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ABSTRACT OF THE DISSERTATION

No-slip Billiards

by

Christopher Lee Cox

Doctor of Philosophy in Mathematics

Washington University in St. Louis, 2016

Professor Renato Feres, Chair

We investigate the dynamics of no-slip billiards, a model in which small rotating disks

may exchange linear and angular momentum at collisions with the boundary. A general

theory of rigid body collisions in Rn is developed, which returns the known dimension

two model as a special case but generalizes to higher dimensions. We give new results on

periodicity and boundedness of orbits which suggest that a class of billiards (including all

polygons) is not ergodic. Computer generated phase portraits demonstrate non-ergodic

features, suggesting chaotic no-slip billiards cannot easily be constructed using the common

techniques for generating chaos in standard billiards. However, Sinai type dispersing billiards,

which are always ergodic in the case of standard billiards, appear to be ergodic above a

certain curvature threshold.

ix



Chapter 1

Introduction

No-slip billiards are a type of billiard dynamical system based upon a model in which linear

and angular momentum of a hard spherical particle, moving in an n-dimensional Euclidean

domain, may be exchanged on collisions at the boundary with total energy conserved, as

indicated in the diagram of Figure 1.1. The standard billiard model is based on a specular

collision in which the angle of reflection equals the angle of incidence from the boundary.

The origins of billiard dynamics can be traced back to Jacques Hadamard [17] at the end of

the nineteenth century, and in the half century since Yakov Sinai’s [23, 24] seminal insights

and the subsequent work of his students Bunimovich [8] and Chernov[9], standard billiards

have been and continue to be extensively studied. In contrast, though the no-slip model

may be seen to arise as a second ideal collision on equal footing with the specular collision

model, research of no-slip billiards has been limited. Our purpose is to begin a systematic

study of no-slip billiards, looking at the geometric foundation, the dynamics, and the ergodic

properties.

Figure 1.1: In a no-slip billiard system in dimension 2 a form of non-dissipative friction at collisions
causes linear and rotational velocities to be partially exchanged.

1



Chapter 2 briefly introduces the no-slip model and then demonstrates its application with

several examples. While elements of the no-slip model appear in the physics literature in

the context of “rough” conservative collisions [16][28], the first systematic development was

by Broomhead and Gutkin [5]. They introduced no-slip collisions in two dimensions as a

new model of a gas, in which “the spheres interact with each other and with the container

walls” without slipping, in such a way that the impact “conserves the total energy of the

system, but mixes the tangential velocity components with the angular velocities of colliding

spheres.” They demonstrate that in two dimensions energy may be conserved only by the

specular collisions of the traditional gas model, well-known from standard billiards, or the

unique conservative alternative of no-slip collisions, and as an application they describe the

following fundamental example.

Example 1. (The no-slip infinite strip) In contrast to the specular analogue, the dimension

two, no-slip billiard between two (infinite) parallel boundaries will have bounded orbits for

any initial rotational and linear velocities, unless the velocity component perpendicular to the

boundary is zero. Gutkin and Broomhead showed the boundedness using complex coordinates

for the phase space and showing that the series giving the horizontal displacement after n

collisions is bounded.

Figure 1.2: No-slip collisions between planar parallel boundaries have maximal displacement
√

3
2 (

1
(ẋ2)2 − 1), corresponding to the length of the base of the region in the above figure containing

the trajectory. Here ẋ2 is the (constant) vertical velocity and the particle is a disk of uniform mass.

2



Figure 1.3: The no-slip equilateral triangle is periodic for all initial conditions. Orbits may be of
the three types above or their degeneracies.

The broader implications of the boundedness of this example were not pursued in [5], but

analytical and numerical observations suggest this property holds in much greater generality

and is at the heart of a very general non-ergodicity result for this class of billiard systems.

The last section of Chapter 2 presents several examples which show interesting features

of the no-slip model but which are not pursued in detail at this time. For example, from the

viewpoint of allowing each boundary point to be either “rough” or “smooth”, we revisit the no-

slip strip of Example 1 and consider a hybrid model where both types of collisions are possible.

If the collision is randomly assigned, the system is merely a one dimensional random walk.

More interestingly, if the disk is given rough and smooth sides and the rotational position is

tracked so that the collision is assigned by the disk’s position, the system will exhibit a type

of pseudoperiodic behavior which changes according to scale. Another interesting example is

the no-slip equilateral triangle billiard, as in Figure 1.3. Regardless of what initial parameters

are chosen, the system will be periodic, with period either four, six, or degenerate versions of

these with period two or three.1

Chapter 3 fills in the background found in joint work with Feres and Ward [13]. We
1Note that the rotation adds a third dimension to the two spacial dimensions. Often, if there is no loss of

information, the given figures will be the planar projection, as in Figure 1.3. Also, without any essential
alteration of the theory we may use the orbit of the center of mass, with boundaries accordingly adjusted by
distance R.
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introduce a broad framework for collisions of rigid bodies in Rn satisfying natural physical

requirements which yields as a special case the no-slip model in R2, but which easily extends

to higher dimensions and could be used to consider broader classes of collision models. The

starting point is considering collisions as maps on the tangent space of the configuration

manifold at boundary points.

Definition 1 (Strict collision maps). Let M denote the configuration manifold of two rigid

bodies in Rn having smooth boundaries. We endow M with the Riemannian metric whose

quadratic form gives the system’s kinetic energy function and assume that points q ∈ ∂M

represent configurations in which the bodies have a single contact point. At a boundary point

q of M where ∂M is differentiable, we define a collision map as a linear map C ∶ TqM → TqM

that sends vectors pointing out of M into vectors pointing inward. We say that C is a strict

collision map at q if

1. Energy is conserved. That is, C is an orthogonal linear map;

2. Linear and angular momentum are conserved in the unconstrained motion. (This

property, expressed in terms of invariance of a momentum map, may amount to no

restriction at all when one of the bodies, representing the billiard table, is assumed

fixed in place and the subgroup of Euclidean symmetries of the whole system is trivial);

3. Time reversibility. This amounts to C being a linear involution;

4. Impulse forces at collision are applied only at the single point of contact. (See [13] for

an elaboration and geometric interpretation of this property, which may be regarded

as a generalized momentum conservation law that is generally non-trivial and highly

restrictive.)

We give a classification of collisions maps, including the following theorem proved in

Section 3.1.

4



Theorem 2. At each boundary point of the configuration manifold of the system of two rigid

bodies, assuming the boundary is differentiable at that point, the set of all strict collision maps

can be expressed as the disjoint union of orthogonal Grassmannian manifolds Gr(k,n − 1),

k = 0, . . . , n− 1, of all k dimensional planes in Rn−1. In particular, when n = 2, the set of strict

collision maps is a two-point set consisting of the specular reflection and the no-slip collision.

This theorem implies that for dimension n ≥ 3, there exists a spectrum of possible choices

in contrast to the two choices in dimension 2. One might require specular collisions for

all directions at all boundary points, in which case the model is simply that which is used

for higher dimensional standard billiards, or one might assign no-slip collisions everywhere.

Alternatively, though, at each boundary point the requirements of a strict collision will also

be satisfied by hybrid models assigning some smooth and some rough directions. To describe

these cases we will introduce the notion of “rough rank”, discussed informally in Section 2.2

and formalized in Section 3.1.4.

We are most interested in applying this general theory of rigid body collisions to billiard

systems, generally understood to consist of two rigid bodies, one of which is fixed in place

and called the billiard table. The focus is then on the motion of the second, referred to as

the billiard particle. For the system to be fully specified it is necessary to impose boundary

conditions. From our perspective, this amounts to assigning a collision map Cq to each

boundary configuration q ∈ ∂M from among those in the moduli of collision maps described

by the above theorem. The geometric description of a no-slip collision of a billiard particle at

a wall is explained in Figure 1.4. In addition to the standard reflection it involves a rotation

by the special angle β, which is the same for all table shapes under the assumption that the

particle is a disk of uniform density.

In Chapter 4 we look more closely at the dynamics of no-slip billiards, primarily focusing

two spacial dimensions. We begin by returning to Example 1, giving an alternate proof of

boundedness which gives the bound mentioned in Figure 1.2 and which extends naturally to

5



Figure 1.4: Geometric description of the collision map for no-slip billiards in dimension 2. The
vertical axis, perpendicular to the billiard table, represents the angle of rotation of the disk (linearly
scaled so that total kinetic energy becomes the Euclidean norm). The total (linear and angular)
velocity of the billiard particle after collision, Cv, lies in the cone determined by the incoming velocity
v as indicated in the figure. To obtain Cv, first reflect v back through the vertical axis so as to
point into the 3-dimensional configuration space, change the sign of its rotational component, and
finally rotate the resulting vector by the angle β such that cosβ = 1/3 and sinβ = 2

√

2/3. This
β corresponds to a disk with uniform mass distribution and more generally would depend on the
moment of inertia.

a proof that no-slip billiards in dimension three between planes are bounded. We investigate

periodicity of no-slip billiards, beginning by showing that the strip will not be periodic except

for the trivial period two case involving no rotational or horizontal velocity.

One driving question in the study of standard billiards is whether for a given table the

billiard map is ergodic, that is, whether every set which is invariant under the billiard flow has

measure 0 or 1. While this topic is deferred until the last chapter, it serves as one lens through

which we consider the dynamics. For example, a feature of no-slip billiards that may preclude

ergodicity is an axis of periodicity, a certain type of period two trajectory that will be seen

to be ubiquitous. In contrast to the hyperbolic periodic points that may exist in standard

ergodic billiards, these axes appear to occur as the center of small invariant regions near

elliptic periodic points. These axes occur in a large class of billiards including all polygons.

