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Abstract

In this note, we show that wide-sense nonblocking networks can be obtained by cascading a pair of
Cantor networks or a pair of Clos networks. The only constraint placed on the routing algorithm is
that branching be restricted to the second network in the cascade. This result yields practical net-
work for multipoint communication with complexities O (V (logN)?) and O (N7,
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Practical Wide-Sense Nonblocking
Generalized Connectors

Jonathan S. Turner

A network can be modeled as a directed graph with a designated set of input
nodes and a designated set of output nodes. A connection network or connector
is a network used to connect designated pairs of inputs and outputs. The paths
used to connect distinct pairs are not permitted to share links. Benes [1], defines a
connector to be strictly nonblocking if given any legal configuration of the network, it
is always possible to add a connection between a specified idle input and a specified
idle output, without reassigning existing connections to different paths. He also
defines a connector to be wide-sense nonblocking is there is a routing algorithm which
avolds blocking states given any legitimate sequence of connection and disconnection
requests. A generalized connector is a network used to connect designated inputs to
designated output sets; that is a network used to establish multipoint communication
channels. The definitions of strict and wide-sense nonblocking extend to generalized
connectors in the obvious way. See [1} and {5] for more precise definitions.

In this note, we show that wide-sense nonblocking networks can be obtained by
cascading a pair of Cantor networks [2] or a pair of Clos networks [3]. The only con-
straint placed on the routing algorithm is that branching be restricted to the second
network in the cascade. This result yields practical networks for multipoint commu-
nication with complexities O (N{log N)?) and O (N 1/ T). Pippenger [6] describes a
wide-sense nonblocking generalized connector with complexity O (N{log N)3). This
appears to be the best asymptotic complexity for a network with the potential for
practical application. Feldman, Friedman and Pippenger [4] show how to construct
wide-sense nonblocking generalized connectors with complexity O(N log V), but the
resulting networks are of purely theoretical interest as the constants involved are quite
large and the routing problem is NP-complete.

The Benes network [1], By can defined by the recursive construction shown in
Figure 1. The base of the recursion is a k x k crossbar. The Cantor network K 1
can be defined by the construction shown in Figure 2. The following result is due to
Cantor [2]. We include it here for reference.
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Figure 2: Cantor Network
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THEOREM 1. The Cantor network Ky is a strictly nonblocking connector if m >
2-"-5—110gk(N/k).

Proof. Assume the network is in some arbitrary state and we are asked to connect
an idle input z to an idle output y. Define a; to be the number of stage ¢ links
accessible from z. Then,

& = m

ay 2 mk—(k-1)

(841 > kag — (kz - k) > mk2 - 2k2 -+ 2k
o > kag— (K —E) > mk® — 3%% 4 3k°
a; = mkT— (= 1) 4 (6 - 1)E?

Substituting A = log, N, we find that the number of stage & links and hence the
number of middle stage crossbars accessible from z is at least

(-2 - n) oy

The number of middle stage crossbars is exactly mN/k. If a;, > mN/2k then more
than half the middle stage switches are accessible from z. By a similar argument,
more than half the middle stage switches are accessible from y and consequently there
is at least one middle stage switch accessible from both z and y allowing us to connect
them. Thus it suffices to have

(m - wk-%i(h - 1)) (N/E) > mN/2k

which holds exactly when m > 2% log, (N/k). O

The next theorem demonstrates that we can obtain a wide-sense nonblocking net- -
work by taking two Cantor networks and connecting the outputs of the first network
to the inputs of the second. We refer to this as a cascade connection.

‘THEOREM 2. The network obiained by cascading two Cantor networks, Ky jm 15 @
wide-sense nonblocking generalized connector if m > 252 log, (N/k).

Proof. The only constraint placed on the routing algorithm is that connections
branch only in the second network. Under this restriction, we show that it is always
possible to connect an idle input = simultaneously to any subset of the idle outputs.
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First, we need some definitions. For 1 <1 £ A = log, N, define R;(z) to be the
set of stage ¢ links that can be reached from input z in an idle Cantor network. We

note that Ri(x) = By)  o/H-1] = Ly/k1, s0
Ri(0), R (ki"l) R i# (jk"‘l) yeony By ((kh“"” - 1) };*"—1)

partitions the links in stage ¢ into k"~ groups of mk~! links each.

