price strategy is immediate).

Differentiating Eq. (2.12) readily yields that p∗1 and π∗ increase with v1 and κ2, and decrease

33Linearity is a direct consequence of basic algebraic manipulations after combining Eq. (2.11) and
Lemma 32.
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Figure 2.1: unit expected revenue for the optimal one-price and two-price strategies when
v1 = 0.1, v2 = 0.2, κ1 = 0.1, κ2 = 0.4, r = 0.5 and s = 0.5.

with v2 and κ1:

∂(p∗1, π
∗)

∂v1
=

(
κ2

κ2 − κ1
,

κ2 − κ1

(κ2 − κ1 + v2 − v1)2

)
,

∂(p∗1, π
∗)

∂κ1
=

(
−κ2(v2 − v1)

(κ2 − κ1)2
,

−(v2 − v1)

(κ2 − κ1 + v2 − v1)2

)
,

∂(p∗1, π
∗)

∂v2
=

(
−κ1

κ2 − κ1
,

−(κ2 − κ1)

(κ2 − κ1 + v2 − v1)2

)
,

∂(p∗1, π
∗)

∂κ2
=

(
κ1(v2 − v1)

(κ2 − κ1)2
,

v2 − v1

(κ2 − κ1 + v2 − v1)2

)
.

(2.14)

Below we briefly develop some partial intuition behind these results.

A higher v1 lets the service provider increase p∗1 because of the added value available to

jobs that bid at p∗1. Additionally, because a higher p∗1 makes it less desirable to bid at p∗1,

vs. bidding at p∗2, this allows the provider to increase π∗, and correspondingly lower the delay

penalty for bidding at p∗1. This in turn can allow a further increase of p∗1. Note though that,

as alluded to earlier, keeping the combined impact of increasing π∗ and p∗1 cost neutral for

jobs bidding at p∗2, i.e., π∗p∗1 + (1− π∗)p∗2, will call for a slight decrease in p∗2.

Turning to the impact of a higher κ2, a greater delay sensitivity for κ2 jobs allows the service

provider to increase π∗ without enticing (v2, κ2) jobs to switch to bidding at p∗1. This increase

in π∗ again allows the service provider to increase p∗1.
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Considering next the effect of an increase in v2, a higher v2 allows the service provider to

increase p∗2 and improve its expected revenue from (v2, κ2) jobs bidding at p∗2. However,

recalling Eq. (2.13), the small margin between bidding at p∗2 vs. p∗1 for those jobs, means

that the provider must at the same time increase the cost of bidding at p∗1. This can be

done either by increasing p∗1 or by decreasing π∗. An increase in p∗1 calls for an increase in π∗

to avoid losing (v1, κ1) jobs, but the resulting lower delay benefits κ2 jobs more, and would

therefore entice (v2, κ2) jobs to switch to bidding at p∗1. Hence, increasing p∗1 is not an option.

In contrast, while a decrease in π∗ is accompanied by a decrease in p∗1 to avoid losing (v1, κ1)

jobs, the greater sensitivity of κ2 jobs to the increase in delay ensures that (v2, κ2) jobs keep

bidding at p∗2. Hence, an increase in v2 results in a decrease in π∗ and p∗1.

Finally, a higher κ1 value forces the service provider to either decrease p∗1 or increase π∗

to keep attracting (v1, κ1) jobs. However, since an increase in π∗ benefits κ2 jobs more, it

proceeds to decrease p∗1. Furthermore, because the decrease in p∗1 makes bidding at p∗1 more

attractive (to (v2, κ2) jobs), the service provider must also proceed to slightly decrease π∗ to

counter this effect. Hence, an increase in κ1 also results in a decrease in π∗ and p∗1.

2.6 Robustness Evaluation

This section offers an assessment of the extent to which findings from the previous sections

remain valid under more general conditions. Specifically and as detailed in the next sub-

section, we consider three “relaxations” of the assumptions used to derive the results of

Sections 2.4 and 2.5. Recall that we assumed a linear delay penalty, meaning that when

bidding started it ran until a job’s completion without allowing for early termination, and

that we derived our results on pricing strategies under the assumption of a binary system

(job value and delay sensitivity only took two values). We now consider non-linear delay
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sensitivity functions (piece-wise linear convex and concave) as well as the possibility of early

job termination, e.g., after too many unsuccessful bids. We also consider job profiles whose

parameters are not limited to discrete values, but instead can span continuous ranges.

The primary targets of the investigation are the results of Propositions 1 (OPT BID) and 6

(CORR THRESH), namely, the optimality of a fixed bidding strategy and the existence of a

correlation threshold below which a spot service offers no revenue benefits. As we shall see,

Proposition 1 (OPT BID) is relatively fragile but Proposition 6 (CORR THRESH) appears

to hold under more general conditions than those of Section 2.5, including not being limited

to linear delay penalties and/or binary systems.

2.6.1 Assumptions, Relaxations, and Summary

We recall the main assumptions behind Propositions 1 (OPT BID) and 6 (CORR THRESH),

and describe our plan for testing their robustness through different relaxations.

Assumptions

Proposition 6 (CORR THRESH) relied on three major assumptions, with the first two also

applicable to Proposition 1 (OPT BID):

a1 Once an initial bid has been submitted for a job, bidding continues until the job

completes;

a2 The penalty incurred for delaying the completion of a job is a linear function of the

delay beyond the job’s execution time;

a3 Job value and sensitivity to delay are both bimodal, i.e., limited to high and low values.
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Those assumptions were for the sake of tractability, but are obviously limiting in practice.

For example, an abnormally long string of unlucky bids may delay a job’s completion past

the point where it is useful. The user may then decide to terminate the job and stop bidding.

Conversely, some jobs may be mostly insensitive to a small amount of delay, and only start

incurring a penalty once their delay exceeds a threshold. This violates the assumption of

a linear delay penalty. Finally, while separating jobs based on high and low values and

delay sensitivities captures basic job categories, greater diversity is likely to be the norm

in practice. Hence, it is desirable to determine whether Propositions 1 (OPT BID) and 6

(CORR THRESH) still hold, when relaxing the above assumptions. We describe next our

approach for investigating this question.

Relaxations

Specifically, we consider the following relaxations, one at the time:

r1 [job termination] The bidding process can be terminated prior to the successful com-

pletion of a job. Specifically, we allow jobs to terminate if the expected residual utility

associated with continuing to bid is no longer positive;

r2 [non-linear delay penalty ] The penalty associated with delaying the completion of a

job beyond its execution time is a non-linear function of the delay. Specifically, we

consider piece-wise linear convex and concave delay penalty functions;

r3 [arbitrary job profiles ] Job profiles, i.e., combinations of job value and sensitivity to

delay, can span an arbitrary range of values and correspondingly follow arbitrary dis-

tributions. Specifically, we take job profiles where values and delay sensitivities are

uniformly distributed over a continuous range.
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Relaxation r1 calls for identifying a plausible termination criterion. A reasonable choice is,

as alluded to earlier, for a user to terminate bidding when the job’s expected residual utility

is no longer positive. As shown in Appendix A.7.1 this can be decided through backward

induction. The more challenging part is that this change in bidding strategy also affects

the provider’s choice of prices, i.e., its pricing strategy. This coupling makes evaluating the

impact of such a change on Propositions 1 (OPT BID) and 6 (CORR THRESH) challenging.

As a result and for the sake of tractability, we adopt a step-wise approach to exploring this

question.

We first proceed to identify the optimal bidding strategy for a given pricing strategy when job

termination is allowed. As alluded to, this relies on backward induction, and while it provides

some insight into the structure of the bidding strategy, it does not explicitly characterize it. It

is, therefore, used to experimentally explore whether the outcome is a strategy that deviates

from a fixed bidding strategy. Next, rather than attempt to characterize an optimal pricing

policy, we instead numerically investigate for each system configuration (see Section 2.6.1)

“all” possible pricing strategies, i.e., triplets (p1, p2, π), as we vary the correlation ρ between

job value and sensitivity to delay. In other words, for each value of ρ, we step through all

combinations of p1, p2, and π, using a small, fixed step size (precision) in each dimension.

The goal is to determine if a correlation threshold exists beyond which the best “one-price”

strategy is outperformed by a “two-price” (more than one price) strategy. For simplicity,

assumptions a2 and a3 are kept while investigating r1’s impact.

Relaxation r2 is specialized to two specific non-linear delay penalty functions, namely, a

piece-wise linear convex delay penalty, D1(κ, t), and a piece-wise linear concave delay penalty,
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D2(κ, t), as follows:

D1(κ, t) = κ max{0, T (t)− θ},

D2(κ, t) = κ min{T (t), θ}.

where as before t is the job’s service time, κ its delay sensitivity, T (t) its total expected

execution delay where for simplicity we have omitted dependency on v, κ and the bidding

strategy Γ, and θ is a threshold value. In the case of D1, this threshold corresponds to the

execution delay the job can incur without suffering a penalty, while in the case of D2 it is the

amount of execution delay beyond which the job stops experiencing a penalty. Both convex

and concave functions are plausible in practice. A convex delay penalty is representative of

jobs that need to be completed within a certain deadline and only incur a penalty beyond it,

e.g., a product release or tax filings. Conversely, a concave delay penalty corresponds to jobs

for which value is directly tied to timeliness of execution, but eventually stabilizes (possibly

at 0) once delay exceeds a threshold, e.g., computing stock trading prices or updating truck

routes to minimize fuel consumption after traffic updates.

As for relaxation r1, identifying the optimal bidding strategy relies on backward induction,

while assessing whether Proposition 6 (CORR THRESH) still holds is again carried out by

checking if and when the best one-price policy is outperformed by a two-price policy as

correlation between job value and delay sensitivity is varied. For simplicity, assumptions a1

and a3 remain in effect while exploring the impact of relaxation r2.

Relaxation r3 follows a mostly similar approach as relaxations r1 and r2, namely, assump-

tions a1 and a2 are kept while job profiles now extend over continuous ranges for both job

value and delay sensitivity. The investigation is, however, simplified by the fact that, as
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Proposition 1 (OPT BID) did not rely on assumption a334, a fixed bidding strategy remains

optimal under relaxation r3. This facilitates testing whether Proposition 6 (CORR THRESH)

also holds.

Experimental range

When exploring relaxations r1 and r2, we reuse, with two exceptions (see Sections 2.6.2

and 2.6.3), the experimental configuration of Section 2.5. Specifically, we fix both v1 and κ1

to be 0.1, vary v2 and κ2 from 0.2 to 1 with a step size of 0.1, and choose the distribution

marginals r and s independently from values in {0.2, 0.5, 0.8}. We also rely on the same

bimodal job duration distribution where jobs have duration 1 with probability d, and 5

otherwise. Different values of d, namely, d = 0.2, 0.5, 0.8, are considered.

For each configuration across this range of parameters, we run a set of experiments where we

vary the correlation between v and κ. Note that the range of infeasible correlations depends

on the values of r and s. For example, when r = s = 0.2, a correlation of −1 is infeasible.

This is because the fraction of (v2, κ2) jobs is at least 0.6, whereas a correlation of −1 implies

that all jobs are either of (v1, κ2) or of (v2, κ1).

Summary

As mentioned above, Proposition 1 (OPT BID) is unaffected by relaxation r3, irrespective

of the (joint) distributions of the parameters of job profiles. However, as we shall see, it

does not hold under relaxations r1 and r2, where experiments reveal that a dynamic bidding

strategy dominates the fixed bidding strategy, though in most configurations the difference

34Section 2.4 assumes a given job (t, v, κ) and pricing strategy (p.πp.πp.π). Results derived in the section are,
therefore, independent of the (joint) distributions of job parameters.
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is small. Under a dynamic bidding strategy, users update bids in each slot based on their

bidding history.

The situation is different when it comes to Proposition 6 (CORR THRESH), as while it could

a priori be affected by all three relaxations r1, r2, and r3, it remains empirically valid across

all the scenarios we explore, and this irrespective of the users’ bidding strategies (although

we only report results for dynamic bidding strategies, we experimented with both fixed

and dynamic strategies). In other words, the fact that correlation between job value and

delay sensitivity must exceed a threshold for a spot service to improve revenue appears to

hold in the presence of early terminations, under piece-wise linear convex and concave delay

penalties, and beyond the limited setting of binary systems, i.e., as shown with job profiles

that span a continuous range under a uniform distribution.

For the reader’s convenience, we summarize in table form below the set results established

in the remainder of this section:

Relaxation Proposition 1 Proposition 6
(OPT BID) (CORR THRESH)

r1 [job termination when expected job util-
ity stops being positive]

affected holds

r2 [convex/concave piece-wise linear delay
penalty]

affected holds

r3 [uniform distribution in fixed range] holds holds
(for any distribution)
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2.6.2 Allowing Job Terminations

In this sub-section, we investigate the impact of relaxation r1 on Propositions 1 (OPT BID)

and 6 (CORR THRESH), namely, whether they are affected by allowing customers to termi-

nate jobs when a job’s residual expected utility is no longer positive.

Proposition 1 (OPT BID)

Given a job and pricing configuration, the optimal bidding strategy can be characterized

by backward induction (see Appendix A.7.1) that accounts for how much delay a job has

experienced so far as well as its residual service time to completion. This is because bidding

decisions are now dependent on the sequence of spot prices a job encounters, as it affects its

odds of termination. While this alone does not disprove Proposition 1 (OPT BID), it hints

at the possibility.

We explore this question using numerical experiments based on the system configurations in-

troduced in Section 2.6.1, where for a given pricing we compute the optimal bidding strategy

for each job type. Those experiments yielded several instances where the optimal bidding

strategy deviated from fixed bidding, i.e., Proposition 1 (OPT BID) no longer held under

relaxation r1. We provide next an illustrative example.

Consider the pricing strategy (p1, p2, π) = (0.08, 0.6, 0.7) and job (t, v, κ) = (5, 0.3, 0.4). The

optimal bidding strategy computed by backward induction is found to be of the following

form:
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t̂ = 1 t̂ = 2 t̂ = 3 t̂ = 4 t̂ = 5

T̂ = 0 p2 p2 p1 p1 p1

T̂ = 1 p2 p1 p1 p1 p1

T̂ = 2 p1 p1 p1 p1 0

T̂ = 3 p1 0 0 0 0

where t̂ is the job’s required residual service, T̂ is the job’s current execution delay, and

the value in entry (T̂ , t̂) corresponds to the optimal bid given the job’s bidding history as

captured by (T̂ , t̂). An entry value of 0 denotes job termination. A job’s bidding decisions

and outcomes determine its trajectory through the table (it starts in the top right corner and

moves left/down after a winning/losing bid). The table illustrates that after enough unlucky

bids, the job opts to terminate35. More importantly for our purpose, the table shows that

while the job starts bidding at p1, it may switch to p2 if it experiences enough successful

bids.

The strategy is somewhat intuitive given termination and the job’s profile. The job starts

bidding at p1 given the relatively low value of p1 and the high value of π, and the fact that

the delay cost is bounded because termination is allowed. If the job is unlucky in its bids,

i.e., T̂ increases, then the job continues to bid at p1 as the expected cost of bidding at p2

remains too high, and termination limits its cost exposure when bidding at p1. For example,

when (T̂ , t̂) = (3, 1), a bid at p2 has an expected residual utility of 0.064, while a bid at p1

has an expected residual utility of 0.154. Conversely, when both T̂ and t̂ are small, switching

to bidding at p2 becomes attractive. The added cost of bidding at p2 is only incurred over a

small number of slots and ensures access to the full job value, while bidding at p1 still carries

the risk of termination.

35Not shown in the table is the fact that bidding always stops once T̂ exceeds 3.
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Performance of non-termination strategies

The previous sub-section showed that when job can terminate before completion, fixed bid-

ding strategies are no longer optimal. However, they remain attractive because of their

simplicity. It is, therefore, of interest to explore the magnitude of the penalty incurred by

using them while also forfeiting termination36. In carrying out this evaluation, we assume

that the provider computes its pricing strategy assuming that jobs use optimal bidding

strategies, including termination.

As in the previous section, we initially relied on the system configurations introduced in

Section 2.6.1, where κ1 = 0.1. However, these configurations all resulted in one-price op-

timal strategies, i.e., scenarios where the topic of bidding is moot. The primary reason is

that under termination, a two-price strategy cannot afford too small a value of π (recall

that a small π implies a long execution delay when bidding at p1). When π is large (and

termination is allowed), even κ2 users initially bid at p1. This prevents two-price strategies

from outperforming the best one-price strategy. Avoiding this calls for a small κ1 value that

in turn allows a small π value. We, therefore, repeated our experiments using κ1 = 0.01.

The results illustrated that eliminating termination had little impact, except on small jobs,

i.e., t = 1. Specifically, the possibility of termination allows (1, v1, κ2) jobs, i.e., low-value,

high delay sensitivity jobs, to attempt one bid at p1. If they are lucky, they incur a cost

of p1 and no delay, and if their bid fails, they simply terminate, incurring no cost (and no

value). Without the possibility of termination, they are forced to either bid at p2 that they

cannot afford, or bid at p1 that has an expected delay that yields a negative utility.

36Note that termination decisions are also a form of dynamic bidding, and computing termination decisions
has a similar computational cost as dynamic bidding.
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A similar situation can exist for (1, v2, κ2) jobs, for which forfeiting the possibility of termina-

tion can under certain configurations result in a significant reduction in utility (around 50%

on average). This is because in those configurations, following the same strategy as (1, v1, κ2)

jobs, i.e., bid at p1 and terminate if unsuccessful, can yield a higher expected utility than

bidding at p2. Specifically, for reasons similar to those of Section 2.5.1, the provider sets p2

so that a bid at p2 leaves (v2, κ2) jobs only with a marginally positive utility. In contrast,

a bid at p1 followed by termination if unsuccessful yields an expected utility of π(v1 − p1),

which can be significantly larger.

Although termination can generate a larger expected utility for small jobs, it may not be a

realistic option for all types of jobs. In particular, utility functions may be more complex than

the stylized model assumed in this chapter. For example, dependencies may exist between

jobs, e.g., Map-Reduce, that would amplify the penalty associated with not completing a

job. Termination could on the other hand be of benefit for recurring jobs, where missing one

iteration may be of limited consequence since the result will be subsequently updated, e.g.,

an incremental security scan.

Proposition 6 (CORR THRESH)

We turn next to exploring the impact of relaxation r1 on Proposition 6 (CORR THRESH).

The approach is similar to that used for Proposition 1 (OPT BID), i.e., we numerically search

across a range of configurations for the presence of a correlation threshold above which a two-

price strategy becomes optimal. As in the previous sub-section, we use the configurations of

Section 2.6.1, but with κ1 = 0.01. The results of those experiments confirmed the validity

of Proposition 6 (CORR THRESH) even when terminations are allowed. Fig. 2.2 offers a

representative example that plots ρ∗ as a function of κ2. As in the absence of termination, ρ∗

decreases with κ2. In our experiments, the possibility of termination also resulted in a higher
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ρ∗ value than when terminations were not an option. This is intuitive since termination can

lower the revenue that the provider can extract when trying to entice jobs to choose a lower

price in exchange of a delay penalty.

Figure 2.2: ρ∗ as a function of κ2 for dynamic bidding strategies with termination when
κ1 = 0.01, v2 = 0.2, r = 0.5, s = 0.5, d = 0.2

2.6.3 Convex and Concave Delay Penalty Functions

In this sub-section, we investigate the impact of relaxation r2 on Propositions 1 (OPT BID)

and 6 (CORR THRESH), namely, whether their results hold under non-linear delay penalty

functions, i.e., the convex and concave, piece-wise linear functions, D1(κ, t) and D2(κ, t),

introduced earlier. As in Section 2.6.2, we first focus on Proposition 1 (OPT BID), which

as we shall see is again found not to hold. Hence, we also proceed to evaluate the impact

on a job’s utility of restricting itself to simpler fixed bidding strategies. Finally, we turn

to Proposition 6 (CORR THRESH), and whether it holds under convex and concave delay

penalties.

The investigation is again numerical in nature, with experiments spanning a range of config-

uration combinations, now extended to include the threshold θ ∈ {2, 5, 10} used in the delay
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penalty functions D1(κ, t) and D2(κ, t). For each combination, the correlation parameter ρ

is varied within the range of feasible values. As before, and, with one exception, we rely on

the job configurations introduced in Section 2.6.1. The exception is when investigating the

impact of a convex delay penalty, for which it is necessary to modify the range of experiments

under consideration, i.e., by setting κ1 = 0.0001 instead of κ1 = 0.1.

The need for a small κ1 under a convex delay penalty is intuitive. Under a convex delay

penalty, a two-price strategy outperforms one-price strategies only if, in addition to the con-

ditions discussed in Section 2.5, it also accounts for the fact that rather than systematically

bidding at p2, (v2, κ2) jobs bid at p1 in their first θ slots37. Minimizing the revenue loss

associated with those lower initial bids calls for selecting a very small π (the probability

that p1 is selected as the spot price). This in turn requires a correspondingly small value

for κ1 to mitigate the delay impact on (v1, κ1) jobs, and ensure they still generate a positive

utility when bidding at p1. Further, the need for a small κ1 value increases with θ. For

example38, the κ1 values for which a two-price strategy can outperform one-price strategies

are κ1 ≤ 0.006 when θ = 2, and κ1 ≤ 0.0003 when θ = 5 or θ = 10.

Proposition 1 (OPT BID)

As the proof of Proposition 25 highlights, the optimality of a fixed bidding strategy depends

heavily on the linearity of the delay penalty function. Hence, we expect that violating this

property, as relaxation r2 does, will invalidate Proposition 1 (OPT BID). As before, we rely on

backward induction (see again Appendix A.7) to characterize the optimal bidding strategy,

and readily find configurations where it deviates from a fixed bidding strategy. This holds

for both D1(κ, t) and D2(κ, t). We provide illustrative examples next.

37They incur no penalty for up to θ slots.
38We set both the marginals r and s for v and κ equal to 0.2 and the probability that a job is small, i.e.,

equal to 1 (vs. 5 for large jobs), to d = 0.2.
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Example 1: Dynamic bidding under convex delay penalty Consider a pricing strat-

egy (p1, p2, π) = (0.09, 0.2, 0.4), and the convex delay function D1(κ, t) with θ = 2. Using

again the same notation, the optimal bidding strategy computed by backward induction for

job (t, v, κ) = (5, 0.2, 0.2) is of the form:

t̂ = 1 t̂ = 2 t̂ = 3 t̂ = 4 t̂ = 5

T̂ = 0 p1 p1 p1 p1 p1

T̂ = 1 p1 p1 p1 p1 p1

T̂ = 2 p2 p2 p2 p2 p2

where bids for values of T̂ ≥ 2 are always at p2.

This strategy is intuitive given a convex delay penalty with θ = 2 and the job’s profile.

Bidding starts at the lower price, since there is initially no penalty in delaying a job’s

execution. However, after θ = 2 failed bids, the desire to avoid a delay penalty takes

precedence, and bidding switches to the higher price. This is because the expected additional

cost of bidding at p2 rather than p1 is smaller than the expected delay penalty when bidding

at p1, i.e., (1− π)(p2 − p1) < κ(1−π)
π

or 0.066 < 0.3.

Example 2: Dynamic bidding under concave delay penalty Consider next the

pricing strategy (p1, p2, π) = (0.06, 0.25, 0.5), the concave delay penalty D2(κ, t) with again

θ = 2, and a job with profile (t, v, κ) = (5, 1, 0.2). The optimal bidding strategy computed

by backward induction for the job is now of the form:

t̂ = 1 t̂ = 2 t̂ = 3 t̂ = 4 t̂ = 5

T̂ = 0 p2 p2 p1 p1 p1

T̂ = 1 p2 p1 p1 p1 p1

T̂ = 2 p1 p1 p1 p1 p1
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where bids for values of T̂ ≥ 2 are always at p1. More specifically, the optimal bidding

strategy for job (t, v, κ) = (5, 1, 0.2) starts by bidding at p1, and then either continues at

p1 until completion, or, if experiencing enough early “lucky” wins, eventually switches to

bidding at p2 to complete the job.

To explain the change in bidding strategy, consider the job’s trajectory through the optimal

bidding strategy table. It starts in the upper right corner, T̂ = 0, t̂ = 5, and moves through

the table based on the outcome of its strategy. A successful bid, whether at p2 or p1, results

in a move to the left to entry (T̂ , t̂− 1). An unsuccessful bid (at p1) results in a downward

move to (T̂ + 1, t̂). Focusing on those downward transitions, the concave nature of the delay

penalty implies that the expected delay penalty for continuing to bid at p1 is now lower,

while the expected cost penalty of bidding at p2 is unchanged (the amount of residual work

is the same). Hence, if bidding at p1 was preferable it remains so after losing a bid. Contrast

this with a successful bid, i.e., a lateral move to (T̂ , t̂−1). In this case, the expected per slot

cost penalty of bidding at p2 is unchanged, but the expected per slot delay penalty goes up.

This is because the job is no closer to the threshold beyond which there is no delay penalty,

so that the relative weight of unlucky bids goes up (unlike a linear delay penalty, under D2

only a fixed number of unlucky bids matter). This explains why the optimal strategy can

switch to bidding at p2 after enough lucky bids at p1. Note that this also establishes that

once a job starts bidding at p2, it will continue until completion.

Returning to job (t, v, κ) = (5, 1, 0.2), the combination κ = 0.2 and π = 0.5 results in a

strategy that initially favors bidding at p1 (the expected delay penalty is smaller than the

expected cost penalty). Assume next a scenario where the job has enjoyed several lucky bids

at p1 and finds itself at (T̂ , t̂) = (1, 2), at which point it experiences another successful bid

at p1 and moves to (T̂ , t̂) = (1, 1). The strategy table tells us that the job should switch to

bidding at p2. As we have alluded to, this is because the expected delay penalty of bidding

55



at p1 is now larger than the expected cost penalty of bidding at p2. To verify this, we

compute the expected residual costs of each strategy (sum of expected price plus expected

delay penalty), before and after the last successful bit at p1. In slot (1, 2) the expected

residual cost when bidding at p2 is 0.31 vs. 0.2675 when bidding at p1, i.e., bidding at p1

is indeed the better option. In contrast and, as expected, in slot (1, 1) those costs are now

0.155 vs. 0.16, so that bidding at p2 has become preferable.

Performance of fixed bidding strategies

The previous section illustrated that under non-linear delay penalties, dynamic bidding

strategies are the solution of choice. However, because of the simplicity of fixed bidding

strategies, it is again of interest to evaluate whether dynamic strategies warrant their added

complexity. As before, in carrying out this evaluation, we assume that the provider sets

its pricing strategy assuming that jobs seek to maximize their utility, i.e., rely on dynamic

bidding when it benefits them.

Performance under convex delay penalty As alluded earlier, experiments were con-

ducted using the configurations of Section 2.6.1 but with κ1 = 0.0001. In those experiments,

switching from a dynamic to a fixed bidding strategy resulted in (v2, κ2) jobs refraining from

bidding altogether. Recalling the discussion of Section 2.5.1 this is likely because of the very

thin utility margin that the optimal two-price strategy leaves to jobs of type (v1, κ1) and

(v2, κ2). This margin is computed assuming that (v2, κ2) jobs will bid at p1 in their first θ

slots before switching to bidding at p2. Restricting jobs to fixed bidding policies increases

the cost incurred by (v2, κ2) jobs, so that their expected utility becomes negative, which
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prevents them from bidding39. Other job types are only marginally affected (on average less

than 10%), since even under dynamic policies they limit themselves mostly to bidding at p1.

In summary, under a convex delay penalty, limiting high-value, high-delay sensitivity jobs

to fixed bidding strategies can have a significant impact on their utility, i.e., prevent them

from bidding altogether.

Performance under concave delay penalty For this investigation, we return to the

original configurations of Section 2.6.1, i.e., set κ1 = 0.1.

The scenario from Example 2 in the previous section indicates that scenarios do exist where

dynamic bidding can be beneficial. However, the example was constructed to establish

that fixed bidding needs not be optimal for a given two-price configuration. The question

we explore here is somewhat different, namely, to what extent does using fixed bidding hurt

jobs utility when pricing is set assuming that jobs employ dynamic bidding when it improves

their expected utility. Under those assumptions, we were unable to find configurations where

dynamic bidding actually improved job’s utility. In other words, the provider selected prices

so as to discourage the behavior of Example 2. Recall that in Example 2 (5, v2, κ2) jobs were

bidding at p1 unless they experienced enough successful bids, at which point they switched

to p2. A decrease in p2 would succeed in discouraging those jobs from considering bidding

at p1 in the first place, which would in turn eliminate incentives for using dynamic bidding.

In short, it appears that in practice, dynamic bidding is of little benefit when the delay

penalty is a concave function and the provider sets prices that optimize its revenue.

39Note that unlike the previous section, dynamic bidding alone does not enable (1, v1, κ2) jobs to bid in
spite of the initial insensitivity to delay afforded by θ. The inability to terminate unlucky jobs still prevents
those jobs from bidding.
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Proposition 6 (CORR THRESH)

We next turn to exploring the impact of relaxation r2 on Proposition 6 (CORR THRESH).

The approach is similar to that used for Proposition 1 (OPT BID), namely, we numerically

evaluate whether the proposition holds across a range of configurations. The outcome was

that either a one-price strategy was consistently optimal, or there existed a correlation

threshold above which a two-price strategy became optimal. In other words, the results of the

experiments were consistent with Proposition 6 (CORR THRESH). We provide representative

examples next.

Example 1: Dynamic bidding under convex delay penalty As explained earlier, in

investigating a convex delay penalty, we rely on a value of κ1 = 0.0001 in the configurations

of Section 2.6.1. A representative outcome is reported in Fig. 2.3, which plots the value of

Figure 2.3: ρ∗ as a function of κ2 for convex delay penalty when κ1 = 0.0001, v2 = 0.2,
r = 0.3, s = 0.2, d = 0.2, and θ = 2, 5, 10

ρ∗ as a function of κ2 for different θ values (θ = 2, 5, 10). The figure highlights two intuitive

trends.
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The first is that ρ∗ is a decreasing function of κ2 with a step-like behavior. The step-like

behavior is simply a reflection of the relatively coarse users’ bidding decisions, i.e., no bid,

bid at p1, or bid at p2. Switches from one decision to another are driven by increases in the

user’s sensitivity to delay κ. However, once a decision has been made, further increases in

κ only reinforce it and never change it. Turning next to the decrease in ρ∗ as κ2 increases,

note from the scale of the x-axis of the figure that it happens for very small values of κ2 (and

κ1). In other words, in a range where κ2 users are also mostly insensitive to delay. In that

range, enticing (v2, κ2) users to bid at p2 calls for a p2 value that is very close to p1. As κ2

increases, so can p2, which in turn increases the revenue derived from (v2, κ2) users, so that

fewer of them (smaller ρ∗) are needed to outperform the best one-price policy.

The second trend revealed by Fig. 2.3 is that ρ∗ increases with θ. This is again because

under a convex delay penalty, a larger θ value lowers the revenue that can be extracted from

(v2, κ2) users under a two-price policy (they bid at p1 for longer). Offsetting this decrease

requires increasing the number of such users, and consequently a higher ρ∗ value.

Example 2: Dynamic bidding under concave delay penalty We carry out experi-

ments for different θ values returning to the original job configurations introduced in Sec-

tion 2.6.1, i.e., κ1 = 0.1. Results of a representative set of experiments are shown in Fig. 2.4

for different θ values. Note that the θ = 5 line overlaps with the θ = 10 line.

The figure plots ρ∗ as κ2 varies and other job distribution parameters are kept fixed. As

expected, ρ∗ is again a decreasing function of κ2 with a step-like behavior due to the discrete

users’ bidding decisions. However, because θ plays an opposite role as under a convex penalty

function, ρ∗ now decreases with θ.
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Figure 2.4: ρ∗ as a function of κ2 for concave delay penalty when κ1 = 0.1, v2 = 0.2, r =
0.2, s = 0.2, d = 0.2, and θ = 2, 5, 10

2.6.4 Continuous Distributions

Our investigation has so far been limited to binary systems with two discrete values for each

of v and κ, i.e., four job types. In this sub-section, we instead assume that v and κ span

a continuous range of values with uniform marginal distributions across those ranges. We

assume that v has a uniform marginal distribution between vmin and vmax, and that κ has a

uniform marginal distribution between κmin and κmax. The minimum values for job valuation

and delay sensitivity ranges are set to vmin = 0.1 and κmin = 0, respectively, and we vary

the maximum values, vmax and κmax, from 0.2 to 1 and 0.1 to 1, respectively, both with a

step size of 0.1. The correlation between v and κ is varied from −1 to 1 using a Gaussian

copula [182, Table 2.1]. Reliance on copulae to capture dependencies across multiple random

variables is relatively standard, e.g., see [77, 82] for recent uses in related applications, and

a range of copulae are available that can accommodate different dependency structures.

Because we are interested in varying the correlation coefficient ρ from −1 to +1, we opted

for a Gaussian copula that can accommodate this requirement. Note that because copulae

produce distributions with uniform marginals between 0 and 1, we use linear transformations

on v and κ to map the marginals to uniform distributions in [vmin, vmax] and [κmin, κmax].
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Those mapping do not affect correlation. Because job size does not affect a job’s bidding

strategy, experiments are limited to jobs of size t = 1.

Since, as mentioned earlier, Proposition 1 (OPT BID) is unaffected by the use of continuous

distributions for v and κ, we focus our investigation on Proposition 6 (CORR THRESH).

Figure 2.5: ρ∗ as a function of κmax for continuous distributions and vmax = 0.9

Proposition 6 (CORR THRESH)

Characterizing the optimal pricing strategy for continuous distributions is complex. For

simplicity, we therefore limit pricing to one or two prices, and explore the validity of Propo-

sition 6 (CORR THRESH) by comparing the best one and two-price strategies and testing

for the presence of a correlation threshold above which two-price strategies outperform the

best one-price strategy. Specifically, we vary ρ from −1 to 1 with a step size of 0.02. For all

(vmax, κmax, ρ) triplets, we then perform an exhaustive search for an optimal strategy across

all possible combinations of p1, p2, and π, with a step size of 0.02. A two-price strategy is

deemed optimal iff the search yields an optimal value for which π ∈ (0, 1).

All experiments produced outcomes consistent with Proposition 6 (CORR THRESH). Pre-

senting the entirety of our experimental results calls for a three-dimensional graph (with
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x and y axes associated with vmax and κmax, respectively, and ρ∗ displayed on the z axis),

which is difficult to visualize across all values of ρ∗ . As a result, we instead report a repre-

sentative outcome in the form of a two-dimensional projection for vmax = 0.9. The results

are shown in Fig. 2.5, which plots ρ∗ as a function of κmax. The figure shows that ρ∗ is a

decreasing function of κmax. This is consistent with our earlier findings (and the discussion of

Section A.6.6) that in a binary system ρ∗ decreases with κ2. Increasing κmax plays a similar

role, as it shifts the distribution of job’s delay sensitivities towards higher values.

2.7 Summary

The chapter investigates the potential benefits (to users and cloud providers) of offering

a combination of services that realize a different trade-off between cost and timeliness of

job completion. Delays in a job’s completion are caused by service interruptions that put

the job on hold for a period of time. Spot services and preemptible instances are both

examples of such services, even if they differ in their realization. Spot services rely on

dynamic pricing40 that adds a bidding dimension to the user’s decision of when and how

to use the service. In exchange for this added complexity, the user is offered some control

on service interruptions, i.e., higher bids are less likely to be interrupted. This aspect is

absent in preemption based services that rely on fixed prices, with preemption decisions

exogenous to the user and preemption odds available only through rough estimates, either

made available by the provider or obtained from empirical data. In both cases though, the

main question of interest is whether such a combination of services can help the provider

increase revenue by better exploiting market segmentation.

40As mentioned before, the recent changes made by Amazon to their spot pricing offering has significantly
reduced both the range and frequency of spot price changes. As stated in Section 3.1 and argued in [99], the
current offering is now much closer to Google’s and Microsoft’s fixed price versions and in the process has
lost some of the benefits that variable prices offered.
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Towards investigating this question, the chapter makes the assumption that due to its scale

the cloud rarely experiences capacity constraints. As a result, service prices are not re-

sponsive to demand, and used primarily towards improving revenue. Under this assumption

and relying, for tractability, on a simple model for job profiles and how they differ in their

willingness to pay and sensitivity to execution delays, the chapter establishes a number of

interesting results.

In particular, we find that offering services that allow trading a lower cost for a potentially

longer execution time (through service interruptions because of spot price variations or pre-

emptions) is beneficial only if the correlation between job valuation and sensitivity to delay

is high enough, i.e., most high-value jobs require timely executions. In such a setting, a

simple service offering with a set of properly chosen increasing spot prices that map to cor-

responding decreases in the probability of a job being interrupted (i.e., because of a bid that

falls below the spot price, can successfully extract most of the market value). The result

also extends to services such as preemptible instances, even if they rely on fixed rather than

dynamic prices. The common feature that links spot and preemptible instances together is

that both offer a lower cost service option (compared to on-demand instances) in exchange

for potential delays in a job’s completion (in addition to requiring that the job be able to

accommodate interruptions). Numerical investigations showed that the results appear to

hold even in the presence of more complex job profiles than those used to derive them.

The chapter’s other main result is specific to a spot service. It establishes that under certain

assumptions regarding job profiles, i.e., a linear sensitivity to execution delay and a policy to

run jobs to completion once they start executing, a simple fixed bidding strategy can be opti-

mal for users. Unlike the previous finding, the result is somewhat fragile, with, for example,

allowing early termination of jobs and/or the use of non-linear delay sensitivity functions,

both resulting in dynamic bidding policies outperforming a simple, fixed bidding policy.
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Those differences notwithstanding, the gap between fixed and dynamic bidding policies was

found to be relatively small across most of our experiments.
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Chapter 3

Traffic Scheduling and Shaping for

Inter-data Center Networks

3.1 Introduction

The networks that connect datacenters are both similar and yet very different from the

public Internet. On the one hand, they rely on the same suite of protocols so that given

sizes that often exceed those of major Internet Service Providers (ISPs) networks [128, 169,

109, 141, 181], they now make up a significant fraction of IP traffic worldwide [55, 106].

On the other hand, unlike the public Internet where providers have limited information and

control on end-user traffic, datacenter operators have explicit contractual relationships with

their users/customers. These are typically in the form of traffic contracts such as token

buckets [189, Section 4.2], and Service Level Objectives/Agreements (SLOs/SLAs) express-

ing rate and latency targets. When combined with the centralized control that technologies
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such as Software Defined Networking (SDN) enable [110, 186, 192], fine tuning of perfor-

mance is now not only possible [42, 96, 160, 188], but also highly desirable to minimize

cost [129, 193].

The work assumes such an environment with datacenters inter-connected by links under

the purview of an operator with both knowledge and control of individual flows (or flow

aggregates) traversing the network. The goal in this setting is then to identify the minimum

network capacity (bandwidth of inter-datacenter links) required to meet the performance

targets of individual flows (or flow aggregates). In particular, datacenter traffic commonly

maps to a range of profiles and associated latency bounds that lend themselves to careful

optimization [129, 193], with the consolidation and orchestration of those requests in a central

controller offering the opportunity for significant improvements in efficiency [5]. Specifically,

the work seeks to answer the following question: “What is the minimum network bandwidth

required to meet the latency targets of a given set of flows?” The answer obviously depends

on the type of scheduling mechanisms in use, and we consider options of varying complexity.

We note that this question is the dual of the traditional call admission problem that seeks

to assess whether performance goals can be met given the available network capacity. The

added complexity in answering this dual problem is in the exploration of the space of possible

configurations in handling individual flows.

This work starts with the most basic of network configurations, namely, one that involves a

single node and link (hop), and then extends the investigation to the more general multi-hop

case.

The work’s contributions are in formulating optimal solutions for schedulers of different

complexity in the single hop case, and in proposing algorithms to improve network efficiency

on the multiple hop case. This work first characterizes the optimal solution (minimum
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bandwidth for a given set of flows) and how to realize it with a dynamic priority (service

curve-based) scheduler. The chapter then explores static priority and first-in-first-out (fifo)

schedulers that are considerably easier to implement. Of interest is the “cost of simplicity”

in terms of the additional bandwidth required. In addition, while an optimal scheduler by

definition leaves no room for improvements, the same does not hold for simpler schedulers.

In particular, both static priority and fifo schedulers may benefit from modifying flow pro-

files prior to offering them to the scheduler. Towards leveraging this insight, the chapter

identifies optimal ingress traffic (re)shaping configurations that minimize the link bandwidth

required to meet flows’ deadlines (inclusive of shaping delays) for both such schedulers. The

relative benefits of such an approach and the extent to which it helps those simpler sched-

ulers approximate the performance of an optimal scheduler is then evaluated for a range of

flow configurations. After that, this work then proposes reshaping mechanisms to improve

network efficiency in the multiple hop case based on its single hop results.

The rest of this part is structured as follows. Section 3.2 offers a brief review of related

works, both from the perspective of the problem under consideration and the techniques

on which its relies. Section 3.3 focuses on the single hop case. It introduces our one-hop

“network” mode, formulates and solves our targeted optimization under dynamic priority,

static priority and fifo scheduler. Based on that, it proposes reshaping mechanisms for static

priority and fifo, and then explores their performance through numerical experiments. Sec-

tion 3.4 presents reshaping algorithms for the multi-hop case, and explores their performance

through numerical experiments. Section 3.5 summarizes the chapter’s findings and identifies

extensions. Proofs and a few additional ancillary results are provided in an extensive set of

appendices that complete the thesis.
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3.2 Related Works

There is a vast literature aimed at traffic engineering and scheduling within data centers.

However, while some of the mechanisms put forth in those works may be applicable to

our setting, their scope and focus typically differ from ours. Our concern is with the wide

area network (WAN) connecting datacenters as opposed to internal datacenter networks,

and our primary goal is to minimize its cost (under performance constraints) rather than

optimize performance. From that perspective, works such as [208, 5, 29] and [126] are closest

conceptually to our goals.

Reducing costs while meeting latency performance requirements is a goal we share with [208],

and so is our reliance on achieving this goal through careful assignment of workload priorities

and reshaping options. The main difference is in the cost parameters under consideration,

and consequently the criteria they give rise to. More specifically, [208] is concerned with

minimizing the number of servers needed to accommodate a workload with given deadlines,

whereas our focus is on minimizing network bandwidth given a set of inter-datacenter flows

and deadlines. As a result, [208] selects token-bucket parameters to optimize workflow co-

location across servers, while we set them based on their impact on end-to-end flow deadlines

and their ability to constrain flow interactions in the network; hence minimizing bandwidth.

Lowering network cost while meeting performance targets is also a goal of [29], albeit in the

form of availability rather than latency. Because latency is not a concern, it departs from our

focus by not considering the possibility of reshaping traffic flows (through adjusting token

bucket parameters). In contrast, how to best reshape flows is very much a concern of [126],

as is minimizing (network) cost while meeting target deadlines. Specifically, [126] relies on a

network/link bandwidth cost function (based on load percentile) that creates opportunity for

periods of “free” bandwidth. Its goal is then to make shaping and scheduling decisions that
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can maximize the amount of traffic sent during such free periods, and consequently lower

network cost. Our goal is both simpler and more complex. It is simpler in that we only

seek to minimize link capacity as a substitute for network cost. It is more complex because

(ingress) reshaping decisions affect how flows interact, which impacts their deadlines. This

aspect is absent from [126] that focuses on meeting long-term traffic volume targets on a

single link (the ISP link whose cost is to be optimized).

On the modeling front, the theory of “network calculus” (NC) [120] is of most relevance.

The NC framework involves deterministic traffic envelopes, as produced by token buckets

controllers, and offers a powerful tool to analyze end-to-end network performance. In par-

ticular, a number of recent works have provided increasingly tight end-to-end delay bounds

for different types of schedulers and network topologies, e.g., feed-forward networks and

topologies that include cycles, with the latter being typically significantly harder to handle

(see [35, 39, 40, 36, 37] for a comprehensive review or relevant techniques, [32] for a de-

tailed discussion of the two main families of solution techniques, including the more recent

optimization-based framework, and [207] for a recent survey of tools based on them).

Also of note is the IEEE 802.1∗ set of standards on “time sensitive networking” (TSN) [69]

that builds on the NC framework and provides specifications and mechanisms to upper-

bound the end-to-end latency for different traffic flows across a packet network. Within that

framework, a number of results [119, 143, 202] have been derived on end-to-end bounds for

specific types of rate-controllers, e.g., interleaved (also called asynchronous traffic shaping)

and credit based shapers, and schedulers, including first-come-first-served (FCFS) and class-

based schedulers.