This behavior demonstrates one marked difference between the dynamics of no-slip billiards

and those of standard billiards. For example, generic polygons (having angles of irrational

multiples of π) for standard billiards are ergodic [18], but no-slip billiards on polygons appear

6



to be non-ergodic. Fundamental to understanding this behavior is the following example,

investigated more fully in Section 4.2.

Example 2. (The no-slip wedge) Consider the no-slip billiard table consisting of the un-

bounded region between two rays meeting at angle θ. An informal numerical survey of

wedge systems reveals that for most angles θ ∈ (0, π) the behavior is similar to the bounded,

nonperiodic dynamics of the no-slip strip (Figure 1.5). However, certain isolated θ have

periodic orbits which are stable in the sense of persisting when the initial conditions are

altered, to any extent not inducing a direct exit from the wedge.

Figure 1.5: For most angles, no-slip open wedges give nonperiodic orbits (far left and far
right), but θ = π

3 (center left) and θ ≈ .2709 (center right) give period four and period ten
orbits which persist when initial velocities are changed.

This persistent periodicity, it turns out, is more common than is immediately apparent

numerically, and in fact can be precisely related to the wedge angle. Consequences of this

fact and another useful result gleaned from the wedge example are given in the following

theorem, proved in Section 4.2.

Theorem 3. For a no-slip billiard wedge of angle θ ∈ (0, π), let x0 be the rotational axis, x2

the direction of the wedge bisector, and x1 the perpendicular spacial direction.

i There exists a periodic axis, a direction in which all trajectories are periodic. Specifically,

for velocity (ẋ0, ẋ1, ẋ2), the orbit will be periodic whenever

ẋ0

ẋ1

= −
√

2 sin
θ

2
.

7



ii For any n ∈ Z+, wedge angle θn can be chosen so that all non-escape velocities yield

2n-periodic orbits. Furthermore, the set of all such θn is dense in (0, π).

iii The angle ψ between the velocity and the axis of periodicity is invariant throughout an

orbit, remaining unchanged after collisions.

The final section of Chapter 4 looks at no-slip circle billiards. While standard circular

billiards are characterized by a circular caustic, the no-slip circle has a caustic consisting of

two circular components (Figure 1.6).

Figure 1.6: The standard circular billiard with circular caustic (left) along with two no-slip circles
(middle and right) showing a caustic consisting of two circular components.

In Chapter 5 we look at ergodic theory as it pertains to no-slip billiards. We begin

by establishing the invariance of the two dimensional no-slip map, a prerequisite for the

remainder of the chapter, and considering the invariance in higher dimensions. A sufficient

condition for the invariance of the Liouville measure is that the field of collision maps q ↦ Cq

be parallel with respect to the Levi-Civita connection on ∂M associated to the kinetic energy

Riemannian metric. This condition is satisfied for no-slip billiards in the plane, giving the

following theorem.

Theorem 5. The canonical billiard measure on the boundary of the phase space of a planar

no-slip billiard is invariant under the billiard map.

8



In higher dimensions, hybrid billiards (see Example 7) which are not fully rough or fully

smooth open the possibility of a non-parallel field of collision maps, in which case the measure

might not be invariant.

Figure 1.7: The two primary techniques of generating chaotic behavior in standard billiards,
defocusing and dispersing, do not immediately translate to no-slip billiards. The Bunimovich
stadium (left) is not ergodic, as the flat edges will always produce a positive measure region of phase
space with bounded orbits. Similar bounded regions appear in dispersing billiards with concave
boundaries for certain parameters, like the Sinai type example of a disk on a torus (right).

Focusing on the dimension 2 case, the remainder of Chapter 5 considers the question of

whether ergodic no-slip billiards can be constructed. In standard billiards, two well-known

techniques for generating chaotic dynamics are the defocusing and dispersing mechanisms.

The stadium of Bunimovich [6], the most well-known example of chaotic focusing, consists

of two half circles connected by flat segments. The corresponding no-slip billiard, however,

fails to be ergodic, as by [5] any arbitrarily small flat strip will have bounded orbits for all

trajectories in a neighborhood of positive measure near the vertical trajectory (Figure 1.7,

left). While no such elementary argument can be used to show that the dispersing examples

of standard billiards are not ergodic in the no-slip case, Wojtkowski [29] considered periodic

orbits with zero tangential velocity and showed that for small curvature stable elliptic points
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exist (Figure 1.7, right).

The periodic orbit in the no-slip strip can be viewed as a special case of a periodic axis,

and the discussion of the wedge properties along the axis of periodicity in Chapter 4 are

supported by the fact that the associated periodic points are elliptic, suggesting the following

holds.

Conjecture 1. If a billiard table has an axis of periodicity, with both contact points in flat

neighborhoods of the boundary, then the no-slip billiards map is non-ergodic. In particular,

for any polygonal table the no-slip map is not ergodic.

length parameter of table contour velocity phase space

Figure 1.8: Reduced phase space for no-slip billiards in two dimensions is a solid torus, with the
horizontal parameter being the position on the boundary. Disk cross sections give the possible
velocities at that boundary point. Many of the diagrams shown below represent the projection from
the solid torus to a single disk by ignoring the length parameter along the boundary of the table.
We call this disk the velocity phase space.

In the final section, we consider numerical evidence from phase portraits of no-slip billiards.

Note that no-slip billiards in dimension 2 correspond to configuration spaces M of dimension

3, whose points are parametrized by the location of the center of the disk-particle and its

10



angle of rotation. The boundary of M is then a two-dimensional, piecewise smooth manifold,

and the phase space is a 4-dimensional manifold whose points are pairs (q, v) in which q ∈ ∂M

and v may be taken to lie in a hemisphere (whose radius is determined by the conserved

kinetic energy) about the normal vector to ∂M at q pointing into M . We identify this

hemisphere with the disk of same radius in the tangent space to ∂M at q under the natural

orthogonal projection. Thus the phase space of our billiards, at least in the case of bounded

(and connected) billiard tables, will typically be homeomorphic to the Cartesian product of a

2-torus and a disk. A simplification results by noting that the angle of rotation (but certainly

not the speed of rotation) is typically immaterial. Formally this means that we may for

many purposes consider the reduced phase space, defined as the quotient of the 4-dimensional

phase space by the natural action of the rotation group SO(2). The resulting 3-dimensional

solid torus is indicated in the diagram of Figure 1.8. In many cases key features may be

gleaned from the projection to the velocity components, which we refer to as the velocity

phase portrait.

Figure 1.9: The velocity phase portrait is the projection of the 3-dimensional reduced phase portrait
as indicated in Figure 1.8. Here orbits of the billiard map for the hexagon no-slip billiard (with table
on the left) are shown projected to the velocity phase space.

We conclude with an investigation of phase portraits with an eye towards ergodic candi-

dates. Elliptic periodic points precluding ergodicity will be in evidence as concentric ellipses
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in the velocity phase portrait, as in the regular hexagon of Figure 1.9. Indeed, for polygonal

tables, phase portraits suggest that there is no positive measure ergodic component. Tables

corresponding to known chaotic standard billiards are considered. Many of them appear to

display behavior qualitatively similar to invariant KAM islands with surrounding ergodic seas,

a much studied and not completely understood phenomenon sometimes found in Hamiltonian

dynamical systems indicative of an intermediate system which is neither integrable nor fully

chaotic [8]. This behavior has been observed in standard billiards in particular, including

including the illustrative mushrooms of Bunimovich [7] and the moon billiards of Correia and

Zhang [12]. Figure 1.10 shows the examples of a standard billiard which is a moon variation

and a no-slip mushroom.

Figure 1.10: The phase portrait of a moon-type standard billiard (left) and the velocity phase
portrait of a no-slip mushroom billiard (right). Note the overlap at the center of the mushroom
portrait, resulting from projection.

While dispersing no-slip billiards are not generally ergodic, Wojtkowski [29] showed that

the elliptic periodic point in evidence in Figure 1.7 above disappears for sufficiently small

radii. Simulations confirm this result, showing a rapid dispersal of the structure at the

predicted threshold. Further experiments looking at periodic points between non-parallel

tangents suggest that the curvature threshold is higher but still exists, and phase portraits
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give further evidence that this no-slip billiard on a torus, with a single dispersing disk of

small radius, is an excellent candidate for ergodicity. Verifying this analytically would seem

to be a high priority for the next step in the study of no-slip ergodic billiards.

Throughout we have relied on simulations to verify and inform the analytical work. Most

of these were written using SageMath (System for Algebra and Geometry Experimentation),

mathematical software with a python-like syntax. For anyone interested in a more detailed

look at this aspect of the work, the code for General Billiards, a broad application for creating

both standard and no-slip billiard tables, is given in the appendix.
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Chapter 2

The No-slip Collision Model

In section 2.1 we give an elementary derivation of the no-slip collision model, using only

the equations for conservation of momentum and energy. A more general derivation giving

the broader context will be taken up in Chapter 3. We review connected references in the

physical literature, which are few to the best of our knowledge and in some cases simplify the

model, but which do provide a glimpse of the connection between the ideal models and actual

physical experiments. The last section of this chapter gives several applications of the model.