Now consider any state of the cascaded Cantor networks with at least one idle
output and in which connections branch only in the second network. Suppose we are
asked to connect some idle input z to some subset of the idle outputs. Our strategy
will be to find some input z of the second network from which more than half of the
middle stage crossbars in the second neiwork are accessible. We find 2 by working
back from the middle stage of the second network, seeking the most “lightly loaded”
portion of the network.

Define F;(j) to be the number of links in R;(7£*) that are busy and let §7 =
min; 3i(4). Note that ff < (N —1)/k*~" = k*~1(1 ~ 1/N), since so long as there is
at least one idle output, at most N —1 links in any stage can be busy and the number
of distinct sets R;{-) is kP~*+1,

Now suppose that 1 < 7 < h and j satisfies 8;(j) < (N —1)/k**1. Then for some
J e lgk, ..., (7 + Dk — 1] we have 8i(j') < (¥ = 1)/k"+2, Thus, we can work back
from the middle stage of the second network to an input z such that for 1 <z < h,
the number of busy links in R;(2) < k(1 — 1/N). Since the number of busy links
must be an integer, this implies R;(z) < k'~ — 1. Now, if o; is the number of stage i
links accessible from z then

oy = m

Ckn 2 mhk — (k — 1)

az 2 kap— (/’a2 - k) > mk? — 2k% + 2k
oy > kaz— (k3 — kz) > mk® — 3k + 3k°%
o = mkTt— (= DET 4 (5 — 1)k

Note that this is exactly the same inequality obtained in the previous theorem. Hence,
at least half of the second network’s middle stage crossbars are accessible from z. Since
the branching in the second network does not affect the accessibility of the middle
stage crossbars from the output side, each idle output can access more than half
the middle stage crossbars implying that every idle output has at least one middle
stage crossbar accessible to both it and z. This permits us to connect any subset
of the idle outputs to z. Because the first Cantor network is strictly nonblocking
for nonbranching connections, it is possible to connect any of its idle inputs to z,
establiching the theorem. ©
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We note without proof that by a similar argument, a pair of cascaded Clos net-
works forms a ‘wide-sense nonblocking generalized connector.
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A network can be modeled as a directed graph with a designated set of input
nodes and a designated set of output nodes. A connection network or connector
is a network used to connect designated pairs of inputs and outputs. The paths
used to connect distinct pairs are not permitted to share links. Benes [1], defines a
connector to be strictly nonblocking if given any legal configuration of the network, 1t
is always possible to add a connection between a specified idle input and a specified
idle output, without reassigning existing connections to different paths. He also
defines a connector to be wide-sense nonblocking is there is a routing algorithm which
avoids blocking states given any legitimate sequence of connection and disconnection
requests. A generalized connector is a network used to connect designated inputs to
designated output sets; that is a network used to establish multipoint communmnication
channels. The definitions of strict and wide-sense nonblocking extend to generalized
connectors in the obvious way. See [1] and [5] for more precise definitions.

In this note, we show that wide-sense nonblocking networks can be obtained by
cascading a pair of Cantor networks [2] or a pair of Clos networks [3]. The only con-
straint placed on the routing algorithm is that branching be restricted to the second
network in the cascade. This result yields practical networks for multipoint commu-
nication with complexities O (N(log N)?) and O (N 141/ ”). Pippenger [6] describes a
wide-sense nonblocking generalized connector with complexity O (N(log N)3). This
appears to be the best asymptotic complexity for a network with the potential for
practical application. Feldman, Friedman and Pippenger [4] show how to construct
wide-sense nonblocking generalized connectors with complexity O(N log V), but the
resulting networks are of purely theoretical interest as the constants involved are quite
large and the routing problem is NP-complete.

The Benes network [1], By can defined by the recursive construction shown in
Figure 1. The base of the recursion is a & x k crossbar. The Cantor network K ;. m
can be defined by the construction shown in Figure 2. The following result is due to
Cantor [2]. We include it here for reference.
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Figure 2: Cantor Network
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THEOREM 1. The Cantor network Kp i m is a strictly nonblocking connector if m >
281 log, (N/k).