The relevance of these works notwithstanding, they all address the dual of the problem

tackled in this chapter, which instead aims to determine the minimum amount of network
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resources (bandwidth) required to meet given delay bounds for a set of flows. Besides, though

much of NC’s value manifests itself in the multiple-node setting where it offers a powerful tool

to analyze end-to-end network performance, we only rely on NC to calculate the worst-case

delay in the single-node setting. In the multiple-node setting, we characterize the end-to-end

worst-case delay by simply adding up all the worst-case single hop delay. We acknowledge

that this simple method, who does not benefits from the Pay Bursts Only Once phenomenon,

will result in a looser delay bound, and we made this decision due to two reasons. In this

work, we focus on dynamic priority, static priority, and fifo schedulers. For dynamic priority,

no existing work provides close-form end-to-end bounds to our knowledge, and deriving

such a bound, which is complicated by itself, is beyond the scope of this work. For static

priority and fifo, existing results provide very complicated, if any, close-form bounds. Since

our methods rely on an optimization whose constraints involving the end-to-end bounds,

adopting such complicated bounds will make it impractical to solve the optimization.

3.3 Single-hop Case

In this section, we study the single hop case. Section 3.3.1 introduces our one-hop “network”

model and the optimization we seek to solve, with the next three sections devoted to deriving

optimal solutions for schedulers of different complexity. Section 3.3.2 relies on a general,

dynamic priority scheduler, while Sections 3.3.3 and 3.3.4 consider simpler static priority

and fifo schedulers. In the latter two cases, configurations both without and with (ingress)

reshaping of flows prior to entering the network are considered. Section 3.3.5 quantifies the

relative benefits of each approach, starting with a simple “two-flow” configuration that helps

identify trends, before considering more general multi-flow scenarios.
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3.3.1 Model Formulation

In this section, we formulate our problem as an optimization problem (OPT), which we pro-

ceed to solve in Sections 3.3.2 to 3.3.4 under different assumptions regarding the scheduling

mechanism available in the “network.”

Consider a network used to transport n flows. Flow i, 1 ≤ i ≤ n, is associated with an end-

to-end41 packet-level deadline di, where w.l.o.g. we assume d1 > d2 > . . . > dn with d1 <∞.

The traffic generated by flow i is rate-controlled using a two-parameter token-bucket (ri, bi),

where ri denotes the token rate and bi the bucket size. The profile of flow i is then defined

as (ri, bi, di). Our goal is to meet the latency requirements (deadlines) of all n flows at the

lowest possible network “cost.”

Network cost clearly involves many factors. Our focus is on link bandwidth, so that minimiz-

ing network cost maps to minimizing some function of link bandwidth. In a general network

setting, network (bandwidth) cost depends on both the bandwidth of individual links and

the number of links. The latter typically grows linearly42, and while the former is often in

practice a “step function” as bandwidth increases43, it can be reasonably captured through

a linear interpolation. In such scenarios, the sum of link bandwidths, i.e., total network

bandwidth, represents a reasonable optimization metric though others, e.g., the maximum

link bandwidth or a weighted sum of link bandwidths, are certainly possible.

In the simple case of one-hop (one link) networks considered in this chapter, this “sum”

defaults to a single term. In this basic setting, denote as R the bandwidth of our single link,

41The deadline measures the time between transmission by the source end-system to reception by the
destination end-system.

42Longer, more expensive links can be easily mapped to sequences of equal cost links connected in series.
43Retrieved 2020, September 27 from https://enterprise.verizon.com/service guide/reg/cp-gdl-

rates-charges.pdf.
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and define r = (r1, r2, . . . , rn), b = (b1, b2, . . . , bn), and d = (d1, d2, . . . , dn) the vectors of the

rates, burst sizes, and deadlines of the flows sharing the link. For notational simplicity we

omit the scheduler type in the expression for flow i’s worst-case end-to-end delay, D∗i (r, b, R).

Our optimization constraint is then D∗i (r, b, R) ≤ di,∀i, 1 ≤ i ≤ n, i.e., all flows meet their

deadline, and our optimization OPT is of the form:

OPT min ‖ R ‖1

s.t D∗i (r, b, R) ≤ di, ∀i, 1 ≤ i ≤ n

(3.1)

As propagation and processing delays are independent of link bandwidth, we focus on the

contributions of queueing and transmission delays on a flow’s end-to-end delay. As a result,

in this simple scenario, a flow’s deadline represents the time between a bit arriving at the

node and being transmitted on the shared link.

The next three sections explore solutions to OPT under different combinations of schedulers

in the simple one-hop (single link) network of Fig. 3.1. For further simplicity, the n flows

sharing that network link are assumed connected through separate, dedicated access links

of very high bandwidth. The (output) link bandwidth R is then the quantity OPT aims to

minimize while meeting the n flows’ deadlines. Further, the link is preceded by an infinite

buffer and has capacity that exceeds the aggregate average arrival rate across all flows, so

that the system is stable and lossless.

As alluded to earlier, of interest is the extent to which more sophisticated (expensive) sched-

ulers translate into lower bandwidth values. For simplicity of exposition and analysis, results

are presented using a fluid rather than packet-based model. Appendix B.6 derives a solution

for a static priority scheduler under a packet-based model, but the results do not contribute

additional insight.
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Figure 3.1: A typical one-hop configuration with n flows.

3.3.2 Dynamic Priorities

We start with the most powerful but most complex mechanism, dynamic priorities, where

priorities are derived from general service curves assigned to flows as a function of their profile

(deadline and traffic envelope). We then solve OPT to characterize the service curves that

achieve the lowest bandwidth while meeting all deadlines.

Towards deriving this result, we first specify a service-curve assignment Γsc that satisfies

all deadlines, identify the minimum link bandwidth R∗ required to realize Γsc, and show

that any scheduler requires at least R∗. We then show that an earliest deadline first (EDF)

scheduler realizes Γsc and, therefore, meets all the flow deadlines under R∗.

Proposition 10. Consider a one-hop network shared by n token-bucket controlled flows,

where flow i, 1 ≤ i ≤ n, has a traffic contract of (ri, bi) and a deadline of di, with d1 > d2 >

... > dn and d1 <∞. Consider a service-curve assignment Γsc that allocates flow i a service

73



curve of

SCi(t) =


0 when t < di,

bi + ri(t− di) otherwise.

(3.2)

Then

1. For any flow i, 1 ≤ i ≤ n, SCi(t) ensures a worst-case end-to-end delay no larger than

di.

2. Realizing Γsc requires a link bandwidth of at least

R∗ = max
1≤h≤n

{
n∑
i=1

ri,

∑n
i=h bi + ri(dh − di)

dh

}
. (3.3)

3. Any scheduling mechanism capable of meeting all the flows’ deadlines requires a band-

width of at least R∗.

The proof of Proposition 10 is in Appendix B.2.1. The optimality of Γsc is intuitive. Recall

that a service curve is a lower bound on the service received by a flow. Eq. (3.2) assigns

service to a flow at a rate exactly equal to its input rate, but delayed by its deadline, i.e.,

provided at the latest possible time. Conversely, any mechanism Γ̂ that meets all flows’

deadlines must by time t have provided flow i a cumulative service at least equal to the

amount of data that flow i may have generated by time t − di, which is exactly SCi(t).

Hence the mechanism must offer flow i a service curve ŜCi(t) ≥ SCi(t),∀t.

Next, we identify at least one mechanism capable of realizing the services curves of Eq. (3.2)

underR∗, and consequently providing a solution to OPT for schedulers that support dynamic

priorities.

Proposition 11. Consider a one-hop network shared by n token-bucket controlled flows,

where flow i, 1 ≤ i ≤ n, has a traffic contract of (ri, bi) and a deadline of di, with d1 > d2 >
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... > dn and d1 < ∞. The earliest deadline first (EDF) scheduler realizes Γsc under a link

bandwidth of R∗.

The proof of Proposition 11 is in Appendix B.2.2. We note that the optimality of EDF

is intuitive, as minimizing the required bandwidth is the dual problem to maximizing the

schedulable region for which EDF’s optimality is known [75].

Note that Γsc specifies a non-linear (piece-wise-linear) service curve for each flow. Given the

popularity and simplicity of linear service curves, i.e., rate-based schedulers, it is tempting to

investigate whether such schedulers, e.g., GPS [150], could be used instead. Unfortunately,

it is easy to find scenarios where linear service curves perform worse.

Consider a one-hop network with only two flows with profiles (r1, b1, d1) = (1, 45, 10) and

(r2, b2, d2) = (1, 5, 1). For a flow in isolation, a rate-based scheduler requires a bandwidth of

max
{
b
d
, r
}

to meet the deadline of a flow with profile (r, b, d). Applying this to flow 2 that

has the tighter deadline calls for a bandwidth of 5 to meet its deadline. After 1.25 units

of time (the time to clear the initial burst of 5 and the additional data that accumulated

during its transmission), flow 2’s bandwidth usage drops down to r2 = 1. The remaining

4 units become then available to flow 1. This means that the initial dedicated bandwidth

needed by flow 1 to meet its deadline of 10 given its initial burst of45 is equal to 144, for a

total network bandwidth of 6 units. In contrast, Eq. (3.3) tells us that Γsc, only requires a

bandwidth of R∗ = 5.9. This difference, albeit relatively small in this toy example, illustrates

the advantage of EDF over rate-proportional policies through the greater flexibility it affords

in deciding how to allocate link bandwidth.

44The dedicated bandwidth c1 of flow 1 must satisfy 45− 5
4x− (x+ 4)

(
10− 5

4

)
= 0 and hence c1 = 1 to

ensure that the original burst of size 45 is cleared by the deadline d1 = 10.
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In the next section, we consider the use of simpler, static priority schedulers; first used

alone (Section 3.3.3) and then combined with an ingress (re)shaper (Section 3.3.3). As

discussed in Section 3.3.3, the introduction of ingress shapers is motivated by the need to

limit the impact of high-priority flows on lower priority ones. As formalized in the next

proposition, this potential benefit from ingress (re)shaping of flows is absent when dynamic

priority (service curve-based) schedulers are used. This is intuitive given the optimality of

such schedulers.

Proposition 12. Consider a one-hop network shared by n token-bucket controlled flows,

where flow i, 1 ≤ i ≤ n, has a traffic contract of (ri, bi) and a deadline of di, with d1 > d2 >

... > dn and d1 < ∞. Adding ingress (re)shapers will not decrease the minimum bandwidth

required to meet the flows’ deadlines.

The proof is in Appendix B.2.3.

3.3.3 Static Priorities

Though dynamic priorities are efficient and may be realizable [168, 163], they are expensive

and not feasible in all environments. It is, therefore, or interest to explore simpler alternatives

to offer service differentiation, and to quantify the resulting trade-off between efficacy and

complexity. For that purpose, we consider next a static priority scheme with flows assigned

a fixed priority as a function of their deadline.

As before, we consider a single-hop scenario with n flows with profiles (ri, bi, di), 1 ≤ i ≤ n,

sharing a common network link. The question we first address is how to assign (static) prior-

ities to each flow given their profile and the goal of OPT of minimizing the link bandwidth

required to meet all deadlines? The next proposition offers a partial and somewhat intuitive
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answer to this question by establishing that the minimum link bandwidth can be achieved

by giving flows with shorter deadlines a higher priority. Formally,

Proposition 13. Consider a one-hop network shared by n token-bucket controlled flows,

where flow i, 1 ≤ i ≤ n, has a traffic contract of (ri, bi) and a deadline of di, with d1 > d2 >

... > dn and d1 < ∞. Under a static-priority scheduler, there exists an assignment of flows

to priorities that minimizes link bandwidth while meeting all flows deadlines such that flow i

is assigned a priority strictly greater than that of flow j only if di < dj.

The proof is in Appendix B.3.1. We note that while Proposition 13 states that network link

bandwidth can be minimized by assigning flows to priorities in the order of their deadline, it

neither rules out other mappings nor does it imply that flows with different deadlines should

always be mapped to distinct priorities. For example, when deadlines are large enough so

that they can be met by assigning all flows their average rate, then the ordering of priority

often does not matter. More generally, in some scenarios, grouping flows with different

deadlines in the same priority class can result in a lower bandwidth than if they are mapped

to distinct priority classes45. Nevertheless, motivated by Proposition 13, we propose a simple

assignment rule that strictly maps lower deadline flows to higher priorities, and proceed to

evaluate its performance.

Static Priorities without (re)Shaping

From [120, Proposition 1.3.4] we know that when n flows with traffic envelopes (ri, bi), 1 ≤

i ≤ n, share a network link of bandwidth R ≥
∑n

i=1 ri with flow i assigned to priority i,

then, under a static-priority scheduler, the worst case delay of flow h is upper-bounded

by
∑n
i=h bi

R−
∑n
i=h+1 ri

(recall that under our notation, priority n is the highest). As a result, the

45We illustrate this in Appendix B.5 for the case of two flows sharing a static priority scheduler. Extending
the result to a general scenario with n flows is left to future work.
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minimum link bandwidth R̃∗ to ensure that flow h’s deadline dh is met for all h is given by:

R̃∗ = max
1≤h≤n

{
n∑
i=1

ri,

∑n
i=h bi
dh

+
n∑

i=h+1

ri

}
(3.4)

Towards evaluating the performance of a static priority scheduler compared to one that relies

on dynamic priorities, we compare R̃∗ with R∗ through their relative difference, i.e., R̃∗−R∗
R∗

.

For ease of comparison, we rewrite R∗ as

R∗ = max
1≤h≤n

{
n∑
i=1

ri,

∑n
i=h bi
dh

+
n∑

i=h+1

ri

(
1− di

dh

)}
. (3.5)

Comparing Eqs. (3.4) and (3.5) gives that R∗ = R̃∗ iff R̃∗ =
∑n

i=1 ri, i.e.,
∑n
i=h bi
dh

≤∑h
i=1 ri, ∀ 1 ≤ h ≤ n. In other words, a static priority scheduler will perform as well as

the optimal one (yield the same minimum bandwidth), whenever flow deadlines are rela-

tive large and flow bursts small. However, when R̃∗ 6=
∑n

i=1 ri, the use of a static priority

scheduler can translate into a need for a much larger bandwidth.

Consider a scenario where R∗ is achieved at h∗, i.e., R∗ =
∑n
i=h∗ bi
dh∗

+
∑n

i=h∗+1 ri

(
1− di

dh∗

)
.

Though R̃∗ may not be realized at the same h∗ value, this still provides a lower bound for

R̃∗, namely, R̃∗ ≥
∑n
i=h∗ bi
dh∗

+
∑n

i=h∗+1 ri. Thus, the relative difference between R̃∗ and R∗ is

no less than

∑n
i=h∗ bi
dh∗

+
∑n

i=h∗+1 ri∑n
i=h∗ bi
dh∗

+
∑n

i=h∗+1 ri

(
1− di

dh∗

) − 1 =

∑n
i=h∗+1 diri∑n

i=h∗ bi +
∑n

i=h∗+1 ri (dh∗ − di)
. (3.6)

As the right-hand-side of Eq. (3.6) increases with di for all i ≥ h∗, it is maximized for

di = dh∗ − εi,∀i > h∗, for arbitrarily small εh∗+1 < . . . < εn, so that its supremum is equal to∑n
i=h∗+1 ridh∗∑n

i=h∗ bi
. Note that this is intuitive, as when flows have arbitrarily close deadlines, they
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should receive mostly equal service shares, which is in direct conflict with a strict priority

ordering.

Note that under certain flow profiles, this supremum can be large. Take a two-flow scenario

as an example. Basic algebraic manipulations give a supremum of r2
r1+r2

, which is achieved

at d2 = d1 = b2+b1
r1+r2

. Note that r2
r1+r2

→ 1 as r1
r2
→ 0. Thus, in the two-flow case, the optimal

static priority scheduler could have bandwidth requirements twice as large as those of the

optimal dynamic priority scheduler.

Static Priorities with (re)Shaping

As shown by the comparison of Eqs. (3.4) and (3.5), static priorities can result in a minimum

required bandwidth significantly larger than R∗. This is largely because static priorities

are a rather blunt instrument when it comes to fine-tuning how to allocate transmission

opportunities as a function of packet deadlines. In particular, they often result in some

packets experiencing a delay much lower than their deadline.

This limitation is intrinsic to the static structure of the scheduler’s decision, but it can be

mitigated by anticipating the extent to which a flow may experience better deadlines than

necessary and offset that advantage by modifying how the flow’s packets are delivered to the

scheduler. This can be realized by (re)shaping higher-priority (smaller deadline) flows before

they enter the network, i.e., through ingress reshaping. This introduces an additional access

(ingress) reshaping delay that must be accounted for (deducted) in the target end-to-end

deadline for the flow, but limits its impact on lower priority flows.

Consider the trivial example of a one-hop network (link) shared by two flows with profiles

(r1, b1, d1) = (1, 5, 1.4) and (r2, b2, d2) = (4, 5, 1.25). In this case, the strict static-priority

mechanism gives R̃∗ = 11.14. Assume next that we first (re)shape flow 2 to (r2, b
′
2) = (4, 0)
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before it enters the shared link. This reduces its delay budget at the shared link down to 0,

but also entirely eliminates its burst. As a result, the resulting (fluid) system only needs a

bandwidth of 7.57 while still meeting both flows’ deadlines (a bandwidth of 4 = r2 is still

consumed by flow 2, but the remaining 3.57 is sufficient to allow flow 1 to meet its deadline).

In other words, (re)shaping flow 2 yields a bandwidth decrease of more than 30%. This

simple example illustrates the potential benefits of access/ingress reshaping of flows. Next

we proceed to characterize optimal (re)shaping parameters, and the resulting bandwidth

gains.

When considering reshaping a flow with profile (ri, bi, di), the goal is to identify reshaping

parameters (r′i, b
′
i) that maximize bandwidth savings (function of other, lower priority flows)

without violating the flow’s deadline di. In the base configuration involving only two flows, it

can be shown (see Appendix B.6) that is sufficient to consider reshaping profiles of the form

(ri, b
′
i), i.e., limited to the flow’s burst46. For that reason and to simplify our investigation,

we limit ourselves to such profiles, i.e., r′i = ri and 0 ≤ b′i ≤ bi. In the next few propositions,

we first characterize flow delays when reshaped under static priorities, before deriving the

optimal reshaping parameters (burst sizes) and the resulting minimum link bandwidth R̃∗s

that solves the corresponding version of OPT under a static priority scheduler and ingress

reshaping.

Specifically, Proposition 14 characterizes the worst case delays (ingress reshaping delay plus

link scheduling delay) of flows with given token-bucket traffic envelopes when assigned to a

link of capacity R and served according to a priority scheduler. The result is then used to

formulate an optimization problem, OPT S, that seeks to minimize the link bandwidth R

required to meet individual flow’s deadlines, when flows are assigned to a priority class based

46We note that while introducing a peak rate constraint won’t help in this base scenario, this needs not
be the case in more general settings, e.g., multi-hop networks, so that investigating the benefits of such an
option remains of interest.

80



on their deadline (shorter deadlines have higher priority). The variables of the optimization

are the flows ingress reshaping parameters. Proposition 16 then characterizes the minimum

bandwidth R̃∗s that OPT S can achieve, while Proposition 17 provides explicit expressions

for the optimal reshaping parameters.

Recall that priority n is the highest priority and let b′ = (b′1, b
′
2, b
′
3, ..., b

′
n) be the vector

of (re)shaped flow bursts, with b′∗ = (b′∗1 , b
′∗
2 , b

′∗
3 , ..., b

′∗
n ) denoting the optimal configuration.

Further, let B′i =
∑n

j=i b
′
j and Ri =

∑n
j=i rj, i.e., the sum of the (re)shaped bursts and rates

of flows with priority greater than or equal to i, 1 ≤ i ≤ n, with B′i = 0 and Ri = 0 for i > n.

Then flow i’s worst-case end-to-end delay is captured by

Proposition 14. Consider a one-hop network shared by n token-bucket controlled flows,

where flow i, 1 ≤ i ≤ n, has a traffic contract of (ri, bi). Assume a static priority scheduler

that assigns flow i a priority of i, where priority n is the highest priority, and (re)shapes flow

i to (ri, b
′
i), where 0 ≤ b′i ≤ bi. Given a shared link bandwidth of R ≥

∑n
j=1 rj, the worst-case

delay for flow i is

D∗i = max

{
bi +B′i+1

R−Ri+1

,
bi − b′i
ri

+
B′i+1

R−Ri+1

}
. (3.7)

The proof is in Appendix B.3.2. Note that Eq. (3.7) captures the worst-case delay for flow

i’s last bit in a burst of bi. Specifically, its first (second) term considers the case when the

last bit arrives before (after) flow i’s last busy period at the shared link, which affects the

extent to which it is affected by the reshaping delay.

Observe also that D∗i is independent of b′1 for 2 ≤ i ≤ n, and decreases with b′1 when i = 1.

This is intuitive as flow 1 has the lowest priority so that (re)shaping it cannot decrease the

worst-case end-to-end delay of other flows. Consequently, reshaping it will also not reduce

the minimum link bandwidth required to meet specific deadlines for each flow. Formally,
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Corollary 15. Consider a one-hop network shared by n token-bucket controlled flows, where

flow i, 1 ≤ i ≤ n, has a traffic contract of (ri, bi) and a deadline of di, with d1 > d2 > ... > dn

and d1 < ∞. Assume a static priority scheduler that assigns flow i a priority of i, where

priority n is the highest priority, and (re)shapes flow i to (ri, b
′
i), where 0 ≤ b′i ≤ bi. Given a

shared link bandwidth of R ≥
∑n

j=1 rj, reshaping flow 1 cannot reduce the minimum required

bandwidth.

Combining Proposition 14 and Corollary 15 with OPT gives the following optimization

OPT S for a one-hop network shared by n flows and relying on a static priority scheduler

with reshaping. Note that since the minimum link bandwidth needs to satisfy R ≥
∑n

i=1 ri,

combining this condition with Ri’s definition gives
∑n

i=1 ri = R1 ≤ R.

OPT S min
b′

R

s.t max

{
bi +B′i+1

R−Ri+1

,
bi − b′i
ri

+
B′i+1

R−Ri+1

}
≤ di, ∀ 1 ≤ i ≤ n,

R1 ≤ R, b′1 = b1, 0 ≤ b′i ≤ bi, ∀ 2 ≤ i ≤ n.

(3.8)

The solution of OPT S is characterized in Propositions 16 and 17. Proposition 16 charac-

terizes the optimal bandwidth R̃∗s based only on flow profiles, and while it is too complex to

yield a closed-form expression, it offers a feasible numerical procedure to compute R̃∗s.

Proposition 16. For 1 ≤ i ≤ n, denote Hi = bi − diri, Πi(R) = ri+R−Ri+1

R−Ri+1
and Vi(R) =

di(R−Ri+1)−bi. Define S1(R) = {V1(R)}, and Si(R) = Si−1(R)
⋃
{Vi(R)}

⋃{
s−Hi
Πi(R)

| s ∈ Si−1(R)
}

for 2 ≤ i ≤ n. Then we have R̃∗s = max {R1, inf{R | ∀s ∈ Sn(R), s ≥ 0}}.

Computing R̃∗s requires solving polynomial inequalities of degree (n − 1), so that a closed-

form expression is not feasible except for small n. However, as Si(R) relies only on flow

profiles and Sj(R), ∀j < i, we can recursively construct Sn(R) from S1(R). Hence, since
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R1 ≤ R̃∗s ≤ R̃∗, we can use a binary search to compute R̃∗s from the relation R̃∗s =

max {R1, inf{R | ∀s ∈ Sn(R), s ≥ 0}} in Proposition 16.

Next, Proposition 17 gives a constructive procedure to obtain the optimal reshaping param-

eters b′∗ given R̃∗s and flow profiles.

Proposition 17. Optimal reshaping parameters b′∗ satisfy

b′∗i =


max{0, bn − rndn}, when i = n;

max

{
0, bi − ridi +

riB
′∗
i+1

R̃∗s −Ri+1

}
, when 2 ≤ i ≤ n− 1.

(3.9)

where we recall that b′∗1 = b1.

Note that the reshaping parameter b′∗i of flow 1 < i < n relies only on the optimal link band-

width R̃∗s and the reshaping parameters of higher priority flows. Hence, we can recursively

characterize b′∗i from b′∗n given R̃∗s.

3.3.4 Basic FIFO with (re)Shaping

In this section, we consider the simplest possible scheduler, namely, a first-in-first-out (fifo)

scheduler that serves data in the order in which it arrives. For conciseness and given the

benefits of reshaping demonstrated in Section 3.3.3, we directly assume that flows can be

reshaped prior to entering the network. Considering again a one-hop network and a set of

n flows with profiles (ri, bi, di), 1 ≤ i ≤ n, our goal is to find reshaping parameters (r′i, b
′
i)

to minimize the link bandwidth required to meet all the flows’ deadlines. Again as in

Section 3.3.3, we assume that ri = r′i and focus on identifying the best b′i values.
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Towards answering this question, we first proceed to characterize the worst case delay across

n flows sharing a link of bandwidth R equipped with a fifo scheduler, when the flows have

initial traffic envelopes of the form (ri, bi), 1 ≤ i ≤ n, and have been individually reshaped

to (ri, b
′
i), 1 ≤ i ≤ n, prior to accessing the shared link. Using this result, we then identify

the reshaping parameters b′i, 1 ≤ i ≤ n, that minimize the link bandwidth required to ensure

that all flows meet deadlines of the form d1 > d2 > . . . > dn, and d1 < ∞. As with other

configurations, we only state the results with proofs relegated to Appendix B.4.

Proposition 18. Consider a system with n rate-controlled flows with traffic envelopes (ri, bi),

where 1 ≤ i ≤ n, which share a fifo link with bandwidth R ≥ R1 =
∑n

j=1 rj. Assume that the

system reshapes flow i’s traffic envelope to (ri, b
′
i). Then the worst-case delay for flow i is

D̂∗i = max

{
bi − b′i
ri

+

∑
j 6=i b

′
j

R
,

∑n
j=1 b

′
j

R
+

(bi − b′i)R1

riR

}
. (3.10)

The proof of Proposition 18 is in Appendix B.4.1

With the result of Proposition 18 in hand, we can formulate a corresponding optimization

problem, OPT F, for computing the optimal reshaping parameters that minimize the link

bandwidth required to meet the deadlines d1 > d2 > . . . > dn, and d1 <∞ of a set of n flows.

Specifically, combining Proposition 18 with OPT gives the following optimization OPT F

for a one-hop network shared by n flows and relying on a fifo scheduler with reshaping. As

before,
∑n

i=1 ri = R1 ≤ R.

OPT F min
b′

R

s.t max

{
bi − b′i
ri

+

∑
j 6=i b

′
j

R
,

∑n
j=1 b

′
j

R
+

(bi − b′i)R1

riR

}
≤ di, ∀ 1 ≤ i ≤ n,

R1 ≤ R, 0 ≤ b′i ≤ bi, ∀ 1 ≤ i ≤ n.

(3.11)
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The solution of OPT F is characterized in Propositions 19 and 20. As in the case of a static

priority scheduler, Proposition 19 describes a numerical procedure to compute the optimal

bandwidth R̂∗s given the flow profiles, while Proposition 20 specifies the optimal reshaping

parameters b̂
′∗

given R̂∗s and the flow profiles.

Proposition 19. For 1 ≤ i ≤ n, define Hi = bi − diri, B̂i =
∑i

j=1 bj, and Zi = {1 ≤ j ≤ i |

j ∈ Z}. Denote

XF (R) = max
P1,P2⊆Zn,P2 6=Zn,P1

⋂
P2=∅

∑
i∈P1

RHi
R+ri

+
∑

i∈P2

(
bi − ridiR

R1

)
1−

∑
i∈P1

ri
R+ri
−
∑

i∈P2

ri
R1

and

YF (R) = min
1≤i≤n−1

B̂n, Rdn, min
P1,P2⊆Zi,P1

⋂
P2=∅,P1

⋃
P2 6=∅

B̂i −
∑

j∈P1

RHj
R+rj

−
∑

j∈P2

(
bj − rjdjR

R1

)
∑

j∈P1

rj
R+rj

+
∑

j∈P2

rj
R1


 .

Then the optimal solution for OPT F is

R̂∗s = max

{
R1,

B̂nR1∑n
i=1 ridi

,min{R | XF (R) ≤ YF (R)}

}
.

Since max
{
R1,

B̂nR1∑n
i=1 ridi

}
≤ R̂∗s ≤ R̂∗ = max

{
R1,

B̂n
dn

}
, where R̂∗ is the minimum required

bandwidth achieved by a pure fifo system, we can use a binary search to compute R̂∗s based

on Proposition 19. Once R̂∗s is known, the optimal reshaping parameters can be obtained as

stated in Proposition 20

Proposition 20. For 1 ≤ i ≤ n, define Ti(B̂
′
n, R) = max

{
0, R

R+ri

(
Hi + ri

R
B̂′n

)
, bi + ri(B̂

′
n−Rdi)
R1

}
.

OPT F’s optimal reshaping parameters b̂
′∗

satisfy b̂′∗1 = B̂′∗1 , and b̂′∗i = B̂′∗i − B̂′∗i−1 for
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2 ≤ i ≤ n, where B̂
′∗

satisfy


B̂′∗n = XF (R̂∗s),

B̂′i = max

{
i∑

j=1

Tj(B̂
′∗
n , R̂

∗
s), B̂

′∗
i+1 − bi+1

}
, when 1 ≤ i ≤ n− 1.

(3.12)

Note that B̂′∗n relies only on R̂∗s and flow profiles. Whereas when 1 ≤ i ≤ n − 1, B̂′∗i relies

only on R̂∗s, B̂
′∗
n , B̂′∗i+1 and flow profiles. Hence, we can recursively characterize B̂′∗i from B̂′∗n

given R̂∗s.

3.3.5 Evaluation

In this section, we explore the relative benefits of the solutions presented in the previous

three sections. Of interest is assessing the “cost of simplicity,” namely the amount of addi-

tional bandwidth required when relying on simpler schedulers such as static priority or fifo

compared to an edf-based dynamic priority scheduler. Also of interest is the magnitude of

the improvements that (ingress) reshaping of flows can afford with static priority and fifo

schedulers. To that end, the evaluation proceeds with a number of pairwise comparisons to

quantify the relative cost (in bandwidth) of each alternative.

The evaluation initially focuses (Section 3.3.5) on scenarios involving only two flows. In

this base setting, explicit expressions are available for the minimum bandwidth under each

configuration, so that formal comparisons are possible. This is then extended (Section 3.3.5)

to more “general” scenarios involving multiple flows with different combinations of deadlines

and traffic envelopes.
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Basic Two-Flow Configurations

Recalling our earlier notation for the minimum bandwidth required in each configuration,

i.e., R∗ (dynamic priority); R̃∗ (static priority); R̃∗s (static priority w/ reshaping); R̂∗ (fifo);

and R̂∗s (fifo w/ reshaping), and specializing Eq. (3.3) to a configuration with only two flows,

(r1, b1, d1) and (r2, b2, d2), the minimum bandwidth to meet the flows’ deadlines is given by

R∗ = max

{
r1 + r2,

b2

d2

,
b1 + b2 − r2d2

d1

+ r2

}
, (3.13)

which is, therefore, also the bandwidth required by the dynamic priority scheduler.

Conversely, if we consider a static priority scheduler, from Eq. (3.4), its bandwidth require-

ment R̃∗ (in the absence of any reshaping) for the same two-flow configuration is of the

form

R̃∗ = max

{
r1 + r2,

b2

d2

,
b1 + b2

d1

+ r2

}
; (3.14)

If (optimal) reshaping is introduced, specializing Proposition 16 to two flows, the minimum

bandwidth R̃∗s reduces to

R̃∗s =


max

{
r1 + r2,

b2

d2

,
b1 + b2 − r2d2

d1

+ r2

}
, when

b2

r2

≥ b1

r1

max

{
r1 + r2,

b2

d2

,
b1 + max {b2 − r2d2, 0}

d1

+ r2

}
, otherwise;

(3.15)

Finally, similarly specializing the results of Propositions 19 and 20 to two flows, we find that

the minimum required bandwidth R̂∗ under fifo without reshaping is

R̂∗ = max

{
r1 + r2,

b1 + b2

d2

}
; (3.16)
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and that when (optimal) reshaping is used, R̂∗s is given by

R̂∗s = max

{
r1 + r2,

b2

d2

,
(b1 + b2)(r2 + r2)

d1r1 + d2r2

,
b1 + b2 − d1r1 +

√
(b1 + b2 − d1r1)2 + 4r1d2b2

2d2

}
.

(3.17)

With these expressions in hand, we can now proceed to assess the relative benefits of each

option in the basic two-flow scenario.

The Impact of Scheduler Complexity We first evaluate the impact of relying on sched-

ulers of decreasing complexity, when those schedulers are coupled with an optimal reshaping

solution. In other words, we compare the bandwidth requirements of a dynamic priority

scheduler to those of static priority and fifo schedulers combined with an optimal reshaper.

The comparison is in the form of relative differences (improvements realizable from more

complex schedulers), i.e., R̃∗s−R∗

R̃∗s
, R̂∗s−R∗

R̂∗s
, and R̂∗s−R̃∗s

R̂∗
.

Dynamic priority vs. static priority w/ optimal reshaping.

Starting with comparing a dynamic priority scheduler with a static priority one with optimal

reshaping, we know from Eqs. (3.13) and (3.15) that R∗ < R̃∗s iff b2
r2
< d2 ≤ d1 <

b1
r1

.

To illustrate this difference, Fig. 3.2a uses a “heatmap” for a specific yet representative

two-flow combination, (r1, b1) = (4, 10) and (r2, b2) = (10, 18), while varying their respec-

tive deadlines. As shown in the figure, the static priority scheduler, when combined with

reshaping, performs as well as a dynamic priority scheduler, except for a relatively small

(triangular) region where d1 and d2 are close to each other and both of intermediate val-

ues47. Towards better characterizing this range, i.e., d2 >
b2
r2

and d1 <
b1
r1

, we see that the

47When d2 and d1 are close but small, an edf dynamic priority scheduler behaves like a static priority one
as the very large bandwidth called for by small deadlines ensures that data from either class is transmitted
before dynamic priorities can affect transmissions order. In other words, if a burst of low-priority (larger
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(a) Dyn. prio. vs. stat. prio. +
reshaping

(b) Dyn. prio. vs. fifo + reshap-
ing

(c) fifo + reshaping vs. stat.
prio. + reshaping

Figure 3.2: Relative bandwidth increases for (r1, b1) = (4, 10) and (r2, b2) = (10, 18), as a
function of d1 and d2 < d1. The figure is in the form of a “heatmap.” Darker colors (purple)
correspond to smaller increases than lighter ones (yellow).

supremum of R̃∗s−R∗

R̃∗s
is achieved at d1 = d2 = b1+b2

r1+r2
, with R̃∗s = b1

d1
+ r2, and R∗ = r1 + r2.

The relative difference in bandwidth between the two schemes is then of the form

R̃∗s −R∗

R̃∗s
= 1− 1

b1
b1+b2

+ r2
r1+r2

,

which can be shown to be upper-bounded by 0.5. In other words, in the two-flow case, the

(optimal) dynamic scheduler can result in a bandwidth saving of at most 50% when com-

pared to a static priority scheduler with (optimal) reshaping, and this happens when the

deadlines of the two flows are very close to each other. This is unlikely in practice, and we

expand on this in Section 3.3.5.

Dynamic priority vs. fifo w/ optimal reshaping

deadline) arrives (d1− d2) prior to a high-priority (smaller deadline) burst so that its remainder would have
“higher” priority under edf, the speed of the link ensures there is no remainder, and therefore no difference
between edf and a static priority scheduler. Similarly, when both the high and the low priority flows generate
simultaneous bursts, the high speed of the link ensures that any additional data contributed by the high-
priority flow while its burst is being transmitted under static priority is cleared before the low-priority burst
would have become eligible for transmission under an edf scheduler. Conversely, when d2 and d1 are close
but large, both schedulers meet the deadlines with a bandwidth equal to the sum of the flows’ average rates.
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Next, we study the performance difference between the dynamic priority scheduler and a

fifo scheduler that, as with the static priority scheduler, has been combined with optimal

reshaping. Comparing R̂∗s with R∗ from Eqs. (3.17) and (3.13) gives that R̂∗s > R∗ iff

d1 − b1
r1
< d2 <

b1+b2−d1r1
r2

. We illustrate the corresponding relative difference in Fig. 3.2b

using again the same two-flow combination as before. From the figure, we see that fifo +

shaping performs poorly relative to a dynamic priority scheduler when neither d1 nor d2 are

large. As with static priorities, such configurations may not be common in practice, and we

explore this further below and in Section 3.3.5.

To explore the source and possible magnitude of this difference, we note that the supremum of

R̂∗s−R∗

R̂∗s
is achieved when 0 < d2 <

b1+b2+r2d1−
√

(b1+b2+r2d1)2−4r2b2d1

2r2
, with Eq. (3.13) defaulting

to R∗ = b2
d2

and Eq. (3.17) to R̂∗s =
b1+b2−d1r1+

√
(b1+b2−d1r1)2+4r1d2b2

2d2
. Hence, the relative

difference becomes

R̂∗s −R∗

R̂∗s
= 1− 2b2

b1 + b2 − d1r1 +
√

(b1 + b2 − d1r1)2 + 4r1d2b2

,

which increases with d2. Thus, its supremum is achieved at d2 → d1. From basic algebraic

manipulation, 1 − 2b2

b1+b2−d1r1+
√

(b1+b2−d1r1)2+4r1d2b2
also decreases with d1. Hence, the supre-

mum of the relative difference is achieved at d1 → 0, and is of the form b1
b1+b2

, which goes

to 1 as b1
b2
→ ∞. In other words a dynamic priority scheduler can realize up to a 100%

improvement over a basic fifo scheduler that reshapes flows optimally.

Fifo vs. static priority both w/ optimal reshaping

Finally, we compare fifo and static priority schedulers when both rely on optimal reshaping.

Comparing Eqs. (3.17) and (3.15) gives that R̂∗s > R̃∗s iff max
{
b2
r2
, (b1+b2)(r1+r2)
r2(b1/d1+r2)

}
< d1 <
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b1
r1

. Fig. 3.2c illustrates their difference, again relying on a heatmap for the same two-flow

combination used for the two previous scenarios.

The figure shows that the benefits of priority are maximum when d2 is small and d1 is not too

large. This is intuitive in that a small d2 calls for affording maximum protection to flow 2,

which a priority structure offers more readily than a fifo. Conversely, when d1 is large, flow 1

can be reshaped to eliminate all burstiness, which limits its impact on flow 2 even when both

flows compete in a fifo scheduler.

The figure also reveals that a small region exists (when d1 and d2 are close to each other and

both are of intermediate value) where fifo outperforms static priority. As alluded to in the

discussion following Proposition 13 and as expanded in Appendix B.5, this is because a strict

priority ordering of flows as a function of their deadlines needs not always be optimal. For

instance, it is easy to see that two otherwise identical flows that only differ infinitesimally in

their deadlines should be treated “identically.” This is more readily accomplished by having

them share a common fifo queue than having them assigned to two distinct priorities.

To better understand differences in performance between the two schemes, we characterize

the supremum and the infimum of R̂∗s−R̃∗s
R̂∗s

.

Basic algebraic manipulations show that the supremum is achieved at d1 = d2 → 0, where

Eq. (3.17) defaults to R̂∗s =
b1+b2−d1r1+

√
(b1+b2−d1r1)2+4r1d2b2

2d2
and Eq. (3.15) to R̃∗s = b2

d2
, so

that their relative difference is ultimately of the form

R̂∗s − R̃∗s
R̂∗s

=
b1

b1 + b2

,

which goes to 1 when b1
b2
→∞, i.e., a maximum penalty of 100% for fifo with reshaping over

static priorities with reshaping.
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Conversely, the infimum is achieved at d1 = d2 = b1+b2
r1+r2

, with Eqs. (3.15) and (3.17) then

defaulting to R̃∗s = b1
d1

+ r2 and R̂∗s = r1 + r2, respectively. Their relative difference is then of

the form

R̂∗s − R̃∗s
R̂∗s

=
r1

r1 + r2

− b1

b1 + b2

,

which increases with r1
r2

and decreases with b1
b2

. When r1
r2
→ 0 and b1

b2
→ ∞, it achieves an

infimum of −1, i.e., a maximum penalty of 100% but now for static priorities with reshaping

over fifo with reshaping. In other words, when used with reshaping, both fifo and static

priority can end-up requiring twice as much bandwidth as the other. Addressing this issue

calls for determining when flows should be grouped in the same priority class rather than

assigned to separate classes, and while the optimal grouping can be identified in simple

scenarios with two or three flows, e.g., see Appendix B.5, a general solution remains elusive.

However, as we shall see in Section 3.3.5, the simple strict priority assignment on which we

rely appears to perform reasonably well across a broad range of flow configurations.

The Benefits of Reshaping In this section, we evaluate the benefits afforded by (op-

timally) reshaping flows when using static priority and fifo schedulers. This is done by

computing the minimum bandwidth required to meet flow deadlines under both schedulers

without and with reshaping, and evaluating the resulting relative differences, i.e., R̃∗−R̃∗s
R̃∗

and

R̂∗−R̂∗s
R̂∗

.

Starting with a static priority scheduler, Eqs. (3.14) and (3.15) indicate that R̃∗s < R̃∗

iff R̃∗ = b1+b2
d1

+ r2 > max
{
r1 + r2,

b2
d2

}
, i.e., for a static priority scheduler, (re)shaping48

decreases the required bandwidth only when d1, the larger deadline, is not too large and

d2, the smaller deadline, is not too small. This is intuitive. When d1 is large, the low-

priority flow 1 can meet its deadline even without any mitigation of the impact of flow 2.

48Recall from Corollary 15 that the flow with the largest deadline, flow 1 in the two-flow case, is never
reshaped.
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(a) Stat. prio. without vs. with shaping (b) fifo without vs. with shaping

Figure 3.3: Relative bandwidth increases for (r1, b1) = (4, 10) and (r2, b2) = (10, 18) as a
function of d1 and d2 < d1. The figure is in the form of a “heatmap.” Darker colors (purple)
correspond to smaller increases than lighter ones (yellow).

Conversely, a small d2 offers little to no opportunity for reshaping flow 2 as the added delay

it would introduce would need to be compensated by an even higher link bandwidth. This is

illustrated in Fig. 3.3a for the same two-flow combination as in Fig. 3.2, i.e., (r1, b1) = (4, 10)

and (r2, b2) = (10, 18). The intermediate region where “d1 is not too large and d2 is not

too small” corresponds to the yellow triangular region where the benefits of reshaping can

reach 40%.

Similarly, Eqs. (3.16) and (3.17) indicate that R̂∗s < R̂∗ iff d2 <
b1+b2
r1+r2

, i.e., for a fifo scheduler,

(re)shaping decreases the required bandwidth only when d2, the smaller deadline, is small.

This is again intuitive as a large d2 means that the small deadline flow 2 can meet its deadline

even without any reshaping of flow 149. Fig. 3.3b presents the relative gain in link bandwidth

for again the same 2-flow combination. As seen in the figure, the benefits of reshaping can, as

in the static priority case, again reach reach close to 40% for a fifo scheduler, at least in the

example under consideration. The next section explores more complex scenarios involving

more than two flows and different combinations of flow profiles, and from those results it

49Note that unlike the static priority scenario where the smaller deadline (higher priority) flow is reshaped,
the opposite holds in the fifo case, where the larger deadline flow is reshaped to minimize its impact on the
one with the tighter deadline.
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appears that, in general, a fifo scheduler stands to benefit more from reshaping than a static

priority one.