2.1 Collisions conserving energy and momentum

The no-slip collision model arises naturally as an alternative to the specular model under

the physical requirements of conservation of linear and angular momentum and conservation

of energy. Broomhead and Gutkin [5] give a detailed development of the two dimensional

case in 1993, while a three dimensional physical version of the model are mentioned by Cross

([14], 2002) in relation to tennis balls and Garwin ([16], 1969) in relation to “ultraelastic”

Super-Balls©.1

Consider the motion in two dimensions of a disk of mass m and radius R which bounces

between the (horizontal) floor and ceiling while it rotates. The vertical component of the

velocity reverses at each collision, while in the tangential direction a friction force F is exerted

for a brief interval ∆t. Letting v± and ω± represent the pre- and post-collision tangential and
1Registered by Wham-O Corporation, 835 E. El Monte St., San Gabriel, Calif. 91776
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rotational velocities, the conservation of momentum requires

m(v+ − v−) = F∆t (2.1.1)

and the conservation of angular momentum

I

R
(ω+ − ω−) = −F∆t, (2.1.2)

where I is the moment of inertia. By conservation of energy,

1

2
mv+

2 + 1

2
Iω+

2 = 1

2
mv−

2 + 1

2
Iω−

2. (2.1.3)

Combining the momentum equations while factoring and simplifying the energy equation

yields the system
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

m(v+ − v−) = I
R(ω− − ω+)

m(v+ − v−)(v+ + v−) = −I(ω+ − ω−)(ω+ + ω−)
(2.1.4)

with two solutions. This is the sense in which the no-slip model might be considered an

alternative ideal model. The standard specular reflection is described by the solution v+ = v−,

ω+ = ω−, and F∆t = 0. (Physically, this implies there is no tangential force, suggesting the

“smooth” description.) Alternatively, the solution corresponding to the no-slip collision is

given by

v+ =(1 − 2I

I +mR2
) v− +

2IR

I +mR2
ω−

ω+ =
2mR

I +mR2
v− − (1 + 2I

I +mR2
)ω−.

(2.1.5)

For the two dimensional disk of uniform density, the moment of inertia is I = 1
2mR

2, yielding
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(for the upper collision)

v+ =
1

3
v− +

2

3
Rω−

ω+ =
4

3R
v− −

1

3
ω−.

(2.1.6)

In applying the model subsequently we divide the rotational coordinate by a factor of R√
2
so

that the energy will be normalized. The collision transformation becomes

v+ =
1

3
v− +

2
√

2

3
ω−

ω+ =
2
√

2

3
v− −

1

3
ω−.

(2.1.7)

Adjusting the signs yields a similar transformation for collisions on the floor. More

generally, though, we wish to consider the transformation according to a frame with tangential

coordinate x1, upward normal x2, and x0 representing the rotational direction. Then we may

describe the collision as a transformation of the velocity v = (ẋ0, ẋ1, ẋ2)†, where ‘†’ indicates

matrix transpose. More specifically, the transformation matrix T ∈ O(3) is

T =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

−1
3

2
√

2
3 0

2
√

2
3

1
3 0

0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

. (2.1.8)

This transformation will also arise, with greater context, in Chapter 3.

Considering the corresponding vector equations, Tokieda [28] uses this derivation to find

the dimension 3 model, noting that there is a “dull” solution and a second solution “worthy

of a superball.” For the three dimensional ball, the moment of inertia is I = 2
5MR2, yielding

the vector equations

v+ =
3

7
v− +

4

7
Rω−

ω+ =
10

7R
v− −

3

7
ω−

(2.1.9)
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which normalizes to

v+ =
3

7
v− +

2
√

2

3
ω−

ω+ =
2
√

2

3
v− −

1

3
ω−.

(2.1.10)

This will correspond to the rough rank two solution using the derivation in the next chapter.

It is important to note, however, that the vector equations for the three dimensional case

actually yield a range of solutions based on the rough rank 1 cases. Tokieda’s model, like the

other referenced physical models, implicitly exclude the intermediate cases with an assumption

that the ball is “perfectly rough” [16].

Cross in particular conducts physical experiments tracking the reflection angles of tennis

balls off surfaces of varying friction levels. As one might expect, the resulting collisions yield

actual angles between the no-slip and specular angles, falling along a spectrum according to

the friction. For low impact angles, complications due to rolling occur [14]. While the case of

rolling rigid body collisions is touched upon in the next chapter, the application is beyond

our current scope.

2.2 Examples

We now turn to several specific examples, beginning with the equilateral triangle. We will

prove the assertion of periodicity from Chapter 1. (Recall Figure 1.3.)

Example 3. The equilateral triangle billiard

By Proposition 28, which will be proved in the Chapter 4, the wedge angle θ = π
3 yields

period four (or degenerate period two) orbits. As a result, the equilateral triangle has unique

dynamics. Immediately, any orbit which starts at one side and fails to contact both of the

remaining sides by the third collision will be periodic. It turns out, in fact, that all orbits are

periodic.
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Proposition 1. All nondegenerate orbits of the no-slip equilateral triangle billiard are

periodic, with period two, three, four, or six.

Proof. First, we show that the velocities are periodic with the given possible values. Labeling

the sides, consider the possible combinations keeping track only of which side the collision

occurs on and not the exact location, looking at equivalence classes up to relabeling sides.

Each possible orbit can be written as a sequence of ones, twos, and threes, without loss of

generality beginning with 12.

Certain combinations are dynamically impossible: we can immediately rule out any

sequence with repeated numbers, and 1213232 can be ruled out because any 4−cycle between

two edges will repeat. Other combinations, like 12131 can be ruled out by comparing the

dynamics with the wedge dynamics when side 3 is removed. The possible parameters when

leaving side 1 for the second time are such that it must, in the wedge, return to side two,

parameters which also ensure the orbit would next hit side 2 if instead it collides with wall 3.

Figure 3 shows the combinatorial possibilities with dotted lines indicating equivalent forms

and dynamically impossible combinations struck through.

Besides the four cycle 1212, the only possibilities may be expressed 1213231 and 1231231.

Fixing an orientation for the triangle, the transformation of the velocity vector after a

collision, relative to the new frame, will either be S1 = TR′
π
3
or S2 = TR′

−π
3
. But the combined

transformations for the two possibilities after the sixth collision are (in the given representation)

S1S3
2S

2
1 = I or S6

1 = I, and the velocity is preserved.

It remains to show that the orbits are actually periodic, that is, that the orbits return to

the same boundary point and are not merely parallel trajectories. Suppose that the orbit

arrives back on the starting side but not at the same point, and consider subsequent returns

after multiples of six collisions. The second set of trajectories will be parallel to the first all

the way around and accordingly the sequence of walls will not change. Now consider the

finite partition of the original wall by degenerate points where an orbit in the fixed direction
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12

121

4-cycle 1213

12131 12132

121321 121323

6-cycle 1213232

123

1231

12312

123121 123123

6-cycle 1231232

12313

1232

Figure 2.1: Combinatorial possibilities for trajectories of the equilateral triangle. Strike through
indicates combinations which as impossible with the no-slip collision map, while boxes indicate
duplicates.

from that point eventually hits a vertex. All return points must be in the same interval,

always at the same distance apart and with the order preserved. But this implies that the

entire interval is fixed, and the orbit must return to the starting point.

Currently, the equilateral triangle is the only known example of a closed billiard we

know of which is completely periodic in this sense. Good candidates for other examples

are polygons with all periodic angles, in the sense of yielding the periodic wedge orbits as

described in Theorem 3. Such polygons might turn out to be the no-slip analog of standard

rational billiards, an active field of inquiry. (See, for example, Chapter 11 in [25] by Smillie or

Chapter 13 in [4] by Masur and Tabachnikov.) However, even identifying “rational” polygons

in this new sense is nontrivial, beyond the equilateral triangle.

We wish to illustrate now boundary conditions for which the map q ↦ Cq varies in a

nontrivial way or is chosen randomly. For the next two examples, let the billiard system

consist of a disc moving in an infinite strip bounded by two parallel lines, as in Example 1,
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but with an alternative method of choosing the collision model as designated.

Example 4. The random half smooth, half no-slip disk

First, we revisit the no-slip strip but with the requirement that a point on the boundary

of the disc is chosen to be rough or smooth randomly with equal probability. This is thus an

example of a random boundary condition. The longitudinal motion now corresponds to a

random walk, (see 2.2) for which it is possible to prove a diffusion (Brownian motion) limit.

(Under the assumption of unit velocity, if the ratio of the rotational to vertical components is
√

2, the system precisely corresponds to a unit random walk.)

Figure 2.2: Disc between parallel plates in dimension 2. The roughness rank is now random, either
0 or 1 with equal probabilities.

In the deterministic case, the behavior is quite different.

Example 5. The deterministic half smooth, half rough disk

Suppose that one hemisphere of the boundary of the disc is rough, resulting in no-slip

collisions, and the other is smooth, yielding specular collisions. In Figure 2.3 we show graphs

of the position of the (center of) the disc along the longitudinal axis of the table as a function

of the collision step. The time between two consecutive collisions is easily shown to be

constant, so the step number is proportional to time. The three graphs describe the same

trajectory at different time scales, as indicated in the legend of the figure.

20



Figure 2.3: A single orbit of the motion of a disc between parallel plates in dimension 2. Half of
the boundary circle is rough and the other half is smooth. The horizontal axis indicates the step
number, taken as a proxy for time. The vertical axis gives the distance of the center of mass along
the length of the 2-dimensional channel.

It is interesting to observe the apparent long range quasi-periodic behavior of trajectories.

We consider now a few examples in dimension 3. In all cases, a ball of uniform mass

distribution moves between two parallel infinite plates. In dimension three, the roughness

rank can be 0, 1, or 2. Standard specular reflection has roughness rank 0; we explore examples

of roughness rank 1 and 2.

Figure 2.4: Typical segment of trajectory in position space and its horizontal projection for the
motion of the center of mass of a ball bouncing between two parallel plates in dimension 3 with
roughness rank equal to 2. Note that orbits are bounded, as will be shown in Chapter 4.

Example 6. Three spacial dimensions, rough rank two

Suppose the rough rank is two for both plates, that is, suppose we have the three

dimensional analog of the no-slip strip. Simulations suggest that the trajectories are bounded
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(Figure 2.4), and indeed we will prove this is the case.

The figure on the right shows the projection of the trajectory to the coordinate plane

parallel to the plates.