Proof. Assume the network is in some arbitrary state and we are asked to connect
an idle input z to an idle output y. Define a; to be the number of stage ¢ links

accessible from z. Then,

¥y = Mm

ay = mk — (k - 1)

as > kay — (K* — k) > mk® — 2% + 2k
(s ] 2 .IL‘CY3 e (ks -_ k2) 2 mk3 — 3k3 -+ 3k2
o; > mkT e (1~ DET 4 (- 1)k

Substituting A = log, N, we find that the number of stage i links and hence the
number of middle stage crossbars accessible from z is at least

(m— 5200 )

The number of middle stage crossbars is exactly mN/k. If oy, > mN/2k then more
than half the middle stage switches are accessible from z. By a similar argument,
more than half the middle stage switches are accessible from y and consequently there
is at least one middle stage switch accessible from both  and y allowing us to connect
them. Thus it suffices to have

(m _k - L - 1)) (N/E) > mN/2k

which holds exactly when m > 2521 log, (N/k). D

The next theorem demonstrates that we can obtain a wide-sense nonblocking net-
work by taking two Cantor networks and connecting the outputs of the first network
to the inputs of the second. We refer to this as a cascade conneciion.

THEOREM 2. The network obtained by cascading two Cantor networks, Knkm 15 @
wide-sense nonblocking generalized connector if m > Q-E%llogk(N/k).

Proof. The only constraint placed on the routing algorithm is that connections
branch only in the second network. Under this restriction, we show that it is always
possible to connect an idle input z simultaneously to any subset of the idle outputs.
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First, we need some definitions. For 1 < 1 £ & = log, N, define R;(z) to be the
set of stage ¢ links that can be reached from input z in an idle Cantor network. We

note that Ri(z) = Ri(y) if |=/k"1] = [y/ki"lj, so
Ri(0), B; (k"_l) v R (GEY) R (A 1) k1)

partitions the links in stage ¢ into k*~*! groups of mk'! links each.

Now consider any state of the cascaded Cantor networks with at least one idle
output and in which connections branch only in the second network. Suppose we are
asked to connect some idle input z to some subset of the idle outputs. Our strategy
will be to find some input z of the second network from which more than half of the
middle stage crossbars in the second network are accessible. We find z by working
back from the middle stage of the second network, seeking the most “lightly loaded”
portion of the network.

Define §;(7) to be the number of links in R; (j4!) that are busy and let 87 =
min; B;(j). Note that gf < (N —1)/k**! = k*~1(1 — 1/N), since so long as there is
at least one idle output, at most N —1 links in any stage can be busy and the number
of distinct sets R;(-) is k"1,

Now suppose that 1 < ¢ < h and j satisfies §;(j) < (N —1)/k*=#1. Then for some
7' €[5k, ..., (7 + 1)k — 1} we have B;(j") < (N — 1)/k*=+2. Thus, we can work back
from the middle stage of the second network to an input z such that for 1 <7 < &,
the number of busy links in Ry(z) < k"1(1 — 1/N). Since the number of busy links
must be an integer, this implies R;(z) < k' — 1. Now, if o; is the number of stage i
links accessible from z then

vy = M

az > mk—(k-1)

s > hay — (B* — k) > mk? — 2k* 4 2k
ay > kaz—(k®— k%) > mk® —3k% + 3k*
o = mkT - (i DT+ (- DE?

Note that this is exactly the same inequality obtained in the previous theorem. Hence,
at least half of the second network’s middle stage crossbars are accessible from z. Since
the branching in the second network does not affect the accessibility of the middle
stage crossbars from the output side, each idle output can access more than half
the middle stage crossbars implying that every idle output has at least one middle
stage crossbar accessible to both it and z. This permits us to connect any subset
of the idle outputs to z. Because the first Cantor network is strictly nonblocking
for nonbranching connections, it is possible to connect any of its idle inputs to z,
establishing the theorem. O
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We note without proof that by a similar argument, a pair of cascaded Clos net-
works forms a wide-sense nonblocking generalized connector.
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