Relative Performance – Multiple Flows In this section, we extend the investigation

of Section 3.3.5 to more general configurations. Specifically, we consider scenarios with more

than two flows, where flows are assigned to ten different deadline classes. We set the dynamic

range of the deadline classes to 10, i.e., with minimum and maximum deadlines of 0.1 and

1, respectively, and consider different assignments in that range for the 10 deadlines across

classes. Specifically, we select three different possible patterns for assigning the deadline of

each class, namely,

• Even deadline assignment:

1. d11 = (1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1);

• Bi-modal deadline assignment:

2. d21 = (1, 0.95, 0.9, 0.85, 0.8, 0.3, 0.25, 0.2, 0.15, 0.1),

3. d22 = (1, 0.96, 0.93, 0.9, 0.86, 0.83, 0.8, 0.2, 0.15, 0.1),

4. d23 = (1, 0.95, 0.9, 0.3, 0.26, 0.23, 0.2, 0.16, 0.13, 0.1);

• Tri-modal deadline assignment:

5. d31 = (1, 0.95, 0.9, 0.6, 0.55, 0.5, 0.45, 0.2, 0.15, 0.1),

6. d32 = (1, 0.68, 0.65, 0.62, 0.6, 0.57, 0.55, 0.53, 0.5, 0.1),

7. d33 = (1, 0.6, 0.28, 0.25, 0.23, 0.2, 0.17, 0.15, 0.12, 0.1),

8. d34 = (1, 0.97, 0.95, 0.93, 0.9, 0.88, 0.85, 0.82, 0.6, 0.1).

Those three assignments translate into different patterns in how close to each others deadlines

are, as well as how they are spread across the full dynamic range, e.g., with some scenarios

grouping a number of deadlines within a sub-range.
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Each of the above eight deadline assignments is then used to perform a total of 1, 000

experiments, where an experiment consists of randomly selecting a “flow’s” traffic envelope

for each of the ten deadlines. Note that what we denote by a flow in practice maps to the

aggregate of all individual flows assigned to the corresponding deadline class (individual flow

envelopes simply add up). Specifically, ten (aggregate) flow burst sizes b1 to b10 are drawn

independently from U(1, 10), and ten (aggregate) rates r1 to r10 are drawn independently

from U
(
0,
∑10

i=1 bi
)
. The upper bound

∑10
i=1 bi of the rate range corresponds to a rate value

beyond which even a fifo scheduler without reshaping always performs as well as the optimal

solution50, so that there are then no differences across mechanisms.

The results of the experiments are summarized in Table 3.1, which gives the mean, standard

deviation, and the mean’s 95% confidence interval for the relative savings in required link

bandwidth, first from using dynamic priority over static priority + shaping, followed by fifo

+ shaping, and then between static priority + shaping and fifo + shaping.

The first conclusion from the data in Table 3.1 is that while a dynamic priority scheduler

affords some benefits, they are on average smaller than the maximum values that Section 3.3.5

indicated as possible. In particular, average improvements over static priority with reshaping

were often around 1% and did not exceed slightly more than 6% across all configurations.

Those values were a little higher when considering fifo with reshaping, where they reached

12%, but those again remain significantly less than the worst case scenarios of Section 3.3.5.

Table 3.1 also reveals that, somewhat surprisingly, static priority and fifo perform similarly

when both are afforded the benefit of reshaping. Static priority holds a slight edge on

average, but as discussed in Section 3.3.5, this is not consistent across configurations, and

a few scenarios exist where a fifo scheduler outperforms static priority when combined with

50This happens when the sum of the rates is large enough to alone clear the aggregate burst before the
smallest deadline.
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Table 3.1: Relative bandwidth savings.

Comparisons Scenario Mean Std. Dev. 95% Conf. Intvl.

R∗ vs. R̃∗s

(
R̃∗s−R∗

R̃∗s

)
d11 0.012 0.023 [0.0102, 0.0131]
d21 0.015 0.027 [0.0135, 0.0169]
d22 0.011 0.022 [0.0101, 0.0128]
d23 0.029 0.042 [0.0259, 0.0312]
d31 0.014 0.025 [0.012, 0.0151]
d32 0.010 0.021 [0.0084, 0.011]
d33 0.062 0.065 [0.0576, 0.0658]
d34 0.007 0.017 [0.006, 0.0081]

R∗ vs. R̂∗s

(
R̂∗s−R∗

R̂∗s

)
d11 0.017 0.065 [0.013, 0.0211]
d21 0.032 0.087 [0.0268, 0.0376]
d22 0.017 0.062 [0.0126, 0.0203]
d23 0.080 0.128 [0.0724, 0.0882]
d31 0.025 0.078 [0.0206, 0.0303]
d32 0.008 0.046 [0.0054, 0.0111]
d33 0.120 0.141 [0.1115, 0.129]
d34 0.004 0.032 [0.002, 0.006]

R̃∗s vs. R̂∗s

(
R̂∗s−R̃∗s
R̂∗s

)
d11 0.006 0.065 [0.0016, 0.0095]
d21 0.018 0.083 [0.0126, 0.0228]
d22 0.005 0.061 [0.0012, 0.0088]
d23 0.055 0.113 [0.0484, 0.0624]
d31 0.012 0.075 [0.0076, 0.0169]
d32 -0.002 0.045 [-0.0043, 0.0013]
d33 0.066 0.112 [0.0592, 0.073]
d34 -0.003 0.033 [-0.0053, -0.0012]

reshaping of flows. Fig. 3.4 illustrates when and why this might be the case by plotting the

relative “penalty” of fifo + reshaping over static priority + reshaping for two of the tri-modal

deadline assignments, d32 and d33.

The differences between the two selected deadline assignments are in the relative magnitudes

of their three modes. Assignment d32 boasts a relatively large middle mode with six inter-

mediate deadlines, and two extreme modes (small and large deadlines), each with only one

deadline. In contrast, assignment d33 has two small upper modes (large and intermediate),
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(a) Tri-modal deadline assignment d32 (b) Tri-modal deadline assignment d33

Figure 3.4: Relative bandwidth difference between fifo + shaping and static priority +
shaping.

each with a single deadline, and a large lower mode consisting of six relatively low value

deadlines.

Recall that the introduction of priorities enforces strict differentiation between flows as a

function of the their deadline (smaller deadlines have higher priority). As a result, even

if reshaping mitigates the impact of priority, a relatively large number of closely grouped

deadlines is a poor fit for a priority scheme, especially when the number of other flows for

which it can be beneficial is small. This is the scenario of deadline assignment d32 (there is

only one small deadline flow that benefits from being assigned to the highest priority, and

conversely only one large deadline flow from which other flows are protected by assigning it

to the lowest priority), which explains the relatively poor performance of static priority over

fifo. In contrast, deadline assignment d33 boasts a large number of small deadlines that all

stand to benefit from being shielded of the impact of the two larger deadline flows, even if

the introduction of strict differentiation among those six small deadline flows needs not be

very useful (reshaping again mitigates its negative impact). Nevertheless, this offers some

insight into the better performance of static priority over fifo in this particular scenario.
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Table 3.2: Relative benefits of reshaping flows.

Comparisons Scenario Mean Std. Dev. 95% Conf. Intvl.

R̃∗s vs. R̃∗
(
R̃∗−R̃∗s
R̃∗

)
d1 0.0843 0.0450 [0.0815, 0.0871]
d21 0.0811 0.0419 [0.0785, 0.0837]
d22 0.0842 0.0452 [0.0814, 0.0871]
d23 0.0938 0.0480 [0.0908, 0.0967]
d31 0.0824 0.0433 [0.0797, 0.0851]
d32 0.0949 0.0507 [0.0918, 0.0981]
d33 0.1597 0.0478 [0.1567, 0.1627]
d34 0.0883 0.0494 [0.0853, 0.0914]

R̂∗s vs. R̂∗
(
R̂∗−R̂∗s
R̂∗

)
d1 0.4952 0.0817 [0.4901, 0.5003]
d21 0.4871 0.0762 [0.4824, 0.4918]
d22 0.4953 0.0827 [0.4902, 0.5005]
d23 0.4578 0.0652 [0.4537, 0.4618]
d31 0.4908 0.0788 [0.4859, 0.4957]
d32 0.4995 0.0859 [0.4942, 0.5049]
d33 0.4247 0.0619 [0.4208, 0.4285]
d34 0.5013 0.0884 [0.4959, 0.5068]

Towards gaining a better understanding of reshaping and the extent to which it may be

behind the somewhat unexpected good performance of fifo, Table 3.2 reports its impact for

both static priority and fifo. Specifically, as Table 3.1, it gives the mean, standard deviation,

and the mean’s 95% confidence interval of the relative gains in bandwidth that reshaping

affords for both schedulers.

The data from Table 3.2 highlights that while both static priority and fifo benefit from

reshaping, the magnitude of the improvements is significantly higher for fifo. Specifically,

improvements from reshaping are systematically above 40% and often close to 50% for fifo,

while they exceed 10% only once for static priority (at 15% for scenario d33) and are typically

around 8%. As alluded to earlier, this is not surprising given that static priority offers at

least some, albeit blunt, ability to discriminate flows based on their deadlines, while fifo

lacks any such ability. This difference is illustrated more explicitly in Fig. 3.5 through the

full cumulative distribution function (cdf) of those benefits for both static priority and fifo
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Figure 3.5: CDF of relative bandwidth reduction from reshaping under bi-modal deadline
assignment d21.

under the deadline assignment d21 (bi-modal, with two similar modes of five deadlines at

the two ends of the deadline range).

3.4 Multi-node Case

In this section, we proceed to extend our single-node results to multi-node networks. We

present a first step in investigating this problem, and restrict ourselves to systems where the

directed graph derived from flow routes can form a DAG, i.e., all nodes in the network can

be topologically ordered such that the ordering is consistent with all the flow routes.

There are mainly two challenges to build multi-hop procedures, to map the end-to-end

deadline to per-node targets, and to account for decisions dependencies across nodes. Though

local deadline assignment is an interesting yet complicated topic by itself, however, exploring

different deadline splitting mechanisms is not the focus of this work. Therefore, we propose
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to adopt the simple even deadline splitting mechanism, i.e., split end-to-end deadline equally

across nodes. For dependencies, we propose to use shapers as a means of mitigating error

from ignoring dependencies under different schedulers. Note that the reshaping algorithms

proposed in this part work not only for even deadline splitting, but for any valid local deadline

assignment.

3.4.1 Base Algorithm

We first articulate an algorithm that applies to the three schedulers of Section 3.3 and for

which we characterize an upper bound for the network-wise minimum required bandwidth.

The algorithm essentially applies at each hop the solution derived in the one-hop setting

after reshaping flows to their ingress arrival curve. According to network calculus, adding

such a reshaper will not increase any flow’s worst-case end-to-end delay.

Specifically, suppose flow i has an arrival curve of ACi(t) = br + rit, and the network has k

nodes numbered from 1 to k. Denote the number of nodes traversed by flow i as ki, and

flow i’s route as Mi = [mi,1, ...,mi,ki ], where mi,j ∈ {1, ..., k} for all j ∈ {1, ...., ki}. Suppose

all nodes in Mi are unique, and for all j ∈ {1, ...., ki − 1} there exists a link from node mi,j

to mi,j+1 in the network. Suppose the system assigns a single-hop deadline of d̂i,j, where∑
1≤j≤ki d̂i,j ≤ di, for flow i’s jth hop along the route. Then we can sum up all the nodes’

per-hop minimum required bandwidths (denote the procedure as BandwidthOneHop) to get

an upper bound for the network-wise minimum required bandwidth.
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ALGORITHM 1: Upper bound for the Network-wise Minimum Required Bandwidth

Function: Bandwidth (ACACAC,MMM,DDD, k, n,mech)→ R

Input: Flow arrival curves ACACAC(t) = [r1t+ b1, ..., rnt+ bn], paths

MMM = [(m1,1, ...,m1,k1), ..., (mn,1, ...,mn,kn)], per-hop deadlines along the path

DDD = [(d1,1, ..., d1,k1), ..., (dn,1, ..., dn,kn)] for each flow, the number of nodes inside

the network k, and the number of flows inside the network n, network

scheduling mechanism mech

Output: An upper bound R for the network-wise minimum required bandwidth under

mech

// For each node, characterize all the flows traversing it;

for i← 1 to n do

for j ← 1 to ki do

Ψi(MMM i,j) = DDDi,j // Ψi maps a hop number to flow i’s per-hop deadline at

this hop

end

end

R← 0 ;

for i ∈ 1 to k do

J ← {j | i ∈MMM j} ;

PPP ←
[
(rJ1 , bJ1 ,ΨJ1(i)) , ...,

(
rJ|J| , bJ|J| ,ΨJ|J|(i)

)]
// |J | the number of elements in J ;

PPP ← sort(PPP ) // sort according to deadline decreasing order ;

R← R +BandwidthOneHop(PPP , n,mech) ;

end
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3.4.2 Dynamic Priority Scheduler

In this part we explore the impact of reshapers given dynamic priority scheduler. We start

with the base per-hop reshaping algorithm, and then identify how to further reshape some

flows amd combine ingress and per-hop reshaping algorithm for better performance. Subse-

quently, motivated by rate-proportional scheduler, we further extend our ingress and per-hop

reshaping algorithms by adopting two-slope reshapers.

Per-hop Reshaping Algorithm

From Proposition 10, SCED gives the optimal minimum required bandwidth for a single

hop, i.e., ingress reshaping cannot improve the current hop’s performance. However, as

reshaping reduces the burst size, it has the potential to benefit all downstream hops, and

therefore improve the network’s overall performance. From Eq 3.3, it is possible to reshape

some flows without increasing the current hop’s minimum required bandwidth. Specifically,

flows that are not involved in setting the required link bandwidth, i.e., they are not the

bottleneck, experience a better delay bound than required, and this offers the opportunity

to use the delay margin to further reshape them. Take Figure 3.6 as an example, since flow

2 is not the bottleneck, we can reshape it without increasing the current node’s minimum

required bandwidth.

For tractability, we again propose to reshape only the burst size, not the rate, of the flow.

Ideally, we should consider all possible reshaping parameters, and pick the one that 1) keeps

the local minimum required bandwidth, 2) does not violate any flow’s per-hop deadline,

and 3) reshapes each flow as much as possible. However, the reshaper values satisfying

condition 1), 2) and 3) may not be unique. For example, consider a node with three flows
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Figure 3.6: Example reshapers under dynamic priority scheduler

(r1, b1, d1) = (0.5, 0.7, 2), (r2, b2, d2) = (1, 0.4, 1.2), and (r3, b3, d3) = (1, 2.5, 1). In this case

both (b′1, b
′
2, b
′
3) = (0.7, 0.2, 2.38) and (b′1, b

′
2, b
′
3) = (0.7, 0, 2.5) satisfy all three conditions.

To avoid this, we can either consider all valid reshaping combinations and select a globally

optimal solution, or propose a mechanism to generate a unique local optimal. As the for-

mer is computationally very expensive, we adopt the latter. Specifically, we further add a

restriction that the link deadline ordering must remains as before the addition of any reshap-

ing. Formally, suppose there are n flows traversing a given hop with per-hop link deadlines

d̂1 ≥ ... ≥ d̂n. We require the reshaped link deadlines, which equal the original per-hop link

deadline minus the reshaping delay, to satisfy d̂′1 ≥ ... ≥ d̂′n.

With this restriction, we then propose to sequentially, from flow n to flow 1, characterize the

smallest possible reshaper without violating the bandwidth or deadline constraints. Note

that this procedure generates unique reshaping values. Thus we have Algorithm 2, and we

can show that (see Appendix B.7 for details) that the reshapers produced by Algorithm 2

will not violate any aforementioned constraint.
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ALGORITHM 2: Per-hop Reshaping Algorithm

Function: ReshapingOneHop (PPP , n)→
(
b′b′b′, d̂′̂d′̂d′

)
Input: Per-hop flow profiles PPP =

[(
r

(1)
1 , r

(2)
1 , b1, d̂1

)
, ...,

(
r

(1)
n , r

(2)
n , bn, d̂n

)]
; number of

flows n;

Output: Reshaping parameter for each flow b′b′b′ = (b′1, ..., b
′
n), and per-hop link deadlines

after reshaping d̂′̂d′̂d′ = (d̂′1, ..., d̂
′
n)

R∗ ← BandwidthOneHop (PPP , n);

d̂′n+1 ← 0 ;

for i← n to 1 do

b′i = max
{

0, bi − ri
(
d̂i − d̂′i+1

)}
;

if R∗ −
∑

j≥i rj > 0 then

b′i = max
{
b′i,

ri
R∗−

∑
j≥i rj

[
bi−rid̂i
ri

(
R∗ −

∑
j>i rj

)
+
∑

j>i

(
b′j − d̂′jrj

)]}
end

d̂′i ← d̂i − bi−b′i
r
(2)
i

;

end

Iterative Ingress Reshaping Algorithm

From Eq 3.3 a hop’s minimum required bandwidth decreases with the arrival curves for all

the flows traversing it under SCED, i.e., a “smaller” arrival curve yields a lower bandwidth.

Therefore, shifting all of a flow’s per-hop reshaping and the corresponding reshaping delay to

the first hop of its route ensures that every hop benefits from the smaller (reshaped) arrival

curve, which results in a smaller overall bandwidth than that produced by the original per-

hop reshaping solution. Formally,

Proposition 21. Consider a network with k nodes and n flows, where flow 1 ≤ i ≤ n has

a token-bucket arrival curve ACi(t) = bi + rit, an end-to-end deadline of di, and a path of
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MMM i = [mi,1, ...,mi,ki ], where Mi contains unique nodes 1 ≤ mi,j ≤ k for all 1 ≤ j ≤ ki, and

there guarantees to be a link between mi,j and mi,j+1 for all 1 ≤ j ≤ ki−1. Suppose a per-hop

reshaping mechanism reshapes flow i to b′i,j and assigns a link deadline of di,j at node mi,j.

W.l.o.g, suppose b′i,j ≥ b′i,j+1 for all 1 ≤ j ≤ ki − 1. Then under EDF, the mechanism that

• allocates flow i an ingress reshaper of b′i,ki at every hop along MMM i; and

• allocates a per-hop deadline of di,j −
b′i,j−1−b′i,j

r
(2)
i

at node mi,j, where 1 ≤ j ≤ ki and for

simplicity define b′i,0 = 0,

performs no worse than the corresponding per-hop reshaping mechanism.

Remark: since reshaping delays are not the same at each hop, the ingress reshaping mech-

anism results in an uneven deadline splitting. This alludes to the fact that the even deadline

splitting solution we start with is not the optimal deadline splitting mechanism.

Algorithm 3 specifies the procedure to construct ingress reshapers based on the proposed per-

hop algorithm. Note that Algorithm 3 relies on a graph traversal order OOO that is consistent

with all the flow routes, and enumerates all the nodes according toOOO. As we restrict ourselves

to DAG topology, such a traversal order always exists.
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ALGORITHM 3: One-pass Ingress Reshaping Algorithm

Function: IngressOnePass(ACACAC,MMM,DDD,OOO, n, k)→ (bbb′,DDD′)

Input: Flow arrival curves ACACAC(t) = [r1t+ b1, ..., rnt+ bn], paths

MMM = [(m1,1, ...,m1,k1), ..., (mn,1, ...,mn,kn)], and per-hop deadlines alone the path

DDD = [(d1,1, ..., d1,k1), ..., (dn,1, ..., dn,kn)]; graph traverse order OOO = [m1, ....,mk];

number of flows inside the network n; number of nodes inside the network k

Output: Flow reshaping parameters bbb′ = (b′1, ..., b
′
n), and per-hop deadlines

DDD′ =
[
(d′1,1, ..., d

′
1,k1

), ..., (d′n,1, ..., d
′
n,kn

)
]
.

DDD′ ←DDD ;

for i← 1 to n do

b′i ← bi ;

for j ← 1 to ki do

Ψ(i,MMM i,j) = j, // Ψ(i,MMM i,j) gives the index of node MMM i,j in MMM i

end

end

for i ∈ OOO do

J ← {j | i ∈MMM j} // get all the flows traversing node i ;

PPP ←
[(
rJ1 , b

′
J1
,DDDJ1,Ψ(J1,i)

)
, ...,

(
rJ|J| , b

′
J|J|
,DDDJ|J|,Ψ(J|J|,i)

)]
;

PPP ,JJJ ← sort(PPP ) // sort PPP by deadline decreasing order ;(
b′b′b′, d̂̂d̂d′

)
← ReshapingOneHop (PPP , |JJJ |) ;

for l← 1 to |JJJ | do

b′JJJ l ← b′b′b′l, DDD
′
JJJ l,Ψ(JJJ l,i)

= d̂̂d̂d′l

end

end

bbb′ ← {b′1, ..., b′n}
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As moving all reshaping to the ingress updates flow arrival curves and per-hop deadlines at

intermediate hops, it introduces the possibility of new per-hop improvements based on the

updated flow profiles/ This suggests iteratively applying Algorithm 3 to the updated flow

profiles. As Algorithm 3 only decreases the upper bound, and the upper bound is greater

than 0, i.e., has a lower bound, the proposed iterative algorithm is guaranteed to converge.

ALGORITHM 4: Iterative Ingress Reshaping Algorithm

Function: IngressIterative(ACACAC,MMM,DDD,OOO, n, k, ε)→ (bbb′,DDD′, R)

Input: Flow arrival curves ACACAC(t) = [r1t+ b1, ..., rnt+ bn], paths

MMM = [(m1,1, ...,m1,k1), ..., (mn,1, ...,mn,kn)], and per-hop deadlines alone the path

DDD = [(d1,1, ..., d1,k1), ..., (dn,1, ..., dn,kn)]; graph traverse order OOO = [m1, ....,mk];

number of flows inside the network n, number of nodes inside the network k,

granularity ε

Output: Flow reshaping parameters bbb′ = (b′1, ..., b
′
n), flow per-hop deadlines

DDD′ =
[
(d′1,1, ..., d

′
1,k1

), ..., (d′n,1, ..., d
′
n,kn

)
]
, and upper bound for the

network-wise minimum required bandwidth according to bbb′ and DDD′ under

EDF.

Rcrt ← Bandwidth(ACACAC,MMM,DDD, k, n) ;

Rprev ← Rcrt + 2ε ;

bbb′ ← [b1, ..., bn] ;

while Rprev −Rcrt > ε do

Rprev ← Rcrt ;

(bbb′,DDD)← IngressOnePass(ACACAC,MMM,DDD,OOO, n, k) ;

ACACAC ← [r1t+ bbb′1, ..., rnt+ bbb′n] ;

Rcrt ← Bandwidth(ACACAC,MMM,DDD, k, n)

end

R← Rcrt
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Remark: by graph decomposition, we can extend Algorithms 3 and 4 to general directed

graphs. Specifically, after decomposing the graph into DAGs, we can apply our ingress

reshaping algorithms and update the corresponding flow profiles for each DAG, and then

iterate across DAGs.

Evaluation

In this part, we study the performance of the iterative ingress reshaping solution we have

just introduced. We will not focus on per-hop and ingress reshaping algorithms, because we

have proved that iterative ingress reshaping performs no worse than them.

For ease of evaluation, we rely on a parking lot topology for our experiments. A parking lot

topology consists of N nodes, and there exists only one directed link from node i to i + 1,

where 1 ≤ i ≤ N − 1. Inside the system there are two types of traffic: main traffic and cross

traffic. The main traffic traverses all the nodes inside the system. Whereas the number of

nodes traversed by cross traffic is strictly less than N . For every node there is cross traffic

entering from it. All the cross traffic traverses the same number of hops (C < N), and have

the same traffic profiles regardless of the node they enter from. Figure 3.7 shows an example

parking lot topology where N = 5 and C = 2.

Figure 3.7: A parking lot topology with N = 5 and C = 2.

We assume that both main and cross traffic consist of three types of flows. For each flow, we

draw its rate uniformly and independently from U(1, 10), and draw its burst size uniformly
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(a) Main Traffic Deadlines: [1, 0.1, 0.01] (b) Main Traffic Deadlines: [6, 0.6, 0.06]

Figure 3.8: Relative bandwidth improvement of SCED + iterative ingress reshaping com-
pared with SCED when N = 5 and C = 1

and independently from U(1, 30). We consider two cases for flows’ end-to-end deadlines. For

the first case, both main and cross traffic’s three types of flows have end-to-end deadlines of

[1, 0.1, 0.01]. For the second case, cross traffic has end-to-end deadlines of [1, 0.1, 0.01], and

main traffic has end-to-end deadlines of [6, 0.6, 0.06]. We run 1000 cases for each comparison.

Figure 3.8 shows the relative improvement of iterative ingress reshaping under SCED com-

pared with pure SCED when the main traffic has end-to-end deadlines of [1, 0.1, 0.01] (Fig-

ure 3.10a) and [6, 0.6, 0.06] (Figure 3.10). Iterative ingress reshaping gives better performance

when the main traffic has larger end-to-end deadlines. This is intuitive as larger end-to-end

deadlines leave more room for reshaping.

Two-slope Ingress Reshaper

We further compare iterative ingress reshaping algorithm with rate proportional mechanism

that assigns flow (r, b, d) a rate of max
{
r, b

d

}
at every hop. Surprisingly, in a large fraction
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(a) Main Traffic Deadlines: [1, 0.1, 0.01] (b) Main Traffic Deadlines: [6, 0.6, 0.06]

Figure 3.9: Relative improvement of iterative ingress reshaping + SCED compared with rate
proportional when N = 5 and C = 1

of our numerical experiments reshaping + SCED perform worse than the simple rate pro-

portional. As shown in Figure 3.9, rate proportional strictly outperforms51 iterative ingress

reshaping in more than 80% of the experiments when main traffic has end-to-end dead-

lines of [1, 0.1, 0.01], and in more than 60% when main traffic has end-to-end deadlines of

[6, 0.6, 0.06].

Note that from the perspective of the trade-off between smoother burst and in-network

flexibility, both SCED and rate proportional are extreme points. SCED relies on local

deadline differences to allocate bandwidth to flows as efficiently as possible. Whereas rate

proportional spreads bursts and accounts for benefit to downstream nodes as accurately as

possible, but leaves little to no flexibility in dynamically allocating bandwidth to flows at

intermediate hops.

To benefit from both smoother bursts and in-network flexibility, we propose to emulate

rate proportional in our ingress reshaper to ensure that SCED can always outperform it

while still exploring solutions where it can benefit from greater flexibility in local deadline

51The units of the x-axis are in relative bandwidth “improvement” of iterative reshaping + SCED over
rate proportional, i.e., a value of −1 means that rate proportional is 100% better.
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assignments. Specifically, we propose to reshape flow (r, b, d) using a 2-slope token-bucket

reshaper min
{
r(1)t, b′ + r(2)t

}
, where r(1) ≥ max

{
r, b

d

}
, i.e., the rate-proportional rate.

Similar as before, we set r(2) = r. Given both rates, we then rely on our previous iterative

ingress reshaping algorithm to get b′. Note that when r(1) = max
{
r, b

d

}
, the reshaper

defaults to rate proportional mechanism; whereas as when r(1) = ∞, it defaults to 1-slope

token-bucket reshaper. We search from max
{
r, b

d

}
to ∞ to find the best r(1).

By extending ingress reshaping from 1-slope to 2-slope, we generalize the per-hop arrival

curves as well. We modify the per-hop reshaping algorithm to reflect this more general

arrival curve and rely on a binary search to characterize the minimum reshaper.
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ALGORITHM 5: Single-hop Reshaping Algorithm

Function: ReshapingOneHop (PPP , n)→
(
b′b′b′, d̂′̂d′̂d′

)
Input: Flow profiles PPP =

[(
r

(1)
1 , r

(2)
1 , b1, d̂1

)
, ...,

(
r

(1)
n , r

(2)
n , bn, d̂n

)]
; flow number n

Output: Reshaping parameter for each flow b′b′b′, and updated per-hop link deadlines d̂′̂d′̂d′

R∗ ← BandwidthOneHop (PPP , n);

d̂′n+1 ← 0, tn+1 ← 0 ;

for i← 1 to n do

d̂′i ← d̂i, b
′
i ← bi, ti ← bi

r
(1)
i −r

(2)
i

when r
(1)
i 6= r

(2)
i ; and 0 otherwise

end

for i← n to 1 do

if r
(2)
i = r

(1)
i then

b′i ← bi ;

continue

end

T←
{
d̂′j + tj | d̂′i ≤ d̂′j + tj < d̂′i + ti

}
;

for t in T do

if
∑

1≤j≤nACj(t− d̂′j | b′j) = R∗t then

goto next iteration (i← i+ 1)

end

end

left←
[
bi − r(2)

i (d̂i − d̂′i+1)
]+

;

right← bi ;

b′i = binary search(left, right, bbb′, ddd′, n, R∗) ;

d̂′i ← d̂i − bi−b′i
r
(2)
i

;

ti =
b′i

r
(1)
i −r

(2)
i

end
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(a) Compared with rate proportional (b) Compared with 1-slope SCED

Figure 3.10: Relative improvement of 2-slope ingress reshaping + iterative ingress reshaping
+ SCED with main traffic deadlines of [1, 0.1, 0.01] when N = 5 and C = 1,

We then explore the performance of 2-slope ingress reshaping algorithm through numerical

experiments. We again rely on the parking lot topology and random flow profiles. Specifi-

cally, we compare 2-slope ingress reshaping + Iterative ingress reshaping + SCED with rate

proportional, and compare 2-slope ingress reshaper + SCED with 1-slope ingress reshape +

SCED.

Numerical experiments show that adding 2-slope reshaping to iterative ingress reshaping

brings considerable benefit. Take Figure 3.10 as an example. In this case, it brings an

average relative improvement of around 43.93% compared with rate proportional, and that

of 68.10% compared with 1-slope iterative ingress reshaping.

3.4.3 Static Priority and FIFO Scheduler

For static priority and FIFO scheduler, by running the single-hop reshaping algorithm at

each hop, and then using the reshaped arrival curve as the arrival curve at the next hop

along its route, we get a multi-hop reshaping procedure. Combining it with Propositions 16,

17, 19 and 20 gives per-hop greedy reshaping algorithm for static priority and fifo schedulers.
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Note that the proposed (iterative) ingress reshaping algorithm for dynamic priority will not

work for static priority or FIFO scheduler. This is because under these two schedulers,

decoupling the reshaper and scheduling delays may increase the hop’s minimum required

bandwidth. From Propositions 14 and 18, the worst-case end-to-end delay is less than the

sum of the worst-case delay inside reshaper and the worst-case delay at the link. Therefore,

decreasing the burst and correspondingly the link delay does not guarantee to result in the

same minimum required bandwidth.

Evaluation

In this part, we test the performance of greedy reshaping under static priority and FIFO,

where we rely again on the parking lot topology and random flow profiles. Besides the per-

hop reshaping algorithm, we also explore the potential benefit of ingress reshaping simply

by adding an ingress reshaper and varying its configuration.

We first study the performance of our greedy per-hop reshaping algorithm. For both static

priority and FIFO, we compare the bandwidth upper bound generated by our per-hop re-

shaping algorithm with that generated by the per-hop reshaping algorithm that reshapes

each flow to the original arrival curve at each hop. Note that our assumption of the avail-

ability of per-hop reshaping, be it to the original arrival curve or using our one-hop algorithm,

is intended to ensure reasonable end-to-end performance in spite of the schedulers’ relative

simplicity. In the absence of per-hop reshaping, arrival curves at each hop are determined

based on the service curves of the previous hop, and it is well-known that the resulting

worst-case burstiness increases rapidly (a cascade effect), which in turn forces the use of

very large bandwidth to meet end-to-end bounds.
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(a) FIFO: Greedy vs. base reshaping (b) Static priority: Greedy vs. base reshaping

Figure 3.11: Relative bandwidth improvement of per-hop greedy reshaping when main traffic
deadlines are [6, 0.6, 0.06], N = 5 and C = 1.

Figure 3.11 gives representative examples of the per-hop reshaping Algorithm’s performance

under static priority and FIFO schedulers when the main traffic has end-to-end deadlines of

[6, 0.6, 0.06]. Under FIFO scheduler, per-hop reshaping brings an average relative improve-

ment of 20.28%. Whereas under static priority, it brings an average relative improvement of

only 0.47%. As we shall see later, although reshaping generates a smaller improvement with

static priority than with FIFO, the absolute performance of reshaping + static priority is

usually better than reshaping + FIFO.

We then study the potential benefit of ingress reshaping by comparing Ingress reshaping +

greedy algorithm with greedy algorithm. Numerical experiments show that when cross traffic

and main traffic have the same end-to-end deadline, there is almost no benefit. Whereas

when the main traffic has end-to-end deadlines of [6, 0.6, 0.06], there is positive improvement

in most of the cases for both static priority and FIFO. Nevertheless, the improvement is

usually very small (less than 0.1%)
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3.4.4 Comparing the Relative Benefits of Schedulers

In this section, we compare the performance of dynamic priority, static priority and FIFO

schedulers with reshaping. As before, we rely on the parking lot topology and random flow

profiles.

We first compare reshaping + SCED with greedy per-hop reshaping + static priority and

greedy per-hop reshaping + FIFO, where for SCED we consider both 1-slope and 2-slope

reshapers. After that, we compare FIFO and static priority under greedy per-hop reshaping.

From our experiments, 1-slope iterative ingress reshaping + SCED usually outperforms per-

hop reshaping + FIFO and per-hop reshaping + static priority. Figure 3.12 gives example

comparisons between SCED and FIFO, and we can see that SCED usually outperforms

FIFO by more than 50%. Figure 3.13 gives example comparisons between SCED and static

priority. The improvements here are less than those under FIFO, and when main traffic has

small deadlines, SCED brings little improvement.

Note that the benefits of SCED increases with main traffic deadlines compared with both

FIFO and static priority. Remember that iterative ingress reshaping + SCED takes the

whole network into consideration, whereas for FIFO and static priority we characterize the

per-hop reshaping parameters greedily. Thus, though larger end-to-end deadlines make more

room for reshaping for all three schedulers, intuitively iterative ingress reshaping + SCED

exploits the additional room more efficiently.

Under 2-slope reshapers, SCED performs better than FIFO and static priority in all of our

experiments. Figure 3.14 gives example improvements for 2-slope reshaper + iterative ingress

reshaping + SCED. Comparing Figure 3.13a with Figure 3.14b, we see that by adding 2-slope

reshapers, the performance gap between SCED and static priority enlarges significantly.
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(a) main traffic deadline: [1, 0.1, 0.01] (b) main traffic deadline: [6, 0.6, 0.06]

Figure 3.12: Relative bandwidth improvement of 1-slope iterative ingress reshaping + SCED
compared with greedy per-hop FIFO when N = 5 and C = 1.

(a) main traffic deadline: [1, 0.1, 0.01] (b) main traffic deadline: [6, 0.6, 0.06]

Figure 3.13: Relative bandwidth improvement of 1-slope iterative ingress reshaping + SCED
compared with greedy per-hop static priority when N = 5 and C = 1.
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(a) 2-slope iterative ingress reshaping + SCED
vs. per-hop reshaping + FIFO

(b) 2-slope iterative ingress reshaping + SCED
vs. per-hop reshaping + static priority

Figure 3.14: Relative bandwidth improvement of 2-slope iterative ingress reshaping + SCED
when main traffic deadlines are [1, 0.1, 0.01], N = 5 and C = 1.

In most of our experiments, given their corresponding greedy per-hop reshapers, static pri-

ority stricty outperforms FIFO scheduler. Figure 3.15 shows example comparisons between

per-hop reshaping + static priority and per-hop reshaping + FIFO. Here greedy reshaping

+ static priority usually outperforms greedy reshaping + FIFO by 50%.

3.5 Summary

The work has investigated the question of minimizing the bandwidth required to meet worst

case latency bounds for a set of rate-controlled (through a token bucket) flows in a basic

one-hop setting. The investigation was carried for schedulers of different complexity.

We first consider the single-node case, and characterized the minimum required bandwidth

independent of schedulers, and showed that an EDF scheduler could realize all flows’ dead-

lines under such bandwidth. Motivated by the need for lower complexity solutions, we then

proceeded to explore simpler static priority and fifo schedulers. It derived the minimum

required bandwidth for both, but more interestingly established how to optimally reshape
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(a) Main Traffic Deadlines [1, 0.1, 0.01] (b) Main Traffic Deadlines [6, 0.6, 0.06]

Figure 3.15: Relative bandwidth improvement of static priority over FIFO under greedy
per-hop reshaping when N = 5 and C = 1.

flows to reduce the bandwidth needed while still meeting all deadlines. The relative benefits

of such an approach were illustrated numerically for a number of different flow combinations,

which showed how “intelligent” reshaping could enable simpler schedulers to perform nearly

as well a more complex ones across a range of different configurations.

Next we extended our single-node case results to networks with multiple nodes. For static

priority and fifo schedulers, there exists a natural extension, i.e., running the proposed single-

hop reshaping mechanism at each node, and use the reshaped departure curve (reshaped by

the optimal reshaper for the current node) as the arrival curve for the next hop along the

flow’s route. For EDF, where reshaping does not improve the single-node performance, we

first proposed applying a single-hop algorithm at each hop that 1) keeps the current hop’s

minimum required bandwidth, and 2) decreases certain flows’ bursts. We then extended this

algorithm by showing that reshaping could be moved to the ingress, and then subsequently

applying an iterative procedure that is guaranteed to converge and generate better results

compared to the per-hop algorithm. Finally, towards ensuring that we could always outper-

form a solution based on a rate proportional algorithm, we extended our solution with EDF

to support two-slope shapers and evaluated the benefits this could afford. From numerical
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experiments, these “intelligent” reshaping algorithms bring considerable improvement in the

multiple-node environment.
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Chapter 4

Conclusion

4.1 Contributions

Customers inside the cloud computing market are heterogeneous in several aspects, e.g.,

willingness to pay and performance requirement. By taking advantage of trade-offs cre-

ated by these heterogeneities, the service provider can realize a more efficient system. This

thesis is concerned with the role of pricing in realizing those improvements and leveraging

heterogeneity, and with methods to improve utilization of network resources through traffic

engineering. Particularly,

• For the pricing part, we considered a cloud provider that seeks to maximize its rev-

enue by offering services with different tradeoffs between cost and timeliness of job

completion. Our focus was on exploiting heterogeneity across jobs in terms of value

and sensitivity to execution delay, with a joint distribution that determines their rela-

tionship across the user population. We characterized optimal (revenue maximizing)

pricing strategies and, in the case of spot instances, optimal bidding strategies as well
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as identify conditions under which bidding at a fixed price is optimal.We showed that

correlation between delay sensitivity and job value needs to exceed a certain threshold

for a service offering that differentiates based on speed of execution to be beneficial to

the provider. We further assessed the results’ robustness under more general assump-

tions, and we offered guidelines for users and providers.

• For the network part, we investigated minimizing the bandwidth required to meet worst

case latency bounds for rate-controlled (through a token bucket) flows. We start with

a basic one-hop setting, characterized the minimum required bandwidth independent

of schedulers, and showed that an EDF scheduler could realize all flows’ deadlines

under such bandwidth. Motivated by the need for lower complexity solutions, we then

explored simpler static priority and fifo schedulers. It derived the minimum required

bandwidth for both, but more interestingly established how to optimally reshape flows

to reduce the bandwidth they needed to meet all deadlines. Based on the one-hop

results, we then proposed reshaping mechanism to improve efficiency for networks

with multiple nodes under different schedulers.

4.2 Future Work

There are many directions in which the work can be extended to better account for the

many, often fast changing, facets of cloud offerings.

For the pricing part, one direction is to consider other forms of correlation in job profiled,

e.g., by allowing value or delay sensitivity to depend on a job’s size. Another direction is

to introduce some form of memory in the evolution of spot prices to capture connections

to resource availability, e.g., as in [199]. This could also be extended to include geographic
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restrictions, instances heterogeneity and the ability to schedule resources in advance. An-

other potentially interesting extension is to consider sequences/bursts of jobs, as opposed to

isolated jobs, possibly with some uncertainty in either their arrivals or sizes. In that context,

incorporating services such as burstable instances available from Amazon52, Google53 and

Microsoft54 would also be of interest. Those services offer an intermediate option between

a fast and a slow processor, namely, a slow processor that can burst at a higher speed for

a limited amount of time. Nevertheless, the models developed in the chapter provide useful

initial insight into when and why a spot service (or equivalent) can be useful to providers

and users, and offer guidelines for how bidding and pricing strategies can be set to realize

desirable outcomes.

For the network part, one direction is to consider more complicated deadline splitting mech-

anisms in the multiple-node network. In this work we adopt the simple evenly splitting

mechanism, and from numerical experiments we know it is not optimal. Despite for EDF

our algorithms will eventually generate uneven deadline splitting, they still rely on even

deadline spitting as the starting point. Since our algorithms will never increase the per-hop

deadline, this starting point set an upper bound for at each hop. Another direction is to

consider systems with cycles. This extension entails significant added complexity with ex-

act solutions likely intractable. However, it represents an essential next step to making the

results more broadly applicable. In addition, incorporating the impact of routing decisions

that affect the set of flows interacting at every hop, likely also represents an important ex-

tension. On a more punctual front, as illustrated in Section 3.3.5, generalizing the results of

52Retrieved 2022, Jan 2 from https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-
performance-instances.html.

53Retrieved 2022, Jan 2 from https://cloud.google.com/compute/docs/machine-types\#sharedcore.
54Retrieved 2022, Jan 2 from https://docs.microsoft.com/en-us/azure/virtual-machines/windows/

b-series-burstable.
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Appendix B.5 to multiple flows to determine how to best group flows with different dead-

lines when relying on a static priority scheduler remains of practical interest. Finally, while

initial evidence (see Corollary 46 of Appendix B.6) indicates that more complex, two-slopes

shapers do not help in the simple case involving just two flows, exploring different types of

reshapers, i.e., based on more general traffic envelopes as well as extending to interleaved

shapers in the multi-hop case, is also of interest.
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[173] J. Song, R. Guérin, and H. Sariowan. Minimizing network bandwidth under latency
constraints: The single node case. In Proc. ITC 33 - Networked Systems and Services,
Avignon, France, Sep 2021. Extended version available at https://arxiv.org/abs/
2104.02222.
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Appendix A

Pricing Strategies for Delay

Differentiated Cloud Services

A.1 Glossary

Notation used in the chapter’s main body and listed approximately in order of appearance

in the chapter.