Example 7. Three spacial dimensions, rough rank one

When the roughness rank is one, the set of collision maps comprise a one-dimensional

family. Figure 2.5 shows some combinations of boundary conditions. One clearly notices

that whenever the roughness rank in at least one plate is not maximal, trajectories are no

longer bounded. The boundary conditions for the systems of Figure 2.5 are of the following

types: one plate has roughness rank 2 and the other has roughness rank 1 with constant

rough direction (that is, constant map T in Equation 3.1.2); and both plates have roughness

rank 1, with random rough direction for the bottom plate and either constant or independent

random rough direction for the top plate. Specifically, we choose the directions given by

angles 0, π/3,2π/3 with equal probabilities. The legend of the figure shows which trajectory

corresponds to which condition.

Figure 2.5: Horizontal projection of motion of the center of mass for a ball bouncing between two
parallel plates in dimension 3. Top left: roughness rank 1 for both top and bottom plates and
random (and independent) roughness directions; bottom left: top and bottom roughness rank 1, but
now roughness direction is constant for the top and random for the bottom plate; right: roughness
rank is 2 for top plate and 1 for bottom plate, with constant roughness direction. Making the the
rough direction random for the bottom plate gives a trajectory that does not look significantly
different than the one on the top left.
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Chapter 3

A differential geometric framework for rigid

body collisions in Rn

This chapter gives the details of the larger theory of rigid body collisions described in [13]. It

is joint work with Renato Feres and Will Ward. It is of interest here specifically because the

no-slip model of Chapter 2 can be better understood as a special case, but is also of intrinsic

interest and might serve as a framework for exploring other collision models.

The classical theory of collisions of rigid bodies provides a very natural setting in which

to explore the geometry and dynamics of mechanical systems on configuration manifolds

with boundary. From this geometric perspective, the response of the system to collisions

between its rigid moving parts is specified by assigning appropriate boundary conditions that

tell how a trajectory should be continued once it reaches the boundary. For example, in the

theory of billiard dynamical systems, a topic that may be defined very broadly as the study of

Hamiltonian (more typically, geodesic flow) systems on Riemannian manifolds with boundary,

one typically assumes that trajectories reflect off the boundary specularly—the simplest form

of impact response compatible with the basic laws of mechanics such as energy conservation

and time reversibility. Billiard systems with more general boundary conditions have to

our knowledge been investigated very rarely. Two pertinent examples are [5], discussed in

Chapters 1 and 2, and [29], which will be discussed in Chapter 5. Both works are restricted

to 2-dimensional billiards. (There is, of course, an extensive literature in engineering and

applied physics about less idealized systems governed by impact interactions, including a

few such as those discussed in the last chapter that touch upon rough collisions, but this
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literature is not concerned with the differential geometric issues that are the main focus here.)

Our first goal is to classify boundary conditions for systems defined by two unconstrained

rigid bodies in Rn, n ≥ 1, under standard physical assumptions of energy conservation, linear

and angular momentum conservation, time reversibility, linearity of response, and another

condition to be defined shortly that extends momentum conservation and is typically made

implicitly in textbooks. Collisions satisfying all of these properties will be called strict. They

are formally represented by linear maps Cq ∶ TqM → TqM , where M is the configuration

manifold equipped with the kinetic energy Riemannian metric, q is a boundary configuration,

and the tangent space TqM is the space of (pre- and post-) collision states. A boundary

condition for the system then consists of the (differentiable, measurable, random, etc.)

assignment of a strict collision map Cq to each boundary configuration q ∈ ∂M .

In dimensions greater than 1, the collision map is not uniquely determined by the

conditions of strict collision. It is well-known that the nature of the contact between the

colliding rigid bodies also needs to be specified. The standard case in which Cq is specular

reflection corresponds to bodies having physically smooth surfaces.

Towards this classification we identify a family of subbundles of T (∂M) arising naturally

under the assumed physical laws and discuss some relationships among them. From these

relationships we derive sufficient conditions for the non-standard billiard system to leave

invariant the natural volume measure on a constant energy manifold (derived from the

canonical symplectic form). The invariance of this billiard measure makes it possible to bring

the tools of ergodic theory (see [9, 27]) to the study of non-standard billiard systems; we will

return to this in Chapter 5.
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3.1 Statements of the main results

3.1.1 Notation, terminology, and standing assumptions

For the next sections we consider the unconstrained motion of two rigid bodies, represented by

the sets B1,B2 ⊂ Rn. We call these sets the bodies in reference configuration. Let G = SE(n)

denote the Euclidean group of orientation preserving isometries of Rn equipped with the

standard inner product. The bodies are assumed to be connected n-dimensional submanifolds

of Rn with smooth boundaries. An interior configuration of the system consists of a pair

(g1, g2) ∈ G × G such that g1(B1) and g2(B2) are disjoint sets. The closure of the set of

interior configurations, denoted M , will be called the configuration space of the system, and

its boundary is the set of contact (or collision) configurations. M has dimension 2dim(G)

and the nature of the boundary ∂M will depend on geometric assumptions about the Bj.

We will soon state a sufficient, and fairly general for our needs, condition on the ∂Bj for M

to be a submanifold of G ×G with smooth boundary.

The following notations are used fairly consistently throughout. Points in Bj are denoted

b, bj. Elements of the Euclidean group, which is the semidirect product G = SO(n) ⋉Rn of

the groups of rotations and translations, are written as pairs (A,a), where A ∈ SO(n) and

a ∈ Rn. Elements of the Lie algebra g = se(n) are written (Z, z), possibly with subscripts

or superscripts, where Z ∈ so(n) and z ∈ Rn. The outward-pointing unit normal vector to

the boundary of Bj at b ∈ ∂Bj is denoted νj(b). It is convenient to consider orthonormal

frames σ at b ∈ ∂Bj adapted to the bodies, in the following sense: σ ∶ Rn → TbRn ≅ Rn is an

element of SO(n) such that σen = −(−1)jνj(b), where en = (0, . . . , 0, 1)† is the last element of

the standard basis {e1, . . . , en} of Rn and ‘†’ indicates matrix transpose.

BecauseM is a submanifold of G×G, each tangent space can be canonically identified with

T(e,e)(G×G) ≅ g⊕g by left-translation. Thus states of the system, defined as elements of TM ,

may be canonically identified with tuples (A1, a1,A2, a2, Z1, z1, Z2, z2). We sometimes indicate
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Figure 3.1: On the left and right are the bodies B1 and B2 in their reference configuration in Rn.
A configuration of the system of rigid bodies is given by a pair (g1, g2) of elements of the Euclidean
group G. A boundary configuration can be parametrized by the tuple (b1, σ1, b2, σ2) where bj ∈ ∂Bj
such that g1(b1) = g2(b2) and σj is an orthonormal frame at bj as will be explained in the text.

the state by (q, ξ), where q = (g1, g2) and ξ = (Z1, z1, Z2, z2) ∈ g × g. The position of material

point b ∈ Bj in the given state is then gj(b) = Ajb + aj and its velocity is V (b) = Aj(Zjb + zj).

The boundary configuration (g1, g2) can also be parametrized, up to an overall rigid motion

of the two bodies keeping their positions relative to each other unchanged, by (b1, σ1, b2, σ2),

where bj is in the boundary of Bj and σj is an adapted frame such that g1(b1) = g2(b2) and

A1σ1 = A2σ2. The tuple (b1, σ1h, b2, σ2h) corresponds to the same contact configuration, for

all h ∈H, where

H ∶= SO(n − 1) = {A ∈ SO(n) ∶ Aen = en}.

These notions are illustrated in Figure 3.1.

Let Πb denote the orthogonal projection from Rn to the tangent space to the boundary of

Bj at a boundary point b. The orthogonal projection to Rn−1 = e⊥n will be denoted Π. The

shape operator of the boundary of Bj at the point b is the linear map defined by

Sb ∶ νj(b)⊥ → νj(b)⊥, Sbv = −Dvνj

where Dv is directional derivative in Rn. We say that S ∶ Rn−1 → Rn−1 is the shape operator

Sb in the adapted frame σ at b if σS = Sbσ. The notation AdσS = σSσ−1 will be used often
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to indicate conjugation.

So as not to get distracted by regularity issues, we assume that the configuration manifold

M has smooth boundary and that each boundary configuration corresponds to the bodies being

in contact at a single common point. Proposition 2, which is a special case of Proposition 19,

gives a sufficient condition for M to be nice in this respect. The hypotheses of the proposition

will be assumed to hold subsequently.

Proposition 2. Suppose that S1+S2 is nonsingular for every relative configuration (b1, σ1, b2, σ2)

of the rigid bodies, where Sj ∶ Rn−1 → Rn−1 is the shape operator of the boundary of Bj at bj

in the adapted frame σj. Then M is a smooth manifold of dimension 2dimG with smooth

boundary, and each boundary point q = (g1, g2) represents a configuration with a unique

point of contact. Moreover the map that associates to q ∈ ∂M the uniquely determined pair

(b1, b2) ∈ ∂B1 × ∂B2 such that g1(b1) = g2(b2) is smooth.

We call the b1, b2 associated to q ∈ ∂M under the condition of Proposition 2 the contact

points (in the reference configuration) associated to boundary point q.

3.1.2 The kinematic bundles

If a, b ∈ Rn, let a ∧ b ∈ so(n) be the n-by-n matrix such that (a ∧ b)ij = ajbi − aibj. If a, b

are orthogonal unit vectors, a ∧ b is the infinitesimal generator of the one-parameter group

in SO(n) that rotates the plane spanned by a and b and fixes pointwise the orthogonal

complement of that plane. The boundary state of the two-body system consists of the

boundary configuration q = (g1, g2) ∈ G ×G and velocities ξ = (Z1, z1, Z2, z1) ∈ g × g.

We now define the kinematic bundles. Given q = (g1, g2) ∈ ∂M , with gj = (Aj, aj) and

associated contact points b1, b2, consider the following linear relations on the ξ ∈ Tq(∂M),

where Nj = ∂Bj and νj = νj(bj):

R1 ∶ ν1 ⋅ (Z1b1 + z1) = ν2 ⋅ (Z2b2 + z2)
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R2 ∶ A1(Z1b1 + z1) = A2(Z2b2 + z2)

R3 ∶ AdAjZj =W + νj ∧wj for W ∈ so(n) and wj ∈ TbjNj, j = 1,2

R4 ∶ AdA1Z1 = AdA2Z2.

As already noted, Aj(Zjbj + zj) is the velocity of the contact point bj in the given state.

Observe that relation R2 implies R1. It will be shown later that

Tq(∂M) ≅ {ξ ∈ g × g ∶ R1}.

The physical interpretation of the kinematic bundles is as follows. A state satisfying R1 has

the property that the contact points have zero relative velocity in the normal direction to the

plane of contact. Relation R2 is satisfied exactly when the contact points are not moving at

all relative to each other at the moment of contact. This means that the contact points do

not slip past each other. Relation R3 describes a state in which the tangent spaces to the

bodies at the point of contact do not experience a relative rotation (on that tangent space).

Thus it is a condition of non-twisting. Together R2 and R3 describe a state in which the

bodies are rolling on each other.

Definition 2 (Kinematic bundles). Let S, R, and S be the vector subbundles of T (∂M)

defined by

Sq ≅ {ξ ∈ g × g ∶ R2}

Rq ≅ {ξ ∈ g × g ∶ R2,R3}

Dq ≅ {ξ ∈ g × g ∶ R2,R3,R4}.

Note that D ⊂R ⊂S. We refer to S as the non-slipping subbundle, R the rolling subbundle,

and D the diagonal subbundle.
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It will be shown that the diagonal subbundle D is the tangent bundle to the orbits of

the action of G on M by left translations: g(g1, g2) ∶= (gg1, gg2). Later in we give a different

definition of these subbundles, Definition 10, that makes their physical interpretation more

clear. Then what is stated above as a definition is derived in Section 3.4.2.

3.1.3 The kinetic energy metric and the impulse subbundle

Suppose now that the bodies Bj are assigned mass distributions represented by finite positive

measures µj supported on Bj. Let mj ∶= µj(Bj) be the mass of Bj. We may assume without

loss of generality that µj has zero first moment: ∫Bj b dµj(b) = 0. This is to say that Bj has

center of mass at the origin of Rn. The matrix of second moments of µj is Lj = (lrs), with

entries

lrs =
1

mj
∫
Bj
brbs dµj(b).

We call Lj the inertia matrix of body Bj. This matrix induces a map Lj on so(n) that

associates to Z ∈ so(n) the matrix Lj(Z) = LjZ +ZLj ∈ so(n).

Definition 3 (Kinetic energy Riemannian metric). Given q ∈M and u, v ∈ TqM , define the

symmetric non-negative form on TqM by

⟨u, v⟩q = ∑
j

mj [
1

2
Tr (Lj(Zu

j )Zv
j

†) + zuj ⋅ zvj ]

where (Zu
1 , z

u
1 , Z

u
2 , z

u
2 ) and (Zv

1 , z
v
1 , Z

v
2 , z

v
2) are the translates to g × g of u, v. When the above

bilinear form is positive definite we call it the kinetic energy Riemannian metric on M .

Denoting by ∥ ⋅ ∥q the corresponding norm at q, we call 1
2∥v∥2

q the kinetic energy associate to

state (q, v).

The kinetic energy function given in Definition 3 is easily shown (as indicated later) to

come from integration with respect to the mass distribution measures of (one-half of) the
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Euclidean square norm of the velocity of material point b over the disjoint union of B1 and B2.

Thus Definition 3 agrees with the standard textbook definition of kinetic energy. It is also

clear that the metric is invariant under the left-action of G on M . Note that the boundary of

M is a G-invariant set.

For each u ∈ g we define vector field q ↦ ũq ∈ TqM , q = (g1, g2), by

ũq ∶=
d

dt
∣
t=0

etuq.

We call u↦ ũ the infinitesimal action derived from the left G-action on M and ũ the vector

field associated to u ∈ g.

Definition 4 (Momentum map). The map Pg ∶ TM → g∗ defined by

Pg(q, q̇)(u) = ⟨q̇, ũq⟩q

is called the momentum map associated to the G-action on M .

The most straightforward way of introducing dynamics into the system is through Newton’s

second law. There are several equivalent forms of it as we note later. The following is

particularly convenient for our needs. We first define a force field (possibly time dependent)

as a bundle map F ∶ TM → T ∗M . Given a state (q, q̇), q = (g1, g2), each component Fj of F

can be pulled-back to g∗ using right-translation Rgj , so it makes sense to write

d

dt
Pg
j (q, q̇) = R∗

gj
Fj. (3.1.1)

This is Newton’s second law written as a differential equation on the co-Lie algebra of G.

Other useful forms are mentioned later. One of them is indicated in the next proposition, in

which we use the notation F# for the dual of F with respect to the left-invariant Riemannian
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metric and write

(Yj(t, q, q̇), yj(t, q, q̇)) ∶= (dLgj)−1
e F

#(t, q, q̇) ∈ g.

Here we are using the differential of the left-translation map Lgj .

Proposition 3. The equation d
dtP

g
j (q, q̇) = R∗

gj
Fj is equivalent to

mj (LjŻj − [LjZj, Zj]) = Lj(Yj)

mj v̇c = Ajyj

where gj = (Aj, aj) and vc = Ajzj is the velocity of the center of mass of body Bj.

We assume that F results from the integrated effect of forces acting on the individual

material points. That is, we assume that there exists a Rn-valued measure ϕj on Bj

parametrized by TM from which F is obtained by integration:

F (q, v)(u) = ∫
Bj
Vu(b) ⋅ dϕj,q,v(b)

for all u ∈ TqM , where Vu(b) is the velocity of the material point b in the state (q, u). Of

special interest for us are the forces involved in the collision process. These impulsive forces

are characterized by being very intense and of very short duration, applied on a single

point—the point of contact in each body.

That the forces act on each body only at the point of contact greatly restricts the

right-hand side of the equation of motion in Proposition 3. This is indicated in the next

proposition.

Proposition 4. We suppose that the force field Fj acting on body Bj is such that the force

distribution measure ϕ is singular, concentrated at the point bj . Then the equations of motion
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of Proposition 3 reduce to

mj (LjŻj − [LjZj, Zj]) = bj ∧ yj

mj v̇c = Ajyj

For ideal impulsive forces (of infinite intensity and infinitesimal duration), momentum

should change discontinuously. Integrating Equation 3.1.1 over a very short time interval

[t−, t+] around t produces a nearly discontinuous change in momentum while keeping the

configuration essentially unchanged. We have informally

Pg
j (q, q̇+) − P

g
j (q, q̇−) = ∫

t+

t−
R∗
gj
Fj ds = Impulse at t.

It is not necessary for our needs to make more precise the limit process suggested by this

expression. From it we obtain the form of the change in momentum after impact, which is

given in the next proposition. Let q = (g1, g2) ∈ ∂M be a collision configuration and denote by

(Z±
1 , z

±
1 , Z

±
2 , z

±
2 ) ∈ TqM

the post- (+) and pre- (−) collision velocities of the two rigid bodies.

Proposition 5 (Velocity change due to impulse at contact point). Given pre-collision velocity

(Z−
1 , z

−
1 , Z

−
2 , z

−
2 ) there exist u1, u2 ∈ Rn such that

z+j = z−j + uj

Z+
j = Z−

j + L−1
j (bj ∧ uj).

Under conservation of linear momentum m1A1u1 +m2A2u2 = 0 holds.

The proof of the above proposition is given in Section 3.3.4. The assumption that impulsive
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forces of one body on the other at the moment of impact are applied at the point of contact

is a strong constraint. One can in principle conceive of force fields of relatively long range,

acting throughout the bodies, that are briefly switched on at the moment of impact, then

switched off as soon as the bodies lose contact. More realistically, the bodies could suffer

a deformation around the region of impact, creating a small neighborhood of contact. Of

course this goes beyond the rigid body model. Here it is assumed that these possibilities do

not happen, and that any effect of one body on the other can only be transmitted through

the single point of contact between them.

If Lj is non-negative definite of rank at least n − 1, Lj is invertible. With this in mind,

Proposition 5 suggests the following definition.

Definition 5 (Impulse subbundle). The impulse subbundle of TM (over the base manifold

∂M) is defined so that its fiber at q ∈ ∂M is the subspace

Cq = {((L−1
1 (b1 ∧ u1), u1), (L−1

2 (b2 ∧ u2), u2)) ∶ uj ∈ Rn,m1A1u1 +m2A2u2 = 0} .

We have now the following vector subbundles of i∗(TM), where i ∶ ∂M → M is the

inclusion map: D ⊂ R ⊂ S ⊂ T (∂M) and C. The latter subbundle is the only one that

depends on the mass distributions.

Theorem 1. The impulse subspace Cq is the orthogonal complement of the non-slipping

subspace Sq and contains the unit normal vector nq. Therefore,

TqM =Sq ⊕ (Cq ⊖Rnq) ⊕Rnq

is an orthogonal direct sum.

A physical interpretation of this orthogonal decomposition will be given shortly.
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3.1.4 Collision maps

Let nq be the unit normal vector to ∂M pointing into M at a boundary configuration q.

Define the half-spaces

T +
q M ∶= {v ∈ TqM ∶ ⟨v,nq⟩ ≥ 0} = −T −

q M.

We call any Cq ∶ T −
q M → T +

q M a collision map at q. By a boundary condition we mean the

assignment of such a map Cq to each q ∈ ∂M . We only consider here linear collision maps;

that is, Cq extends to a linear map on TqM . We now restate Definition 1 more formally.