Notation Definition

ppp = (p1, p2, ..., pn) spot prices

πππ = (π1, π2, ...πn) spot price distribution

(t, v, κ) Job profile (length, value, delay sensitivity)

f(t) density function of job lengths

q(v, κ) joint density function of job value and delay sensitivity
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Γp,πp,πp,π(t, v, κ) bidding strategy for job (t, v, κ) given ppp and πππ (simplified as Γ(t, v, κ) or

Γ when unambiguous)

< p >r< p >r< p >r realization of spot prices under distribution ppp

ur(t, v, κ,Γ,< p >r< p >r< p >r

)

utility of job with profile (t, v, κ) under strategy Γ and spot price realiza-

tion < p >r< p >r< p >r

pr(t, v, κ,Γ,< p >r< p >r< p >r

)

total price paid by job with profile (t, v, κ) under strategy Γ and spot price

realization < p >r< p >r< p >r

dr(t, v, κ,Γ,< p >r< p >r< p >r

)

delay penalty incurred by job with profile (t, v, κ) under strategy Γ and

spot price realization < p >r< p >r< p >r

tr(t, v, κ,Γ,< p >r< p >r< p >r

)

execution delay experienced by job with profile (t, v, κ) under strategy Γ

and spot price realization < p >r< p >r< p >r

Up,πp,πp,π(t, v, κ,Γ) expected utility for job with profile (t, v, κ) under strategy Γ

Pp,πp,πp,π(t, v, κ,Γ) expected execution cost for job with profile (t, v, κ) under strategy Γ

Tp,πp,πp,π(t, v, κ,Γ) expected execution delay for job with profile (t, v, κ) under strategy Γ

(denoted simply as T (t) when there is no possibility of ambiguity)

Γ∗p,πp,πp,π(t, v, κ) optimal bidding strategy for job (t, v, κ) given ppp and πππ

Γ∗(p, πp, πp, π) optimal bidding strategies across jobs, given spot prices and spot prices

distribution (p, πp, πp, π)

Rf,q (Γ∗(p, πp, πp, π)) expected per job revenue under spot prices and spot prices distribution

(p, πp, πp, π) users with profiles distributed according to f(·) and q(·, ·), and using

strategy Γ∗(p, πp, πp, π)

(p∗, π∗p∗, π∗p∗, π∗) optimal (revenue maximizing) spot prices and spot prices distribution

given users with profiles distributed according to f(·) and q(·, ·), and using

strategy Γ∗(p∗, π∗p∗, π∗p∗, π∗)
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Cp,πp,πp,π(t, v, κ,Γ) total expected cost (price plus delay penalty) for job with profile (t, v, κ)

under strategy Γ (denoted as C(t, v, κ, b) when focusing on a given job

and pricing strategy and a fixed bidding strategy with a bid value of b, or

even as C(Γ) when there is no possibility of ambiguity)

b∗(v, κ) optimal (fixed) bid for job (v, κ) under linear delay penalty and without

the possibility of early termination

b∗(κ) optimal (fixed) bid for job with delay sensitivity κ and a value high enough

to justify bidding under linear delay penalty and without the possibility

of early termination

b bid value

α(b) probability of winning a bid when bidding at b under given spot prices

values and distribution

b expected payment per unit of execution time for a job bidding at b under

given spot prices and distribution

κ̃i threshold in a job’s delay sensitivity associated with a change in the value

of a job’s optimal bid to pi

Γ(∞) bidding strategy that involves bidding at p1 until a success in a system

with two prices, p1 < p2

Γ(l), 0 < l <∞ bidding strategy that involves bidding at p1 for up to l slots until a success,

before switching to bidding at p2 in a system with two prices, p1 < p2

Γ(0) bidding strategy that involves bidding at p2 in a system with two prices,

p1 < p2

r fraction of jobs with value v1 in a binary system

s fraction of jobs with delay sensitivity κ1 in a binary system

qij fraction of jobs with value vi and delay sensitivity κj in a binary system
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p∗ optimal price of the one-price strategy in a binary system

ρ correlation coefficient between value, v, and delay sensitivity, κ, in a job

profile

ρ∗ correlation threshold above which a two-price policy is optimal

∆∗21(v2, κ2) difference in expected cost between bidding at p∗2 and bidding at p∗1 for

(v2, κ2) jobs in a binary system

θ delay threshold when specifying piecewise-linear convex or concave delay

sensitivity function

D1(t) piecewise-linear convex delay sensitivity function

D2(t) piecewise-linear convex delay sensitivity function

t̂ a job residual service

T̂ a job current cumulative execution delay

vmin and vmax minimum and maximum job values when job values can span a continuous

range

κmin and κmax minimum and maximum delay sensisitivity values when delay sensitivities

can span a continuous range

A.2 The Need for Heterogeneity in Delay Sensitivity

The purpose of this section is simply to establish that without heterogeneity along the

dimensions of both job value and delay sensitivity, a spot service defaults to an on-demand

(single price service). We first show this for a scenario where all jobs have the same value

and different sensitivities to delay, and then proceed to show that it also holds when jobs

have different values and a common delay sensitivity.
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A.2.1 Homogeneous Value, Heterogeneous Delay Sensitivities

Proposition 22. When jobs all have a common value v and arbitrary delay sensitivities, a

one-price strategy with a price of v dominates all multi-price strategies.

Proof. Consider a one-price strategy with price v, i.e., the job value common to all users.

All jobs that had a non-negative utility under the optimal multi-price strategy, also have a

non-negative utility under this strategy, and therefore purchase the service at the price of v.

This ensures that this one-price strategy generates a revenue at least as large as that of the

optimal multi-price strategy.

A.2.2 Heterogeneous Values, Homogeneous Delay Sensitivity

Proposition 23. When jobs have a common delay sensitivity κ and arbitrary values, a

one-price strategy maximizes revenue.

Proof. The proof is a direct consequence of Proposition 2 that established that given a pricing

strategy, the choice of a specific bidding value was independent of a job’s value.

A.3 Lemmas and Proofs leading to Propositions 1 and 2

The first lemma establishes that the set of prices to be considered by the bidding strategy

can be reduced to the set of spot prices advertised by the pricing strategy.

Lemma 24. Bidding at a price b ∈ [pi, pi+1), where 1 ≤ i ≤ n, generates the same expected

cost and the same winning probability as bidding at pi.
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Proof. A bid b ∈ [pi, pi+1) wins if and only if the current spot price s ≤ pi, so that all bidding

prices in [pi, pi+1) have the same winning probability. Furthermore, a winning bid is charged

the current spot price s, independent of the bid value. Hence any winning bid in [pi, pi+1) is

charged the same s ≤ pi. Consequently, all bidding prices in [pi, pi+1) experience the same

expected cost.

Towards establishing the next results, we formulate the bidding process for job (1, v, κ) as

a finite Markov Decision Process (MDP). Specifically, the MDP consists of 3 states: an

initial state (S0), a bid state (S1) and a terminal state (S2). In S0, customers choose to

adopt the service (bid) or to exit. A job gets a reward of v and goes to S1 if it decides to

adopt. Otherwise, it gets a reward of 0 and goes to S2. In S1, the customer chooses a bid

b ∈ {p1, . . . , pn}, which gives a winning probability of
∑

pl≤b πl. If the bid wins with a spot

price of pi ≤ b, the job gets a reward of −pi and moves to S2; otherwise, it gets a reward of

−κ and stays in S1. Formally:

Decision epochs:

T = {1, 2, . . . , N}, N ≤ ∞.

States:

S = {S0, S1, S2}.

Actions (Ai denotes the action set for Si):

A0 = {adopt, exit},

A1 = {p1, p2, . . . , pn}, i.e., the set of possible bidding prices.
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Expected rewards:

r(adopt, S0) = v; r(exit, S0) = 0;

r(pi, S1) = −
∑
h≤i

phπh − (1−
∑
l≤i

πl)κ.

Transition probabilities (all omitted transitions have a probability of 0):

Prob(S1|S0, adopt) = 1; Prob(S2|S0, exit) = 1;

Prob(S2|S1, pi) =
∑
h≤i

πh, P rob(S1|S1, pi) = 1−
∑
h≤i

πh.

Proposition 25, which establishes the existence of an optimal bidding strategy for jobs of

length 1, is then an immediate consequence of Proposition 4.4.3.a of [154], which we restate

below for the reader’s convenience.

Proposition 4.4.3.a [154]: Assume the set of possible system states S is finite or

countable, and that for every s ∈ S, the set of its allowable actions is finite. Then there

exists a deterministic Markovian policy which is optimal.

Proposition 25. An optimal fixed bidding strategy exists for jobs of type (1, v, κ).

As the MDP is finite, Proposition 4.4.3.a ensures the existence of an optimal policy, and its

deterministic Markovian nature implies the invariance of the optimal bidding price.

A.4 Proofs of Propositions 1 and 2

For clarity, we restate the propositions before introducing their proofs.
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Proposition 1. Given a pricing strategy (p, πp, πp, π) and a linear penalty function for a job’s

execution delay, a strategy that bids at b∗(v, κ) in every slot is an optimal bidding strategy

for job (t, v, κ), where b∗(v, κ) is the optimal bid for job (1, v, κ).

Proof. We first formulate job (t, v, κ)’s MDP. From its deterministic Markovian nature, we

know that the optimal bidding strategy bids at a fixed price for a given job’s residual size,

i.e., the amount of work left to complete the job. We then show the Proposition through an

induction on the job length.

The MDP for job (t, v, κ) is of the following form:

MDP characterization: We characterize job (t, v, κ)’s bidding process as an MDP with

(t+ 2) states: initial state (S0), bid states (S1, S2, ..., St), and terminal state (St+1). In S0,

the customer chooses to adopt the service or to exit. The job gets a rewards of vt and goes

to state S1 if it decides to adopt. Otherwise, it gets a reward of 0 and goes to state St+1. In

Si, i = 1, 2, . . . , t, the customer chooses a bid in {p1, ..., pn}. If the bid wins with a spot

price of pj, then the job gets a reward of −pj and moves to Si+1; otherwise, the job gets a

reward of −κ and stays at Si. As the optimal bidding strategy in a given state bids

systematically at the same price regardless of the time epoch, we eliminate the time epoch

in our notation. Formally:

Decision epochs:

T = {1, 2, ..., N}, N ≤ ∞.

States:

S = {S0, S1, . . . , St, St+1}.
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Actions (Ai denotes the action set for Si):

A0 = {adopt, exit},

Ai = {p1, p2, . . . , pn}, for i ∈ {1, . . . , t}.

Expected rewards:

r(adopt, S0) = vt, r(exit, S0) = 0;

r(pj, Si) = −
∑
h≤j

phπh −

(
1−

∑
l≤j

πl

)
κ, for i ∈ {1, . . . , t}.

Of note from the above expression is the fact that r(pj, Si) is independent of Si, i ∈ {1, . . . , t}

Transition probabilities (all omitted transitions have a probability of 0):

Prob(S1|S0, adopt) = 1; Prob(St+1|S0, exit) = 1;

Prob(Si+1|Si, pj) =
∑
h≤j

πh, for i ∈ {1, . . . , t};

Prob(Si|Si, pj) = 1−
∑
h≤j

πh, for i ∈ {1, . . . , t}.

Induction: Denote the optimal bid for job (1, t, κ) as b∗(v, κ). We show that bidding at

b∗(v, κ) in every slot gives job (t, v, κ)’s optimal bidding strategy.

When t = 1, Proposition 25 directly gives the results. Assume that bidding at b∗(v, κ) in

every slot is optimal for jobs (l, v, κ), 1 ≤ l ≤ t− 1. We show that bidding at b∗(v, κ) is also

optimal for jobs (t, v, κ).
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First note that when a job (t, v, κ) has a residual size of 1, i.e., is in state St, it will bid at

b∗(v, κ). Given its Markovian nature, the optimal substrategy at St is independent of the

job’s bidding history, and simply seeks to minimize the expected cost of winning a single bid

to complete the job. Hence, it is identical to the optimal bidding strategy for a job (1, v, κ).

Next we show that the optimal strategy for job (t, v, κ) also bids at b∗(v, κ) before entering

state St. As the optimal substrategy in state St has a fixed expected cost for successfully

completing the next bid regardless of the bidding history, the optimal strategy prior to

reaching state St solely seeks to minimize the expected cost of winning (t− 1) slots. Hence,

it behaves as the optimal bidding strategy for jobs (t − 1, v, κ), which from our induction

assumption keeps bidding at b∗(v, κ).

When combined with the fact that the optimal (sub)strategy at St also bids at b∗(v, κ), this

establishes the induction and completes the proof.

Recalling next Proposition 2.

Proposition 2. A job’s optimal fixed bid b∗(κ) is independent of v and t, and

non-decreasing in κ. Specifically, a job with κ ∈ (κ̃i−1, κ̃i] will bid at pi if it bids, where

κ̃i =
∑

j≤i(pi+1 − pj)πj for i ≥ 1, and κ̃0 = −ε < 0.

Proof. As mentioned before introducing the proposition, the independence of the optimal

bidding price from t is a direct consequence of Proposition 1. The fact that it is non-

decreasing in κ is because κ̃i increases with i, as we establish next. Recall that

κ̃i =
∑

0<j≤i

(pi+1 − pj)πj.
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Hence we have

κ̃i+1 − κ̃i =
∑
j≤i

(pi+2 − pj)πj + (pi+2 − pi+1)πi+1 −
∑
j≤i

(pi+1 − pj)πj

=
∑
j≤i

(pi+2 − pi+1)πj + (pi+2 − pi+1)πi+1

=
∑
j≤i+1

(pi+2 − pi+1)πj > 0

Next we turn to showing that a customer with κ ∈ (κ̃i−1, κ̃i] bids at pi, which also establishes

that b∗(κ) is independent of v.

Basic algebraic manipulations yield

U(t, v, κ, pi+1)− U(t, v, κ, pi) =
κ−

∑
j≤i(pi+1 − pj)πj

α(pi)α(pi+1)
,

which implies that U(t, v, κ, pi+1)− U(t, v, κ, pi) ≥ 0 iff κ ≥ κ̃i.

As κ̃i increases with i, U(t, v, κ, pi) ≥ U(t, v, κ, pi−1) implies U(t, v, κ, pi) ≥ U(t, v, κ, pj),∀j <

i, and U(t, v, κ, pi+1) ≤ U(t, v, κ, pi) implies U(t, v, κ, pi+1) ≤ U(t, v, κ, pj),∀j > i. Therefore,

pi is the optimal bid for job (t, v, κ) if only it satisfies U(t, v, κ, pi+1) ≤ U(t, v, κ, pi) and

U(t, v, κ, pi−1) ≤ U(t, v, κ, pi), which is equivalent to κ ∈ (κ̃i−1, κ̃i].

A.5 Proof of Lemma 4

Recall that Lemma 4 states
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Lemma 4. For binary profiles with 0 ≤ κ1 < κ2, the optimal pricing system needs at most

two prices.

Instead of proving Lemma 4, we prove a more general result, namely, Proposition 27, whose

proof calls first for a simple lemma.

Lemma 26. Under the assumptions of Sections 2.4 and 2.5, in a system with n distinct

delay sensitivities, customers will bid using at most n prices.

Proof. The lemma is a direct consequence of the proof of Proposition 2 that established that

a job’s bidding choice is independent of its value and, therefore, only affected by its delay

sensitivity. Hence, n distinct κ values map to at most n different prices.

Proposition 27. Under the assumptions of Sections 2.4 and 2.5, the optimal (revenue

maximizing) pricing strategy in a system with n distinct delay sensitivities needs at most n

prices.

Proof. We show that for every (n + 1)-price service, there exists an n-price service that

generates no less expected revenue.

Denote the prices in the (n+ 1)-price service as p1 < p2 < ... < pn+1, and the corresponding

probabilities as π1, π2, ..., πn+1 respectively, where πi > 0,∀i.

From Lemma 26 we know that at most n prices have a positive adoption in this system.

Assume ph, 1 ≤ h ≤ n+ 1, has no adoption.

If h 6= n+ 1, consider a new pricing system with n prices p1 < . . . < ph−1 <
πhph+πh+1ph+1

πh+πh+1
<

ph+2 < ...pn+1, and with probabilities π1, . . . , πh−1, πh + πh+1, πh+2, ...πn+1, respectively. As

neither the utility nor the average payment for bidding at pi (i 6= h) change, all jobs continue
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to bid at the same prices. Hence this new n-price service generates the same revenue as the

earlier (n+ 1)-price service.

If h = n + 1, consider a new pricing system with prices p1 < p2 < ... < pn, and with

probability π1

1−πn+1
, π2

1−πn+1
, ..., πn

1−πn+1
, respectively. In this case again the average payment

for a job bidding at any price pi remains the same, while the expected utility for bidding

at pi increases as the expected job completion time decreases. As a result, all jobs that

adopted (decided to bid) under the previous price system, still do under the new price system.

Furthermore, because the κ values for which U(t, κ, v, pi) = U(t, κ, v, pi−1), 1 ≤ i ≤ n, i.e.,

κ̃i, remain the same, all jobs continue to bid at the same price as that in the original (n+1)-

price system. Hence, the n-price service generates no less revenue than the (n + 1)-price

service system.

A.6 Proofs of Propositions 6 to 9

We start with a number of lemmas that characterize the system’s revenue under different

configurations. Recall the simplified binary system configuration of Section 2.5, namely, a

system with only two job values, 0 < v1 < v2, and two delay sensitivities, 0 ≤ κ1 < κ2. The

fraction of (vi, κj) jobs is denoted as qij, i, j ∈ {1, 2}, the fraction of v1 jobs as r, and the

fraction of κ1 jobs as s, where r, s ∈ (0, 1), i.e., r and s are the marginals for v1 and κ1,

respectively, so that job profiles are as follows

κ1 κ2

v1 q11 q12 r

v2 q21 q22 1− r

s 1− s
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The next lemma was introduced in Section 2.5 and characterized the structure of the best

one-price strategy in a binary system. We restate it and establish it formally.

Lemma 5. In a binary system, the per unit of work expected revenue of the best one-price

strategy is of the form

R = max{v1, (1− r)v2} (2.10)

where 1− r is the fraction of v2 jobs in the system.

Proof. Under a one-price strategy, there is no delay penalty, so that jobs derive a non-

negative utility as long as the price does not exceed their value. It is then easy to see that

the optimal price is either v1 or v2. If the price is v1, all jobs adopt the service and bid at

p1 for a total revenue of p1 = v1. Conversely, if the price is p2 = v2, only jobs with value v2

adopt the service and bid at p2 for a revenue of (1− r)v2.

The next lemma identifies a necessary condition on bidding profiles for a two-price strategy

to maximize revenue in a binary system.

Lemma 28. If in a binary system, a two-price strategy dominates any one-price strategy,

i.e., generates a strictly larger expected unit revenue, then jobs with profiles (v1, κ1), (v2, κ1)

and (v2, κ2) opt to bid, while jobs with profile (v1, κ2) do not bid, i.e., do not adopt the service.

Proof. We first show that the optimal bidding strategy excludes jobs with profile (v1, κ2),

and then show that it must attract all other jobs.

We show the exclusion of (v1, κ2) jobs by contradiction, namely, that if jobs with profile

(v1, κ2) decide to bid, then the pricing scheme is not optimal. From Proposition 2 and the

fact that both p1 and p2 are active bidding values, we know that jobs with profile (v1, κ2)
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will bid at p2 if they decide to bid. Furthermore, (v1, κ2) jobs bid iff p2 ≤ v1, where p2 is

the expected payment per unit of execution time when bidding at p2. As p1 < p2 ≤ v1, all

jobs that bid pay a price no more than p2, and since some jobs bid at p1, some pay strictly

less. Consider next a one-price pricing strategy charging p2. As p2 ≤ v1 < v2, all jobs still

bid and the strategy generates a higher expected revenue than the current pricing scheme.

Hence, a contradiction.

Next we show that the optimal two-price strategy must attract bids from all other job types.

Assume first that (v2, κ2) jobs do not bid, the service then only attracts κ1 jobs. From

Proposition 2, all κ1 jobs bid at the same price. This contradicts the assumption that a

two-price strategy dominates any one-price strategy. Assume next that (v1, κ1) jobs do not

bid. In this case, the service attracts only v2 jobs. From Lemma 5, there exists then a one-

price strategy that extracts almost all values from those jobs, which again contradicts the

assumption that a two-price strategy dominates any one-price strategy. Finally, combining

Proposition 2 with the fact that (v1, κ1) jobs bid, we also know that (v2, κ1) will bid as well

and at the same value.

We note that an immediate corollary of Lemma 28 is

Corollary 29. When a two-price strategy (p1, p2, π) maximizes revenue, the revenue per unit

of work is of the form

sp1 + q22(πp1 + (1− π)p2) (A.1)

The next lemma identifies conditions for a two-price strategy to be effective in a binary

system.
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Lemma 30. In a binary system, a pricing strategy (p1, p2, π), where p1 < p2 and 0 < π < 1,

sees bids at both prices with jobs with profiles (v1, κ1), (v2, κ1) and (v2, κ2) bidding, if and

only if the following inequalities hold:

1. κ1 ≤ π(p2 − p1) < κ2;

2. v1 − p1 − κ1( 1
π
− 1) ≥ 0;

3. v2 − (πp1 + (1− π)p2) ≥ 0.

Proof. The first set of inequalities comes directly from Proposition 2, which indicates that

jobs with κ1 prefer p1 while jobs with κ2 prefer p2. The second inequality ensures that jobs

with value v1 can afford bidding at p1, whereas the third ensures that jobs with value v2 can

afford bidding at p2.

Next we characterize the solution of an optimization problem that serves as a basis for

proving Propositions 6 and 9.

Lemma 31. Given 0 ≤ a1, a2 ≤ 1, the optimal solution to problem R

R : maximize
p1,p2,π

R = a1p1 + a2 (πp1 + (1− π)p2)

subject to κ1 ≤ π(p2 − p1) ≤ κ2,

v2 − (πp1 + (1− π)p2) ≥ 0,

v1 − p1 − κ1(
1

π
− 1) ≥ 0,

0 ≤ π ≤ 1, 0 ≤ p1 ≤ p2,

(A.2)

is R∗ = max{(a1 + a2)v1, a1

(
v1κ2−v2κ1

κ2−κ1

)
+ a2v2}.
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Specifically, when R∗ = (a1 + a2)v1, then p∗1 = v1, π∗ = 1, and p∗2 = v1 + κ1; and when

R∗ = a1

(
v1κ2−v2κ1

κ2−κ1

)
+ a2v2, then p∗1 = κ2v1−κ1v2

κ2−κ1
, π∗ = κ2−κ1

κ2−κ1+v2−v1
, and p∗2 =

v2−π∗p∗1
1−π∗ .

Proof. As R increases with p2, the optimal solution must be such that either one of the first

two constraints are met, i.e., either π(p2 − p1) = κ2 or πp1 + (1 − π)p2 = v2. Considering

each case in turn

• If π(p2 − p1) = κ2, we can rewrite Eq. (A.2) as

maximize
p1,p2,π

R = a1p1 + a2

(
κ2

(
1

π
− 1

)
+ p1

)
subject to p1 ≤ v1 − κ1

(
1

π
− 1

)
,

p1 ≤ v2 − κ2

(
1

π
− 1

)
,

0 ≤ π ≤ 1, 0 ≤ p1 ≤ p2.

As R increases with p1, the optimal solution is realized by having p1 as large as possible,

i.e., p∗1 = min{v2 − κ2( 1
π
− 1), v1 − κ1( 1

π
− 1)}, which is maximized by setting π∗ = 1.

This yields the optimal solution R∗ = (a1 + a2)v1, with p∗1 = v1 and p∗2 = v1 + κ1.

• If πp1 + (1− π)p2 = v2, we can rewrite Eq. (A.2) as

maximize
p1,p2,π

R = a1p1 + a2v2

subject to κ1 ≤ π
v2 − p1

1− π
≤ κ2,

p1 ≤ v1 − κ1

(
1

π
− 1

)
,

0 ≤ π ≤ 1, 0 ≤ p1 ≤ p2.

[158]



As R increases with p1, the optimal solution is again realized by having p1 as large as

possible, while satisfying the constraints. The first constraint yields

v2 − κ2

(
1

π
− 1

)
≤ p1 ≤ v2 − κ1

(
1

π
− 1

)

When combined with the second constraint, this implies v2 − κ2( 1
π
− 1) ≤ p1 ≤ v1 −

κ1( 1
π
−1). Under those constraints, maximizing p1 is realized by setting v2−κ2( 1

π
−1) =

v1 − κ1( 1
π
− 1), which gives π∗ = κ2−κ1

κ2−κ1+v2−v1
, p∗1 = κ2v1−κ1v2

κ2−κ1
, and p∗2 =

v2−π∗p∗1
1−π∗ , and

correspondingly R∗ = a1

(
v1κ2−v2κ1

κ2−κ1

)
+ a2v2.

Lemma B.23 is a technical lemma we use in the proofs of Propositions 6 to 9. Note that

while its constraints are similar to the conditions of Lemma 30, they extend the constraints

0 < π < 1 and π(p2 − p1) < κ2 from open sets to closed sets to ensure the existence of a

solution. This difference is the reason for the departure from the condition that bids exist at

both prices in Lemma 30. When the solution is R∗ = a1

(
v1κ2−v2κ1

κ2−κ1

)
+ a2v2, basic algebraic

manipulation yields π∗(p∗2 − p∗1) = κ2. According to Proposition 2, jobs with κ2 bid at p1.

When R∗ = (a1 + a2)v1, then π∗ = 1, i.e., only p1 sees positive adoption.

Therefore, for the optimization under the constraints of Lemma 30, we have
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Corollary 32. Given 0 ≤ a1, a2 ≤ 1, the supremum to problem R

R : maximize
p1,p2,π

R = a1p1 + a2 (πp1 + (1− π)p2)

subject to κ1 ≤ π(p2 − p1) < κ2,

v1 − p1 − κ1

(
1

π
− 1

)
≥ 0,

v2 − (πp1 + (1− π)p2) ≥ 0,

0 < π < 1, 0 < p1 < p2,

(A.3)

is R∗ = max{(a1 + a2)v1, a1

(
v1κ2−v2κ1

κ2−κ1

)
+ a2v2}.

Specifically, when R∗ = (a1 + a2)v1, then p∗1 = v1, π∗ = 1, and p∗2 = v1 + κ1; and when

R∗ = a1

(
v1κ2−v2κ1

κ2−κ1

)
+ a2v2, then p∗1 = κ2v1−κ1v2

κ2−κ1
, π∗ = κ2−κ1

κ2−κ1+v2−v1
, and p∗2 =

v2−π∗p∗1
1−π∗ .

A.6.1 Proof of Proposition 6

Recalling Proposition 6

Proposition 6. Given a binary system with fixed marginals for job value and delay

sensitivity, either there exists a value ρ∗ such that for ρ ≤ ρ∗ a one-price spot service is

optimal and for ρ > rho∗ a two-price service is optimal, or else either one-price or

two-price is optimal independent of ρ.

Proof. Recall our earlier notation where v1 and κ1 have fixed marginals r, s ∈ (0, 1), respec-

tively, and where qij is the probability that a job is of type (vi, κj), i, j ∈ {1, 2}, i.e.,
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κ1 κ2

v1 q11 q12 r

v2 q21 q22 1− r

s 1− s

The proof relies on the following three properties:

1. ρ increases with q22, and q22 = 0 implies ρ < 0;

2. if at ρ1, a two-price service is optimal, then for all ρ > ρ1, a two-price service is also

optimal;

3. if at ρ2, a one-price service is optimal, then for all ρ < ρ2, a one-price service is also

optimal.

Proof of property 1:

The correlation coefficient ρ between (v, κ) is of the form

ρ =
E[vκ]− E[v]E[κ]√

Var(v) Var(κ)
. (A.4)

Since with fixed marginals, E[v], E[κ],Var(v), and Var(κ) are also fixed, ρ increasing is

equivalent to E[vκ] increasing.

Rewriting q11, q12, and q21 as functions of q22, r and s, we have: q11 = r + s + q22 − 1, q12 =

1 − s − q22, and q21 = 1 − r − q22. Using these expressions in Eq. (A.4) yields after some

algebraic manipulations:

ρ =
q22 − (1− r)(1− s)√
rs(1− r)(1− s)

, (A.5)
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which, since the marginals r and s are fixed, increases if and only if q22 increases. Fur-

thermore, because 0 < (1 − r)(1 − s) < 1, we also have that q22 = 0 ⇒ ρ < 0, and that

q22 = 1 ⇒ ρ > 0. This establishes property 1).

Proof of property 2:

Recall first from Lemma 5 that if a one-price strategy is optimal for a given configuration

with fixed marginals, then its expected optimal revenue per unit of work is max{v1, v2(1−r)},

which is independent of q22.

Conversely, in a scenario where a two-price strategy is optimal, combining Corollary 29 and

Lemma 30 gives the following optimization (akin to that of Corollary 32) w.r.t the optimal

expected revenue per unit of work:

maximize
p1,p2,π

sp1 + q22[πp1 + (1− π)p2]

subject to κ1 ≤ π(p2 − p1) < κ2,

v1 − p1 − κ1

(
1

π
− 1

)
≥ 0,

v2 − πp1 − (1− π)p2 ≥ 0,

0 < π < 1, 0 < p1 < p2,

(A.6)

where the constraints are independent of q22, and the objective function increases with q22.

Note that the strict inequalities in the constraints 0 < π < 1, 0 < p1 < p2, are needed for a

two-price policy to be optimal.

Combining these three conditions (independence from q22 of the optimal one-price revenue,

independence from q22 of the constraints for the optimality of a two-price strategy, and growth

with q22 of revenue under an optimal two-price strategy), we know that if, for fixed marginals
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and a given value of q22, a two-price strategy (p1, p2, π) generates a greater expected revenue

per unit of work than the best one-price strategy, then the result still holds as q22 increases

with the marginals remaining the same. As a result, since for fixed marginals, property 1

states that a larger ρ is equivalent to a larger q22, this establishes property 2.

Proof of property 3:

The proof of property 3 is similar to that of property 2, and is omitted for brevity.

What properties 2 and 3 tell us is that if for fixed marginals, there exists a correlation

coefficient for which a two-price (one-price) strategy is optimal, then the same holds true for

all correlation coefficients above (below) that value. Next we characterize the value of the

correlation coefficient ρ∗ for which a change in optimal pricing strategy (from one-price to

two-price) can occur.

If a two-price system generates more revenue than that of the optimal one-price system, from

Corollary 32 with a1 = s and a2 = q22 and Lemma 5, we have

s

(
v1κ2 − v2κ1

κ2 − κ1

)
+ q22v2 > max{v1, (1− r)v2},

which is equivalent to 
q11(v1κ2 − v2κ1) > q21κ2(v2 − v1)

(v2 − v1)[q22 − sκ1

κ2−κ1
] > q12v1

(A.7)

As [q11, q12, q21] = [r + s+ q22 − 1, 1− s− q22, 1− r − q22], Eq. (A.7) is equivalent to

q22 > max

{
1− r − s(v1κ2 − v2κ1)

v2(κ2 − κ1)
,
v1

v2

− s(κ2v1 − κ1v2)

v2(κ2 − κ1)

}
. (A.8)
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Substituting it in Eq. (A.5) gives

ρ∗ =
max{1− r, v1

v2
} − s(v1κ2−v2κ1)

v2(κ2−κ1)
− (1− r)(1− s)√

rs(1− r)(1− s)
.

Recall that a two-price strategy is considered optimal iff it generates a strictly greater ex-

pected unit revenue than any one-price strategy. Hence, if ρ∗ ∈ [−1, 1), then the optimal

pricing strategy switches from a one-price strategy to a two-price strategy as ρ exceeds ρ∗.

Conversely, if ρ∗ lies outside [−1, 1), then the optimal pricing strategy remains unchanged

for all (feasible) values of the correlation coefficient ρ.

A.6.2 Proof of Corollary 7

Restating the corollary

Corollary 7. Given a binary system with fixed marginals r and s for job value and delay

sensitivity, and a given correlation coefficient ρ between job value and delay sensitivity,

there exists a value ρ∗ ≥ 0 given by

ρ∗ =
max{1− r, v1

v2
} − s(v1κ2−v2κ1)

v2(κ2−κ1)
− (1− r)(1− s)√

rs(1− r)(1− s)
(2.11)

such that

• when ρ∗ ∈ [0, 1), then for ρ ≤ ρ∗ a one-price spot service is optimal, and for ρ > ρ∗ a

two-price spot service is optimal;

• otherwise a one-price spot service is always optimal independent of ρ.
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Proof. If ρ∗ ≥ 0, then ρ∗ /∈ [0, 1) implies ρ∗ ≥ 1, in which case Property 3 in the proof

of Proposition 6 implies that a one-price strategy is optimal for all values of ρ. Hence,

establishing the corollary amounts to proving that ρ∗ ≥ 0, where the expression for ρ∗ was

derived in the proof of Proposition 6.

As the denominator of ρ∗ is always non-negative, ρ∗ and its numerator have the same sign.

Next, we show that the numerator of ρ∗ is also always non-negative. For that purpose, we

consider separately the cases 1 − r ≥ v1

v2
and 1 − r < v1

v2
, and prove that the numerator is

non-negative in both cases.

When 1− r ≥ v1

v2
, the numerator of ρ∗ becomes

s(1− r)− s(v1κ2 − v2κ1)

v2(κ2 − κ1)
≥ s

[
v1

v2

− (v1κ2 − v2κ1)

v2(κ2 − κ1)

]
= s

κ1(v2 − v1)

v2(κ2 − κ1)
≥ 0. (A.9)

When 1− r < v1

v2
, the numerator of ρ∗ becomes

v1

v2

− s(v1κ2 − v2κ1)

v2(κ2 − κ1)
− (1− r)(1− s) = s

[
v1

v2

− (v1κ2 − v2κ1)

v2(κ2 − κ1)

]
+ (1− s)

[
v1

v2

− (1− r)
]

> s

[
v1

v2

− (v1κ2 − v2κ1)

v2(κ2 − κ1)

]
= s

κ1(v2 − v1)

v2(κ2 − κ1)
≥ 0.

(A.10)

A.6.3 Proof of Proposition 8

Restating the proposition.

Proposition 8. In a binary system with given job values, delay sensitivities, and

corresponding marginals, the prices used in the best one-price and two-price strategies are

independent of the correlation coefficient ρ between job value and delay sensitivity.
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Proof. Lemma 5 directly establishes that the best one-price strategy is independent of ρ.

Similarly, the expressions for p∗1, p
∗
2, and π∗ in Corollary 32 provide a similar result for the

best two-price strategy.

A.6.4 Proof of Proposition 9

Proposition 9. When in a binary system job value and delay sensitivity are perfectly

positively correlated, i.e., the system only has (v1, κ1) and (v2, κ2) jobs, where 0 < v1 < v2

and 0 ≤ κ1 < κ2, then using s to denote the fraction of (v1, κ1) jobs, we have

• When κ2(1− s)− κ1 > 0 and v1κ2 > v2κ1, a two-price spot service is optimal;

• Otherwise, a one-price spot service is optimal.

Proof. As a two-price system can only be optimal if both job profiles bid, we will characterize

the conditions under which this occurs.

Consider a two-price system (p1, p2, π), where both prices have positive adoption, the ex-

pected revenue is then

R = p1s+ (πp1 + (1− π)p2)(1− s),

where we have again used the result of Proposition 2 and the fact that by assumption, the

two job profiles bid at different prices. This yields the following optimization focused on
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optimizing the expected revenue per unit of work:

maximize
p1,p2,π

p1s+ [πp1 + (1− π)p2](1− s)

subject to κ1 ≤ π(p2 − p1) < κ2,

v1 − κ1(
1

π
− 1)− p1 ≥ 0,

v2 − πp1 − (1− π)p2 ≥ 0,

0 < π < 1, 0 < p1 < p2.

(A.11)

As before, solving the above optimization calls for relaxing its constraints to use large rather

than strict inequalities. The corresponding solution, R∗, is then again a supremum of the

actual solution. We also know that the best one-price revenue per unit of work is given

by R∗(1) = max{v1, v2(1 − s)}, so that for a two-price strategy to be optimal, we need

R∗ > R∗(1).

From Corollary 32 with a1 = s and a2 = 1 − s, the supremum of the optimization is

R∗ = max{v1, v2 − κ2s
v2−v1

κ2−κ1
}. Basic algebraic manipulation show that R∗ > R∗(1) iff

κ2(1− s)− κ1 > 0 and v1κ2 > v2κ1.

A.6.5 Deterministic Environments

As mentioned earlier, the main result of the chapter, i.e., Proposition 6, also holds under two

different settings: 1) preemptible VMs, and 2) multiple processor speeds. In this appendix,

we characterize both settings more precisely and formally establish that Proposition 6 still

holds.
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We assume the same utility function as in Section 3.3.1, and use p to denote the unit price

of the selected service. A job’s utility function is then as before:

U(t, v, κ, p) = vt− pt− κT (t, v, κ, p), (A.12)

where T (t, v, κ, p) is the job’s expected “delay.” For preemptible VMs, the delay is defined as

the expected duration of preemption periods. For processors with different speeds, the delay

is the difference in execution times between running the same job on the selected processor

and running it on the fastest available processor.

As in Section 2.5, for simplicity we limit ourselves to a binary system, i.e., binary job

profiles with only two job values (0 < v1 < v2) and delay sensitivities (0 ≤ κ1 < κ2). Next,

we first formulate the revenue maximization problem for both preemptible VMs and multiple

processor speeds, and then show that under these new settings the expected revenue under

the optimal one-price and two-price strategies have similar expressions as in the spot service

setting. We then use this equivalence to establish that Proposition 6 still holds.

Model Formulation

Preemptible VMs Denote the unit price for a preemptible VM as 0 < p1, and p2 > p1 for

a non-preemptible VM. Assume that for preemptible VMs the probability (1 − β) of being

preempted is known to the customer, where preemptions (and restarts) occur at discrete

points in time (slot boundaries in relation to our spot service model). The expected utility

of a job (t, v, κ) when choosing the preemptible VM service is

Up(t, v, κ) = vt− p1t− κt
(

1

β
− 1

)
,

where (1/β − 1) captures the expected increase in completion time caused by preemptions.
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Alternatively, its utility when choosing a non-preemptible VM is

Un(t, v, κ) = vt− p2t.

In keeping with our assumption that given equal utilities, customers prefer the cheaper

service, we assume that customers prefer preemptible VMs given the same expected utility.

Then a (t, v, κ) job prefers a non-preemptible VM over a preemptible VM iff

κ >
p2 − p1

1/β − 1
. (A.13)

Note that we also still have the condition that a job’s utility must be non-negative for it to

adopt the service.

Multiple Processor Speeds Assume that the service provider has n processors with

speeds φφφ = (φ1, ..., φn) and corresponding prices ppp = (p1, ..., pn), where 0 < φ1 < ... < φn = 1

and 0 < p1 < ... < pn. If job (t, v, κ) chooses processor i, it receives a utility of the form:

Ui(t, v, κ) = vt− pit− κt
(

1

φi
− 1

)
.

In other words, the utility decreases in proportion to the increase in execution time compared

to using the fastest processor. Again, when two processor speeds generate the same utility,

we assume that the customer prefers the cheaper one. A customer’s optimal service is then

given by55

min arg min
i

pi + κ

(
1

φi
− 1

)
,

55Note that the min operator in the expression is to break ties in case multiple speeds yield the same
utility.
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which is independent of v and t. Hence, in a binary system, the service provider only needs

to offer at most two different processor speeds.

Denote the two services and corresponding prices and processor speeds as (p1, φ) and (p2, 1),

where 0 < φ < 1. A job (t, v, κ) then prefers the faster processor to the slower one iff

κ >
p2 − p1

1/φ− 1
,

which is identical to the expression obtained for preemptible VMs. As a result, we focus on

establishing that Proposition 6 still holds for preemptible VMs and denote the provider’s

strategy in that setting as (p1, p2, β), where p1 = p2 or β = 1 corresponds to a system where

preemptible VMs are not offered.

Optimal Pricing Strategy

As before, we denote the fraction of (vi, κj) jobs as qij, i, j ∈ {1, 2}, the fraction of v1 jobs

as r, and the fraction of κ1 jobs as s, where r, s ∈ (0, 1).

First note that under the preemptible VMs setting, Lemma 5, which characterizes the optimal

one-price strategy, holds with an identical proof. As a result, the preemptible VMs and spot

price settings generate the same optimal one-price revenue given the same distribution of

job profiles.

Next we show that the preemptible VMs and spot price settings also generate the same

expected revenue under the optimal two-price strategy.

In the preemptible VMs setting, the proof of Lemma 28, which states that only (v1, κ2) jobs

do not adopt the service when a two-price system is optimal, holds after trivial modifications.
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Hence, we omit repeating it. Based on Lemma 28, we then have a modified version of

Corollary 29:

COROLLARY 29’. When a two-price strategy (p1, p2, β) maximizes revenue, the

revenue per unit of work is of the form

sp1 + q22p2 (A.14)

The proofs for Corollary 29’ and Corollary 29 follow identical steps that we briefly recall for

the reader’s convenience. From Lemma 28, we know that a two-price strategy is optimal iff

only (v1, κ1), (v2, κ1) and (v2, κ2) jobs adopt the service. Because 1) jobs with the same delay

sensitivity prefer the same service and 2) a higher delay sensitivity implies a preference for

a higher-price service, a two-price strategy is optimal iff κ1 jobs choose p1 and (v2, κ2) jobs

choose p2. Hence, the revenue per unit of work under an optimal two-price strategy is of the

form sp1 + q22p2.

Similarly, we can state a parallel version of Lemma 30 that identifies the conditions under

which a two-price strategy is effective in a (binary) preemptible VMs settings:

Lemma 30’. In a binary system, a pricing strategy (p1, p2, β), where p1 < p2 and

0 < β < 1, sees adoptions at both prices with jobs with profiles (v1, κ1), (v2, κ1) and (v2, κ2)

adopting, if and only if the following inequalities hold:

1. κ1 ≤ p2−p1

1/β−1
< κ2;

2. v1 − p1 − κ1

(
1
β
− 1
)
≥ 0;

3. v2 − p2 ≥ 0.
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Lemma 30’ follows the same logic as Lemma 30, with the first constraint derived directly from

Eq. (A.13) and enforcing that κi jobs prefer pi, i ∈ {1, 2}; the second constraint guaranteeing

that κ1 jobs have a non-negative utility when selecting p1; and the third constraint ensuring

that (v2, κ2) jobs have a non-negative utility when selecting p2.

As before, the formulation of the optimization to maximize revenue per unit of work under

a two-price system follows directly from Corollary 29’ and Lemma 30’:

maximize
p1,p2,β

sp1 + q22p2

subject to κ1 ≤
p2 − p1

1/β − 1
< κ2,

v1 − p1 − κ1

(
1

β
− 1

)
≥ 0,

v2 − p2 ≥ 0,

0 < β < 1, 0 < p1 < p2.

(A.15)

Next we show that given the same binary system, optimization (A.15) generates the same

expected revenue as optimization (A.6) of Proposition 6, which we recall next

maximize
p1,p2,π

sp1 + q22[πp1 + (1− π)p2]

subject to κ1 ≤ π(p2 − p1) < κ2,

v1 − p1 − κ1

(
1

π
− 1

)
≥ 0,

v2 − πp1 − (1− π)p2 ≥ 0,

0 < π < 1, 0 < p1 < p2.

(A.6)

By substitution, we can reduce optimization (A.15) to optimization (A.6). Specifically, we

introduce a new variable p̃2 defined as p̃2 = p2−βp1

1−β for 0 < β < 1. This allows us to rewrite
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p2 as βp1 + (1 − β)p̃2. By substituting p2 with βp1 + (1 − β)p̃2 in (A.15), we get a new

optimization w.r.t p1, p̃2 and β. Note that in (A.15) we have the constraint 0 < β < 1,

therefore, the new optimization has the same optimality as the previous one.

After substitution, basic algebraic manipulations give

maximize
p1,p̃2,β

sp1 + q22[βp1 + (1− β)p̃2]

subject to κ1 ≤ β(p̃2 − p1) < κ2,

v1 − p1 − κ1

(
1

β
− 1

)
≥ 0,

v2 − βp1 − (1− β)p̃2 ≥ 0,

0 < β < 1, 0 < p1 < p̃2,

which is identical to (A.6). Therefore, both settings generate the same optimal two-price

expected revenue.

Next, we show Proposition 6 based on the fact that both settings have the same optimal

expected revenue under either one-price or two-price strategies. Recall that the proof of

Proposition 6 involves three properties:

1. ρ (the correlation between v and κ) increases with q22, and q22 = 0 implies ρ < 0;

2. if at ρ1, a two-price service is optimal, then for all ρ > ρ1, a two-price service is also

optimal;

3. if at ρ2, a one-price service is optimal, then for all ρ < ρ2, a one-price service is optimal.

Property 1) depends only on job profiles and their distribution. Hence, it holds regardless of

settings. Properties 2) and 3) essentially compare the expected revenue between the optimal
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one-price and two-price strategies. Since both settings (preemptible VMs and spot instances)

have the same optimal one-price and two-price revenues given the same distribution of job

profiles, Properties 2) and 3) also hold in the preemptible VMs setting. This then establishes

that Proposition 6 still holds.

A.6.6 Impact of System Parameters on ρ∗

From Eq. (2.11), we readily see that ρ∗ increases with κ1 and decreases with κ2. This is

intuitive given our analysis of the optimal pricing strategy. A larger κ1 implies a smaller p∗1

and therefore a smaller revenue from (v1, κ1) jobs for a two-price strategy. Compensating

for this decrease calls for more (v2, κ2) jobs and/or fewer (v2, κ1) jobs, i.e., a larger ρ∗.

Conversely, a larger κ2 allows the service provider to use a larger p∗2 or π∗ (and therefore

p∗1 in the latter case). This helps improve revenue over the best one-price strategy, so that

fewer (v2, κ2) jobs are needed (or more (v2, κ1) jobs can be tolerated), and correspondingly

a smaller ρ∗ value.

The relationship between ρ∗ and v1 and v2 is more complex, and it is therefore harder to

derive explicit insight from it. Specifically, we have

1. when (1− r)v2 ≥ v1, ρ∗ increases as v1 decreases and decreases as v2 decreases;

2. when (1−r)v2 < v1 and κ2(1−s) > κ1, ρ∗ increases as v1 increases and as v2 decreases;

3. otherwise, ρ∗ decreases with v1 and increases with v2.

Combining Propositions 6 and 9, we know that a two-price strategy is never optimal when

κ2(1− s) ≤ κ1. Hence, we focus only on cases 1) and 2).
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Recall that as per Lemma 5, the best one-price strategy either has a price p∗ = v1, in which

case all jobs bid at p∗ for an expected unit revenue of v1, or it has a price of p∗ = v2 that

only v2 jobs can afford, and correspondingly an expected unit revenue of (1 − r)v2. Hence,

under case 1), the optimal one-price strategy only targets v2 jobs. In this case, the primary

advantage of a two-price strategy comes from its ability to attract (v1, κ1) jobs (it yields

a lower revenue from (v2, κ1) jobs and the same revenue from (v2, κ2) jobs). A decrease

in v1 lowers the additional revenue from (v1, κ1) jobs and increases the loss from (v2, κ1)

jobs. Compensating for this calls for fewer (v2, κ1) jobs and consequently a larger ρ∗ value.

Conversely, a decrease in v2 decreases the loss a two-price strategy incurs from (v2, κ1) jobs.

Hence, the two-price strategy needs fewer (v1, κ1) jobs to outperform the one-price strategy,

i.e., a smaller ρ∗ value.

Under case 2), the optimal one-price strategy has a price p∗ = v1 and a corresponding ex-

pected unit revenue of v1. Recall that since p∗1 < p∗ (because of the added delay cost), a two-

price strategy outperforms a one-price strategy only if its revenue loss from (v1, κ1), (v2, κ1),

and (v1, κ2) jobs is more than offset by the increased revenue from (v2, κ2) jobs. Computing

the difference between gain and loss under the optimal two-price strategy when the condition

κ2(1 − s) > κ1 holds, establishes that it decreases as v1 increases, with the loss eventually

exceeding the gain. Compensating for this calls for a greater fraction of (v2, κ2) jobs, i.e., a

larger ρ∗. Similarly, a decrease in v2 implies a lesser gain from (v2, κ2) jobs, and therefore

again a larger ρ∗ value to compensate for the shortfall.

A.7 Dynamic Bidding Strategy

In this section, we construct optimal dynamic bidding strategies using backward induction.

We consider dynamic bidding strategies under three scenarios: 1) jobs have a linear delay
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penalty function but can terminate, 2) jobs have a piece-wise linear convex delay penalty

function, and 3) jobs have a piece-wise linear concave delay penalty function. Note that in

cases 2) and 3), we assume that jobs do not terminate once they start bidding.

Let T̂ be a job’s current execution delay, i.e., the number of losing bids it has had so far,

and t̂ its residual size, i.e., the amount of work left to complete the job. Under this notation,

a new job has T̂ = 0 and t̂ = t. Denote a job’s current state as (T̂ , t̂, P̂ ), where P̂ is its

accumulated payment to-date, and its residual state as (T̂ , t̂).

For all three scenarios, we first characterize their MDPs, and then complete the proof using

backward induction. In the backward induction, we rely on a job’s expected residual utility

to compute an optimal substrategy. To distinguish it from the job’s standard utility, U , we

use the notation Ũ (Ũ∗) for a job’s (optimal) expected residual utility.

For the reader’s convenience, we repeat the backward induction algorithm here.

The Backward Induction Algorithm [154]

1. Set z = N and

u∗N(sN) = rN(sN) for all sN ∈ S,

2. Substitute z − 1 for z and compute u∗z(Sz) for each sz ∈ S by

u∗z(sz) = max
a∈Asz

{
rz(sz, a) +

∑
j∈S

pt(j|sz, a)u∗z+1(j)

}
.

Set

A∗sz ,d = arg max
a∈Asz

{
rz(sz, a) +

∑
j∈S

pz(j|sz, a)u∗z+1(j)

}
.

3. If z = 1, stop. Otherwise return to step 2.
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Here z denotes the decision epoch56, N is the largest possible decision epoch, S is the set of

possible system states, and As is the set of allowable actions in state s. rz(s, z) denotes the

expected reward (or cost) when the state of the system at decision epoch z is s, and action

a ∈ As is selected; pz(j|s, a) denotes the probability that the system is in state j ∈ S at time

z + 1, when the decision maker chooses action a ∈ As in state s at time z.

As in Section 2.6, for tractability we limit ourselves to binary systems, and therefore pricing

strategies with at most two prices, i.e., (p1, p2, π).

A.7.1 Case 1: Linear Delay Penalty with Termination

In this sub-section, we characterize the optimal bidding strategy under a linear delay penalty

when jobs are allowed to stop bidding. Recall that jobs stop bidding once their expected

residual utility reaches zero, where a job’s expected residual utility represents the utility it

can expect to generate going forward from completing its execution. In other words, the

residual utility ignores the payments P̂ already made, but accounts for the delay penalty κT̂

the job has incurred, i.e., it assumes a residual value of V̂ (t) = vt − κT̂ for the job. The

rationale for using it as a termination criterion is that it captures whether or not continuing

to bid can be expected to improve the job’s final utility. If not, it is then best to terminate

the job, even if it means incurring a loss of P̂ .

For example and for illustration purposes, under a fixed bidding strategy and without ter-

mination, a job’s expected residual utility when in state (T̂ , t̂, P̂ ) is independent of P̂ and

easy to compute, i.e.,

56[154] uses t to denote decision epochs. Unfortunately, we already used the variable t to denote the job
length. To avoid any confusion, we therefore replaced t with z in the algorithm.
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Ũ(T̂ , t̂) =


(vt− κT̂ )− t̂p1 − κt̂

(
1−π
π

)
, if bid = p1

(vt− κT̂ )− t̂(πp1 + (1− π)p2), if bid = p2

(A.16)

The situation is more complex under dynamic bidding strategies and when termination is

allowed. In the rest of this section, we identify how to compute a job’s expected resid-

ual utility under such conditions, and in the process characterize optimal dynamic bidding

strategies with termination. Specifically, we first construct the MDP for the bidding process

before characterizing base strategies for t̂ = 1 and T̂ large, and then formalize the backward

induction recurrence for the general case.

MDP Construction We characterize job (t, v, κ)’s bidding strategy using four types of

states: start state (S0), bid states (ST̂ ,t̂), terminate state (Ster) and finish state (Sf ), where

Ster and Sf are absorbing states. A job starts in S0 and goes to state S0,t with a reward of vt

if it decides to adopt the service. Otherwise, it exits and goes to state Sf with a reward of 0.

In state ST̂ ,t̂, a job can either bid with a value in {p1, p2} or terminate. In particular, when

T̂ = vt
κ

, the job’s residual utility is smaller than vt − κT̂ = 0 whatever its bidding strategy

up to that point. Hence, it terminates bidding at the latest when T̂ = vt
κ

. If the job bids at

p1, it goes to ST̂ ,t̂−1 with a reward of −p1 with probability π, and to ST̂+1,t̂ with a reward of

−κ with probability (1− π). If the job bids at p2, it goes to ST̂ ,t̂−1 with an expected reward

of −πp1−(1−π)p2. If the job terminates, it goes to Ster with a reward of −vt+κT̂ (the final

utility of a terminated job is simply the bidding costs it has incurred prior to termination).

Formally:

Decision epochs57:

T = {1, 2, ...., vt
κ

+ t}.

57At time epoch vt
κ + t, the job incurred a delay of at least vt

κ , so that its residual utility is no longer
positive.
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States:

S = {S0, ST̂ ,t̂, Ster, Sf}, where t̂ < t, and ST̂ ,0 := Sf .

Actions:

A0 = {adopt, exit}; AT̂ ,t̂ = {p1, p2, terminate}; A vt
κ
,t̂ = {terminate}.

Expected rewards:

r(adopt, S0) = vt; r(exit, S0) = 0; r(terminate, ST̂ ,t̂) = −vt+ κT̂ ;

r(p1, ST̂ ,t̂) = −πp1 − (1− π)κ; r(p2, ST̂ ,t̂) = −πp1 − (1− π)p2.

Transition probabilities (all omitted transitions, except from absorbing states to themselves

, have a probability of 0):

Prob(S0,t|S0, adopt) = 1; Prob(Sf |S0, exit) = 1; Prob(Ster|ST̂ ,t̂ , terminate) = 1;

Prob(ST̂ ,t̂−1|ST̂ ,t̂ , p1) = π; Prob(ST̂+1,t̂|ST̂ ,t̂ , p1) = 1−π; Prob(ST̂ ,t̂−1|ST̂ ,t̂ , p2) = 1.

Base strategies (t̂ = 1 and T̂ large) As the corresponding expressions are useful in

deriving base strategies, we first characterize the residual utility for a job of residual size

t̂ = 1 of strategies that involve bidding at a fixed price (p1 or p2) until completion or

termination.
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The expected residual utility Ũ2(T̂ , 1) when bidding at p2 is directly obtained from Eq. (A.16).

Ũ2(T̂ , 1) = (vt− κT̂ )− (πp1 + (1− π)p2). (A.17)

Computing the expected residual utility when bidding at p1 calls for first identifying when the

strategy would decide to terminate bidding. Assume that bidding stops after k consecutive

failed bids at p1. The job’s expected residual utility Ũ
(k)
1 (T̂ , 1) is then given by

Ũ
(k)
1 (T̂ , 1) =

k−1∑
i=0

(1− π)iπ(vt− κT̂ − p1 − κi). (A.18)

Eq. (A.18) immediately establishes when termination should occur, i.e., after k̂ failed bids

where k̂ is the smallest value such that

(vt− κT̂ − p1 − κk̂) ≤ 0 ⇒ k̂ =

⌊
vt− p1

κ
− T̂

⌋
. (A.19)

With expressions for fixed bidding strategies (with termination) in place for jobs in residual

state (T̂ , 1), we are now ready to state a lemma that establishes that we only need to consider

those fixed bidding strategies.

Lemma 33. Under a two-price pricing strategy, a linear delay penalty, and with job termi-

nation allowed, the optimal bidding strategy for jobs whose residual size is t̂ = 1 is to either

terminate bidding, or bid at p2, or bid at p1 until termination or completion.

Proof. In order to establish the lemma, we only need to rule out strategies that initially

starts bidding at p1 before switching to bidding at p2 after a number of unsuccessful bids.

Denote as Ũ∗(T̂ , 1 | p1) and Ũ∗(T̂ , 1 | p2) the expected residual utility in residual state (T̂ , 1)

generated by the optimal sub-strategy, when it starts with a bid at p1 or p2, respectively.
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Next, we show that if Ũ∗(T̂ , 1 | p1) > Ũ∗(T̂ , 1 | p2), then Ũ∗(T̂ + 1, 1 | p1) > Ũ∗(T̂ + 1, 1 | p2)

when Ũ∗(T̂ + 1, 1 | p2) > 0. In other words, if bidding at p1 is initially superior to bidding at

p2, then it remains so after an unsuccessful first bid as long as termination is not preferred

over bidding at p2. In this latter case, bidding at p2 can never replace bidding at p1, i.e.,

the optimal sub-strategy will either bid at p1 or terminate.

Note first that Ũ∗(T̂ +1, 1 | p1) ≥ Ũ∗(T̂ , 1 | p1)−κ. In other words, the optimal sub-strategy

that starts by bidding at p1 in residual state (T̂ + 1, 1) generates a residual utility that is

at least as good as the residual utility generated by reusing the same strategy as in residual

state (T̂ , 1) minus the utility lost to the delay from the additional lost bid. More formally,

this yields a utility of the form

≥
k̂−1∑
i=0

(1− π)iπ(vt− κT̂ − p1 − κ(i+ 1))

=
k̂−1∑
i=0

(1− π)iπ(vt− κT̂ − p1 − κi)− κ
k̂−1∑
i=0

(1− π)iπ ≥ Ũ∗(T̂ , 1 | p1)− κ

Note also that Ũ∗(T̂ + 1, 1 | p2) = max{Ũ∗(T̂ , 1 | p2) − κ, 0}. Therefore, when Ũ∗(T̂ +

1, 1 | p2) > 0, we have Ũ∗(T̂ + 1, 1 | p2) = Ũ∗(T̂ , 1 | p2)− κ.

If the optimal sub-strategy in residual state (T̂ , 1) starts with p1, then by definition Ũ∗(T̂ , 1 | p2) <

Ũ∗(T̂ , 1 | p1), which implies Ũ∗(T̂ , 1 | p2) − κ < Ũ∗(T̂ , 1 | p1) − κ. Hence, whenŨ∗(T̂ +

1, 1 | p2) > 0, we have Ũ∗(T̂ + 1, 1 | p2) < Ũ∗(T̂ , 1 | p1)− κ ≤ Ũ∗(T̂ + 1, 1 | p1). This estab-

lishes that if the optimal sub-strategy starts bidding at p1, it will never switch to bidding at

p2.
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Based on Lemma 33, the optimal sub-strategy Γ∗(1|T̂ , P̂ ) at (T̂ , 1, P̂ ) can be obtained using

Eqs. (A.17), (A.18), and (A.19), namely

Γ∗(1|T̂ , P̂ ) =



bid at p1 if Ũ
(k̂)
1 (T̂ , 1) > Ũ2(T̂ , 1)

and Ũ
(k̂)
1 (T̂ , 1) > 0

bid at p2 if Ũ2(T̂ , 1) ≥ Ũ
(k̂)
1 (T̂ , 1)

and Ũ2(T̂ , 1) > 0

terminate otherwise

Next, we turn to the other base strategy we need to identify to be in a position to formulate

our recurrence, namely, the strategy when T̂ is “large enough.” Specifically, in our case “large

enough” means T̂ > vt
κ

so that κT̂ ≥ vt, i.e., the delay penalty exceeds the job value. Under

this condition, the expected residual utility cannot be positive, and the optimal strategy is

always to terminate. Note that while vt
κ

can be larger than the optimal termination slot, it

still gives a valid strategy on which to base our recurrence as we describe next.

Recurrence Our goal in this next step is to formulate a recurrence, i.e., to characterize

step 2 in the backward induction algorithm, starting with the two base strategies identified

for t̂ = 1 and T̂ > vt
κ

, which will allow us to compute the optimal (dynamic) bidding

strategy at any job’s state, where the goal is to maximize expected residual utility (and

therefore expected utility) or terminate if it is not positive.

Recall that at each step users can either bid at p1, or bid at p2, or terminate if neither price

generates a positive expected residual utility. Consider then a job with residual state (T̂ , t̂).

If the job bids at p1, it will either enter residual state (T̂ , t̂− 1) and pay p1 if the bid wins,

or enter residual state (T̂ + 1, t̂) if the bid fails. Whereas if the job bids at p2, the job will
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enter residual state (T̂ , t̂− 1) and pay (πp1 + (1− π)p2) on average. Hence we have

Ũ∗(T̂ , t̂) = max
{

0, π(Ũ∗(T̂ , t̂− 1)− p1) + (1− π)Ũ∗(T̂ + 1, t̂),

Ũ∗(T̂ , t̂− 1)− (πp1 + (1− π)p2)
}
.

which establishes the desired recurrence to compute which of the three possible actions

yields the best residual utility, and therefore allows us to identify the optimal strategy at

any residual state (T̂ , t̂).

A.7.2 Case 2: Convex Delay Sensitivity

In this sub-section we characterize the optimal bidding strategy when jobs have a piece-wise

linear, convex delay sensitivity function. Specifically, we split the bidding strategy into two

parts: before and after T̂ = θ. We first show that under D1(κ, t), the optimal bidding

strategy for job (t, v, κ) keeps bidding at b∗(v, κ) after T̂ = θ, where b∗(v, κ) is the optimal

bid for (1, v, κ) jobs under a linear delay penalty. We then construct the optimal bidding

strategy before T̂ = θ through backward induction and a corresponding MDP.

Optimal substrategy for T̂ ≥ θ. When T̂ ≥ θ, the expected residual utility of (t, v, κ)

jobs in state (T̂ , t̂, P̂ ) given sub-strategy Γ is of the form:

ŨΓ(T̂ , t̂) = vt− P (t̂,Γ)− κ[(T̂ − θ) + T (t̂,Γ)],

where P (t̂,Γ) is the residual cost of completing the job under strategy Γ, and T (t̂,Γ) is the

expected delay for a job of size t̂ under strategy Γ. This can be rewritten as

ŨΓ(T̂ , t̂) =

[
vt− κ(T̂ − θ)

t̂

]
t̂− P (t̂,Γ)− κT (t̂,Γ).
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The above expression is of a similar form as Eq. (2.1), so that Proposition 1 implies that

a fixed bidding strategy maximizes the (residual) expected utility. Similarly, from Proposi-

tion 2, the optimal bidding strategy bids at p1 if π(p2 − p1) > κ, and bids at p2 otherwise.

MDP Construction Given that the optimal bidding strategy after T̂ = θ is known, we

turn next to the bidding strategy before T̂ = θ. For each t̂ ≤ t we construct an aggregating

state St̂, with a job transitioning to St̂ whenever it reaches T̂ = θ with a residual job size of

t̂. If a job (t, v, κ) reaches St̂, it gets a reward of −C∗(t̂, κ), the expected total cost (payment

plus delay penalty) for a job (t̂, v, κ) under a linear delay penalty.

We characterize job (t, v, κ)’s bidding strategy using four types of states: start state (S0),

bid states (ST̂ ,t̂) for T̂ < θ, aggregating states (St̂) for 1 ≤ t̂ ≤ t, and finish state (Sf ), where

St̂ and Sf are absorbing states. A job starts in S0, and goes to state S0,t with a reward of

vt if it decides to adopt the service. Otherwise, it exits and goes to state Sf with a reward

of 0. In state ST̂ ,t̂, a job bids with a value in {p1, p2}. If the job bids at p2, it will go to

state ST̂ ,t̂−1 with an expected reward of −πp1 − (1− π)p2. If the job bids at p1, it will go to

state ST̂ ,t̂−1 with a reward of −p1 with probability π, and will go to state ST̂+1,t̂ (or state St̂

when T̂ + 1 = θ) with a reward of 0 (or −C∗(t̂, κ) when T̂ + 1 = θ) with probability (1− π).

Formally:

Decision epochs:

T = {1, 2, ...., θ − 1}.

States:

S = {S0, ST̂ ,t̂, St̂, Sf}, where T̂ < θ, t̂ ≤ t, and ST̂ ,0 := Sf .
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Actions:

A0 = {adopt, exit}; AT̂ ,t̂ = {p1, p2}.

Expected rewards:

r(adopt, S0) = vt; r(exit, S0) = 0; r(p2, ST̂ ,t̂) = −πp1 − (1− π)p2;

r(p1, ST̂ ,t̂) = −πp1, when T̂ < θ − 1; r(p1, Sθ−1,t̂) = −πp1 − (1− π)C∗(t̂, κ).

Transition probabilities (all omitted transitions, except from absorbing states to themselves,

have a probability of 0):

Prob(S0,t|S0, adopt) = 1; Prob(Sf |S0, exit) = 1;

Prob(ST̂ ,t̂−1|ST̂ ,t̂ , p1) = π; Prob(ST̂ ,t̂−1|ST̂ ,t̂ , p2) = 1;

Prob(ST̂+1,t̂|ST̂ ,t̂ , p1) = 1− π, when T̂ < θ − 1; Prob(St̂|Sθ−1,t̂ , p1) = 1− π.

Base strategies (t̂ = 1) As before, we introduce a lemma that establishes general prop-

erties of the optimal bidding strategy for jobs with t̂ = 1. Although the optimal bidding

strategy when T̂ ≥ θ is already known, we include it in Lemma 34 for completeness and

consistency with our earlier formulation (Lemma 33).

Lemma 34. Under a two-price pricing system with jobs (t, v, κ) having a delay sensitivity

of the form

D1(κ, t) = κ max{0, T (t)− θ},

the optimal bidding strategy for a job in state (T̂ , 1, P̂ ) is to bid at p2 if T̂ ≥ θ and π(p2−p2) ≤

κ, or bid at p1 otherwise.
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Proof. Reusing earlier notation to denote the expected residual utility generated by the

strategy that switches to p2 after l consecutive failed bids at p1.

Ũ (l)(T̂ , 1, P̂ ) =vt− P̂ −
l−1∑
i=0

(1− π)iπ[p1 + κmax{0, T̂ + i− θ}]

−(1− π)l[πp1 + (1− π)p2 + κmax{0, T̂ + l − θ}].

Next, we prove the following three properties

P1) bidding at p2 is dominated by Γ(θ − T̂ ), i.e., bidding at p1 until the delay reaches θ,

and then switching to p2;

P2) when T̂ + l < θ, Γ(l) is dominated by Γ(θ − T̂ );

P3) when T̂ ≥ θ, the optimal strategy bids at p1 if π(p2 − p1) > κ, and bids at p2 if

π(p2 − p1) ≤ κ.

Combining P1) and P2) implies that when T̂ ≤ θ, bidding at p1 is optimal, while P3) states

that switching to bidding at p2 once T̂ ≥ θ is optimal only if π(p2 − p1) ≤ κ.

To prove P1), we compare the expected residual utility generated by Γ(θ − T̂ ) to that of

bidding at p2. The expected residual utility for Γ(θ − T̂ ) is

Ũ (θ−T̂ )(T̂ , 1, P̂ ) = vt− P̂ −
θ−T̂−1∑
i=0

(1− π)iπp1 − (1− π)θ−T̂ [πp1 + (1− π)p2].

Denote the expected residual utility for bidding at p2 while T̂ < θ as U (0)(T̂ , 1, P̂ ), we have

Ũ (0)(T̂ , 1, P̂ ) = vt− P̂ − πp1 − (1− π)p2.
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Basic algebraic manipulations yield

Ũ (θ−T̂ )(T̂ , 1, P̂ )− Ũ (0)(T̂ , 1, P̂ ) = πp1[1−
θ−T̂∑
i=0

(1− π)i] + (1− π)p2[1− (1− π)θ−T̂+1] > 0.

This establishes that Γ(θ − T̂ ) dominates Γ(0), i.e., bidding at p2 (when T̂ < θ).

Next we turn to P2) and show that if T̂ + l < θ, Γ(θ − T̂ ) dominates Γ(l). To do so, we

prove that Ũ (l)(T̂ , 1, P̂ ) increases with l when T̂ + l ≤ θ. Basic algebraic manipulations give

Ũ (l+1)(T̂ , 1, P̂ )− Ũ (l)(T̂ , 1, P̂ ) = π(1− π)l+1(p2 − p1) > 0,

which establishes that Ũ (l)(T̂ , 1, P̂ ) increases with l when T̂ + l ≤ θ.

Finally, we turn to P3) and characterize the optimal bidding strategy when the delay exceeds

θ, where for simplicity of notation we denote as Ũ (l) the residual utility Ũ (l)(T̂ , 1, P̂ ) of the

strategy that bids at p1 for l ≥ 0 slots before switching to p2. When T̂ ≥ θ, we have

Ũ (l) = vt− P̂ −
l−1∑
i=0

(1− π)iπ[p1 + κ(T̂ + i− θ)]− (1− π)l[πp1 + (1− π)p2 + κ(T̂ + l − θ)].

This gives

Ũ (l+1) − Ũ (l) = (1− π)l+1[π(p2 − p1)− κ],

which is positive when π(p2 − p1) > κ.

When Ũ (l+1)− Ũ (l) is positive, Ũ (l) increases with l, which when combined with P1) implies

that continuing to bid at p1 once T̂ ≥ θ remains optimal. Conversely, when Ũ (l+1) − Ũ (l) is

negative, Ũ (l) decreases with l once T̂ ≥ θ, so that Ũ (0) > Ũ (l). In other words, the expected

residual utility under the bidding strategy that switches to bidding at p2 once T̂ reaches θ

is higher than that of any strategy that switches at a latter time. This establishes P3).
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Lemma 34 specifies the optimal base bidding strategy for jobs for which t̂ = 1, i.e., they

keep bidding at p1 as long as T̂ ≤ θ, and then keep bidding at p1 if π(p2− p1) > κ, or switch

to p2 if π(p2 − p1) ≤ κ.

Recurrence In this scenario, possible actions are limited to bidding at p1 or p2. Consider

a job with residual state (T̂ , t̂). If the job bids at p1, it will enter state (T̂ , t̂−1) and generate

a payment of p1 if its bid wins, or enter state (T̂ + 1, t̂) with no payment if its bid fails.

Conversely, if the job bids at p2, it will enter state (T̂ , t̂ − 1) with an expected payment of

(πp1 + (1−π)p2). This gives the following expression for the job’s optimal expected residual

utility:

Ũ∗(T̂ , t̂) = max
{
π(Ũ∗(T̂ , t̂− 1)− p1) + (1− π)Ũ∗(T̂ + 1, t̂),

Ũ∗(T̂ , t̂− 1)− (πp1 + (1− π)p2)
}
,

which again establishes the desired recurrence to identify the strategy that yields the best

residual utility.

A.7.3 Case 3: Concave Delay Sensitivity

We turn next to the case of a concave delay penalty function. The approach parallels that

followed for a convex delay penalty, namely, we first identify the optimal substrategy beyond

T̂ = θ, and then construct the optimal bidding strategy before T̂ = θ through backward

induction and a corresponding MDP.

Optimal substrategy for T̂ ≥ θ Since under a concave delay sensitivity there is no

further delay penalty once T̂ = θ, the optimal strategy will keep bidding at p1 from thereon

with a cumulative reward of −t̂p1.
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MDP Construction As with the convex case of Appendix A.7.2, we construct for each

value of t̂ ≤ t an aggregating state St̂, with a job transitioning to St̂ whenever it reaches

T̂ = θ with a residual job size of t̂. If a job (t, v, κ) reaches St̂, it gets a reward of −t̂p1.

We characterize job (t, v, κ)’s bidding strategy using four types of states: start state (S0),

bid states (ST̂ ,t̂) for T̂ < θ, aggregating states (St̂) for 1 ≤ t̂ ≤ t, and finish state (Sf ), where

St̂ and Sf are absorbing states. A job starts in S0, and goes to state S0,t with a reward of

vt if it decides to adopt the service. Otherwise, it exits and goes to state Sf with a reward

of 0. In state ST̂ ,t̂, a job bids with a value in {p1, p2}. If the job bids at p2, it will go to

state ST̂ ,t̂−1 with an expected reward of −πp1 − (1− π)p2. If the job bids at p1, it will go to

state ST̂ ,t̂−1 with a reward of −p1 with probability π, and will go to state ST̂+1,t̂ (or state St̂

when T̂ + 1 = θ) with a reward of −κ (or (−κ− t̂p1) when T̂ + 1 = θ) with a probability of

(1− π). Formally:

Decision epochs:

T = {1, 2, ...., θ − 1}.

States:

S = {S0, ST̂ ,t̂, St̂, Sf}, where T̂ < θ, t̂ ≤ t, and ST̂ ,0 := Sf .

Actions:

A0 = {adopt, exit}; AT̂ ,t̂ = {p1, p2}.

Expected rewards:

r(adopt, S0) = vt; r(exit, S0) = 0; r(p2, ST̂ ,t̂) = −πp1 − (1− π)p2;
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r(p1, ST̂ ,t̂) = −πp1 − (1− π)κ, when T̂ < θ − 1;

r(p1, Sθ−1,t̂) = −πp1 − (1− π)(κ+ t̂p1).

Transition probabilities (all omitted transitions, except from absorbing states to themseleves,

have a probability of 0):

Prob(S0,t|S0, adopt) = 1; Prob(Sf |S0, exit) = 1;

Prob(ST̂ ,t̂−1|ST̂ ,t̂ , p1) = π; Prob(ST̂ ,t̂−1|ST̂ ,t̂ , p2) = 1;

Prob(ST̂+1,t̂|ST̂ ,t̂ , p1) = 1− π, when T̂ < θ − 1; Prob(St̂|Sθ−1,t̂ , p1) = 1− π.

Base Strategies (t̂ = 1) As with Lemma 34, for completeness and consistency, we again

include the optimal bidding strategy for T̂ ≥ θ in Lemma 35.

Lemma 35. Under a two-price pricing system with jobs (t, v, κ) having a delay sensitivity

of the form

D2(κ, t) = κ min{T (t), θ},

the optimal bidding strategy for a job in state (T̂ , 1, P̂ ) is to bid at p2 if T̂ < θ and p2− p1 <

κθ(1− π)θ−T̂−1 +
∑θ−T̂−1

i=1 κπ(1− π)i−1(i+ T̂ )− κT̂ , or to bid at p1 otherwise.

Proof. Using again the same notation as with a convex delay penalty, the expected residual

utility of a job in state (T̂ , 1, P̂ ) and using strategy Γ(l) that bids at p1 for l ≥ 0 slots and

then switches to bidding at p2 is of the form

Ũ (l)(T̂ , 1, P̂ ) = vt− P̂ −
l−1∑
i=0

(1− π)iπ[p1 + κmin{θ, T̂ + i}]

−(1− π)l[πp1 + (1− π)p2 + κmin{θ, T̂ + l}],
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where as before, the summation has a value of 0 when l = 0. Basic algebraic manipulations

give

Ũ (l+1)(T̂ , 1, P̂ )− Ũ (l)(T̂ , 1, P̂ ) = (1− π)l+1[π(p2 − p1) + κ min{θ, T̂ + l}

− κ min{θ, T̂ + l + 1}].

Next, we consider separately the two regimes T̂ + l ≥ θ and T̂ + l < θ. When T̂ + l ≥ θ, we

have

Ũ (l+1)(T̂ , 1, P̂ )− Ũ (l)(T̂ , 1, P̂ ) = (1− π)l+1π(p2 − p1) > 0.

In other words, when T̂+l ≥ θ, increasing l increases the expected residual utility of strategy

Γ(l), so that if bidding at p1 is the best strategy, it remains so until the bid succeeds and

switching to p2 never happens.

When T̂ + l < θ, we have

Ũ (l+1)(T̂ , 1, P̂ )− Ũ (l)(T̂ , 1, P̂ ) = (1− π)l+1[π(p2 − p1)− κ].

The sign of the above difference is a function of π(p2 − p1)− κ and independent of l. If the

difference is positive, we are in the same situation as when T̂ + l ≥ θ, and switching from

p1 to p2 never happens. Conversely, if the difference is negative, i.e., π(p2 − p1)− κ < 0 the

strategy Γ(0), i.e., immediately bidding at p2 outperforms all strategies with higher l values.

In other words, fixed strategies are always optimal once jobs enter state (T̂ , 1, P̂ ). Next, we

identify which of bidding at p1 or p2 is optimal under what conditions.

We first note that when T̂ ≥ θ, bidding at p1 is trivially optimal, since under the concave

delay penalty D2(κ, t), jobs incur no additional penalty once their execution delay exceeds θ.

We therefore focus on the case T̂ < θ, and compute the residual utilities Ũ1(T̂ , 1, P̂ ) and
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Ũ2(T̂ , 1, P̂ ) of the strategies that bid at p1 and p2, respectively.

Ũ1(T̂ , 1, P̂ ) =vt− P̂ − p1 −
θ−T̂−1∑
i=0

κπ(1− π)i(i+ T̂ )− κθ(1− π)θ−T̂ ,

Ũ2(T̂ , 1, P̂ ) =vt− P̂ − κT̂ − πp1 − (1− π)p2.

Basic algebraic manipulations give Ũ1(T̂ , 1, P̂ ) < Ũ2(T̂ , 1, P̂ ) iff

p2 − p1 < κθ(1− π)θ−T̂−1 +
θ−T̂−1∑
i=1

κπ(1− π)i−1(i+ T̂ )− κT̂ ,

where the summation is zero if θ − T̂ − 1 < 1.

Lemma 35 characterizes the optimal base bidding strategy for jobs for which t̂ = 1: they bid

at p2 if T̂ < θ and the difference between p2 and p1 is below a certain threshold, and keep

bidding at p1 otherwise.

Recurrence The recurrence is essentially identical to that of the convex delay penalty,

namely,

Ũ∗(T̂ , t̂) = max
{
π(Ũ∗(T̂ , t̂− 1)− p1) + (1− π)Ũ∗(T̂ + 1, t̂),

Ũ∗(T̂ , t̂− 1)− (πp1 + (1− π)p2)
}
.
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Appendix B

Traffic Scheduling and Shaping for

Inter-data Center Networks
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B.1 Summary of Notation Used in the Chapter

Notation Definition

n number of flows inside the network

bi bucket size of flow i

b vector for all token-bucket sizes: (b1, b2, . . . , bn)

b′i bucket size of flow i’s token-bucket reshaper

b′ vector for all reshapers’ bucket sizes: (b′1, b
′
2, . . . , b

′
n)

b′∗i the optimal bucket size of flow i’s token-bucket reshaper under static priority

b′∗ vector for all reshapers’ optimal bucket sizes: (b′∗1 , b
′∗
2 , . . . , b

′∗
n ) under static priority

b̂′∗i the optimal bucket size of flow i’s token-bucket reshaper under fifo

b̂
′∗

vector for all reshapers’ optimal bucket sizes: (b̂′∗1 , b̂
′∗
2 , . . . , b̂

′∗
n ) under fifo

B′i accumulative shaper size for flows with a priority no smaller than i, i.e.,
∑n

j=i b
′
j

B̂i accumulative burst size for flows 1 to i, i.e.,
∑i

j=1 bj

B̂′i accumulative shaper size for flows from 1 to i, i.e.,
∑i

j=1 b
′
j

di end-to-end deadline for flow i

d vector for all end-to-end deadlines: (d1, d2, . . . , dn)

D∗i worst-case end-to-end delay for flow i under priority + shaping

D̂∗i worst-case end-to-end delay for flow i under fifo + shaping

ri rate of flow i

r vector for all token-bucket rates: (r1, r2, . . . , rn)

(ri, bi, di) flow i’s profile

Ri accumulative shaper size for flows with a priority no smaller than i, i.e.,
∑n

j=i rj

R bandwidth of the shared link for the one-hop scenario

R∗ optimal minimum required bandwidth for the one-hop scenario

[194]



R̃∗ minimum required bandwidth for the shared link without (re)shapers

under static priority for one-hop scenario

R̃∗s minimum required bandwidth for the shared link with (re)shapers

under static priority for the one-hop scenario

R̂∗ minimum required bandwidth for the shared link without (re)shapers

under fifo for one-hop scenario

R̂∗s minimum required bandwidth for the shared link with (re)shapers

under fifo for the one-hop scenario

t time

Hi bi − diri

Πi(R) ri+R−Ri+1

R−Ri+1

Vi(R) di(R−Ri+1 − bi)

S1(R) V1(R)

Si(r) Si−1(R)
⋃
Vi(R)

⋃{
s−Hi
Πi(R)
|s ∈ Si−1(R)

}
Zi all the integers from 1 to i, i.e., {1 ≤ i ≤ j|j ∈ Z}

XF (R) maxP1,P2⊆Zn,P2 6=Zn,P1
⋂
P2=∅

∑
i∈P1

RHi
R+ri

+
∑
i∈P2

(
bi−

ridiR

R1

)
1−
∑
i∈P1

ri
R+ri

−
∑
i∈P2

ri
R1

YF (R) min1≤i≤n−1

{
B̂n, Rdn,minP1,P2⊆Zi,P1

⋂
P2=∅,P1

⋃
P2 6=∅

{
B̂i−

∑
j∈P1

RHj
R+rj

−
∑
j∈P2

(
bj−

rjdjR

R1

)
∑
j∈P1

rj
R+rj

+
∑
j∈P2

rj
R1

}}
Ti(B̂

′
n, R) max

{
0, R

R+ri

(
Hi + ri

R
B̂′n

)
, bi + ri(B̂

′
n−Rdi)
R1

}
Γsc a service curve assignment that gives each flow i a service curve of SCi(t)

OPT general network-wide optimization

OPT S optimization for static priority with (re)shapers for the one-hop scenario

OPT F optimization for fifo with (re)shapers for the one-hop scenario
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B.2 Proofs for Dynamic Priority Scheduler

B.2.1 Proof for Proposition 10

For the reader’s convenience, we restate Proposition 10.

PROPOSITION 10. Consider a one-hop network shared by n token-bucket controlled flows,

where flow i, 1 ≤ i ≤ n, has a traffic contract of (ri, bi) and a deadline of di, with

d1 > d2 > ... > dn and d1 <∞. Consider a service-curve assignment Γsc that allocates flow

i a service curve of

SCi(t) =


0 when t < di,

bi + ri(t− di) otherwise.

(3.2)

Then

1. For any flow i, 1 ≤ i ≤ n, SCi(t) ensures a worst-case end-to-end delay no larger

than di.

2. Realizing Γsc requires a link bandwidth of at least

R∗ = max
1≤h≤n

{
n∑
i=1

ri,

∑n
i=h bi + ri(dh − di)

dh

}
. (3.3)

3. Any scheduling mechanism capable of meeting all the flows’ deadlines requires a

bandwidth of at least R∗.

Proof. We first show that Γsc meets each flow’s deadline, and then show that a bandwidth

of R∗ is enough to accommodate all the service curves defined in Γsc. After that, we show
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that there exists no mechanism generating a minimum required bandwidth strictly smaller

than R∗.

• For any flow 1 ≤ i ≤ n, it has an token-bucket constrained arrival curve of

ACi(t) =


0 when t = 0

bi + rit otherwise.

Combining it with flow i’s service curve SCi(t), we have the worst-case end-to-end

delay for flow i 58,

D∗i = sup
t≥0

inf
τ≥0
{ACi(t) ≤ SCi(t+ τ)} = di.

• To accommodate all the service curves defined in Γsc, the system needs a bandwidth

R such that 1) R ≥
∑n

i=1 ri, which guarantees a finite worst-case end-to-end delay for

any flow, and 2) for all t > 0, Rt ≥
∑n

i=1 SCi(t), i.e.,

R ≥ max

{
n∑
i=1

ri, sup
t>0

∑n
i=1 SCi(t)

t

}
. (B.1)

As SCi(t)
t

equals 0 when t < di, and decreases t when t ≥ di, we know that the supremum

of
∑n
i=1 SCi(t)

t
is achieved only at values among {d1, d2, . . . , dn}. Combining this with

the expression for SCi(t) gives

R ≥ max
1≤h≤n

{
n∑
i=1

ri,

∑n
i=h bi + ri(dh − di)

dh

}
= R∗.

Thus, R∗ is enough to accommodates all service curves defined in Γsc.

58See THEOREM 1.4.2 in [120], page 23.
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• We show that R∗ is a lower bound of the minimum required bandwidth. Note that

when R∗ =
∑n

i=1 ri, obviously there exists no mechanism achieving a strictly smaller

minimum required bandwidth. Below we consider the case when R∗ >
∑n

i=1 ri, i.e.,

there exists 1 ≤ ĥ ≤ n, such that R∗ =
∑n
i=ĥ

bi+ri(dĥ−di)
dĥ

Suppose there exists a mechanism achieving a minimum required bandwidth R′ < R∗.

Next we construct an arrival pattern consistent with each flow’s token-bucket arrival

constraints, such that R′ cannot satisfy all flows’ deadlines.

Consider the arrival pattern such that for all 1 ≤ i ≤ n, flow i sends bi at t = 0

(where the system restarts the clock), and then constantly sends at a rate of ri. By

time dĥ, in order to satisfy all flows’ deadlines, for any flow i with di ≤ dĥ the shared

link should process at least bi + ri(dĥ − di) amount of data. Consequently, by dĥ the

shared link should process at least
∑n

i=ĥ bi + ri(dĥ− di) amount of data for all flows in

accumulation. As
∑n

i=ĥ bi+ri(dĥ−di) = dĥR
∗ > dĥR

′, a bandwidth of R′ must violate

some flows’ deadlines.

B.2.2 Proof for Proposition 11

PROPOSITION 11. Consider a one-hop network shared by n token-bucket controlled flows,

where flow i, 1 ≤ i ≤ n, has a traffic contract of (ri, bi) and a deadline of di, with

d1 > d2 > ... > dn and d1 <∞. The earliest deadline first (EDF) scheduler realizes Γsc

under a link bandwidth of R∗.

Proof. We first show that EDF satisfies Γsc, and then shows that EDF requires a minimum

required bandwidth of R∗.
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We show that EDF satisfies Γsc by contradiction. Suppose EDF cannot achieve Γsc. Then

there exists t̂ ≥ di and 1 ≤ i ≤ n, such that ŜCi(t̂) < SCi(t̂), where ŜCi is the service curve

that EDF assigns to flow i. To satisfy flow i’s deadline, at t̂− di EDF should yield a virtual

delay no large than di, i.e.,

inf
τ≥0

{
bi + ri(t̂− di) ≤ ŜCi(t̂− di + τ)

}
≤ di,

which then gives ŜCi(t̂−di+di) ≥ bi+ri(t̂−di). As bi+ri(t̂−di) = SCi(t̂), this contradicts

to the assumption that ŜCi(t̂) < SCi(t̂).

Below we show that EDF requires a minimum required bandwidth of R∗. Suppose flow i’s

data sent at t has a deadline of (t + di). We show that EDF satisfies all flows’ deadlines

with a bandwidth of R∗ = max1≤h≤n

{∑n
i=1 ri,

∑n
i=h bi+ri(dh−di)

dh

}
. Based on the utilization

of the shared link, we consider two cases separately, where in both cases we prove the

result by contradiction. Specifically, suppose under EDF, R∗ cannot satisfy all flows’ latency

requirements. Then there exists 1 ≤ ĥ ≤ n and t̂ ≥ 0, such that EDF processes at least one

bit sent by flow ĥ at time t̂ after time (t̂+ dĥ). We consider first the case where the shared

link uses up all its bandwidth during the period [0, t̂ + dĥ] to transmit data with absolute

deadlines no larger than (t̂+dĥ), and then consider the case where there exists t0 ∈ [0, t̂+dĥ],

such that at t0 the shared link is not busy with data whose absolute deadline is no larger

than (t̂ + dĥ). By showing that R∗ is enough for EDF to meet all flows’ deadlines, we then

have the result.

1. Consider the case where for all t ∈ [0, t̂+ dĥ] the shared link uses up all its bandwidth

to send bits with an absolute deadline no larger than (t̂ + dt̂). Then by (t̂ + dĥ)

the shared link in accumulation processes R∗(t̂ + dĥ) amount of data that all have

deadlines no larger than (t̂+dt̂). From the fact that EDF violates an absolute deadline
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of (t̂+dĥ), we know that there exists an arrival pattern consistent with the token-bucket

constraints, such that in accumulation flows send more than R∗(t̂+dĥ) amount of data

with absolute deadlines no larger than (t̂ + dĥ). From the token-bucket constraints,

we know that by (t̂+ dĥ), flows can send at most
∑n

i=1

[
bi + ri(t̂+ dĥ − di)

]
It̂+dĥ−di≥0

amount of data whose absolute deadline is at most (t̂ + dĥ). Therefore, we have

R∗(t̂+ dĥ) <
∑n

i=1

[
bi + ri(t̂+ dĥ − di)

]
It̂+dĥ−di≥0. Define d0 =∞. Then there exists

1 ≤ n̂ ≤ n such that t̂+ dĥ ∈ [dn̂, dn̂−1), then we have

R∗ <

∑n
i=1

[
bi + ri(t̂+ dĥ − di)

]
It̂+dĥ−di≥0

t̂+ dĥ
=

n∑
i=n̂

(
ri +

bi − ridi
t̂+ dĥ

)
:= R′.

If
∑n

i=n̂ bi − ridi ≤ 0, we have R∗ < R′ ≤
∑n

i=1 ri, which contradicts to R∗ >
∑n

i=1 ri.

Hence we consider only
∑n

i=n̂ bi − ridi > 0, where R′ decreases with (t̂ + dĥ). Define

R̂(u) =
∑n

i=n̂

(
ri + bi−ridi

u

)
. We then have

R∗ < R′ ≤ R̂(dn̂) =

∑n
i=n̂ [bi + ri(dn̂ − di)]

dn̂
,

which contradicts to the definition of R∗.

2. Otherwise, the shared link uses less than all its bandwidth at t0 ∈ [0, t̂+ dĥ], and uses

up all its bandwidth for all t ∈ (t0, t̂+dĥ] to send bits with a absolute deadline no larger

than (t̂+dt̂). Then during (t0, t̂+dĥ] the shared link processes R∗(t̂+dĥ−t0) amount of

data with absolute deadlines no larger than (t̂+ dĥ), and flows send strictly more than

R∗(t̂+ dĥ − t0) amount of data with absolute deadlines no larger than (t̂+ dĥ). From

the token-bucket constraints, we know that during (t0, t̂ + dĥ] flows can send at most∑n
i=1

[
bi + ri(t̂+ dĥ − t0 − di)

]
It̂+dĥ−t0−di≥0 amount of data whose absolute deadlines

are no larger than (t̂+dĥ). Thus we have R∗ <

∑n
i=1[bi+ri(t̂+dĥ−t0−di)]It̂+d

ĥ
−t0−di≥0

dĥ+t̂−t0
, which,

similar as before, contradicts to the definition of R∗.