Definition 6 (Strict collision maps). A collision map Cq at q ∈ ∂M is strict if the following

hold for all u, v ∈ TqM :

1. Conservation of energy: ⟨Cqv,Cqu⟩q = ⟨v, u⟩q. That is, Cq is a linear isometry.

2. Conservation of momentum: Pg(q,Cqv) = Pg(q, v).

3. Time reversibility: C2
q = Id (a linear involution).

4. Impulse at the point of contact: Cqv − v ∈ Cq.

Proposition 6. Condition 2 of Definition 6 is equivalent to assuming that Cq restricts to the

identity map on Dq. Condition 4 is equivalent to CqCq = Cq and (Cq − Id)C⊥q = 0.

Thus energy conservation and impulse at a single contact point are together equivalent to

Cq being the identity on Sq. In this sense, condition (4) of Definition 6 can be regarded as

generalizing momentum conservation as we note in Proposition 6. In fact, conservation of

momentum amounts to Cq being the identity on Dq, whereas 4 and Theorem 1 imply that Cq

is the identity on the bigger subspace Sq. An intermediate condition is that Cq restricts to

the identity on the rolling subspace Rq.
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Corollary 1. Strict collision maps are the linear isometric involutions of TqM , q ∈ ∂M , that

restrict to the identity map on the non-slipping subspace Sq.

Collision maps have eigenvalues ±1. The map P± ∶= I±Cq
2 is the orthogonal projection to

the eigenspace associated to eigenvalue ±1.

Definition 7. The dimension of the eigenspace of Cq associated to eigenvalue −1 will be

called the roughness rank of Cq. The image of the orthogonal projection P− (a subspace of

Cq) will be called the roughness subspace at q.

The unit normal vector nq is always contained in the impulse subspace Cq and it must

necessarily be in the −1-eigenspace of Cq.

Corollary 2. Let n be the dimension of the ambient Euclidean space. Identifying

Cq ⊖Rnq ≅ Rn−1,

the set of strict collision maps is the set of C ∈ O(n − 1) such that C2 = I. Writing

Jk ∶= O(n − 1)/(O(n − k − 1) ×O(k)),

then the set of strict collision maps at any given boundary point is J0 ∪ ⋅ ⋅ ⋅ ∪ Jn−1. Moreover,

dimJk = k(n − k − 1) and k is the roughness rank at q.

We call Jk the Grassmannian of rough subspaces having roughness rank k. The classifica-

tion theorem give in Chapter 1, which we restate here, follows.

Theorem 2. At each boundary point of the configuration manifold of the system of two rigid

bodies, assuming the boundary is differentiable at that point, the set of all strict collision maps

can be expressed as the disjoint union of orthogonal Grassmannian manifolds Gr(k,n − 1),
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k = 0, . . . , n− 1, of all k dimensional planes in Rn−1. In particular, when n = 2, the set of strict

collision maps is a two-point set consisting of the specular reflection and the no-slip collision.

It is easy to compute the dimensions of the Grassmannians Jk for strict collision maps.

They are given, up to dimension 5, by the following table:

dim Jk ∶

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k 0 1 2 3 4

n

1 0

2 0 0

3 0 1 0

4 0 2 2 0

5 0 3 4 3 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The table shows that in dimension 1 there is a unique strict collision map; in dimension 2

there are exactly 2 possibilities; and in dimension 3 there is one possibility of roughness rank

0 given by the standard reflection map, one possibility for maximal roughness rank 2, and a

one-dimensional set of possibilities for roughness rank 1 parametrized by the lines through

the origin in R2. For general n, the unique collision map of maximal roughness rank will be

referred to as the completely rough reflection map.

3.1.5 Non-standard billiard systems

We have so far considered systems consisting of two unconstrained rigid bodies. The results

can be extended to situations in which one body or both are subject to holonomic and

non-holonomic constraints. Here we consider only the case in which body B1 remains fixed

in place whereas B2 is unconstrained except for the condition that it cannot overlap with B1.

The term billiard system will refer to a system of this kind where B2 is a ball with rotationally
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symmetric mass distribution. The system will be called non-standard if the (strict) collision

maps are not all specular reflection.

reference configuration

current contact 

configuration next contact

configuration

Figure 3.2: A billiard system. Body B1 is kept fixed (the billiard table) and B ∶= B2 is a ball of
rotationally symmetric mass distribution that can move freely in the complement of B1. Given the
contact point b ∈ N and the post-collision velocity v of the center of mass of B, the point of contact
of the next collision will be written b′ = T (b, v).

Let R denote the radius of B ∶= B2 and m its mass. Due to rotational symmetry of the

mass distribution of B, the matrix of inertia L is scalar, that is, L = λI. For example, a

simple integral calculation shows that if B has uniform mass distribution, then λ = R2

n+2 .

(Recall that we have defined L as the matrix of second moments of the mass distribution

measure divided by the total mass, so m does not appear in λ.) The (smooth) boundary of

B1 will be denoted N and the unit normal vector field on N pointing into the region of free

motion of B will be denoted ν. Trajectories of the billiard system are sequences of states:

(g0, ξ0), (g1, ξ1), . . . , where

(gi, ξi) ∈ SE(n) × se(n) ≅ TSE(n), gi = (Ai, ai), ξi = (Zj, zj).

Here gi is the contact configuration and ξi the post-collision velocities in the body frame

37



(reference configuration) at the ith collision.

To each contact state (g, ξ) = (A,a,Z, z) is associated a unique contact point b ∈ N

and the post-collision velocity v = Az of the center of mass. The center of mass of B in

configuration g is a and the velocity of any given material point b ∈ B is V (b) ∶= A(Zb + z).

When it is necessary to distinguish points in N and in B we write b ∈ N and b○ ∈ B. The

unit normal vector to B at b○ will be written ν○(b○) = b○/R. The point of contact at the next

collision, which only depends on b and v, will be denoted b′ = T (b, v). See Figure 3.2.

One step of the billiard motion, (g, ξ) ↦ (g′, ξ′), amounts to the following operations.

1. From the current collision state (g, ξ) at time t one obtains the contact point b ∈ N

and velocity v of the center of mass a of B where g = (A,a) = (A(t), a(t)). It should

be kept in mind that ξ = (Z, z) describe post-collision velocities so v = Az points into

the region of free motion of the ball.

2. Obtain the contact point b′ = T (b, n) ∈ N and the time t′ = t + τ of the next collision.

3. Obtain the next pre-collision state: (g′, ξ−) where g′ = (A′, a′) = (A(t + τ), a(t + τ)),

ξ− = (Z−, z−), and

A′ = AeτZ , a′ = a + τAz, Z− = Z, z− = e−τZz.

This is the free (geodesic) motion between collisions. Observe that a′ = b′ +Rν(b′).

4. Let b○ = (g′)−1b′ ∈ ∂B be the contact point on the ball in the reference configuration at

the next collision and denote by Π○,Π⊥○ the orthogonal projections to the tangent space

to ∂B at b○ and to Rν○(b○), respectively. Note that A′ν○(b○) = −ν(b′).

5. Finally, compute ξ′ = (Z ′, z′) from (Z−, z−) using the choice of collision map. It will be
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shown that

(Z ′, z′) = (Z− − α

2λ
b○ ∧ (I − T )V −, z− − α(I − T )V − − 2Π⊥○z

−) , (3.1.2)

where α ∶= 1/(1 +R2/2λ), V − = Π○(Z−b○ + z−), and T is a linear involution on Tb○(∂B)

corresponding to a choice of collision map. For specular reflection T = I and for

completely rough collisions T = −I.

We assume the uniform mass distribution on the ball B so λ = R2/(n + 2), where R is the

radius of B. Let first n = 2. In this case the only non-standard collision map corresponds

to T = −I. Elements of the rotation group are parametrized by the angle of rotation θ and

elements of the Lie algebra of SO(2) are written as θ̇J , where J is the rotation matrix by

π/2 in the counterclockwise direction. Together with the standard coordinates (x, y) we

obtain coordinates (θ, x, y) on SE(2). It will be convenient to make the coordinate change:

x0 = Rθ/
√

2, x1 = x,x2 = y. This yields coordinates (x0, x1, x2, ẋ0, ẋ1, ẋ2) on the billiard state

space. We also write v0 = ẋ0 and v = (ẋ1, ẋ2)† for the velocity of the center of mass of the

disc.

The choice of coordinates is made so that the kinetic energy Riemannian metric becomes,

up to multiplicative constant, the standard Euclidean metric. Then it can be derived from

Equation 3.1.2 that the post-collision velocities (v+0 , v+) after collision at point of contact

b ∈ N is the function of the pre-collision velocities (v−0 , v−) given by

v+0 = −1

3
v−0 +

2
√

2

3
v ⋅ (Jν(b))

v+ = [2
√

2

3
v−0 +

1

3
v− ⋅ (Jν(b))]Jν(b) − v− ⋅ ν(b)ν(b).

(3.1.3)

Thus the state updating equations for a 2-dimensional non-standard billiard system is as

follows. If τ is the time of free flight between the two consecutive collisions and setting
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x = (x0, x1, x2), v = (v0, v1, v2), then the billiard map giving the next state (x′,v′) as a

function of the present state (x,v−) is (x′,v′) = (x + τv,v+) where v+ is related to v−

according to Equations 3.1.3. For a geometric interpretation of those equations, refer back to

Figure 1.4. Note the role played by the angle β defined by cosβ = 1/3, sinβ = 2
√

2/3. In [5] it

is observed that β is the dihedral angle of a regular tetrahedron. In the figures throughout we

only indicate the position of the center of the disc; we draw a smaller table whose boundary

is at a distance R from the boundary of the original table and we imagine the center of the

ball as a point mass bouncing off the boundary of this smaller region.

3.2 The Euclidean group and its Lie algebra

The proofs of the main statements made above will be given after we establish some basic

material. Despite the classical nature of the subject, standard textbook treatments of

collisions of rigid bodies are not adequate for our needs while the more differential geometric

texts in mechanics mostly do not treat this topic. Thus we find it necessary to develop the

subject more or less from scratch. In this section we review general facts about the Lie theory

and Riemannian geometry of the Euclidean group with left-invariant metrics that will be

needed thoughout the remainder of this chapter.

3.2.1 Generalities

The isometry group of (Rn, ⋅), where ‘⋅’ indicates the standard inner product, is the Lie group

of all the affine maps of the form x↦ Ax + a for A ∈ O(n) and a ∈ Rn under composition of

maps. The closed subgroup of orientation preserving isometries, in which A ∈ SO(n), is the

Euclidean group in dimension n, denoted SE(n). The latter is isomorphic to the semidirect

40



product SO(n) ⋉Rn with multiplication operation

(A2, a2)(A1, a1) = (A2A1,A2a1 + a2)

and inverse

(A,a)−1 = (A−1,−A−1a).

It is also isomorphic to a subgroup of the general linear group GL(n + 1,R) under the

correspondence

(A,u) ∈ SO(n) ⋉Rn ↦
⎛
⎜⎜
⎝

A u

0 1

⎞
⎟⎟
⎠
∈ GL(n + 1,R).

The Lie algebras of SO(n) and SE(n) will be denoted so(n) and se(n). The former consists

of all the skew-symmetric matrices in the linear space M(n,R) of n × n real matrices and

se(n), when SE(n) is viewed as a subgroup of GL(n + 1,R), consists of the matrices

⎛
⎜⎜
⎝

X x

0 0

⎞
⎟⎟
⎠
∈M(n + 1,R)

where X ∈ so(n) and x is any vector in Rn. Indicating the matrix by the pair (X,x), the Lie

bracket is written

[(X,x), (Y, y)] = (XY − Y X,Xy − Y x).

One-parameter subgroups of SE(n) have the form

σ(t) ∶= exp

⎛
⎜⎜
⎝
t

⎛
⎜⎜
⎝

X w

0 0

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

etX ∫
t

0 e
sXwds

0 1

⎞
⎟⎟
⎠
.

It is useful to introduce the wedge product, the bilinear operation that associates to a pair
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of vectors a, b in Rn the skew-symmetric matrix a ∧ b ∈ so(n) whose (i, j)-entry is

(a ∧ b)ij = ajbi − aibj.

The following elementary properties of the wedge product will be used. The transpose of a

matrix will be indicated by U †.

Proposition 7. Let a, b, u be (column) vectors in Rn, A ∈ SO(n) and Z ∈ so(n). Then

1. (a ∧ b)u = (a ⋅ u)b − (b ⋅ u)a

2. (a ∧ b)† = b ∧ a

3. A(a ∧ b)A−1 = (Aa) ∧ (Ab)

4. Tr ((a ∧ b)Z†) = 2(Za) ⋅ b

5. Tr ((a ∧ b)(c ∧ d)†) = (a ⋅ c)(b ⋅ d)

6. Let V be the span of orthogonal unit vectors a, b ∈ Rn. Then (a ∧ b)2 = −I and

R(θ) ∶= exp(θa ∧ b) = (cos θ)I + (sin θ)a ∧ b ∈ SO(n).

Thus R(θ) is the identity on V ⊥, and a rotation on V .

7. Let en = (0, . . . ,0,1)† ∈ Rn and Π ∶ Rn → Rn−1 = e⊥n the orthogonal projection. Then

Z = ΠZΠ + en ∧ (Zen)

and ΠZΠ = 0 iff there exists z ∈ Rn−1 such that Z = en ∧ z.

8. For a ∈ R3 set ω(a)b ∶= a × b—the cross-product by a on the left. Then a ∧ b = ω(a × b)

and Aω(a)A−1 = ω(Aa).
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9. If n = 2, then a ∧ b = b ⋅ (Ja)J where J is counterclockwise rotation by π/2.

Proof. All properties are proved by straightforward calculations.

3.2.2 Left-invariant Riemannian metrics on SE(n)

Let ⟨⋅, ⋅⟩ be a left-invariant Riemannian metric on the connected Lie group G with Lie algebra

g. Let ∇ be the associated Levi-Civita connection. Define B ∶ g × g→ g by

⟨B(u, v),w⟩ = ⟨[v,w], u⟩.

If X,Y,Z are left-invariant vector fields on G such that Xe = u,Ye = v,Ze = w, then from

2⟨∇XY,Z⟩ = −⟨[Y,Z],X⟩ − ⟨[X,Z], Y ⟩ + ⟨[X,Y ], Z⟩ (3.2.1)

we obtain

(∇XY )e =
1

2
{[u, v] −B(u, v) −B(v, u)} . (3.2.2)

A left-invariant vector field X is a geodesic vector field if and only if 0 = ∇XX = −B(X,X).

It is not difficult to show that if the metric is bi-invariant then B(u,u) = 0 for all u ∈ g.

We adopt the notation: If v ∈ TgG, then g−1v ∶= (dLg−1)g v ∈ TeG = g.

Proposition 8. Let g(t) be any smooth curve in G and X a vector field along g(t), not

necessarily left-invariant. Define z(t) ∶= g(t)−1ġ(t) and w(t) ∶= g(t)−1Xg(t). Then

g(t)−1 (∇X
dt

)
g(t)

= ẇ + 1

2
([z,w] −B(z,w) −B(w, z)) .

In particular, g(t) is a geodesic if and only if ż = B(z, z).

Proof. Let e1, . . . , en be a basis of g and E1, . . . ,En the respective left-invariant vector fields
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on G. We write X = ∑ fjEj, g′(t) = ∑hj(t)Ej(g(t)). Then, using Equation 3.2.2,

∇X
dt

= ∑
j,k

h′j(t) [Ejfk +
1

2
fk ([Ej,Ek] −B(Ej,Ek) −B(Ek,Ej))]

g(t)
,

from which we obtain the desired expression after left-multiplying by g(t)−1.

Let the Lie algebra of G be g = s⊕ r, where r is an ideal and s is a Lie subalgebra. Let ⟨⋅, ⋅⟩

be a left-invariant Riemannian metric on G and ∇ the corresponding Levi-Civita connection.

We suppose that s and r are orthogonal subspaces.

Proposition 9. The following properties hold, where we indicate by the same letter elements

of g and the associated left-invariant vector fields on G. For z, zj ∈ r, Z,Zj ∈ s

1. ∇Z1Z2 and B(Z1, Z2) lie in s

2. ∇z1z2 ∈ r. If r is abelian, ∇z1z2 = 0 and B(z1, z2) ∈ s.

3. ∇zZ = 0 and ∇Zz = [Z, z]. Moreover B(z,Z) ∈ r and B(Z, z) = 0.

Proof. All properties follow from the definition of B, Expression 3.2.1 for the Levi-Civita

connection, and the assumption that the subalgebra s and the ideal r are orthogonal.

Let S and R be the subgroups of G having lie algebras s and r, respectively. Then G is

the semi-direct product G = S ⋉R, where R is a normal subgroup of G. We now assume that

R is a vector subgroup, hence abelian, and that S is a compact subgroup acting on R by

linear transformations, S ⊂ GL(R), preserving an inner product ⟨⋅, ⋅⟩ on R. That is, S is a

subgroup of the orthogonal group O(R, ⟨⋅, ⋅⟩). Elements of G will be denoted (A,a) where

A ∈ S and a ∈ R. Indicating the action of S on R by Aa, the multiplication in G takes the

form

(A1, a1)(A2, a2) = (A1A2,A1a2 + a1).
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Note that Ad(A,0)(0, z) = (0,Az) and ad(Z,0)(0, z) = (0, Zz), where ⟨Zz, z⟩ = 0 since A acts

on R by isometries.

Proposition 10. Under the just stated assumptions B(z, z) = 0 and B(z,Z) = −Zz. If g(t)

is a geodesic, writing (Z(t), z(t)) = g(t)−1ġ(t) we have Ż = B(Z,Z) and ż = −Zz

Proof. These simple remarks are consequences of the definition of B, the algebraic assumptions

about the group, and Proposition 8.

3.3 Newtonian mechanics of rigid bodies

We give here some alternative expressions of Newton’s equation of motion. The approach, if

not the notations, is essentially that of [2]. Other useful references are [3] and [21].

3.3.1 Momentum of a tangent vector and the momentum map

If M is a Riemannian manifold with metric ⟨⋅, ⋅⟩ and v ∈ TqM , we denote

P(q, v) ∶= ⟨v, ⋅⟩q ∈ T ∗
qM

and call this covector the momentum associated to the (velocity) vector v at (configuration)

q. The pair (q, v) will be called a state of the system. We often indicate states by (q, q̇),

dotting the quantities of which time derivative is taken. The momentum map Pg ∶ TM → g∗

was defined in Section 3.1.3.

If M = G is endowed with a left-invariant Riemannian metric, the momentum map for

the left-action of G is given by Pg(g, ġ)(u) = ⟨ġ, (dRg)e u⟩g. Because the Riemannian metric

is left-invariant,

Pg(g, ġ)(u) = ⟨g−1ġ,Adg−1u⟩e.
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In this case we also write Pg(v) ∶= ⟨v, ⋅⟩e ∈ g∗ for v ∈ g. Then

Pg(g, ġ) = Ad∗g−1Pg(g−1ġ)

where Ad∗gα = α ○Adg and Adg is the differential of the map Lg ○Rg−1 .

Proposition 11. Given a smooth curve g(t) in G and setting z(t) ∶= g(t)−1ġ(t), then

d

dt
Pg(g, ġ) = Ad∗g−1Pg(ż −B(z, z)).

In particular, g(t) is a geodesic if and only if momentum Pg(g, ġ) is constant.