[200]



B.2.3 Proof for Proposition 12

PROPOSITION 12. Consider a one-hop network shared by n token-bucket controlled flows,

where flow i, 1 ≤ i ≤ n, has a traffic contract of (ri, bi) and a deadline of di, with

d1 > d2 > ... > dn and d1 <∞. Adding ingress (re)shapers will not decrease the minimum

bandwidth required to meet the flows’ deadlines.

Proof. We show that adding a (re)shaper to any of the flow does not decrease the optimal

minimum required bandwidth.

Suppose we apply a reshaper b′i to flow i, where 1 ≤ i ≤ n and b′i ≥ bi − diri. Then flow i

incurs a reshaping delay of
bi−b′i
ri

. This then leaves a maximum in-network delay of di− bi−b′i
ri

,

which is greater than 0 since b′i ≥ bi − diri. Hence, to meet its deadline flow i requires a

service curve of at least

SC ′i(t) =


0, when t < di −

bi − b′i
ri

b′i + ri

(
t− di +

bi − b′i
ri

)
= bi + ri(t− di), otherwise

which is greater than SCi(t) =


0, when t < di

bi + ri(t− di), otherwise

. Consequently, according to

Proposition 10 the system needs a bandwidth of at least

R = max

{
n∑
i=1

ri, sup
t≥0

∑
j 6=i SCj(t) + SC ′i(t)

t

}
≥ max

{
n∑
i=1

ri, sup
t≥0

∑
1≤j≤n SCj(t)

t

}
= R∗sc,

(B.2)

to meet each flow’s deadline.
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B.3 Proofs for Static Priority Scheduler

B.3.1 Proof for Proposition 13

We actually prove Proposition 13 under the more general packet-based model. By assuming

that all packets to have a length of 0, the packet-based model defaults to the fluid model.

PROPOSITION 13. Consider a one-hop network shared by n token-bucket controlled flows,

where flow i, 1 ≤ i ≤ n, has a traffic contract of (ri, bi) and a deadline of di, with

d1 > d2 > ... > dn and d1 <∞. Under a static-priority scheduler, there exists an

assignment of flows to priorities that minimizes link bandwidth while meeting all flows

deadlines such that flow i is assigned a priority strictly greater than that of flow j only if

di < dj.

Proof. For a mechanism Γ, denote flows with priority h under Γ as Gh(Γ). Define d
(max)
h (Γ) =

maxi∈Gh(Γ) di and d
(min)
h (Γ) = mini∈Gh(Γ) di. Suppose priority class h + 1 to have a higher

priority than priority class h. Then we will prove the proposition by induction on the number

k of priority classes. Our induction hypothesis S(k) is expressed in the following statement:

S(k): For a 1-hop topology with any number of flows, there exists an optimal k-priority

mechanism Γk such that ∀s < l ≤ k, d
(max)
l (Γk) < d

(min)
s (Γk).

• Base case: consider the case when k = 2. We show that for any mechanism Γ2,

if d
(min)
1 (Γ2) < d

(max)
2 (Γ2), then there exists a 2-priority mechanism Γ′2 such that

d
(min)
1 (Γ′2) > d

(max)
2 (Γ′2) and R∗(Γ′2) ≤ R∗(Γ2).
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For mechanism Γ2, denote l
(max)
1 (Γ2) to be the maximum packet size for flows in G1(Γ2).

To satisfy each flow’s deadline, it requires a bandwidth R such that



∑
i∈G2(Γ2) bi + l

(max)
1 (Γ2)

R
≤ d

(min)
2 (Γ2),∑

i bi
R−

∑
i∈G2(Γ2) ri

≤ d
(min)
1 (Γ2),

n∑
i=1

ri ≤ R,

(B.3)

which gives

R∗(Γ2) = max


n∑
i=1

ri,

∑
i∈G2(Γ2) bi + l

(max)
1 (Γ2)

d
(min)
2 (Γ2)

,

∑
i bi

d
(min)
1 (Γ2)

+
∑

i∈G2(Γ2)

ri

 .

Define G′1(Γ2) = {i ∈ G2(Γ2) | di > d
(max)
1 (Γ2)} and G′2(Γ2) = G2(Γ2) − G′1(Γ2).

Consider the mechanism Γ′2 such that G2(Γ′2) = G′2(Γ2), and G1(Γ′2) = G′1(Γ2)∪G1(Γ2).

Note that d
(min)
1 (Γ′2) > d

(max)
2 (Γ′2), and note also that d

(min)
i (Γ′2) = d

(min)
i (Γ2), i = 1, 2.

Similar as Eq. (B.3), we have

R∗(Γ′2) = max

{ ∑n
i=1 ri,

∑
i∈G2(Γ′2) bi+l

(max)
1 (Γ′2)

d
(min)
2 (Γ2)

,
∑
i bi

d
(min)
1 (Γ2)

+
∑

i∈G2(Γ2)−G′1(Γ2) ri

}
Note that

∑
i bi

d
(min)
1 (Γ2)

+
∑

i∈G2(Γ2) ri ≥
∑
i bi

d
(min)
1 (Γ2)

+
∑

i∈G2(Γ2)−G′1(Γ2) ri. Next we show∑
i∈G2(Γ2) bi+ l

(max)
1 (Γ2) ≥

∑
i∈G2(Γ′2) bi+ l

(max)
1 (Γ′2), from which we then have R∗(Γ2) ≥

R∗(Γ′2), and therefore S(2). Since G1(Γ2) & G1(Γ′2), it has l
(max)
1 (Γ′2) ≥ l

(max)
1 (Γ2).

– When l
(max)
1 (Γ′2) = l

(max)
1 (Γ2), from G2(Γ′2) & G2(Γ2) we have

∑
i∈G2(Γ2) bi ≥∑

i∈G2(Γ′2) bi, and therefore have
∑

i∈G2(Γ2) bi+l
(max)
1 (Γ2) ≥

∑
i∈G2(Γ′2) bi+l

(max)
1 (Γ′2).
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– When l
(max)
1 (Γ′2) > l

(max)
1 (Γ2), i.e., there exists a flow î ∈ G′1(Γ2) such that l̂i >

l
(max)
1 (Γ2). From bî ≥ l̂i and G2(Γ′2) ⊆ G2(Γ2)− î, we have

∑
i∈G2(Γ2)

bi + l
(max)
1 (Γ2) =

∑
i∈G2(Γ2)−î

bi + bî + l
(max)
1 (Γ2) ≥

∑
i∈G2(Γ′2)

bi + l̂i + l
(max)
1 (Γ2)

>
∑

i∈G2(Γ′2)

bi + l
(max)
1 (Γ′2)

• Induction Step: Let k ≥ 2 and suppose S(k) holds. Below we show that S(k + 1)

holds.

Consider any (k+1)-priority mechanism Γk+1. For 1 ≤ h ≤ (1+k), denote l
(max)
h (Γk+1)

to be the maximum packet size for all flows with priority strictly smaller than h, and

define l
(max)
h (Γk+1) to be 0 if no flow has a priority strictly smaller than h. Define

B
(k)
h (Γk+1) =

∑k
j=h

∑
i∈Gj(Γk+1) bi, i.e., the sum of bucket sizes for flows with priority

h ≤ j ≤ k, and R
(k)
h (Γk+1) =

∑k
j=h

∑
i∈Gj(Γk+1) ri, i.e., the sum of rates for flows with

priority in h ≤ j ≤ k. Then to satisfy each flow’s deadline Γk+1 requires a bandwidth

R satisfying


B

(k+1)
h (Γk+1)+l

(max)
h (Γk+1)

R−R(k+1)
h+1 (Γk+1)

≤ d
(min)
h (Γk+1), ∀h ∈ [1, k + 1];

∑n
i=1 ri ≤ R;

(B.4)

which gives a minimum required bandwidth of

R∗(Γk+1) = max
1≤h≤k+1

{
n∑
i=1

ri,
B

(k+1)
h (Γk+1) + l

(max)
h (Γk+1)

d
(min)
h (Γk+1)

+R
(k+1)
h+1 (Γk+1)

}
. (B.5)

Afterwards, we first show that there exists a (k+1)-priority mechanism Γ′k+1 satisfying
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– Condition 1: Gk+1(Γ′k+1) = {i | dn ≤ di < dn̂} where 1 ≤ n̂ ≤ n, and

R∗(Γ′k+1) ≤ R∗(Γk+1), where Gk+1(Γ′k+1) = ∅ if n̂ = n.

After that, under a slight abuse of notation, we show that for any Γk+1 satisfying

Condition 1, there exists a (k + 1)-priority mechanism Γ′k+1 satisfying

– Condition 2: R∗(Γ′k+1) ≤ R∗(Γk+1), and d
(max)
i (Γ′k+1) < d

(min)
j (Γ′k+1) for all

j < i ≤ k + 1.

Combining them gives S(k + 1).

1. We first show the existence of a mechanism Γ′k+1 satisfying condition 1. If Γk+1 sat-

isfies Condition 1, then Γk+1 = Γ′k+1. Otherwise, for all 1 ≤ n̂ < n, Gk+1(Γk+1) 6=

{i | dn ≤ di < dn̂}. Define î = max{1 ≤ i ≤ n | i /∈ Gk+1(Γk+1)} and suppose

î ∈ Gĥ(Γk+1). Further define G′k+1 = {i ∈ Gk+1(Γk+1) | di < d
(min)

ĥ
(Γk+1)} and

G′
ĥ

= Gk+1(Γk+1)−G′k+1.

Consider the mechanism Γ′k+1 such that 1) Gk+1(Γ′k+1) = G′k+1, 2) Gĥ(Γ
′
k+1) =

G′
ĥ

+ Gĥ(Γk+1), and 3) Gi(Γ
′
k+1) = Gi(Γk+1), when 1 ≤ i ≤ k and i 6= ĥ. Note

that

– when h ≤ ĥ, B
(k+1)
h (Γ′k+1) = B

(k+1)
h (Γk+1), R

(k+1)
h (Γ′k+1) = R

(k+1)
h (Γk+1), and

l
(max)
h (Γ′k+1) = l

(max)
h (Γk+1);

– when h > ĥ, B
(k+1)
h (Γ′k+1) = B

(k+1)
h (Γk+1)−

∑
i∈G′

ĥ

bi, R
(k+1)
h (Γ′k+1) = R

(k+1)
h (Γ′k+1)−∑

i∈G′
ĥ

ri, and l
(max)
h (Γ′k+1) = max

{
l
(max)
h (Γk+1), maxi∈G′

ĥ
li

}
.
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Next we show that R∗(Γ′k+1) ≤ R∗(Γk+1). To satisfy each flow’s deadline, Γ′k+1

requires a bandwidth R such that59



n∑
i=1

ri ≤ R,

B
(k+1)
k+1 (Γk+1)−

∑
i∈G′

ĥ

bi + l
(max)
k+1 (Γ′k+1)

R
≤ dn,

B
(k+1)

ĥ
(Γk+1) + l

(max)

ĥ
(Γk+1)

R−R(k+1)

ĥ+1
(Γk+1) +

∑
i∈G′

ĥ

ri
≤ d

(min)

ĥ
(Γk+1)

B
(k+1)
h (Γk+1)−

∑
i∈G′

ĥ

bi + l
(max)
h (Γ′k+1)

R−R(k+1)
h+1 (Γk+1) +

∑
i∈G′

ĥ

ri
≤ d

(min)
h (Γk+1), when ĥ < h ≤ k

B
(k+1)
h (Γk+1) + l

(max)
h (Γk+1)

R−R(k+1)
h+1 (Γk+1)

≤ d
(min)
h (Γk+1), when h < ĥ

which gives a minimum required bandwidth R∗(Γ′) of

max



n∑
i=1

ri,

B
(k+1)
k+1 (Γk+1)−

∑
i∈G′

ĥ

bi + l
(max)
k+1 (Γ′k+1)

dn
,

B
(k+1)

ĥ
(Γk+1) + l

(max)

ĥ
(Γk+1)

d
(min)

ĥ
(Γk+1)

+R
(k+1)

ĥ+1
(Γk+1)−

∑
i∈G′

ĥ

ri

B
(k+1)
h (Γk+1)−

∑
i∈G′

ĥ

bi + l
(max)
h (Γ′k+1)

d
(min)
h (Γk+1)

+R
(k+1)
h+1 (Γk+1)−

∑
i∈G′

ĥ

ri, when ĥ < h ≤ k

B
(k+1)
h (Γk+1) + l

(max)
h (Γk+1)

d
(min)
h (Γk+1)

+R
(k+1)
h+1 (Γk+1), when h < ĥ

59When Gk+1(Γ′k+1) = ∅,
B

(k+1)
k+1 (Γk+1)−

∑
i∈G′

ĥ

bi+l
(max)
k+1 (Γ′

k+1)

R = maxi li
R , which is also no greater than dn.
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Note that if for all ĥ < h ≤ k + 1, l
(max)
h (Γ′k+1)−

∑
i∈G′

ĥ

bi ≤ l
(max)
h (Γk+1), we will

then have R∗(Γ′k+1) ≤ R∗(Γk+1). In fact, as maxi∈G′
ĥ
li −

∑
i∈G′

ĥ

bi ≤ 0 we have

l
(max)
h (Γ′k+1)−

∑
i∈G′

ĥ

bi = max

{
l
(max)
h (Γk+1), max

i∈G′
ĥ

li

}
−
∑
i∈G′

ĥ

bi

≤ max

l(max)
h (Γk+1)−

∑
i∈G′

ĥ

bi, 0

 < l
(max)
h (Γk+1).

Thus, we show the existence of a mechanism Γ′k+1 satisfying Condition 1.

2. Next we show that for any (k + 1)-priority mechanism Γk+1 satisfying Condition

1, there exists a (k + 1)-priority mechanism Γ′k+1 satisfying Condition 2.

For Γk+1, there to exist 1 ≤ n̂ ≤ n such that Gk+1(Γk+1) = {i | dn ≤ di < dn̂ }. If

Gk+1(Γk+1) = ∅, by induction of hypothesis S(k) we have S(k + 1). Afterwards

we consider the case where Gk+1(Γk+1) 6= ∅.

Consider flows F̃ = {(r1, b1, l1, d1), ..., (rn̂−1, bn̂−1, ln̂−1, dn̂−1), (rn̂,
∑

i≥n̂ bi, ln̂, dn̂)}.

According to S(k), there exists a k-priority mechanism Γ′k for F̃ such that ∀j <

i ≤ k, d̃
(max)
i (Γ′k) < d̃

(min)
j (Γ′k). Γk gives a minimum required bandwidth of

R∗(Γ′k) = max
1≤h≤k

{
n̂∑
i=1

ri,
B̃

(k)
h (Γ′k) + l

(max)
h (Γ′k)

d
(min)
h (Γ′k)

+ R̃
(k)
h+1(Γ′k)

}

Consider the k-priority mechanism Γk, where Gh(Γk) = Gh(Γk+1) for all 1 ≤ h ≤

k. Applying Γk to F̃ , we have

R∗(Γk) = max
1≤h≤k

{
n̂∑
i=1

ri,
B̃

(k)
h (Γk) + l

(max)
h (Γk)

d
(min)
h (Γk)

+ R̃
(k)
h+1(Γk)

}

= max
1≤h≤k

{
n̂∑
i=1

ri,
B

(k+1)
h (Γk+1) + l

(max)
h (Γk+1)

d
(min)
h (Γk+1)

+R
(k+1)
h+1 (Γk+1)−

n∑
i=n̂+1

ri

}
.

[207]



From R∗(Γk) ≥ R∗(Γ′k), we know that

max
1≤h≤k

{
B̃

(k)
h (Γ′k) + l

(max)
h (Γ′k)

d
(min)
h (Γ′k)

+ R̃
(k)
h+1(Γ′k)

}

≤ max

{
n̂∑
i=1

ri, max
1≤h≤k

{
B

(k+1)
h (Γk+1) + l

(max)
h (Γ)

d
(min)
h (Γk+1)

+R
(k+1)
h+1 (Γk+1)−

n∑
i=n̂+1

ri

} }

which further gives

max
1≤h≤k

{
B̃

(k)
h (Γ′k) + l

(max)
h (Γ′k)

d
(min)
h (Γ′k)

+ R̃
(k)
h+1(Γ′k) +

n∑
i=n̂+1

ri

}

≤ max

{
n∑
i=1

ri, max
1≤h≤k

{
B

(k+1)
h (Γk+1) + l

(max)
h (Γk+1)

d
(min)
h (Γk+1)

+R
(k+1)
h+1 (Γk+1)

} }
(B.6)

Now consider the (k+ 1)-priority mechanism Γ′k+1, where Gh(Γ
′
k+1) = Gh(Γ

′
k) for

all 1 ≤ h ≤ k, and Gk+1(Γ′k+1) = Gk+1(Γk+1). By the definition of Gk+1(Γk+1)

and Γ′k, we know that d
(max)
i (Γ′k+1) < d

(min)
j (Γ′k+1),∀j < i ≤ k + 1. Next we show

that R∗(Γ′k+1) ≤ R∗(Γk+1).

Applying Γ′k+1 to flow F = {(ri, bi, li, di) | 1 ≤ i ≤ n}, we have

R∗(Γ′k+1) = max
1≤h≤k+1

{
n∑
i=1

ri,
B

(k+1)
h (Γ′k+1) + l

(max)
h (Γ′k+1)

d
(min)
h (Γ′k+1)

+R
(k+1)
h+1 (Γ′k+1)

}

= max
1≤h≤k

{
n∑
i=1

ri,
B

(k+1)
k+1 (Γk+1) + l

(max)
k+1 (Γk+1)

d
(min)
k+1 (Γk+1)

,
B

(k+1)
h (Γ′k+1) + l

(max)
h (Γ′k+1)

d
(min)
h (Γ′k+1)

+R
(k+1)
h+1 (Γ′k+1)

}

= max
1≤h≤k

{
n∑
i=1

ri,
B

(k+1)
k+1 (Γk+1) + l

(max)
k+1 (Γk+1)

d
(min)
k+1 (Γk+1)

,
B̃

(k)
h (Γ′k) + l

(max)
h (Γ′k)

d
(min)
h (Γ′k)

+ R̃
(k)
h+1(Γ′k) +

n∑
i=n̂+1

ri

}
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Combining it with Eq. (B.6), we have

R∗(Γ′k+1) ≤ max



∑n
i=1 ri,

B
(k+1)
k+1 (Γk+1)+l

(max)
k+1 (Γk+1)

d
(min)
k+1 (Γk+1)

,

max1≤h≤k

{
B

(k+1)
h (Γk+1)+l

(max)
h (Γk+1)

d
(min)
h (Γk+1)

+R
(k+1)
h+1 (Γk+1)

}
= max

{
n∑
i=1

ri, max
1≤h≤k+1

{
B

(k+1)
h (Γk+1) + l

(max)
h (Γk+1)

d
(min)
h (Γk+1)

+R
(k+1)
h+1 (Γk+1)

}}

= R∗(Γk+1)

Hence we show the existence of a mechanism Γ′k+1 satisfying Condition 2.

B.3.2 Proof for Proposition 14

PROPOSITION 14. Consider a one-hop network shared by n token-bucket controlled flows,

where flow i, 1 ≤ i ≤ n, has a traffic contract of (ri, bi). Assume a static priority scheduler

that assigns flow i a priority of i, where priority n is the highest priority, and (re)shapes

flow i to (ri, b
′
i), where 0 ≤ b′i ≤ bi. Given a shared link bandwidth of R ≥

∑n
j=1 rj, the

worst-case delay for flow i is

D∗i = max

{
bi +B′i+1

R−Ri+1

,
bi − b′i
ri

+
B′i+1

R−Ri+1

}
. (3.7)
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Proof. Flow 1 ≤ i ≤ n receives a service curve of SC
(i)
1 =


b′i + rit, when t > 0

0 otherwise

inside the

shaper, and a service curve of SC
(i)
2 (t) =

[
(R−Ri+1)t−B′i+1

]+
at the shared link. Overall

it receives a service curve of60

SC(i)(t) = SC
(i)
1 ⊗ SC

(i)
2 = min

{[
b′i + ri

(
t−

B′i+1

R−Ri+1

)]+

, [(R−Ri+1)t−B′i+1]+

}
.

Then we have

d∗i = sup
t≥0

inf
τ≥0

{
bi + rit ≤ SC(i)(t+ τ)

}
= max

{
bi +B′i+1

R−Ri+1

,
bi − b′i
ri

+
B′i+1

R−Ri+1

}
.

B.3.3 Proofs for Proposition 16 and 17

This section provides the solution for OPT S, from which Proposition 16 and 17 derive. For

the reader’s convenience, we restate OPT S. Remember that we define B′i =
∑n

j=i b
′
j and

Ri =
∑n

j=i rj, where B′i = Ri = 0 when i > n.

OPT S min
b′

R

s.t max

{
bi +B′i+1

R−Ri+1

,
bi − b′i
ri

+
B′i+1

R−Ri+1

}
≤ di, ∀ 1 ≤ i ≤ n,

R1 ≤ R, b′1 ≤ b1, 0 ≤ b′i ≤ bi, ∀ 2 ≤ i ≤ n.

Instead of solving OPT S, for technical simplicity we consider OPT S’, whose solution

directly gives that for OPT S. Next we first demonstrate the relationship between OPT S

60See THEOREM 1.4.6 in [120], page 28
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and OPT S’ (Lemma 36), and then proceed to solve OPT S’ (Lemma 37). Combining

Lemma 36 and 37, we then have Proposition 16 and 17.

Lemma 36. For 1 ≤ i ≤ n, define Hi = bi − ridi, and B′ = (B′1, ..., B
′
n). Consider the

following optimization:

OPT S’ min
B′

R

s.t R1 ≤ R.

B′2 ≤ d1(R−R2)− b1,

B′i ∈
[
max

{
R−Ri+1 + ri
R−Ri+1

B′i+1 +Hi, B
′
i+1

}
, B′i+1 +

bi(R−Ri)

R−Ri+1

]
, ∀ 2 ≤ i ≤ n.

(B.7)

Suppose the optimal solution for OPT S’ is (R∗,B′∗). Then (R∗, b′∗), where

b′∗ = (b1, B
′∗
2 −B′∗3 , ...., B′∗n−1 −B′∗n , B′∗n ),

is an optimal solution for OPT S.

Proof. We first show that b′∗ = (b1, B
′∗
2 − B′∗3 , ...., B

′∗
n−1 − B′∗n , B

′∗
n ) and R∗ satisfy all the

constraints for OPT S, and then show that (R∗, b′∗) is an optimal solution for OPT S.

Substituting b′1 = b1 into max
{
b1+B′2
R−R2

,
b1−b′1
r1

+
B′2

R−R2

}
≤ d1 gives

b1+B′2
R−R2

≤ d1, which is equiv-

alent to B′2 ≤ d1(R − R2) − b1. Thus, to show the feasibility of (R∗, b′∗), we only need

to show that (R∗, b′∗) satisfies max
{

bi+B
′∗
i+1

R∗−Ri+1
,
bi−b′∗i
ri

+
B′∗i+1

R∗−Ri+1

}
≤ di and b′∗i ∈ [0, bi] for all

2 ≤ i ≤ n. Below we consider each constraint separately.
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• Basic algebraic manipulation gives that

max

{
bi +B′∗i+1

R∗ −Ri+1

,
bi − b′∗i
ri

+
B′∗i+1

R∗ −Ri+1

}
=


bi +B′∗i+1

R∗ −Ri+1

, when b′∗i ≥
bi(R

∗ −Ri)

R∗ −Ri+1

,

bi − b′∗i
ri

+
B′∗i+1

R∗ −Ri+1

, otherwise.

(B.8)

From OPT S’ we have B′∗i ≤ B′∗i+1 + bi(R
∗−Ri)

R∗−Ri+1
, i.e., b′∗i = B′∗i − B′∗i+1 ≤

bi(R
∗−Ri)

R∗−Ri+1
, and

therefore max
{

bi+B
′∗
i+1

R∗−Ri+1
,
bi−b′∗i
ri

+
B′∗i+1

R∗−Ri+1

}
=

bi−b′∗i
ri

+
B′∗i+1

R∗−Ri+1
. From OPT S’ we also

have B′∗i ≥
R∗−Ri+1+ri
R∗−Ri+1

B′∗i+1 +Hi, i.e., B′∗i −B′∗i+1−Hi = b′∗i −bi+ridi ≥
riB
′∗
i+1

R−Ri+1
, which is

equivalent to
bi−b′∗i
ri

+
B′∗i+1

R−Ri+1
≤ di. Combining them gives max

{
bi+B

′∗
i+1

R∗−Ri+1
,
bi−b′∗i
ri

+
B′∗i+1

R∗−Ri+1

}
≤

di.

• From OPT S’ we have B′∗i ≥ B′∗i+1, and therefore b′∗i = B′∗i −B′∗i+1 ≥ 0. From OPT S’

we also have B′∗i ≤ B′∗i+1 + bi(R
∗−Ri)

R∗−Ri+1
, and therefore b′∗i ≤

bi(R
∗−Ri)

R∗−Ri+1
< bi. Thus, we have

b′∗i ∈ [0, bi].

Next we show by contradiction that (R∗, b′∗) is optimal for OPT S. Suppose (R̃, b̃′), where

R̃ < R∗ is an optimal solution for OPT S. Denote B̃′i =
∑n

j=i b̃
′
j, and B̃′ = (B̃′1, ..., B̃

′
n).

• If (R̃, B̃′) satisfies all constraints for OPT S’, then by (R∗, b′∗)’s optimality we know

that R̃ ≥ R∗, which contradicts to the assumption that R̃ < R∗.

• Otherwise, there exists 2 ≤ i ≤ n such that max
{
bi+B̃

′
i+1

R̃−Ri+1
,
bi−b̃′i
ri

+
B̃′i+1

R̃−Ri+1

}
≤ di and

b̃′i ∈ [0, bi], whereas B̃′i /∈
[
max

{
R̃−Ri+1+ri
R̃−Ri+1

B̃′i+1 +Hi, B̃
′
i+1

}
, B̃′i+1 + bi(R̃−Ri)

R̃−Ri+1

]
.

– When b̃′i ≤
bi(R̃−Ri)
R̃−Ri+1

, from Eq. (B.8) we have that max
{
bi+B̃

′
i+1

R̃−Ri+1
,
bi−b̃′i
ri

+
B̃′i+1

R̃−Ri+1

}
=

bi−b̃′i
ri

+
B̃′i+1

R̃−Ri+1
. Combining

bi−b̃′i
ri

+
B̃′i+1

R̃−Ri+1
≤ di and b̃′i ∈ [0, bi(R̃−Ri)

R̃−Ri+1
] with b̃′i =
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B̃′i − B̃′i−1, we have

B̃′i ∈

[
max

{
R̃−Ri+1 + ri

R̃−Ri+1

B̃′i+1 +Hi, B̃
′
i+1

}
, B̃′i+1 +

bi(R̃−Ri)

R̃−Ri+1

]
,

and therefore a contradiction.

– When b̃′i >
bi(R̃−Ri)
R̃−Ri+1

, we show that there exists an optimal solution (R̃, b̂′) for

OPT S such that b̂′i ≤
bi(R̃−Ri)
R̃−Ri+1

. Define b̂′ as 1) b̂′i = bi(R̃−Ri)
R̃−Ri+1

, and 2) b̂′h = b̃′h when

h 6= i. Denote B̂′h =
∑n

j=h b̂
′
j ≤ B̃′h, and B̂′ = (B̂′1, ..., B̂

′
n). Next we show that

(R̃, b̂′) satisfies all the constraints in OPT S, and therefore is optimal. Observe

first that from B̂′2 < B̃′2, we have
b1+B̂′2
R̃−R2

<
b1+B̃′2
R̃−R2

≤ d1. Below we show that for all

2 ≤ h ≤ n, max
{
bh+B̂′h+1

R̃−Rh+1
,
bh−b̂′h
rh

+
B̂′h+1

R̃−Rh+1

}
≤ dh.

∗ When h > i, by definition B̂′h+1 = B̃′h+1. Thus we have

max

{
bh + B̂′h+1

R̃−Rh+1

,
bh − b̂′h
rh

+
B̂′h+1

R̃−Rh+1

}
= max

{
bh + B̃′h+1

R̃−Rh+1

,
bh − b̃′h
rh

+
B̃′h+1

R̃−Rh+1

}
≤ dh.

∗ When h = i, max
{
bh+B̂′h+1

R̃−Rh+1
,
bh−b̂′h
rh

+
B̂′h+1

R̃−Rh+1

}
=

bh+B̂′h+1

R̃−Rh+1
. Combining it with

B̂′h+1 < B̃′h+1 and max
{
bh+B̃′h+1

R̃−Rh+1
,
bh−b̃′h
rh

+
B̃′h+1

R̃−Rh+1

}
=

bh+B̃′h+1

R̃−Rh+1
≤ dh gives the

result.

∗ When h < i, from B̂′h+1 < B̃′h+1 we have
bh+B̂′h+1

R̃−Rh+1
<

bh+B̃′h+1

R̃−Rh+1
and

bh−b̂′h
rh

+

B̂′h+1

R̃−Rh+1
<

bh−b̃′h
rh

+
B̃′h+1

R̃−Rh+1
, i.e., max

{
bh+B̂′h+1

R̃−Rh+1
,
bh−b̂′h
rh

+
B̂′h+1

R̃−Rh+1

}
< max

{
bh+B̃′h+1

R̃−Rh+1
,
bh−b̃′h
rh

+
B̃′h+1

R̃−Rh+1

}
≤

dh.

If (R̃, b̂′) satisfies all the constraints for OPT S, it contradicts to the assumption

that R̃ < R∗. Otherwise, from the case for b̃′i ≤
bi(R̃−Ri)
R̃−Ri+1

, we know it again to

produce a contradiction.

[213]



Next we proceed to solve OPT S’, combining which with Lemma 36 then gives Proposi-

tion 16 and 17. For the reader’s convenience, we restate the Propositions.

PROPOSITION 16. For 1 ≤ i ≤ n, denote Hi = bi − diri, Πi(R) = ri+R−Ri+1

R−Ri+1
and

Vi(R) = di(R−Ri+1)− bi. Define S1(R) = {V1(R)}, and

Si(R) = Si−1(R)
⋃
{Vi(R)}

⋃{
s−Hi
Πi(R)

| s ∈ Si−1(R)
}

for 2 ≤ i ≤ n. Then we have

R̃∗s = max {R1, inf{R | ∀s ∈ Sn(R), s ≥ 0}}.

PROPOSITION 17. R̃∗s can be achieved by

b′∗i =


max{0, bn − rndn}, when i = n;

max

{
0, bi − ridi +

riB
′∗
i+1

R̃∗s −Ri+1

}
, when 2 ≤ i ≤ n− 1.

(B.9)

Denote Bi :=
[
max

{
R−Ri+1+ri
R−Ri+1

B′i+1 +Hi, B
′
i+1

}
, B′i+1 + bi(R−Ri)

R−Ri+1

]
, where the interval over-

laps with that in the third constraint of OPT S’. We then show that the system meets each

flow’s deadline only if the shared link has a bandwidth no less than max {R1, inf{R | ∀s ∈ Sn(R), s ≥ 0},

which in turn gives the minimum required bandwidth R∗. As mentioned before, we achieve

this by first solving OPT S’, from which we then get the solution for OPT S based on

Lemma 36.

Lemma 37. Define s
(i)
1 = max

{
Πi(R)B′i+1 +Hi, B

′
i+1

}
, s

(i)
2 = min

{
Si−1(R), B′i+1 + bi(R−Ri)

R−Ri+1

}
,

and Si =
[
s

(i)
1 , s

(i)
2

]
for 2 ≤ i ≤ n, where Πi(R) = ri+R−Ri+1

R−Ri+1
, Hi = bi−diri, S1(R) = {V1(R)},

Vi(R) = di(R − Ri+1) − bi, and Si(R) = Si−1(R)
⋃
{Vi(R)}

⋃{
s−Hi
Πi(R)

| s ∈ Si−1(R)
}

. Then

R and b′ satisfies all the constraints in OPT S’ iff Sn 6= ∅ and R ≥ R1, i.e., R ≥

max {R1, inf{R | ∀s ∈ Sn(R), s ≥ 0}}.

Proof. We rely on the following statement to show the Lemma:
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Statement 1.
{

(R, b′) | B′i−1 ∈ Si−1

}⋂
{(R, b′) | B′i ∈ Bi} = {(R, b′) | B′i ∈ Si}.

Given Statement 1, we then show that

Statement 2. {(R, b′) | B′2 ≤ V1(R), B′i ∈ Bi,∀ 2 ≤ i ≤ n} = {(R, b′) | B′n ∈ Sn} .

Note that B′2 ≤ V1(R) corresponds to the second constraint in OPT S’, while B′i ∈ Bi,∀ 2 ≤

i ≤ n corresponds to its third constraint. Therefore, from Statement 2 we have that R and

b′ satisfies all the constraints in OPT S’ iff Sn 6= ∅ and R ≥ R1. Note that Sn 6= ∅ iff

s
(n)
1 ≤ s

(n)
2 , i.e., max{Hn, 0} ≤ min

{
Sn−1(R), bn(R−Rn)

R

}
. As (R − Rn) ≥ 0, max{Hn, 0} ≤

bn(R−Rn)
R

iff Vn(R) ≥ 0, whereas max{Hn, 0} ≤ min {Sn−1(R)} iff s ≥ max{0, Hn}, ∀s ∈

Sn−1(R). Since Πn(R) > 0, by the definition of Sn we have Sn 6= ∅ and R ≥ R1 iff R ≥

max {R1, inf{R | ∀s ∈ Sn(R), s ≥ 0}}.

Proof for Statement 1. Note that
{

(R, b′) | B′i−1 ∈ Si−1

}
= {(R, b′) | Si−1 6= ∅}. Below

we prove that Si−1 6= ∅ iff B′i ≤ min{Si−1(R)}. As s
(i)
2 = min

{
Si−1(R), B′i+1 + bi(R−Ri)

R−Ri+1

}
,

combining B′i ≤ min{Si−1(R)} with B′i ∈ Bi =
[
s

(1)
i , B′i+1 + bi(R−Ri)

R−Ri+1

]
directly gives B′i ∈

Si =
[
s

(i)
1 , s

(i)
2

]
.

From Si−1 6= ∅ ⇔ s
(i−1)
2 ≥ s

(i−1)
1 , we have


B′i ≤ s

(i−1)
2 = min

{
Si−2(R), B′i +

bi−1(R−Ri−1)

R−Ri

}
⇔ B′i ≤ min {Si−2(R)}

Πi−1(R)B′i +Hi−1 ≤ s
(i−1)
2 ⇔ B′i ≤ min{Vi−1(R)}

⋃{
s−Hi−1

Πi−1(R)
| s ∈ Si−2(R)

}

As Si−1(R) = Si−2(R)
⋃
{Vi−1(R)}

⋃{ s−Hi−1

Πi−1(R)
| s ∈ Si−2(R)

}
, we have Si−1 6= ∅ iff B′i ≤

min{Si−1(R)}.
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Proof for Statement 2. We show by induction on the value of n.

• Base case: when n = 2, basic algebraic manipulation gives that

{(R, b′) | B′2 ≤ V1(R), B′2 ∈ Bi} =

{
(R, b′) | B′2 ∈

[
s

(2)
1 ,min

{
V1(R), B′3 +

b2(R−R2)

R−R3

}]}
= {(R, b′) | B′2 ∈ S2}

• Induction step: suppose {(R, b′) | B′2 ≤ V1(R), B′i ∈ Bi,∀ 2 ≤ i ≤ k} = {(R, b′) | B′k ∈ Sk}.

Then we have

{(R, b′) | B′2 ≤ V1(R), B′i ∈ Bi,∀ 2 ≤ i ≤ k + 1}

= {(R, b′) | B′2 ≤ V1(R), B′i ∈ Bi,∀ 2 ≤ i ≤ k}
⋂{

(R, b′) | B′k+1 ∈ Bk+1

}
= {(R, b′) | B′k ∈ Sk}

⋂{
(R, b′) | B′k+1 ∈ Bk+1

}
=
{

(R, b′) | B′k+1 ∈ Sk+1

}
where the last equation comes from Statement 1.

• Conclusion: by the principle of induction, we have

{(R, b′) | B′2 ≤ V1(R), B′i ∈ Bi,∀ 2 ≤ i ≤ n} = {(R, b′) | B′n ∈ Sn} .

Observe from the proof of Lemma 37 that for all 2 ≤ i ≤ n, settingB′i = max
{

Πi(R)B′i+1 +Hi, B
′
i+1

}
gives R̃∗s. Combining it with Lemma 36, we know that R∗ is the optimal solution for

OPT S, and therefore we have Proposition 16. Besides, since R̃∗s can be achieved by setting

b′i = max
{

riB
′
i+1

R−Ri+1
+Hi, 0

}
, we then have Proposition 17.
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B.4 Proofs for FIFO Scheduler

B.4.1 Proof for Proposition 18

PROPOSITION 18. Consider a system with n rate-controlled flows with traffic envelopes

(ri, bi), where 1 ≤ i ≤ n, which share a FIFO link with bandwidth R ≥ R1 =
∑n

j=1 rj.

Assume that the system reshapes flow i’s traffic envelope to (ri, b
′
i). Then the worst-case

delay for flow i is

D̂∗i = max

{
bi − b′i
ri

+

∑
j 6=i b

′
j

R
,

∑n
j=1 b

′
j

R
+

(bi − b′i)R1

riR

}
. (3.10)

Remark: we will hardly rely on network calculus to show Proposition 18. This is because

current work regarding aggregate multiplexing is not very rich, and none of the existing work

provides a tight bound for our system.

Proof. W.l.o.g we consider the worst-case delay for flow 1. First we show that there always

exists a traffic pattern such that flow 1’s worst-case delay can be achieved by the last bit

inside a burst of size b1, and then we characterize the worst-case delay for that bth1 bit.

• Consider the traffic pattern T (t) = {T1(t), ..., Tn(t)} that realizes flow 1’s worst-case

delay, where Ti(t) is right continuous and specifies the cumulative amount of data sent

by flow i during time [0, t]. Suppose the worst-case delay is achieved at t0, and at t0

flow 1 sends a burst of b ≤ b1. As under FIFO the last bit gets a strictly larger delay

compared with all the other bits inside the burst, the bth bit sent at t0 achieves the

worst-case delay.
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If b = b1, flow 1’s worst-case delay is achieved by the bth1 bit inside a burst, i.e., T (t)

is the traffic pattern we want. Afterwards we consider the case b < b1.

First note that b is the maximum amount of data flow 1 can send at t0 without violating

its arrival-curve constraint, i.e., there exists ts ∈ [0, t0) such that T (t0) − T (ts) =

b1 + r1(t0 − ts). Otherwise, we can produce a worse delay by increasing b to the

maximum value that remains conformant with the arrival-curve constraint. Next we

show that if b < b1, there exists T ′1(t) sending a burst of b1 at t0, such that under

T ′(t) = {T ′1(t), ..., Tn(t)} the last bit flow 1 sends at t0 also achieves flow 1’s worst-case

delay.

Define t̂ = sup{t | T1(t0)−T (t) ≥ b1}. As b < b1, t̂ ∈ (ts, t0). Note that T1(t0)−T1(t̂) ≤

b1 as T1(t) is right continuous. Define

T ′1(t) =


T1(t), when t < t̂

T1(t0)− b1, when t̂ ≤ t < t0

T1(t0), otherwise

which sends a burst of b1 at t0. Note that T ′1(t) satisfies flow 1’s arrival curve. Specifi-

cally, consider any 0 ≤ t(1) < t(2).

– When t(2) < t̂, it has T ′1
(
t(2)
)
− T ′1

(
t(1)
)

= T1

(
t(2)
)
− T1

(
t(1)
)
.

– When t̂ ≤ t(2) < t0,

∗ If t(1) < t̂, T ′1
(
t(2)
)
− T ′1

(
t(1)
)

= T1(t0) − b1 − T1

(
t(1)
)
≤ T1(t̂) − T1

(
t(1)
)
≤

T1

(
t(2)
)
− T1

(
t(1)
)

∗ If t̂ ≤ t(1) < t0, T ′1
(
t(2)
)
− T ′1

(
t(1)
)

= T1(t0)− b1 − [T1(t0)− b1] = 0

– When t(2) ≥ t0,

∗ If t(1) ≤ t̂, T ′1
(
t(2)
)
− T ′1

(
t(1)
)

= T1(t0)− T1

(
t(1)
)
≤ T1

(
t(2)
)
− T1

(
t(1)
)
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∗ If t̂ < t(1) < t0, T ′1
(
t(2)
)
− T ′1

(
t(1)
)

= T1(t0) − [T1(t0) − b1] = b1 ≤ b1 +

r1

(
t(2) − t(1)

)
∗ If t(1) ≥ t0, T ′1

(
t(2)
)
− T ′1

(
t(1)
)

= T1(t0)− T1(t0) = 0

We then show that under T ′(t) the last bit sent at t0 also achieves flow 1’s worst-case

delay. First observe that under T ′(t) the last bit sent at t0 arrives at the shared link

no earlier than that under T (t). This is because it arrives at the reshaper later than

under T (t) and experiences a no smaller reshaping delay upon its arrival. Particularly,

given the shaper’s service curve of


b′1 + r1t, when t > 0

0 otherwise

, the bth1 bit of a burst gets

a delay of
b1−b′1
r1

, which equals the worst-case delay for flow 1 inside the shaper. Next

we show that under T ′(t) the last bit leaves the shared link no earlier than that under

T (t), i.e., overall it gets a no smaller delay under T ′(t). Since under T (t) the last bit

achieves the worst-case delay, so does under T (t).

Suppose the last bit arrives at the shared link at t̂0 under T (t), and at t̂′0 ≥ t̂0 under

T ′(t). If under T (t) the last bit arrives to find the shared link with an empty queue,

i.e., it has no delay at the shared link, then combining it with t̂′0 ≥ t̂0 gives what we

want. Afterwards, we consider the case where under T (t) the last bit arrives at the

shared link with a non-empty queue, i.e., there exists t̂s < t̂0 and δ > 0 such that the

shared link processes data at full speed R during [t̂s, t̂0], and at a speed strictly less

than R during [t̂s − δ, t̂s).

Under T (t), T1(t̂s, t̂0) data from flow 1 arrives at the shared link during [t̂s, t̂0]. Then

the last bit leaves the shared link at time t̂e = t̂s +
∑
j≥2[Tj(t̂0)−Tj(t̂s)]+T1(t̂s,t̂0)

R
. Whereas

under T ′(t), suppose there is M ≥ 0 amount of data in the buffer at t̂s, and T ′1(t̂s, t̂
′
0)

amount of data from flow 1 arrives at the shared link during [t̂s, t̂
′
0]. As T ′1(t) delays

some data to t0, and by t̂′0 all of the delayed data arrives at the shared link, it has
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T ′1(t̂s, t̂
′
0) ≥ T1(t̂s, t̂0). Then the bth1 bit leaves the shared link at a time no less than

t̂s +
M+

∑
j≥2[Tj(t̂

′
0)−Tj(t̂s)]+T ′1(t̂s,t̂′0)

R
, which is no less than t̂e.

• Next we characterize the worst-case delay. Given that there always exists a traffic

pattern that the bth1 bit of a burst gives flow 1’s worst-case delay, w.l.o.g we assume

the worst-case delay to be achieved by the bth1 bit sent at t0.

Remember that the bth1 bit of a burst gets a delay of
b1−b′1
r1

inside the shaper. Next we

consider the delay at the shared link. Suppose the bth1 bit arrives at the shared link at

t̂0. If at t̂0 the shared link processes at a speed strictly less than R, then the bth1 bit

gets no delay at the shared link, and therefore gets a overall worst-case delay of
b1−b′1
r1

.

Otherwise, suppose the last busy period at the shared link starts at 0 ≤ t̂s ≤ t̂0.

1. When t̂0− t̂s ≥ b1−b′1
r1

, during [t̂s, t̂0] at most
∑n

j=1 b
′
j +
∑n

j=1 rj
(
t̂0 − t̂s

)
amount of

data arrives at the shared link. Thus, the delay for the bth1 bit at the shared link

is
∑n
j=1 b

′
j+
∑n
j=1 rj(t̂0−t̂s)
R

− t̂0, which decreases with t̂0 since R ≥
∑n

j=1 rj. Given

t̂0 ≥ b1−b′1
r1

+ t̂s, the worst-case delay at the shared link is achieved at t̂0 =
b1−b′1
r1

+ t̂s,

and has a value of
∑n
j=1 b

′
j+

b1−b
′
1

r1

∑n
j=1 rj

R
− b1−b′1

r1
− t̂s. Thus the overall worst-case

delay is achieved at t̂s = 0, with a value of

∑n
j=1 b

′
j +

b1−b′1
r1

∑n
j=1 rj

R
− b1 − b′1

r1

+
b1 − b′1
r1

=

∑n
j=1 b

′
j

R
+

(b1 − b′1)R1

r1R
.

2. When t̂0 − t̂s <
b1−b′1
r1

, as flow 1’s burst of b′1 arrived at the shared link before

t̂0 − b1−b′1
r1

, it should has been cleared before t̂s. Hence, during [t̂s, t̂0] at most∑n
j 6=1 b

′
j +

∑n
j=1 rj

(
t̂0 − t̂s

)
data arrive at the shared link. Therefore, the bth1 bit

gets a delay of
∑n
j 6=1 b

′
j+
∑n
j=1 rj(t̂0−t̂s)
R

− t̂0 at the shared link, which decreases with t̂0

under R ≥
∑n

j=1 rj. Consequently, its worst-case delay is achieved at t̂0 = t̂s, with
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a value of
∑n
j 6=1 b

′
j

R
− t̂s, which is maximized at t̂s = 0. Thus the overall worst-case

delay is
b1−b′1
r1

+
∑n
j 6=1 b

′
j

R
.

Combining case 1 and 2 gives flow 1’s worst-case delay, i.e.,

D̂∗1 = max

{
b1 − b′1
r1

+

∑
j 6=1 b

′
j

R
,

∑n
j=1 b

′
j

R
+

(b1 − b′1)R1

r1R

}
.

B.4.2 Proofs for Proposition 19 and 20

This part provides the solution for OPT F, from which we then have Proposition 19 and 20.

For the reader’s convenience, we restate OPT F, where R1 =
∑n

i=1 ri.

OPT F min
b′

R

s.t max

{
bi − b′i
ri

+

∑
j 6=i b

′
j

R
,

∑n
j=1 b

′
j

R
+

(bi − b′i)R1

riR

}
≤ di, ∀ 1 ≤ i ≤ n,

R1 ≤ R, 0 ≤ b′i ≤ bi, ∀ 1 ≤ i ≤ n.

Lemma 38. For 1 ≤ i ≤ n define T
(1)
i = R

R+ri

(
Hi + ri

R
B̂′n

)
and T

(2)
i = bi + ri(B̂

′
n−Rdi)
R1

.

Denote B̂′0 = 0 and B̂′ = (B̂′1, ...B̂
′
n). Consider the following optimization:

OPT F’ min
B̂
′
R

s.t max
{

0, T
(1)
i , T

(2)
i

}
≤ B̂′i − B̂′i−1 ≤ bi, ∀ 1 ≤ i ≤ n,

R1 ≤ R.
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Suppose the optimal solution for OPT F’ is (R∗, B̂
′∗

). Then (R∗, b′∗), where

b′∗ = (B̂′∗1 , B̂
′∗
2 − B̂′∗1 , ..., B̂′∗n − B̂′∗n−1)

is an optimal solution for OPT F.

Proof. Define B̂i =
∑i

j=1 bj. From basic algebraic manipulation OPT F is equivalent to

OPT F”:

OPT F” min
b′

R

s.t max
{

0, T
(1)
i , T

(2)
i

}
≤ B̂′i − B̂′i−1 ≤ bi ∀ 1 ≤ i ≤ n,

R1 ≤ R.

As the constraints of OPT F’ and OPT F” are the same, the two optimizations share the

same optimal value R∗. From B̂i =
∑i

j=1 bj, b
′∗ = (B̂′∗1 , B̂

′∗
2 − B̂′∗1 , ..., B̂′∗n − B̂′∗n−1) is then

the optimal variable for OPT F”. Hence, (R∗, b′∗) is an optimal solution for OPT F”, and

therefore an optimal solution for OPT F.

Next we proceed to solve OPT F’, combining which with Lemma 38 then gives Proposi-

tion 19 and 20. Define Zi = {1 ≤ j ≤ i | j ∈ Z} for 1 ≤ i ≤ n,

XF (R) = max
P1,P2⊆Zn,P2 6=Zn,P1

⋂
P2=∅

∑
i∈P1

RHi
R+ri

+
∑

i∈P2

(
bi − ridiR

R1

)
1−

∑
i∈P1

ri
R+ri
−
∑

i∈P2

ri
R1

,

and

YF (R) = min
1≤i≤n−1

B̂n, Rdn, min
P1,P2⊆Zi,P1

⋂
P2=∅,P1

⋃
P2 6=∅

B̂i −
∑

j∈P1

RHj
R+rj

−
∑

j∈P2

(
bj − rjdjR

R1

)
∑

j∈P1

rj
R+rj

+
∑

j∈P2

rj
R1


 ,
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where B̂i =
∑i

j=1 bj for 1 ≤ i ≤ n. Then from Lemma 39 we know that R forms a feasible

solution for OPT F’ iff R ≥ max
{
R1,

B̂nR1∑n
i=1 ridi

}
and XF (R) ≤ YF (R). Therefore, R∗ is the

minimum value satisfying these conditions.

Given R∗, from Lemma 39 we know that there exists an optimal solution with B̂′∗n = XF (R∗).

From Statement 2 in Lemma 40, we know that suppose there exists an optimal solution with

B̂′n = B̂′∗n and B̂′i = B̂′∗i where 2 ≤ i ≤ n, then there exists an optimal solution with

B̂′n = B̂′∗n , B̂′i = B̂′∗i , and B̂′i−1 = max
{∑i−1

j=1 Tj, B̂
′∗
i − bi

}
. Thus, based on B̂′∗n we can

sequentially compute B̂′∗i from i = n− 1 to i = 1.

Lemma 39. Define Ti = max
{

0, T
(1)
i , T

(2)
i

}
. Then

{
B̂
′
| Th ≤ B̂′h − B̂′h−1 ≤ bh, ∀1 ≤ h ≤ n

}
6=

∅ iff all of the following conditions hold:

• R ≥
∑n
i=1 biR1∑n
i=1 ridi

= B̂nR1∑n
i=1 ridi

• B̂′n ≥ maxP1,P2⊆Zn,P2 6=Zn,P1
⋂
P2=∅

∑
i∈P1

RHi
R+ri

+
∑
p∈P2

(
bi−

ridiR

R1

)
1−
∑
i∈P1

ri
R+ri

−
∑
i∈P2

ri
R1

,

• B̂′n ≤ min1≤i≤n−1

{
B̂n, Rdn,minP1,P2⊆Zi,P1

⋂
P2=∅,P1

⋃
P2 6=∅

{
B̂i−

∑
j∈P1

RHj
R+rj

−
∑
j∈P2

(
bj−

rjdjR

R1

)
∑
j∈P1

rj
R+rj

+
∑
j∈P2

rj
R1

}}

Proof. Define B̂i =
∑i

j=1 bj for 1 ≤ i ≤ n, and define

B̂i =
[
max

{
Ti, B̂

′
i+1 − bi+1

}
, min

{
B̂i, B̂

′
i+1 − Ti+1

}]
for 1 ≤ i ≤ n − 1. As B̂′0 = 0, from

basic algebraic manipulation Ti = max
{

0, T
(1)
i , T

(2)
i

}
≤ B̂′i − B̂′i−1 ≤ bi, ∀1 ≤ i ≤ n is

equivalent to 
B̂′1 ∈

[
max

{
T1, B̂

′
2 − b2

}
, min

{
b1, B̂

′
2 − T2

}]
= B̂1,

Ti ≤ B̂′i − B̂′i−1 ≤ bi, ∀ 2 < i ≤ n

Define B̂
′
i =

{
B̂i, ..., B̂n

}
, and B̂(i) =

{
B̂
′
i | Th ≤ B̂′h − B̂′h−1 ≤ bh, ∀i < h ≤ n

}
. Then we

have {
B′ | Ti ≤ B̂′i − B̂′i−1 ≤ bi, ∀1 ≤ i ≤ n

}
6= ∅ ⇐⇒ B̂1 6= ∅ and B̂(2) 6= ∅,
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which from Lemma 40 is equivalent to

{
n∑
j=1

Tj ≤ B̂′n ≤ min
{
B̂n, Rdn

}
|

i∑
j=1

Tj ≤ B̂i, ∀1 ≤ i ≤ n− 1

}
6= ∅. (B.10)

Denote Zi = {1 ≤ j ≤ i | j ∈ Z} for 1 ≤ i ≤ n, then

•
∑n

j=1 Tj ≤ B̂′n implies that for all P1, P2 ⊆ Zn and P1

⋂
P2 = ∅,

∑
i∈P1

T
(1)
i +∑

i∈P2
T

(2)
i ≤ B′n, i.e.,

∑
i∈P1

RHi
R+ri

+
∑

p∈P2

(
bi − ridiR

R1

)
≤
(

1−
∑

i∈P1

ri
R+ri
−
∑

i∈P2

ri
R1

)
B′n,

which is equivalent to R ≥
∑n
i=1 biR1∑
i=1 ridi

when P2 = Zn, and B̂′n ≥
∑
i∈P1

RHi
R+ri

+
∑
p∈P2

(
bi−

ridiR

R1

)
1−
∑
i∈P1

ri
R+ri

−
∑
i∈P2

ri
R1

otherwise.

• For 1 ≤ i ≤ n − 1,
∑i

j=1 Tj ≤ B̂i implies that for all P1, P2 ⊆ Zi and P1

⋂
P2 = ∅,∑

i∈P1
T

(1)
i +

∑
i∈P2

T
(2)
i ≤ B̂i, i.e.,

∑
i∈P1

RHi
R+ri

+
∑

p∈P2

(
bi − ridiR

R1

)
+
(∑

i∈P1

ri
R+ri

+
∑

i∈P2

ri
R1

)
B′n ≤

B̂i, which is equivalent to B̂′n ≤
B̂i−

∑
j∈P1

RHj
R+rj

−
∑
j∈P2

(
bj−

rjdjR

R1

)
∑
j∈P1

rj
R+rj

+
∑
j∈P2

rj
R1

.

Therefore, Eq. (B.10) holds iff



R ≥
∑n

i=1 biR1∑
i=1 ridi

B̂′n ≥ max
P1,P2⊆Zn,P2 6=Zn,P1

⋂
P2=∅

∑
i∈P1

RHi
R+ri

+
∑

i∈P2

(
bi − ridiR

R1

)
1−

∑
i∈P1

ri
R+ri
−
∑

i∈P2

ri
R1

B̂′n ≤ min
1≤i≤n−1

B̂n, Rdn, min
P1,P2⊆Zi,P1

⋂
P2=∅,P1

⋃
P2 6=∅

B̂i −
∑

j∈P1

RHj
R+rj

−
∑

j∈P2

(
bj − rjdjR

R1

)
∑

j∈P1

rj
R+rj

+
∑

j∈P2

rj
R1




Next we establish Lemma 40. For B̂1 =
[
max

{
T1, B̂

′
2 − b2

}
, min

{
b1, B̂

′
2 − T2

}]
, B̂

′
2 ={

B̂′2, ..., B̂
′
n

}
, and B̂(2) =

{
B̂
′
2 | Th ≤ B̂′h − B̂′h−1 ≤ bh, ∀2 < h ≤ n

}
, we have
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Lemma 40. B̂1 6= ∅ and B̂(2) 6= ∅ iff

{
n∑
j=1

Tj ≤ B̂′n ≤ min
{
B̂n, Rdn

}
|

i∑
j=1

Tj ≤ B̂i, ∀1 ≤ i ≤ n− 1

}
6= ∅.

Proof. For 1 ≤ i ≤ n define B̂i =
∑i

j=1 bj and B̂
′
i =

{
B̂i, ..., B̂n

}
. For 1 ≤ i ≤ n− 1 further

define B̂i =
[
max

{∑i
j=1 Tj, B̂

′
i+1 − bi+1

}
, min

{
B̂i, B̂

′
i+1 − Ti+1

}]
and

B̂(i) =
{
B̂
′
i | Th ≤ B̂′h − B̂′h−1 ≤ bh, ∀i < h ≤ n

}
. Suppose we have

Statement 1. B̂1 6= ∅ and B̂(2) 6= ∅ iff 1) B̂n−1 6= ∅, 2)
∑h

j=1 Th ≤ B̂h, for 1 ≤ h ≤ n− 2,

and 3) B̂′n ≤ Rdn−1.

Basic algebraic manipulations give that B̂n−1 6= ∅, i.e., max
{∑n−1

j=1 Tj, B̂
′
n − bn

}
≤ min

{
B̂n−1, B̂

′
n − Tn

}
,

iff 1)
∑n

j=1 Tj ≤ B̂′n ≤ B̂n, 2)
∑n−1

j=1 Tj ≤ B̂n−1, and 3) B̂′n ≤ Rdn. Combining them with∑h
j=1 Th ≤ B̂h, for 1 ≤ h ≤ n − 2 and B̂′n ≤ Rdn−1 gives

∑n
j=1 Tj ≤ B̂′n ≤ min

{
B̂n, Rdn

}
and

∑h
j=1 Th ≤ B̂h, for 1 ≤ h ≤ n− 1. Therefore, we have Lemma 40.

Next, we show Statement 1 based on Statement 2. For convenience, define B̂(n) = {1}. Then

we have

Statement 2. For 1 ≤ i ≤ n− 2, B̂i 6= ∅ and B̂(i+1) 6= ∅ iff 1) B̂i+1 6= ∅ and B̂(i+2) 6= ∅, 2)∑i
j=1 Tj ≤ B̂i, and 3) B̂′n ≤ Rdi+1.

Proof for Statement 1: we show Statement 1 by induction. For 1 ≤ i ≤ n− 1, define

Si : B̂i 6= ∅, B̂(i+1) 6= ∅, B̂′n ≤ Rdi, and
h∑
j=1

Th ≤ B̂h, ∀1 ≤ h ≤ i− 1.

• When i = 1, Statement 2 directly gives that B̂1 6= ∅ and B̂(2) 6= ∅ iff S2 holds.
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• When i ≥ 1, suppose B̂1 6= ∅ and B̂(2) 6= ∅ iff Si holds, i.e., 1) B̂i 6= ∅ and B̂(i+1) 6= ∅,

2) B̂′n ≤ Rdi, and 3)
∑h

j=1 Th ≤ B̂h,∀1 ≤ h ≤ i − 1. Note that by Statement 2 we

have B̂i 6= ∅ and B̂(i+1) 6= ∅ iff i) B̂i+1 6= ∅ and B̂(i+2) 6= ∅, ii)
∑i

j=1 Ti ≤ B̂i, and

iii) B̂′n ≤ Rdi+1. Thus, B̂1 6= ∅ and B̂(2) 6= ∅ iff 1) B̂i+1 6= ∅ and B̂(i+2) 6= ∅, 2)

B̂′n ≤ min {Rdi, Rdi+1} = Rdi+1, and 3)
∑h

j=1 Th ≤ B̂h,∀1 ≤ h ≤ i, i.e., Si+1 holds.

Thus, we have B̂1 6= ∅ and B̂(2) 6= ∅ iff Sn−1 holds: B̂n−1 6= ∅, B̂(n) = {1} 6= ∅, B̂′n ≤ Rdn−1,

and
∑h

j=1 Th ≤ B̂h,∀1 ≤ h ≤ n− 2, which then gives Statement 1.

Proof for Statement 2: Consider B̂i 6= ∅ and B̂(i+1) 6= ∅.

• B̂i 6= ∅ iff max
{∑i

j=1 Tj, B̂
′
i+1 − bi+1

}
≤ min

{
B̂i, B̂

′
i+1 − Ti+1

}
, which from basic

algebraic manipulation is equivalent to 1)
∑i+1

j=1 Tj ≤ B̂′i+1 ≤ B̂i+1, 2)
∑i

j=1 Tj ≤ B̂i,

and 3) bi+1 ≥ Ti+1 ⇐⇒ B̂′n ≤ Rdi+1.

• Consider B̂(i+1) 6= ∅. When i < n−2, from basic algebraic manipulation it is equivalent

to 1) Tn+2 ≤ B̂′i+2 − B̂′i+1 ≤ bi+2 and 2) B̂(i+2) 6= ∅. When i = n − 2, B̂(i+1) ={
B̂
′
n−1 | Tn ≤ B̂′n − B̂′n−1 ≤ bn

}
, which is non-empty iff Tn ≤ B̂′n − B̂′n−1 ≤ bn. Since

B̂n = {1}, it also has B̂(i+2) 6= ∅.

Note that
∑i+1

j=1 Tj ≤ B̂′i+1 ≤ B̂i+1 and Tn+2 ≤ B̂′i+2 − B̂′i+1 ≤ bi+2 iff B̂i+1 6= ∅. Thus we

have Statement 2.
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B.5 On the Benefit of Grouping Flows With Different

Deadlines

In this section, we explore scenarios that consist of two flows sharing a common link whose

access is arbitrated by a static priority scheduler. The goal is to identify configurations that

minimize the link bandwidth required to meet the flows’ deadlines. Of particular interest is

assessing when the two flows should be assigned different priorities or instead merged into

the same priority class.

Recalling the discussion of Section 3.3.5, specializing Propositions 16 and 19 to two flows,

we find that the minimum required bandwidth for the two-flow scenario under static priority

+ shaping is

R̃∗s =


max

{
r1 + r2,

b2

d2

,
b1 + b2 − r2d2

d1

+ r2

}
, when

b2

r2

≥ b1

r1

max

{
r1 + r2,

b2

d2

,
b1 + max{b2 − r2d2, 0}

d1

+ r2

}
, otherwise

(3.15)

and that under fifo + shaping it is

R̂∗s = max

{
r1 + r2,

b2

d2

,
(b1 + b2)(r2 + r2)

d1r1 + d2r2

,
b1 + b2 − d1r1 +

√
(b1 + b2 − d1r1)2 + 4r1d2b2

2d2

}
.

(3.17)

Comparing them gives

Proposition 41. For the two-flow scenario, R̃∗s > R̂∗s iff

d1 ∈
(
b2

r2

,
b1

r1

)
and d2 ∈

(
(b1 + b2)(r1 + r2)

r2(b1/d1 + r2)
− d1r1

r2

, d1

)
.
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Proof. When R̃∗s = max
{
r1 + r2,

b2
d2

}
, from Eq. (3.16) R̃∗s ≤ R̂∗s. Below we consider 1)

b2
d2
≥ b1

d1
and 2) b2

d2
< b1

d1
separately under R̃∗s > max

{
r1 + r2,

b2
d2

}
.

1. When b2
d2
≥ b1

d1
, we show that R̃∗s ≤ R̂∗s. Specifically, R̃∗s > max

{
r1 + r2,

b2
d2

}
iff

b1+b2−r2d2

d1
+ r2 > max

{
r1 + r2,

b2
d2

}
, which from basic algebraic manipulation equiva-

lents to b1 + b2 > r1d1 +r2d2 and d2 <
b1+b2−

√
(b1+b2)2−4r2b2d1

2r2
. Next we show that under

b1 + b2 > r1d1 + r2d2, it has (b1+b2)(r2+r2)
d1r1+d2r2

≥ b1+b2−r2d2

d1
+ r2, and therefore R̃∗s ≤ R̂∗s.

Consider f(d2) = (b1+b2)(r2+r2)
d1r1+d2r2

− b1+b2−r2d2

d1
− r2, which equals 0 when d2 = d1. Basic

algebraic gives that

df(d2)

dd2

=
r2

d1

− (b1 + b2)(r2 + r2)r2

(d1r1 + d2r2)2

=
r2

(d1r1 + d2r2)2

(
(d1r1 + d2r2)2

d1

− (b1 + b2)(r2 + r2)

)
≤ r2

(d1r1 + d2r2)2

(
(d1r1 + d2r2)2

d1

− (d1r1 + d2r2)(r2 + r2)

)
=

r2
2(d2 − d1)

d1(d1r1 + d2r2)
≤ 0

Thus, for all d2 ≤ d1, it has f(d2) ≥ f(d1) = 0, i.e., (b1+b2)(r2+r2)
d1r1+d2r2

≥ b1+b2−r2d2

d1
+ r2.

2. When b2
d2
< b1

d1
, we show that R̃∗s > R̂∗s iff d1 ∈

(
b2
r2
, b1
r1

)
and d2 ∈

(
(b1+b2)(r1+r2)
r2(b1/d1+r2)

− d1r1
r2
, d1

)
.

Specifically, R̃∗s > max
{
r1 + r2,

b2
d2

}
iff b1+max{b2−r2d2,0}

d1
+r2 > max

{
r1 + r2,

b2
d2

}
, which

from basic algebraic manipulation equivalents to


b1 + b2 − r2d2

d1

+ r2 > max

{
r1 + r2,

b2

d2

}
, when d2 ≤

b2

r2

b1

d1

+ r2, otherwise .

When d2 ≤ b2
r2

, similar as before we have R̃∗s ≤ R̂∗s. When d2 >
b2
r2

, basic algebraic

manipulation gives that b1
d1

+ r2 > max
{
r1 + r2,

b2
d2

}
iff d1 < b1

r1
. Combining them
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gives that R̃∗s ≤ R̂∗s when (d1, d2) /∈
{

(d1, d2) | b2
r2
< d2 < d1 <

b1
r1

}
. When (d1, d2) ∈{

(d1, d2) | b2
r2
< d2 < d1 <

b1
r1

}
, basic algebraic manipulation gives that (b1+b2)(r2+r2)

d1r1+d2r2
>

b1+b2−d1r1+
√

(b1+b2−d1r1)2+4r1d2b2

2d2
and r1 + r2 >

b2
d2

, i.e.,

R̂∗s = max

{
r1 + r2,

(b1 + b2)(r2 + r2)

d1r1 + d2r2

}
=


r1 + r2, if b1 + b2 ≤ r1d1 + r2d2

(b1 + b2)(r2 + r2)

d1r1 + d2r2

, otherwise

When b1 + b2 ≤ r1d1 + r2d2, it has R̃∗s > R̂∗s. Otherwise, basic algebraic manipulation

gives that R̃∗s > R̂∗s iff d2 >
(b1+b2)(r1+r2)
r2(b1/d1+r2)

− d1r1
r2

:= g(d1). Note that when b2
r2
< d1 <

b1
r1

,

g(d1) > b2
r2

; and when d1 = b2
r2

or d1 = b1
r1

, g(d1) = d1. Therefore, R̃∗s > R̂∗s iff

d2 ∈
(

(b1+b2)(r1+r2)
r2(b1/d1+r2)

− d1r1
r2
, d1

)
.

B.6 Extensions to Packet-Based Models in the Two-

Flow Static Priority Case

In this section, we consider a more general packet-based model, where flow i has maximum

packet size of li and the scheduler relies on static priorities. For ease of exposition, we only

consider scenarios that consist of n = 2 flows, and consequently two priority classes (low and

high).

We first characterize in Proposition 42 the worst-case delay of high-priority packets, and use

the result to identify a condition for when adding a reshaper can help lower the required

bandwidth (Corollary 43). We also confirm (Proposition 44) the intuitive property that

reshaping the low-priority flow does not contribute to lowering the required bandwidth. We
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then proceed to characterize in Proposition 45 the worst-case delay of low-priority packets.

The results of Propositions 42 and 45 are used to formulate an optimization, OPT 2, that

seeks to identify the optimum reshaping parameters for the high-priority flow that minimizes

the link bandwidth required to meet the flows’ deadlines. The bulk the section is devoted

to solving this optimization, while also establishing the intermediate result that the optimal

reshaping can be realized simply reducing the flow’s burst size, i.e., keeping its rate constant.

Returning to our two-flow, packet-based scenario, consider two token-bucket controlled flows

(r1, b1) and (r2, b2) sharing a link with a bandwidth of R whose access is controlled by a static

priority scheduler. Assume that flow (ri, bi) has a deadline of di (d1 > d2 > 0), and (r2, b2)

has non-preemptive priority over (r1, b1) at the shared link. Denote the maximum packet

length of (ri, bi) as li < bi. Note that by setting li = 0, the packet-based model defaults

to the fluid model. To guarantee that none of the packets in (r1, b1) or (r2, b2) misses the

deadline, R needs to satisfy [120]:

r1 + r2 ≤ R, (B.11a)

b2 + l1
R

≤ d2, (B.11b)

b2 + b1

R− r2

≤ d1. (B.11c)

Therefore, the minimum bandwidth for the link satisfies:

R̃(2)∗ = max

{
r1 + r2,

l1 + b2

d2

,
b1 + b2

d1

+ r2

}
. (B.12)

Now consider adding a lossless packet-based greedy leaky-bucket (re)shaper for each flow

before the shared link, as shown in the above figure. Denote (ri, bi)’s shaper as (r′i, b
′
i), where
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b′i ≥ li. To guarantee a finite delay inside the shaper, we also need r′i ≥ ri. Under this

assumption, if b′i ≥ bi, the shaper has no effect. Hence, we further require that b′i < bi.

Next, we proceed to characterize the optimal minimum required bandwidth under static

priority and (re)shaping. Denote it as R̃
(2)∗
s .

Under a non-preemptive static priority discipline, the worst-case delay of the high-priority

flow is unaffected by the low-priority flow’s arrival curve (r1, b1), and only depends on its

maximum packet size l1. This is because high-priority packets arriving to an empty high-

priority queue wait for at most the transmission time of one low-priority packet. This

property holds whether shapers are present or not. Specifically,

Proposition 42. For a high priority flow (r2, b2) traversing a lossless packet-based greedy

leaky-bucket shaper (r′2, b
′
2), where r2 ≤ r′2 and b2 > b′2, before going through a shared link

with bandwidth R > r2, the worst-case delay is

D∗2 = max

{
b2 + l1
R

,
b2 − b′2
r′2

+
l1 + l2
R

}
,

where l1 is the maximum packet length of the low-priority flow with which it shares the link,

and l2 is its own maximum packet length.

Proof. Denote the virtual delay at t inside the shaper as D1(t), and that at the shared link

as D2(t). Then for a packet arriving the system at t, its virtual delay inside the system is

D1(t) +D2(t+D1(t)). For D1(t), we have

D1(t) = inf
0≤τ
{b2 + r2t ≤ b′2 + t′2(t+ τ)} =

[
b2 − b′2 + r2t

r′2
− t
]+

.
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For D2(t+D1(t)), we have

D2(t+D1(t)) =
l1 + l2
R

+inf
0≤τ
{b2 + r2t− l2 ≤ R(t+ τ +D1(t))} =

l1 + l2
R

+

[
b2 + r2t− l2

R
− t−D1(t)

]+

.

Then we have

D∗2 = sup
0≤t
{D1(t) +D2(t+D1(t))}

≤ sup
0≤t

{
max

{
l1 + l2
R

+
b2 − b′2 + r2t

r′2
− t, l1 + l2

R
+
b2 + r2t− l2

R
− t
}}

≤ max

{
l1 + l2
R

+
b2 − b′2
r′2

,
l1 + b2

R

} (B.13)

Note that after adding the shaper, we have D∗2 ≥ b2+l1
R

. Comparing this expression to

Eq. (B.11b), we know that adding (re)shapers will never decrease the high-priority flow’s

worst-case delay. Furthermore, since ensuring stability of the shared queue mandates R ≥

r1 + r2 irrespective of whether shapers are used, Eq. (B.12) then gives

Corollary 43. Adding shapers decreases the minimum required bandwidth only when

R̃(2)∗ =
b1 + b2

d1

+ r2 > max

{
r1 + r2,

b2 + l1
d2

}
. (B.14)

Conversely, we note that for the low-priority flow (r1, b1), its service curve is determined by

both the high-priority flow’s arrival curve at the shared link and the shared link’s bandwidth,

and does not depend on the presence or absence of its own (re)shaper. As a result, adding

a (re)shaper to the low-priority flow cannot decrease its worst-case delay (though it can

increase it). Consequently, reshaping the low-priority flow cannot contribute to reducing
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the bandwidth of the shared link while meeting the delay bounds of both the high and low-

priority flows. This is formally stated in the next proposition that simplifies the investigation

of the worst-case delay experienced by the low-priority flow by allowing us to omit the use

of a shaper for it.

Proposition 44. Given the service curve assigned to a low-priority flow, adding a packet-

based greedy shaper cannot decrease its worst-case delay, and consequently cannot reduce the

minimum link bandwidth required to meet the worst-case delay guarantees of both the high

and low-priority flows.

Proof. Denote the service curve of the low-priority flow as β(t) and its arrival curve as α(t).

Without shaper, the system’s virtual delay at t is

D′(t) = inf
τ≥0
{τ : α(t) ≤ β(t+ τ)}.

Denote the shaper’s maximum service curve as σ(t), which is also the arrival curve for the

shared link. Due to packetization, the system provides the flow a service curve no greater

than

σ ⊗ β(t) = inf
0≤s≤t

{σ(s) + β(t− s)} ≤ σ(0) + β(t) = β(t),

Hence, the virtual delay given the server is

D(t) ≥ inf
τ≥0

{
τ : α(t) ≤ inf

0≤s≤t
{σ(s) + β(t+ τ − s)}

}
≥ inf

τ≥0
{τ : α(t) ≤ β(t+ τ)} = D′(t).

As D(t) ≥ D′(t), ∀t ≥ 0, we have supt≥0{D(t)} ≥ supt≥0{D′(t)}, i.e., adding a shaper

cannot decrease the system’s worst-case delay.
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Next, we characterize the worst-case delay D∗1 of the low-priority flow.

Proposition 45. Given a high priority flow (r2, b2) with a packet-based greedy leaky-bucket

shaper (r′2, b
′
2) going through a shared link with bandwidth R, the low-priority flow (r1, b1)’s

worst-case delay d∗1 is

1. when r2 = r′2, D∗1 =
b1+b′2
R−r2 ;

2. when r2 < r′2 and
(R−r′2)(b2−b′2)

r′2−r2
− (b1 + b′2) < 0, D∗1 = b1+b2

R−r2 ;

3. otherwise, i.e., r2 < r′2 and
(R−r′2)(b2−b′2)

r′2−r2
− (b1 + b′2) ≥ 0 (recall that r2 ≤ r′2)

D∗1 = max
{
b1+b′2
R−r′2

, b1+b2
r1
− (R−r1−r2)(b2−b′2)

r1(r′2−r2)

}
.

Proof. The high-priority flow’s arrival curve at the shared link is

α2(t) = min {γr,b(t), γr′,b′(t)} , (B.15)

and the low-priority flow’s service curve at the shared link is

β1(t) = [Rt− α2(t)]+ =
[
Rt−min

{
γr2,b2(t), γr′2,b′2(t)

}]+
. (B.16)

Hence, the virtual delay at t > 0 is

D(t) = inf
τ≥0

{
τ : r1t+ b1 ≤ [R(t+ τ)−min{r2(t+ τ) + b2, r

′
2(t+ τ) + b′2}]

+
}

(B.17)

When r2 = r′2, we have

D(t) = inf
τ≥0

{
τ : r1t+ b1 ≤ [R(t+ τ)− r2(t+ τ)− b′2]

+
}

=

[
r1t+ b1 + b′2
R− r2

− t
]+

≤ b1 + b′2
R− r2

.

(B.18)
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When r2 < r′2, we can rewrite Eq. (B.16) as

β1(t) = [Rt−min {γr,b(t), γr′,b′(t)}]+ =


0 when t = 0

[(R− r′2)t− b′2]+ when t <
b2−b′2
r′2−r2

[(R− r2)t− b2]+ otherwise.

(B.19)

• When β1(
b2−b′2
r′2−r2

) ≤ b1 + r1t, i.e., t ≥ (R−r′2)(b2−b′2)

r1(r′2−r2)
− b1+b′2

r1
we have

D(t) = inf
τ≥0

{
τ : r1t+ b1 ≤ [(R− r2)(t+ τ)− b2]+

}
=

[
b1 + b2

R− r2

− t(R− r1 − r2)

R− r2

]+

≤

[
b1 + b2

R− r2

− R− r1 − r2

R− r2

[
(R− r′2)(b2 − b′2)

r1(r′2 − r2)
− b1 + b′2

r1

]+
]+

=


b1+b2
R−r2 when

(R−r′2)(b2−b′2)

r1(r′2−r2)
− b1+b′2

r1
< 0[

b1+b2
r1
− (b2−b′2)(R−r1−r2)

r1(r′2−r2)

]+

otherwise.

(B.20)

Note that when
(R−r′2)(b2−b′2)

r1(r′2−r2)
− b1+b′2

r1
< 0, we have t ≥ (R−r′2)(b2−b′2)

r1(r′2−r2)
− b1+b′2

r1
, ∀t. Therefore,

d∗1 = b1+b2
R−r2 . Next we consider the case when

(R−r′2)(b2−b′2)

r1(r′2−r2)
− b1+b′2

r1
≥ 0.

• When β1(
b2−b′2
r′2−r2

) > b1+r1t, i.e., t <
(R−r′2)(b2−b′2)

r1(r′2−r2)
− b1+b′2

r1
. As when

(R−r′2)(b2−b′2)

r1(r′2−r2)
− b1+b′2

r1
> 0

implies R− r′2 > 0, we have

D(t) = inf
τ≥0

{
τ : r1t+ b1 ≤ [(R− r′2)(t+ τ)− b′2]

+
}

=

[
b1 + b′2
R− r′2

+
t(r1 + r′2 −R)

R− r′2

]+

,

(B.21)

As
[
b1+b′2
R−r′2

+
t(r1+r′2−R)

R−r′2

]+

is a linear function with t, we know D(t) achieves its maximum

at either t = 0 or t =
(R−r′2)(b2−b′2)

r1(r′2−r2)
− b1+b′2

r1
, which gives d∗1 = max

{
b1+b′2
R−r′2

, b1+b2
r1
− (R−r1−r2)(b2−b′2)

r1(r′2−r2)

}
.
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Combine it with Eq. (B.20), when r′2 > r2 we have:

D∗1 =


b1+b2
R−r2 , when

(R−r′2)(b2−b′2)

r1(r′2−r2)
− b1+b′2

r1
< 0

max
{
b1+b′2
R−r′2

, b1+b2
r1
− (R−r1−r2)(b2−b′2)

r1(r′2−r2)

}
, otherwise

(B.22)

Note that when r2 < r′2 and
(R−r′2)(b2−b′2)

r1(r′2−r2)
− b1+b′2

r1
< 0 (case 2 of Proposition 45), R̃

(2)∗
s ensures

d1 ≥ d∗1 = b1+b2
R∗−r2 , i.e., R∗ ≥ b1+b2

d1
+ r2. Combined with Corollary 43, we then know that

in this case R̃
(2)∗
s is no smaller than R̃(2)∗, i.e., the optimal system needs no (re)shaping.

Therefore, we only need to focus on cases 1 and 3 when seeking to characterize R̃
(2)∗
s in the

presence of shapers.

Next, we establish that these two cases can be combined. Specifically, note that
(R−r′2)(b2−b′2)

r1(r′2−r2)
−

b1+b′2
r1
≥ 0 implies R−r′2 > 0. This means that as r′2 → r+

2 ,
(R−r′2)(b2−b′2)

r1(r′2−r2)
− b1+b′2

r1
→ +∞ > 0, so

that we are always in case 3 as r′2 → r+
2 . Furthermore, limr′2→r

+
2

max
{
b1+b′2
R−r′2

, b1+b2
r1
− (R−r1−r2)(b2−b′2)

r1(r′2−r2)

}
=

max
{
b1+b′2
R−r′2

,−∞
}

=
b1+b′2
R−r2 , or in other words the value of d∗1 of case 3 is the same as that of

case 1 as r′2 → r+
2 . This therefore allows us to write that when

(R−r′2)(b2−b′2)

r′2−r2
− (b1 + b′2) ≥ 0,

d∗1 = max
{
b1+b′2
R−r′2

, b1+b2
r1
− (R−r1−r2)(b2−b′2)

r1(r′2−r2)

}
.
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Together with Proposition 42, this yields the following optimization for R̃
(2)∗
s :

OPT 2 min
r′2,b
′
2

R

subject to max

{
b1 + b′2
R− r′2

,
b1 + b2

r1

− (R− r1 − r2)(b2 − b′2)

r1(r′2 − r2)

}
≤ d1,

max

{
b2 + l1
R

,
b2 − b′2
r′2

+
l1 + l2
R

}
≤ d2,

(R− r′2)(b2 − b′2)

r1(r′2 − r2)
− b1 + b′2

r1

≥ 0,

r1 + r2 ≤ R, r2 ≤ r′2, l2 ≤ b′2 ≤ b2

(B.23)

Solving OPT 2 gives the following combination of five cases, four of which yield values

R̃
(2)∗
s < R̃(2)∗, i.e., the introduction of shapers helps reduce the link bandwidth required to

meet the flows delay targets, where r′∗2 and b′∗2 defines the optimal shaper:

(i) R̃
(2)∗
s = r1+r2 < R̃(2)∗, r′∗2 = r2, and b′∗2 can be any values inside [b2+r2

(
l1+l2
r1+r2

− d2

)
, d1r1−

b1] ∩ [l2, b2), when d1 ∈ [ l2+b1
r1

, b1+b2
r1

) and d2 ≥ max
{
b2+l1
r1+r2

, b1+b2−d1r1
r2

+ l1+l2
r1+r2

}
;

(ii) R̃
(2)∗
s = b2+l1

d2
< R̃(2)∗, r′∗2 can be any values inside [r2,min

{
R̃

(2)∗
s − r1, R̃

(2)∗
s − b1+l2

d1−(b2−l2)/R̃
(2)∗
s

}
],

and b′∗2 can be any values inside [b2 − r′∗2 (b2−l2)

R̃
(2)∗
s

, d1(R̃
(2)∗
s − r′∗2 ) − b1] ∩ [l2, b2), when

d2 <
b2+l1
r1+r2

and d1 ∈ [ d2(b1+l2)
b2+l1−d2r2

+ d2(b2−l2)
b2+l1

, d2(b1+b2)
b2+l1−d2r2

).

(iii) R̃
(2)∗
s = l2+b1

d1
+r2 < R̃(2)∗, r′∗2 = r2, and b′2 = l2, when d1 < min

{
b1+l2
r1

,
(b1+l2)

(
d2− b2−l2r2

)
l1+b2−r2d2

}
and d2 <

l1+b2
r2

; and when d2 ≥ l1+b2
r2

and d1 <
b1+l2
r1

.

(iv) R̃
(2)∗
s =

(d1−d2)r2+(b1+b2)+
√

((d1−d2)r2+b1+b2)2+4d1r2(l1+l2)

2d1
< R∗0, r′∗2 = r2, and

b′2 =
b2−b1−(d1+d2)r2+

√
((d1−d2)r2+b1+b2)2+4d1r2(l1+l2)

2

◦ when d2 <
b2+l1
r1+r2

, and d1 ∈ [
(b1+l2)

(
d2− b2−l2r2

)
b2+l1−r2d2

, d2(b1+l2)
b2+l1−d2r2

+ d2(b2−l2)
b2+l1

); and

◦ when b2+l1
r1+r2

≤ d2 ≤ b2+l1
r2

, and d1 ∈ [
(b1+l2)

(
d2− b2−l2r2

)
b2+l1−r2d2

, r2(l1+l2)
r1(r1+r2)

+ b1+b2−d2r2
r1

).

(v) otherwise, R̃
(2)∗
s = R̃(2)∗.

From the solution of OPT 2, we directly get
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Corollary 46. We can achieve the optimality of OPT 2 through setting r′2 = r2.

Solving OPT 2

We can divide the optimization into two sub-optimizations:

Sub-optimization 1:

minimizer′2,b′2 R

subject to r1 + r′2 −R ≤ 0,
b1 + b′2
R− r′2

− d1 ≤ 0,

b2 + l1
R

− d2 ≤ 0,
b2 − b′2 + l2

r′2
+
l1
R
− d2 ≤ 0,

b1 + b′2
r1

− (R− r′2)(b2 − b′2)

r1(r′2 − r2)
≤ 0,

r1 + r2 −R ≤ 0, r2 − r′2 ≤ 0,

l2 − b′2 ≤ 0, b′2 − b2 ≤ 0

(B.24)

Sub-optimization 2:

minimizer′2,b′2 R

subject to R− r1 − r′2 < 0,
b1 + b2

r1

− (R− r1 − r2)(b2 − b′2)

r1(r′2 − r2)
− d1 ≤ 0,

b2 + l1
R

− d2 ≤ 0,
b2 − b′2 + l2

r′2
+
l1
R
− d2 ≤ 0,

b1 + b′2
r1

− (R− r′2)(b2 − b′2)

r1(r′2 − r2)
≤ 0,

r1 + r2 −R ≤ 0, r2 − r′2 ≤ 0,

l2 − b′2 ≤ 0, b′2 − b2 ≤ 0

(B.25)

Denote the solution of sub-optimizations 1 and 2 as R∗1 and R∗2, respectively. Then we have

R∗ = min{R∗1, R∗2}. Next, we solve sub-optimizations 1 and 2. Note than when R = r1 + r′2,
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the two sub-optimizations are the same. Therefore, when solving sub-optimization 2, we

only consider the case where R− r1 − r′2 < 0. Then we have:

Lemma 47. The solution for Sub-optimiaztion 1 is

• R∗1 = r1 + r2, when d1 ∈ [ l2+b1
r1

, b1+b2
r1

) and d2 ≥ max
{
b2+l1
r1+r2

, b1+b2−d1r1
r2

+ l1+l2
r1+r2

}
;

• R∗1 = b2+l1
d2

, when d2 <
b2+l1
r1+r2

and d1 ∈ [ d2(b1+l2)
b2+l1−d2r2

+ d2(b2−l2)
b2+l1

, d2(b1+b2)
b2+l1−d2r2

);

• R∗1 = l2+b1
d1

+ r2, when d2 <
l1+b2
r2

and d1 < min

{
b1+l2
r1

,
(b1+l2)

(
d2− b2−l2r2

)
l1+b2−r2d2

}
; and when

d2 ≥ l1+b2
r2

and d1 <
b1+l2
r1

;

• R∗1 =
(d1−d2)r2+(b1+b2)+

√
((d1−d2)r2+b1+b2)2+4d1r2(l1+l2)

2d1
,

◦ when d2 <
b2+l1
r1+r2

, and d1 ∈ [
(b1+l2)

(
d2− b2−l2r2

)
b2+l1−r2d2

, d2(b1+l2)
b2+l1−d2r2

+ d2(b2−l2)
b2+l1

); and

◦ when b2+l1
r1+r2

≤ d2 ≤ b2+l1
r2

, and d1 ∈ [
(b1+l2)

(
d2− b2−l2r2

)
b2+l1−r2d2

, r2(l1+l2)
r1(r1+r2)

+ b1+b2−d2r2
r1

).

Lemma 48. The solution for Sub-optimization 2 is

• when d2 <
b2+l1
r1+r2

, and d1 ∈ [d2(b2−l2)
b2+l1

+ b1+l2
r1

, d2(b1+b2)
b2+l1−d2r2

), R∗2 = b2+l1
d2

< R∗0;

• otherwise, R∗2 = R∗0.

Basic algebraic manipulation gives that when d2 < b2+l1
r1+r2

, d2(b2−l2)
b2+l1

+ b1+l2
r1
≥ d2(b1+l2)

b2+l1−d2r2
+

d2(b2−l2)
b2+l1

. Therefore, we have R∗2 ≥ R∗1.
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Solution for Sub-optimization 111

The Lagrangian function for sub-optimization 1 is

L1(R, r′2, b
′
2,λλλ) = R + λ1(r1 + r′2 −R) + λ2

(
b1 + b′2
R− r′2

− d1

)
+ λ3

(
b2 + l1
R

− d2

)
+ λ4

(
b2 − b′2
r′2

+
l1 + l2
R
− d2

)
+ λ5

(
b1 + b′2
r1

− (R− r′2)(b2 − b′2)

r1(r′2 − r2)

)
+ λ6(r1 + r2 −R) + λ7(r2 − r′2) + λ8(l2 − b′2) + λ9(b′2 − b2)

(B.26)

∇R,r′2,b
′
2
L1 =



1− λ1 − λ2(b1+b′2)

(R−r′2)2 − λ3(b2+l1)
R2 − λ4(l1+l2)

R2 − λ5(b2−b′2)

r1(r′2−r2)
− λ6

λ1 +
λ2(b1+b′2)

(R−r′2)2 − λ4(b2−b′2)

r
′2
2

+
λ5(b2−b′2)(R−r2)

r1(r′2−r2)2 − λ7

λ2

R−r′2
− λ4

r′2
+ λ5

(
1
r1

+
R−r′2

r1(r′2−r2)

)
− λ8 + λ9


(B.27)

diag(4R,r′2,b
′
2
L1) =



2λ2(b1+b′2)

(R−r′2)3 + 2λ3(b2+l1)
R3 + 2λ4(l1+l2)

R3

2λ2(b1+b′2)

(R−r′2)3 +
2λ4(b2−b′2)

r
′3
2

− 2λ5(b2−b′2)(R−r2)

r1(r′2−r2)3

0


(B.28)

From Eq. (B.20), we know that when
b1+b′2
r1
− (R−r′2)(b2−b′2)

r1(r′2−r2)
= 0, d∗1 = b1+b2

R−r2 . Combine it with

Corollary 43, we have R∗1 = R∗0.

Next we consider the case where
b1+b′2
r1
− (R−r′2)(b2−b′2)

r1(r′2−r2)
> 0. Then from KKT conditions’

complementary slackness requirement, we have λ5 = 0. Substitute λ5 = 0 into Eq. (B.28),
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we have

diag(4R,r′2,b
′
2
L1) =



2λ2(b1+b′2)

(R−r′2)3 + 2λ3(b2+l1)
R3 + 2λ4(l1+l2)

R3

2λ2(b1+b′2)

(R−r′2)3 +
2λ4(b2−b′2)

r
′3
2

0


≥ 0 (B.29)

Therefore, for any (r′2, b
′
2,λλλ) satisfying KKT’s necessary conditions, it is a local optimum.

The necessary conditions for the optimization under λ5 = 0 is:

1− λ1 −
λ2(b1 + b′2)

(R− r′2)2
− λ3(b2 + l1)

R2
− λ4(l1 + l2)

R2
− λ6 = 0,

λ2

R− r′2
− λ4

r′2
− λ8 + λ9 = 0,

λ1 +
λ2(b1 + b′2)

(R− r′2)2
− λ4(b2 − b′2)

r
′2
2

− λ7 = 0, λi ≥ 0, for i = 1, ...9,

r1 + r′2 −R ≤ 0, λ1(r1 + r′2 −R) = 0,

b1 + b′2
R− r′2

− d1 ≤ 0, λ2

(
b1 + b′2
R− r′2

− d1

)
= 0,

b2 + l1
R

− d2 ≤ 0, λ3

(
b2 + l1
R

− d2

)
= 0,

b2 − b′2
r′2

+
l1 + l2
R
− d2 ≤ 0, λ4

(
b2 − b′2
r′2

+
l1 + l2
R
− d2

)
= 0,

b1 + b′2
r1

− (R− r′2)(b2 − b′2)

r1(r′2 − r2)
< 0, λ5 = 0,

r1 + r2 −R ≤ 0, λ6(r1 + r2 −R) = 0,

r2 − r′2 ≤ 0, λ7(r2 − r′2) = 0,

l2 − b′2 ≤ 0, λ8(l2 − b′2) = 0,

b′2 − b2 ≤ 0 λ9(b′2 − b2) = 0

(B.30)

For the conditions in Eq. (B.30), we have:
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• R∗1 = r1 + r2, when d1 ∈ [ l2+b1
r1

, b1+b2
r1

) and d2 ≥ max
{
b2+l1
r1+r2

, b1+b2−d1r1
r2

+ l1+l2
r1+r2

}
;

• R∗1 = b2+l1
d2
≥ r1 + r2, when d2 <

b2+l1
r1+r2

and d1 ∈ [ d2(b1+l2)
b2+l1−d2r2

+ d2(b2−l2)
b2+l1

, d2(b1+b2)
b2+l1−d2r2

);

• R∗1 = l2+b1
d1

+ r2, when d2 <
l1+b2
r2

and d1 < min

{
b1+l2
r1

,
(b1+l2)

(
d2− b2−l2r2

)
l1+b2−r2d2

}
; and when

d2 ≥ l1+b2
r2

and d1 <
b1+l2
r1

;

• R∗1 =
(d1−d2)r2+(b1+b2)+

√
((d1−d2)r2+b1+b2)2+4d1r2(l1+l2)

2d1
,

◦ when d2 <
b2+l1
r1+r2

, and d1 ∈ [
(b1+l2)

(
d2− b2−l2r2

)
b2+l1−r2d2

, d2(b1+l2)
b2+l1−d2r2

+ d2(b2−l2)
b2+l1

); and

◦ when b2+l1
r1+r2

≤ d2 ≤ b2+l1
r2

, and d1 ∈ [
(b1+l2)

(
d2− b2−l2r2

)
b2+l1−r2d2

, r2(l1+l2)
r1(r1+r2)

+ b1+b2−d2r2
r1

).

Proof. Note that when b′2 = b2, the shaper has no effect, i.e., R∗ = R∗0. Therefore, we

consider only λ9 = 0 and b′2 < b2. Then from λ2

R−r′2
− λ4

r′2
− λ8 + λ9 = 0 we have 1) if λ2 = 0,

then λ4 = λ8 = 0; and 2) if λ2 > 0, then λ4 + λ8 > 0.

• When λ2 = 0, λ4 = λ8 = 0, from λ1 +
λ2(b1+b′2)

(R−r′2)2 − λ4(b2−b′2)

r
′2
2

− λ7 = 0, we have λ1 = λ7.

• When λ1 = λ7 > 0, it has R = r1 + r′2 and r2 = r′2. Therefore, R = r1 + r2. Then

the constraints become:

b1+b′2
r1
− d1 ≤ 0 =⇒ b′2 ≤ d1r1 − b1,

b2+l1
r1+r2

− d2 ≤ 0 =⇒ d2 ≥ b2+l1
r1+r2

,

b2−b′2
r′2

+ l1+l2
r1+r2

− d2 ≤ 0, =⇒ b′2 ≥ b2 + r2

(
l1+l2
r1+r2

− d2

)

l2 ≤ b′2 < b2

(B.31)
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Hence we have b′2 ∈ [b2 + r2

(
l1+l2
r1+r2

− d2

)
, d1r1− b1]∩ [l2, b2). As d2 ≥ b2+l1

r1+r2
> l1+l2

r1+r2
, we

have b2 − r2

(
l1+l2
r1+r2

− d2

)
< b2. Therefore, to guarantee [b2 + r2

(
l1+l2
r1+r2

− d2

)
, d1r1 −

b1] ∩ [l2, b2) 6= ∅:


d1r1 − b1 ≥ l2 =⇒ d1 ≥ l2+b1

r1

b2 + r2

(
l1+l2
r1+r2

− d2

)
≤ d1r1 − b1 =⇒ d2 ≥ b1+b2−d1r1

r2
+ l1+l2

r1+r2

(B.32)

Remember that adding shaper is beneficial only whenR∗0 = b1+b2
d1

+r2 > max
{
r1 + r2,

b2+l1
d2

}
,

i.e., d1 <
b1+b2
r1

and d2 >
b2+l1

b1+b2
d1

+r2
, which gives b2+l1

r1+r2
> b2+l1

b1+b2
d1

. Therefore, we have

◦ d1 ∈ [
l2 + b1

r1

,
b1 + b2

r1

) and d2 ≥ max

{
b2 + l1
r1 + r2

,
b1 + b2 − d1r1

r2

+
l1 + l2
r1 + r2

}
. (B.33)

• When λ1 = λ7 = 0, from 1 − λ1 − λ2(b1+b′2)

(R−r′2)2 − λ3(b2+l1)
R2 − λ4(l1+l2)

R2 − λ6 = 0 we have

λ3+λ6 > 0. If λ6 > 0, it has r1+r2−R = 0. As r1+r′2−R ≤ 0, it has r′2 = r2. Therefore,

it produces the same optimization as Eq. (B.31). Therefore, we only consider λ6 = 0

in this case. When λ6 = 0, λ3 > 0, then we have R = b2+l1
d2

. Note that R = b2+l1
d2

implies b2+l1
R
≥ b2−b′2

r′2
+ l1+l2

R
, i.e., b′2 ≥ b2 − r′2(b2−l2)

R
. Then the constraints become



r′2 ∈ [r2, R− r1], b′2 ∈ [l2, b2), r1 + r2 ≤ R,

b1+b′2
R−r′2

≤ d1 =⇒ b′2 ≤ d1(R− r′2)− b1,

b′2 ≥ b2 − r′2(b2−l2)

R
,

b1 + b′2 −
(R−r′2)(b2−b′2)

r′2−r2
< 0 =⇒ b′2 < b2 − (b1+b2)(r′2−r2)

R−r2 .

(B.34)
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Note that b2− (b1+b2)(r′2−r2)

R−r2 − d1(R− r′2) + b1 = (R− r′2)
(
b1+b2
R−r2 − d1

)
=

d1(R−r′2)(R∗0−R)

R−r2 .

As r′2 < R, under R < R∗0, it has b2 − (b1+b2)(r′2−r2)

R−r2 > d1(R − r′2) − b1. Hence, we

have b′2 ∈ [b2 − r′2(b2−l2)

R
, d1(R − r′2) − b1]. Next we configure the conditions where

∃r′2 ∈ [r2, R− r1], such that [b2 − r′2(b2−l2)

R
, d1(R− r′2)− b1] ∩ [l2, b2) 6= ∅.

For [b2 − r′2(b2−l2)

R
, d1(R− r′2)− b1] ∩ [l2, b2) 6= ∅, it requires



b2 − r′2(b2−l2)

R
< b2 =⇒ b2 > l2,

d1(R− r′2)− b1 ≥ l2 =⇒ r′2 ≤ R− b1+l2
d1

,

b2 − r′2(b2−l2)

R
− d1(R− r′2) + b1 ≤ 0 =⇒ r′2 ≤ R− b1+l2

d1−(b2−l2)/R

(B.35)

Basic algebraic manipulation gives R − b1+l2
d1

> R − b1+l2
d1−(b2−l2)/R

. Hence, Eq. (B.35)

gives r′2 ≤ R− b1+l2
d1−(b2−l2)/R

. Combine it with r′2 ∈ [r2, R− r1] and R = b2+l1
d2

, we have

r2 ≤ R− b1 + l2
d1 − (b2 − l2)/R

=⇒ d1 ≥
d2(b1 + l2)

b2 + l1 − d2r2

+
(b2 − l2)d2

b2 + l1
, (B.36)

Also, from r1 + r2 < R < b1+b2
d1

+ r2, we have d2 <
b2+l1
r1+r2

and d1 <
d2(b1+b2)
b2+l1−d2r2

. Hence, we

have

◦ d2 <
b2 + l1
r1 + r2

, and d1 ∈ [
d2(b1 + l2)

b2 + l1 − d2r2

+
(b2 − l2)d2

b2 + l1
,
d2(b1 + b2)

b2 + l1 − d2r2

). (B.37)

Basic algebraic manipulation shows that the interval is always valid.

• When λ2 > 0, as λ9 = 0, from λ2

R−r′2
− λ4

r′2
− λ8 + λ9 = 0 we have λ2

R−r′2
= λ4

r′2
+ λ8 and

λ4 + λ8 > 0. Combining it with λ1 +
λ2(b1+b′2)

(R−r′2)2 − λ4(b2−b′2)

r
′2
2

− λ7 and
b1+b′2
R−r′2

= d1. We have

λ8d1 + λ4

r′2

(
d1 − b2−b′2

r′2

)
+ λ1 − λ7 = 0. As

b2−b′2
r′2

+ l1+l2
R
≤ d2, λ8d1 + λ4

r′2

(
d1 − b2−b′2

r′2

)
+

[244]



λ1 − λ7 ≥ d1λ8 + λ1 − λ7 + λ4

r′2

(
d1 − d2 + l1+l2

R

)
= 0. Therefore, given λ4 + λ8 > 0, we

have λ7 > 0, i.e., r′2 = r2.

• When λ8 = 0, λ4 > 0, i.e.,
b2−b′2
r2

+ l1+l2
R

= d2. Then the constraints become



r1 + r2 ≤ R, b′2 ∈ [l2, b2),

b1+b′2
R−r2 = d1 =⇒ R =

b1+b′2
d1

+ r2,

b2−b′2
r2

+ l1+l2
R

= d2,

R ≥ b2+l1
d2

.

(B.38)

Substituting R =
b1+b′2
d1

+ r2 into
b2−b′2
r2

+ l1+l2
R

= d2 gives

d1

r2

R2 −
[
d1 − d2 +

b1 + b2

r2

]
R− (l1 + l2) = 0,

which gives

R =
(d1 − d2)r2 + (b1 + b2) +

√
((d1 − d2)r2 + b1 + b2)2 + 4d1r2(l1 + l2)

2d1

,

and

b′2 =
(b2 − b1)− (d1 + d2)r2 +

√
((d1 − d2)r2 + b1 + b2)2 + 4d1r2(l1 + l2)

2
.

b′2 ∈ [l2, b2) gives

d2 ∈ (
d1(l1 + l2)

b1 + b2 + d1r2

,
d1(l1 + l2)

b1 + l2 + d1r2

+
b2 − l2
r2

].
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Note that when R∗0 = b1+b2
d1

+r2, we have d2 >
(b2+l1)d1

b1+b2+r2d1
∈ ( d1(l1+l2)

b1+b2+d1r2
, d1(l1+l2)
b1+l2+d1r2

+ b2−l2
r2

).

Hence we have d2 ∈ ( (b2+l1)d1

b1+b2+r2d1
, d1(l1+l2)
b1+l2+d1r2

+ b2−l2
r2

], i.e.,

d2 <
b2 + l1
r2

, and d1 ∈ [
(b1 + l2)

(
d2 − b2−l2

r2

)
b2 + l1 − r2d2

,
d2(b1 + b2)

b2 + l1 − r2d2

). (B.39)

From R ≥ r1 + r2 and R ≥ b2+l1
d2

, we have: when d2 <
b2+l1
r1+r2

, d1 ≤ r2(l1+l2)
b2+l1
d2

(
b2+l1
d2
−r2

) +

b1+b2−d2r2
b2+l1
d2
−r2

= d2(b1+l2)
b2+l1−d2r2

+ d2(b2−l2)
b2+l1

, which is greater than d2(b1+b2)
b2+l1−r2d2

; and when d2 ≥ b2+l1
r1+r2

,

d1 ≤ r2(l1+l2)
r1(r1+r2)

+ b1+b2−d2r2
r1

< d2(b1+b2)
b2+l1−r2d2

. Combining it with Eq. (B.39) gives:

◦ when d2 <
l1+b2
r2+r1

, d1 ∈ [
(b1+l2)

(
d2− b2−l2r2

)
b2+l1−r2d2

, d2(b1+b2)
b2+l1−r2d2

);

◦ when l1+b2
r1+r2

≤ d2 ≤ b2+l1
r2

, d1 ∈ [
(b1+l2)

(
d2− b2−l2r2

)
b2+l1−r2d2

, r2(l1+l2)
r1(r1+r2)

+ b1+b2−d2r2
r1

).

• When λ8 > 0, i.e., b′2 = l2, we have
b2−b′2
r2

+ l1+l2
R

= l1+b2
R

+
(

1
r2
− 1

R

)
(b2− l2) > b2+l1

R
.

Then the constraints become



b1+l2
R−r2 = d1 =⇒ R = b1+l2

d1
+ r2 <

b2+b1
d1

+ r2 = R∗0,

R > r1 + r2 =⇒ d1 <
b1+l2
r1

b2−l2
r2

+ l1+l2
R
≤ d2 =⇒ d2 ≥ b2−l2

r2
+ (l1+l2)d1

b1+l2+r2d1
> (b2+l1)d1

b1+b2+r2d1s

(B.40)

Hence, we have d1 <
b1+l2
r1

, and d2 ≥ b2−l2
r2

+ (l1+l2)d1

b1+l2+r2d1
. Basic algebraic manipulation

gives that it is equivalent to:

◦ when d2 ≥ l1+b2
r2

, d1 <
b1+l2
r1

;

◦ when d2 <
l1+b2
r2

, d1 ≤ min

{
b1+l2
r1

,
(b1+l2)

(
d2− b2−l2r2

)
l1+b2−r2d2

}
.

In summary, the local optimums are:
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• R = r1 + r2, when d1 ∈ [ l2+b1
r1

, b1+b2
r1

) and d2 ∈ [max
{
b2+l1
r1+r2

, b1+b2−d1r1
r2

+ l1+l2
r1+r2

}
, d1);

• R = b2+l1
d2
≥ r1 + r2, when d2 <

b2+l1
r1+r2

and d1 ∈ [ d2(b1+l2)
b2+l1−d2r2

+ d2(b2−l2)
b2+l1

, d2(b1+b2)
b2+l1−d2r2

);

• R =
(d1−d2)r2+(b1+b2)+

√
((d1−d2)r2+b1+b2)2+4d1r2(l1+l2)

2d1
≥ max

{
r1 + r2,

b2+l1
d2

, b1+l2
d1

+ r2

}
,

◦ when d2 <
b2+l1
r1+r2

, and d1 ∈ [
(b1+l2)

(
d2− b2−l2r2

)
b2+l1−r2d2

, d2(b1+b2)
b2+l1−r2d2

);

◦ when b2+l1
r1+r2

≤ d2 ≤ b2+l1
r2

, and d1 ∈ [
(b1+l2)

(
d2− b2−l2r2

)
b2+l1−r2d2

, r2(l1+l2)
r1(r1+r2)

+ b1+b2−d2r2
r1

);

• R = b1+l2
d1

+ r2 > max
{
r1 + r2,

b2+l1
d2

}
,

◦ when d2 <
l1+b2
r2

and d1 < min

{
b1+l2
r1

,
(b1+l2)

(
d2− b2−l2r2

)
l1+b2−r2d2

}
;

◦ when d2 ≥ l1+b2
r2

and d1 <
b1+l2
r1

.

• R = R∗0, otherwise.

Next we characterize the global optimum R∗1. We considering three cases: d2 ≥ b2+l1
r2

,

b2+l1
r1+r2

< d2 <
b2+l1
r2

, and d2 ≤ b2+l1
r1+r2

.

• When d2 ≥ b2+l1
r2

, we consider whether b1+b2
r1+r2

+ (l1+l2)r2
(r1+r2)2 − l2+b1

r1
≥ 0 or not.

◦When b1+b2
r1+r2

+ r2(l1+l2)
(r1+r2)2 − l2+b1

r1
≥ 0, i.e., r1r2(r1 +r2)

(
b2−l2
r2
− b1−l1

r1

)
≥ r2

2(l1 + l2), basic

algebraic manipulation gives that for all d2 ≥ b1+b2
r1+r2

+ r2(l1+l2)
(r1+r2)2 , R = r1 + r2. As b1+b2

r1+r2
+

r2(l1+l2)
(r1+r2)2 − l1+b2

r2
= r1r2

r2(r2+r2)

(
b1−l1
r1
− b2−l2

r2

)
+

(r2
2−r2

1−r1r2)(l1+l2)

r2(r1+r2)2 ≤ −r1(r1 + r2)(l1 + l2) < 0,

we have l2+b1
r2

> b1+b2
r1+r2

+ r2(l1+l2)
(r1+r2)2 . Therefore, we have R∗1 = r1 + r2.

◦ When b1+b2
r1+r2

+ (l1+l2)r2
(r1+r2)2 − l2+b1

r1
< 0, from the local optimums we have:

◦ when l2+b1
r1
≤ l1+b2

r2
, R∗1 = r1 + r2;

◦ when l2+b1
r1

> l1+b2
r2

, R∗1 = r1 + r2 when d1 ≥ l2+b1
r1

, while R∗1 = b1+l2
d1

+ r2 when

d1 <
l2+b1
r1

.

[247]



• When b2+l1
r1+r2

< d2 <
b2+l1
r2

, we separate it into three conditions: d1 ≥ b1+b2
r1+r2

+ r2(l1+l2)
(r1+r2)2 ,

d1 ∈ ( b1+b2−d2r2
r1

+ r2(l1+l2)
r1(r1+r2)

, b1+b2
r1+r2

+ r2(l1+l2)
(r1+r2)2 ), and d1 <

b1+b2−d2r2
r1

+ r2(l1+l2)
r1(r1+r2)

.

◦When d1 ≥ b1+b2
r1+r2

+ r2(l1+l2)
(r1+r2)2 , we have b2+l1

r1+r2
> b1+b2−d1r1

r2
+ l1+l2
r1+r2

< b2+l1
r1+r2

< d2. Therefore,

we have R∗1 = r1 + r2.

◦When d1 ∈ ( b1+b2−d2r2
r1

+ r2(l1+l2)
r1(r1+r2)

, b1+b2
r1+r2

+ r2(l1+l2)
(r1+r2)2 ), basic algebraic manipulation gives

d1 >
b1+b2−d2r2

r1
+ r2(l1+l2)

r1(r1+r2)
> b2+l1

r1+r2
. Therefore, we have R∗1 = r1 + r2.

◦ When d1 <
b1+b2−d2r2

r1
+ r2(l1+l2)

r1(r1+r2)
, from the local optimums we directly have:

◦ when d2 ≥ l1+b2
r1+r2

+ r1(b2−l2)
r2(r1+r2)

, R∗1 = b1+l2
d1

+ r2.

◦ when d2 <
l1+b2
r1+r2

+ r1(b2−l2)
r2(r1+r2)

, R∗1 =
(d1−d2)r2+(b1+b2)+

√
((d1−d2)r2+b1+b2)2+4d1r2(l1+l2)

2d1

when d1 ∈ [
(b1+l2)

(
d2− b2−l2r2

)
b2+l1−r2d2

, b1+b2−d2r2
r1

+ r2(l1+l2)
r1(r1+r2)

), while R∗1 = b1+l2
d1

+ r2 when d1 <

(b1+l2)
(
d2− b2−l2r2

)
b2+l1−r2d2

.

• When d2 ≤ b2+l1
r1+r2

, we have b1+l2
r1

>
(b2+l2)

(
d2− b2−l2r2

)
l1+b2−r2d2

. Therefore, from local optimums we

directly have:

◦ when d1 ∈ (d2,
(b2+l2)

(
d2− b2−l2r2

)
l1+b2−r2d2

], R∗1 = b1+l2
d1

+ r2;

◦ when d1 ∈ [
(b2+l2)

(
d2− b2−l2r2

)
l1+b2−r2d2

, d2(b1+l2)
b2+l1−d2r2

+ d2(b2−l2)
b2+l1

),

R∗1 =
(d1−d2)r2+(b1+b2)+

√
((d1−d2)r2+b1+b2)2+4d1r2(l1+l2)

2d1
;

◦ when d1 ∈ ( d2(b1+l2)
b2+l1−d2r2

+ d2(b2−l2)
b2+l1

), d2(b1+b2)
b2+l1−d2r2

), R∗1 = b2+l1
d2

.

Remark: The above analysis also shows: R∗1 > R∗0 as long asR∗0 = b1+b2
d1

+r2 > max
{
b2+l1
d2

, r1 + r2

}
.

In summary, the global optimum is:

• R∗1 = r1 + r2, when d1 ∈ [ l2+b1
r1

, b1+b2
r1

) and d2 ≥ max
{
b2+l1
r1+r2

, b1+b2−d1r1
r2

+ l1+l2
r1+r2

}
;

• R∗1 = b2+l1
d2
≥ r1 + r2, when d2 <

b2+l1
r1+r2

and d1 ∈ [ d2(b1+l2)
b2+l1−d2r2

+ d2(b2−l2)
b2+l1

, d2(b1+b2)
b2+l1−d2r2

);
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• R∗1 = l2+b1
d1

+ r2, when d2 <
l1+b2
r2

and d1 < min

{
b1+l2
r1

,
(b1+l2)

(
d2− b2−l2r2

)
l1+b2−r2d2

}
; and when

d2 ≥ l1+b2
r2

and d1 <
b1+l2
r1

;

• R∗1 =
(d1−d2)r2+(b1+b2)+

√
((d1−d2)r2+b1+b2)2+4d1r2(l1+l2)

2d1
,

◦ when d2 <
b2+l1
r1+r2

, and d1 ∈ [
(b1+l2)

(
d2− b2−l2r2

)
b2+l1−r2d2

, d2(b1+l2)
b2+l1−d2r2

+ d2(b2−l2)
b2+l1

); and

◦ when b2+l1
r1+r2

≤ d2 ≤ b2+l1
r2

, and d1 ∈ [
(b1+l2)

(
d2− b2−l2r2

)
b2+l1−r2d2

, r2(l1+l2)
r1(r1+r2)

+ b1+b2−d2r2
r1

).

Solution for Sub-optimization 222

The Lagrangian function for sub-optimization 2 is

L2(R, r′2, b
′
2,λλλ) = R + λ1(R− r1 − r′2) + λ2

(
b1 + b2

r1

− (R− r1 − r2)(b2 − b′2)

r1(r′2 − r2)
− d1

)
+ λ3

(
b2 + l1
R

− d2

)
+ λ4

(
b2 − b′2
r′2

+
l1 + l2
R
− d2

)
+ λ5

(
b1 + b′2
r1

− (R− r′2)(b2 − b′2)

r1(r′2 − r2)

)
+ λ6(r1 + r2 −R)

+ λ7(r2 − r′2) + λ8(l2 − b′2) + λ9(b′2 − b2)

(B.41)

∇R,r′2,b
′
2
L2 =



1 + λ1 − λ2(b2−b′2)

r1(r′2−r2)2 − λ3(b2+l1)
R2 − λ4(l1+l2)

R2 − λ5(b2−b′2)

r1(r′2−r2)
− λ6

−λ1 +
λ2(R−r1−r2)(b2−b′2)

r1(r′2−r2)2 − λ4(b2−b′2)

r
′2
2

+
λ5(b2−b′2)(R−r2)

r1(r′2−r2)2 − λ7

λ2(R−r1−r2)
r1(r′2−r2)

− λ4

r′2
+ λ5

(
1
r1

+
R−r′2

r1(r′2−r2)

)
− λ8 + λ9


(B.42)
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diag(4R,r′2,b
′
2
L1) =



2λ3(b2+l1)
R3 + 2λ4(l1+l2)

R3

−2λ2(R−r1−r2)(b2−b′2)

r1(r′2−r2)3 +
2λ4(b2−b′2)

r
′3
2

− 2λ5(b2−b′2)(R−r2)

r1(r′2−r2)3

0


(B.43)

Similar as that for suboptimization 1, we have λ∗5 = 0. Substitute it into Eq. (B.43), we have

diag(4R,r′2,b
′
2
L1) =



2λ3(b2+l1)
R3 + 2λ4(l1+l2)

R3

−2λ2(R−r1−r2)(b2−b′2)

r1(r′2−r2)3 +
2λ4(b2−b′2)

r
′3
2

0


(B.44)

Next we consider KKT’s necessary conditions for the optimization under λ∗5 = 0. Remember

that when solving sub-optimization 2, we only consider R < r1 + r′2. Similar as before, we

consider only b′2 < b2. Therefore, we have:
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1 + λ1 −
λ2(b2 − b′2)

r1(r′2 − r2)2
− λ3(b2 + l1)

R2
− λ4(l1 + l2)

R2
− λ6 = 0,

λ2(R− r1 − r2)

r1(r′2 − r2)
− λ4

r′2
− λ8 + λ9 = 0,

λ2(R− r1 − r2)(b2 − b′2)

r1(r′2 − r2)2
− λ4(b2 − b′2)

r
′2
2

= λ1 + λ7, λi ≥ 0, for i = 1, ...9,

R− r1 − r′2 < 0, λ1 = 0,

b1 + b2

r1

− (R− r1 − r2)(b2 − b′2)

r1(r′2 − r2)
− d1 ≤ 0, λ2

(
b1 + b2

r1

− (R− r1 − r2)(b2 − b′2)

r1(r′2 − r2)
− d1

)
= 0,

b2 + l1
R

− d2 ≤ 0, λ3

(
b2 + l1
R

− d2

)
= 0,

b2 − b′2
r′2

+
l1 + l2
R
− d2 ≤ 0, λ4

(
b2 − b′2
r′2

+
l1 + l2
R
− d2

)
= 0,

b1 + b′2
r1

− (R− r′2)(b2 − b′2)

r1(r′2 − r2)
< 0, λ5 = 0,

r1 + r2 −R ≤ 0, λ6(r1 + r2 −R) = 0,

r2 − r′2 ≤ 0, λ7(r2 − r′2) = 0,

l2 − b′2 ≤ 0, λ8(l2 − b′2) = 0,

b′2 − b2 < 0 λ9 = 0

(B.45)

From the conditions in Eq. (B.45), we have:

• when d2 <
b2+l1
r1+r2

, and d1 ∈ [d2(b2−l2)
b2+l1

+ b1+l2
r1

, d2(b1+b2)
b2+l1−d2r2

), R∗2 = b2+l1
d2

< R∗0;

• otherwise, R∗2 = R∗0.

Proof. When R = r1 + r2, from b1+b2
r1
− (R−r1−r2)(b2−b′2)

r1(r′2−r2)
− d1 ≤ 0 we have b1+b2

d1
≤ r1, which

gives b1+b2
d1

+ r2 ≤ r1 + r2. From Corollary 43, we know that adding shapers cannot decrease

the minimum required bandwidth. Therefore, we consider only R > r1 + r2 afterwards.

Combine R > r1 + r2 with R < r1 + r′2, we have r′2 > r2. Hence, λ6 = λ7 = 0.

As λ1 = 0, we have λ2(R−r1−r2)(b2−b′−2)
r1(r′2−r2)2 − λ4(b2−b′2)

λ
′2
2

= 0. Substitute it to λ2(R−r1−r2)
r1(r′2−r2)

− λ4

r′2
−λ8 +

λ9 = 0, we have −λ4r2
r
′2
2

− λ8 + λ9 = 0. As λ9 = 0, i.e., b′2 6= b2, we have λ2 = λ4 = λ8 = 0.
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As λ1 = λ6 = 0, from 1 + λ1 − λ2(b2−b′2)

r1(r′2−r2)2 − λ3(b2+l1)
R2 − λ4(l1+l2)

R2 − λ6 = 0, we have λ3 > 0,

i.e., R = b2+l1
d2

. Note that when λ2 = λ4 = 0 and λ3 > 0, from Eq. (B.43), we have

diag(4R,r′2,b
′
2
L1) ≥ 0. Hence, R = b2+l1

d2
is a local optimum.

Hence, the constraints of the optimization reduces to



r′2 ∈ (R− r1, R), b′2 ∈ [l2, b2)

b1+b2
r1
− (R−r1−r2)(b2−b′2)

r1(r′2−r2)
≤ d1 =⇒ b2−b′2

r′2−r2
≥ b1+b2−d1r1

R−r1−r2 ,

b2−b′2
r′2

+ l1+l2
R
≤ d2 = b2+l1

R
=⇒ b2 − b′2 ≤

r′2(b2−l2)

R
,

b1+b′2
r1
− (R−r′2)(b2−b′2)

r1(r′2−r2)
< 0 =⇒ b2−b′2

r′2−r2
> b1+b2

R−r2 ,

(B.46)

Basic algebraic manipulation gives b1+b2
R−r2 > b1+b2−d1r1

R−r1−r2 iff R > b1+b2
d1

+ r2 = R∗0. Hence, we

only consider the case where b1+b2
R−r2 <

b1+b2−d1r1
R−r1−r2 . Under such a condition, we have b2 − b′2 ∈

[
(b1+b2−d1r1)(r′2−r2)

R−r1−r2 ,
r′2(b2−l2)

R
].

Next we configure the conditions where:

∃ r′2 ∈ (R− r1, R), s.t. S := [
(b1 + b2 − d1r1)(r′2 − r2)

R− r1 − r2

,
r′2(b2 − l2)

R
] ∩ (0, b2 − l2] 6= ∅.

When R∗ < R∗0, it has b1+b2
d1

+ r2 > r1 + r2, i.e., b1 + b2 − d1r1 > 0. Hence we have

(b1+b2−d1r1)(r′2−r2)

R−r1−r2 > 0. From r′2 < R, we have
r′2(b2−l2)

R
< b2 − l2. Therefore, S 6= ∅ is

equivalent to

∃ r′2 ∈ (R− r1, R) s.t.
(b1 + b2 − d1r1)(r′2 − r2)

R− r1 − r2

≤ r′2(b2 − l2)

R
.
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Define

g(x) =
x(b2 − l2)

R
− (b1 + b2 − d1r1)(x− r2)

R− r1 − r2

.

As g(x) is linear w.r.t x, S 6= ∅ is equivalent to at least one of g(R) and g(R − r1) is non-

negative, which gives d1 >
b1+l2
r1

and b2+l1
d2

> r1(b2−l2)
d1r1−b1−l2 through basic algebraic manipulations.

Combine it with b1+b2
d1

+ r2 >
b2+l1
d2
≥ r1 + r2, we have:

◦ d2 <
b2 + l1
r1 + r2

, and d1 ∈ [
d2(b2 − l2)

b2 + l1
+
b1 + l2
r1

,
d2(b1 + b2)

b2 + l1 − d2r2

).

B.7 Proofs for Multiple-node cases

B.7.1 Proofs for Algorithm 2

Proposition 49. For 1 ≤ i ≤ n, Algorithm 2 results in 0 ≤ b′i ≤ bi, 0 ≤ d̂′i ≤ d̂i, and keeps

the link deadline ordering.

Proof. We first show that Algorithm 2 keeps the link deadline ordering. Remember that

reshaping flow i to b′i results a reshaping delay of
bi−b′i
ri

. Therefore, d̂′i = hatdi − bi−b′i
ri

is

the link deadline after reshaping. Combining it with b′i ≥ max
{

0, bi − ri
(
d̂i − d̂′i+1

)}
≥

bi − ri
(
d̂i − d̂′i+1

)
gives d̂′i+1 ≤ d̂′i. Thus, Algorithm 2 keeps the link deadline ordering.

Next we show that 0 ≤ d̂′i ≤ d̂i. From d̂′i = d̂i− bi−b′i
ri

, d̂′i ≤ d̂i. From d̂′i+1 ≤ d̂′i, d̂
′
i ≥ d̂′n+1 = 0.

Finally we show 0 ≤ b′i ≤ bi. From b′i ≥ max
{

0, bi − ri
(
d̂i − d̂′i+1

)}
we have b′i ≥ 0.

Next we show b′i ≤ bi. When R∗ =
∑

j≥i, it has b′i =
[
bi − rid̂i

]+

≤ bi, whereas when

bi ≤ rid̂i, it has b′i = 0. Below consider the case when R∗ >
∑

j≥i rj and bi > rid̂i. Define

[253]



ri
R−
∑
j≥i rj

[
bi−rid̂i
ri

(
R∗ −

∑
j>i rj

)
+
∑

j>i

(
b′j − d′jrj

)]
= xi, which by basic algebraic manip-

ulation is equivalent to R∗ =
xi+

∑
j>i(b′j−d̂′jrj)+

∑
j>i rj

(
d̂i−

bi−xi
ri

)
d̂i−

bi−xi
ri

, whose r.h.s decreases with

xi. When xi = bi, the r.h.s defaults to
bi+
∑
j>i(b′j−d̂′jrj)+

∑
j>i rj d̂i

d̂i
=

bi+
∑
j>i(bj−d̂jrj)+

∑
j>i rj d̂i

d̂i
,

which from Eq 3.3 is no larger than R∗. Thus it has xi ≤ bi.

Proposition 50. Reshaping according to Algorithm 2 will not increase the hop’s minimum

required bandwidth.

Proof. From Algorithm 2 it has b′i ≥ ri
R−
∑
j≥i rj

[
bi−rid̂i
ri

(
R∗ −

∑
j>i rj

)
+
∑

j>i

(
b′j − d′jrj

)]
,

which from basic algebraic manipulation is equivalent toR∗
(
d̂i − bi−b′i

ri

)
≥ b′i+

∑
j>i

(
b′j − rj d̂′j

)
+(

d̂i − bi−b′i
ri

)∑
j>i rj. Note that its r.h.s is the minimum required amount of data for the sys-

tem to process before time d̂i − bi−b′i
ri

without violating flow i’s deadline. Therefore, at any

flow’s reshaped deadline, the sum of all flows’ shifted arrival curve will not increase the

bandwidth. As the minimum required bandwidth, if strictly greater then
∑

j≥i rj, must be

achieved at a specific flow’s deadline, we know that reshaping according to Algorithm 2 will

not increase the minimum required bandwidth.

B.7.2 Proofs for Proposition 21

PROPOSITION 21. Consider a network with k nodes and n flows, where flow 1 ≤ i ≤ n has a

token-bucket arrival curve ACi(t) = bi + rit, an end-to-end deadline of di, and a path of

MMM i = [mi,1, ...,mi,ki ], where Mi contains unique nodes 1 ≤ mi,j ≤ k for all 1 ≤ j ≤ ki, and

there guarantees to be a link between mi,j and mi,j+1 for all 1 ≤ j ≤ ki − 1. Suppose a

per-hop reshaping mechanism reshapes flow i to b′i,j and assigns a link deadline of di,j at

node mi,j. W.l.o.g, suppose b′i,j ≥ b′i,j+1 for all 1 ≤ j ≤ ki − 1. Then under EDF, the

mechanism that
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• allocates flow i an ingress reshaper of b′i,ki at every hop along MMM i; and

• allocates a per-hop deadline of di,j −
b′i,j−1−b′i,j

r
(2)
i

at node mi,j, where 1 ≤ j ≤ ki and for

simplicity define b′i,0 = 0,

performs no worse than the corresponding per-hop reshaping mechanism.

Proof. For flow i, as the per-hop mechanism results in a reshaping delay of
b′i,j−1−b′i,j

ri
at node

mi,j, it leaves a per-hop link deadline of di,j−
b′i,j−1−b′i,j

ri
at node mi,j, and yields an aggregate

reshaping delay of
∑

1≤j≤ki
b′i,j−1−b′i,j

ri
=

b′i,0−b′i,ki
ri

=
bi−b′i,ki

ri
along the path. Therefore, both the

per-hop and ingress reshaping mechanisms assign the same per-hop link deadline for each

flow. Note that compared to per-hop reshaping, at each hop ingress reshaping generates a

smaller (point-wise) arrival curve for each flow, which in turn results in a smaller minimum

required bandwidth. Thus, the ingress reshaping algorithm proposed in Proposition 21

dominates the corresponding per-hop reshaping mechanism.

B.7.3 Proofs for Algorithm 5

In this part we show the correctness of Algorithm 5. Specifically, from Lemma 51, checking

only points inside T is enough to figure out whether there is any room for reshaping. Combin-

ing Lemma 52 with Proposition 10 guarantees that we can use binary search to characterize

the minimum reshaper.

Lemma 51. Define ACi(t) =


min

{
r

(1)
i t, r

(2)
i t+ bi

}
, when t ≥ 0

0, else

. Consider function

F(t) =
∑

1≤i≤nACi(t− d̂i). Suppose supt≥0
F(t)
t

= R∗. Call t0 a critical point if F(t0)
t0

= R∗.
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Define ti =


bi

r
(1)
i − r

(2)
i

, if r
(1)
i > r

(2)
i

0, otherwise

, where r
(1)
i ≥ r

(2)
i > 0. Then all the critical points

belong to
{
d̂i + ti | 1 ≤ i ≤ n

}
.

Proof. As F(t) is piece-wise linear and continuous, the critical points can only be the turning

points of F(t), i.e., d̂i or d̂i + ti. When r
(1)
i = r

(2)
i , from ti = 0 it has d̂i = d̂i + ti. Afterwards

we consider the case when r
(1)
i 6= r

(2)
i .

Observe first that a critical point t0 satisfies limε→0
F(t0)−F(t0−ε)

ε
≥ R∗, as otherwise there

exists ε0 > 0 such that F(t0−ε0)
t0−ε0 > R∗. Specifically, suppose limε→0

F(t0)−F(t0−ε)
ε

< R∗. Then

basic algebraic manipulation shows that F(t)
t
≥ F(t0−ε0)

t0−ε0 iff limε→0
F(t0)−F(t0−ε)

ε
≥ R∗, which

contradicts to the assumption.

Based on the above observation, we then show the Lemma. We show that d̂i cannot be a

critical point by contradiction. Suppose d̂i is a critical point, i.e., F(d̂i)

d̂i
= R∗. Then by

definition of F we have limε→0
F(d̂i+ε)−F(d̂i)

ε
> R∗. For 0 < ε0 < ti, we have F(d̂i+ε0)

d̂i+ε0)
=

F(d̂i)+ε0 limε→0
F(d̂i+ε)−F(d̂i)

ε

d̂i+ε0
> F(d̂i)+ε0R

∗

d̂i+ε0
. Since d̂i + ε0 is not a turning point of F , we have

F(d̂i+ε0)

d̂i+ε0)
< R∗. However, from basic algebraic manipulation, F(d̂i+ε0)

d̂i+ε0)
< F(d̂i)

d̂i
iff ε0 < 0.

Lemma 52. For 1 ≤ i ≤ n, define ACi(t | bi) =


min

{
r

(1)
i t, r

(2)
i t+ bi

}
, when t ≥ 0

0, else

.

Then for all t ≥ 0, ACi
(
t− d̂′i + bi−b

r
(2)
i

| b
)

+
∑

j 6=iACj
(
t− d̂′j | b′j

)
decreases with b.
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Proof. Since
∑

j 6=iACj
(
t− d̂′j | b′j

)
is independent with b, below we show

ACi

(
t− d̂′i +

bi − b
r

(2)
i

| b

)
=



0, when t ≤ d̂′i − bi−b
r
(2)
i

r
(1)
i

(
t− d̂′i + bi−b

r
(2)
i

)
, when d̂′i − bi−b

r
(2)
i

< t ≤ b
r(1)−r(2) + d̂′i − bi−b

r
(2)
i

b+ r
(2)
i

(
t− d̂′i + bi−b

r
(2)
i

)
, otherwise

decreases with b. As ACi(t) = 0 when t ≤ d̂′i − bi−b
r
(2)
i

, next we consider only t > d̂′i − bi−b
r
(2)
i

.

Define ∆ACi = ACi
(
t− d̂′i + bi−b−∆b

r
(2)
i

| b+ ∆b

)
− ACi

(
t− d̂′i + bi−b

r
(2)
i

| b
)

, where ∆b > 0.

By definition ACi
(
t− d̂′i + bi−b

r
(2)
i

| b
)

decreases with b iff ∆ACi ≤ 0 for all ∆b > 0.

When t ≤ b
r(1)−r(2) +d̂

′
i− bi−b

r
(2)
i

or t ≥ b+∆b
r(1)−r(2) +d̂

′
i− bi−b−∆b

r
(2)
i

, bothACi
(
t− d̂′i + bi−b−∆b

r
(2)
i

| b+ ∆b

)
andACi

(
t− d̂′i + bi−b

r
(2)
i

| b
)

go into the same condition ofACi. From b+r
(2)
i

(
t− d̂′i + bi−b

r
(2)
i

)
=

r
(2)
i

(
t− d̂′i + bi

r
(2)
i

)
and r

(1)
i

(
t− d̂′i + bi−b

r
(2)
i

)
decrease with b, we have ∆ACi ≤ 0.

When t ∈
(

b
r(1)−r(2) + d̂′i − bi−b

r
(2)
i

, b+∆b
r(1)−r(2) + d̂′i − bi−b−∆b

r
(2)
i

)
, basic algebraic manipulation gives

that ∆ACi =
(
r

(2)
i − r

(1)
i

)(
t− d̂′i + bi

r
(2)
i

)
+

r
(1)
i

r
(2)
i

b. Thus, ∆ACi ≤ 0 iff t ≥ r
(1)
i b

r
(2)
i

(
r
(1)
i −r

(2)
i

) + d̂′i−

bi

r
(2)
i

, i.e., t ≥ b

r
(1)
i −r

(2)
i

+d̂′i− bi−b
r
(2)
i

. Therefore, when t ∈
(

b
r(1)−r(2) + d̂′i − bi−b

r
(2)
i

, b+∆b
r(1)−r(2) + d̂′i − bi−b−∆b

r
(2)
i

)
,

∆ACi < 0, i.e., decreases with b.

As ACi
(
t− d̂′i + bi−b

r
(2)
i

)
is continuous with b, combining both cases gives that ∆ACi ≤ 0

for all Deltab > 0, i.e., ACi
(
t− d̂′i + bi−b

r
(2)
i

| b+ ∆b

)
+
∑

j 6=iACj
(
t− d̂′j | b

)
decreases with

b
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