Proof. First note that
d

dt
Adg−1(u) = −[z,Adg−1u].

It follows from the definitions that

d

dt
Pg(g, ġ)(u) = d

dt
⟨z,Adg−1u⟩ = ⟨ż,Adg−1u⟩ − ⟨z, [z,Adg−1]⟩ = ⟨ż −B(z, z),Adg−1u⟩.

The expression on the far right is now Pg(ż −B(z, z)) ○Adg−1 evaluated at u.

When G = SO(n), define on M(n,R) the bilinear form

⟨X,Y ⟩0 ∶= Tr(XY †).

Then ⟨⋅, ⋅⟩0 is an AdG-invariant non-degenerate positive bilinear form on so(n) and the

associated left-invariant Riemannian metric on G is bi-invariant. Thus for any left-invariant

Riemannian metric ⟨⋅, ⋅⟩ there must exist a linear map L ∶ g → g, symmetric and positive

definite with respect to ⟨⋅, ⋅⟩0, such that ⟨Z1, Z2⟩ = 1
2⟨L(Z1), Z2⟩0. We are interested in such L

that arises from a symmetric matrix L ∈M(n,R) according to the definition L(Z) ∶= ZL+LZ,
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in which case
1

2
Tr(L(Z1)Z†

2) = Tr (Z1LZ
†
2) .

If u1, . . . , un is a basis of Rn of eigenvectors of L, Lui = λiui, then the ui ∧uj comprise a basis

of so(n) such that L(ui ∧ uj) = (λi + λj)ui ∧ uj.

Proposition 12. Given L ∈ M(n,R) define the linear map L ∶ M(n,R) → M(n,R) by

L(Z) = ZL +LZ. If L is symmetric and non-negative definite of rank at least n − 1, then L

is an isomorphism and ⟨Z1, Z2⟩ ∶= 1
2Tr(L(Z1)Z†

2) is a left-invariant Riemannian metric on

SO(n). The tensor B for this metric is

B(Z1, Z2) = [LZ1, Z2]L−1

for all Z1, Z2 ∈ so(n).

Proof. Let λ1, . . . , λl be the distinct eigenvalues and V1, . . . , Vl the respective eigenspaces of

L. Let πj ∶ Rn → Vj denote the orthogonal projections. Then πjL = Lπj = λjπj. It suffices to

show that L has trivial kernel. Thus suppose L(Z) = 0. Then for all i, j,

0 = πiL(Z)πj = πiLZπj + πiZLπj = (λi + λj)πiZπj.

But λi + λj > 0 by the assumptions on L so all blocks πiZπj are zero, hence Z = 0. The

expression for B follows from Tr ([Z2, Z3]LZ†
1) = Tr ([LZ1, Z2]L−1Z†

3) .

3.3.2 Kinetic energy metrics on SE(n) for rigid bodies in Rn

The left-invariant metrics on G = SE(n) of interest here are derived from mass distributions

on the rigid body. Let B ⊂ Rn denote the body in its reference configuration. The position of

material point b ∈ B in the configuration g = (A,a) ∈ G = SO(n) ×Rn is Φ(g, b) ∶= Ab + a. We
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call Φ ∶ G×B → Rn the position map and use the alternative notations Φ(g, b) = g(b) = Φb(g) as

convenience dictates. For now (until we consider collisions shortly) B may be any measurable

set with a finite (positive) measure µ defining its mass distribution. Recall from Section 3.1.3

that m ∶= µ(B) is the mass of the body and the first moment of µ is 0. When considering the

motion of several bodies, we assume that the center of mass of each of them in the standard

configuration is at 0.

Elements of g = so(n)×Rn will be written in the form ξ = (Z, z). Let Lg and Rg denote left

and right-multiplication by g. We will very often use the identification G × g ≅ TG given by

(g, ξ) ↦ (dLg)eξ. Each v ∈ TgG gives rise to the map Vv ∶ B → Rn defined by Vv(b) = (dΦb)q v,

which is the velocity of b in state (g, v). The kinetic energy Riemannian metric on G is

defined so that the inner product of u, v ∈ TgG is given by

⟨u, v⟩g = ∫
B
Vu(b) ⋅ Vv(b)dµ(b).

Proposition 13. The Riemannian metric on SE(n) associated to the mass distribution µ is

invariant under left-translations.

Proof. To see this, note first that

Vv(b) =
d

ds
∣
s=0

gesξb = d

ds
∣
s=0

(AesZb +A∫
s

0
etZz dt + a) = A (Zb + z) .

Here we have used the form of the exponentiation in SE(n) given in Section 3.2.1. Therefore,

as A leaves invariant the standard inner product in Rn,

Vu(b) ⋅ Vv(b) = (Zub + zu) ⋅ (Zvb + zv)

and so ⟨(dLg)eξ, (dLg)eη⟩g = ⟨ξ, η⟩e.
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Recall the inertia matrix L introduced in Section 3.1.3.

Proposition 14. The matrix L associated to mass distribution µ satisfies:

1. For arbitrary n × n matrices Z1 and Z2, ∫B(Z1b) ⋅ (Z2b)dµ(b) = Tr (Z1LZ
†
2) .

2. If A ∈ SO(n), the inertia matrix of the rotated body gB is LA ∶= ALA†.

3. L = λI if µ is SO(n)-invariant. If µ is uniform on a ball of radius R, λ = (n + 2)−1R2.

Proof. These are obtained by elementary calculations.

Let L(Z) = LZ +ZL where, from now on, L is an inertia matrix.

Corollary 3. The kinetic energy Riemannian metric can be written in the form

⟨u, v⟩g =m [1

2
Tr (L(Zu)Z†

v) + zu ⋅ zv] (3.3.1)

where u, v ∈ TgG and their left-translates to g are indicated by (Zu, zu) and (Zv, zv).

Proposition 15 (Tensor B for se(n)). Let SE(n) be given the left-invariant Riemannian

metric associated to the inertia matrix L. Then

B((Z1, z1), (Z2, z2)) = (([LZ1, Z2] −
1

2
z1 ∧ z2)L−1,−Z2z1) .

Proof. Observe that

⟨[(Z2, z2), (Z3, z3)], (Z1, z1)⟩ = ⟨([Z2, Z3], Z2z3 −Z3z2), (Z1, z1)⟩

=m{Tr ([Z2, Z3]LZ†
1) + (Z2z3 −Z3z2) ⋅ z1}

=mTr(([LZ1, Z2] −
1

2
z1 ∧ z2)L−1LZ†

3) −m(Z2z1) ⋅ z3

= ⟨(([LZ1, Z2] −
1

2
z1 ∧ z2)L−1,−Z2z1) , (Z3, z3)⟩ .
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The claimed identity now follows from the definition on B.

We note that if L = λI, then B((Z, z), (Z, z)) = (0,−Zz).

Proposition 16. Give G = SE(n) the left-invariant Riemannian metric defined by a mass

distribution on the rigid body B with inertia matrix L and mass m. Let ξ = (W,w) ∈ g and

(g, v) ∈ TG where g = (A,a) and v = (dLg)e(Z, z). Then

Pg(g, v)(ξ) = 1

2
mTr{(AdAL(Z) + xc ∧ vc)W †} +mvc ⋅w.

Here xc = a is the position of the center of mass of the body in configuration g and vc ∶= Az

is the velocity of the center of mass for the given state (g, v).

Proof. This is a straightforward computation based on the definition of Pg and the expression

of the Riemannian metric given in Corollary 3.

Let ⟨⋅, ⋅⟩g be the left-invariant inner product on g given by

⟨(Z, z), (W,w)⟩g ∶= Tr(ZW †) + z ⋅w. (3.3.2)

Then, with the notation of Proposition 16,

Pg(g, v)(ξ) =m ⟨(1

2
(AdAL(Z) + xc ∧ vc) , vc) , (W,w)⟩

g

(3.3.3)

3.3.3 Singular force fields and impulses

Let M be the configuration manifold of a mechanical system with the kinetic energy Rieman-

nian metric and material body B with mass distribution measure µ.

A force field on M is a bundle map F ∶ TM → T ∗M possibly depending on time, although

we omit explicit reference to the time variable. So if v ∈ TqM , then F (q, v) ∈ T ∗
qM . Forces
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acting on B typically arise from a Rn-valued (possibly time dependent) measure ϕ on B,

parametrized by TM , called the force distribution. From such a measure we define the force

field F (q, v) ∈ T ∗
qM such that for each u ∈ TqM ,

F (q, v)(u) = ∫
B
Vu(b) ⋅ dϕq,v(b).

We are interested in cases where ϕq,v is singular, supported on a single point of B.

Definition 8 (Newton’s equation). Newton’s equation of motion of the (unconstrained)

mechanical system with configuration manifold (M, ⟨⋅, ⋅⟩) and force field F is

∇
dt
P(q, q̇) = F (t, q, q̇).

Proposition 17. Give M = SE(n) a left-invariant Riemannian metric and let F be a force

field on M . Let F# be the dual field, so F (t, q, v)(u) = ⟨F#(t, q, v), u⟩q. Then

∇
dt
P(g, ġ) = F ⇔ ∇ġ

dt
= F# ⇔ ẇ −B(w,w) = (dLg−1)gF# ⇔ d

dt
Pg(g, ġ) = R∗

gF.

Proof. These are consequences of Propositions 8 and 11.

When M = SE(n), it is useful to regard the force field as a Lie algebra-valued by

left-translating each force vector to TeG. We define

F(t, g, ġ) ∶= (Y (t, g, ġ), y(t, g, ġ)) ∶= (dLg)−1
e F

#(t, g, ġ) ∈ g.

Then, using the notation of 3.3.2,

⟨F ,Adg−1ξ⟩g =
1

2
Tr [(AdAL(Y ) + xc ∧Ay)W †] + (Ay) ⋅w

= ⟨(1

2
(AdAL(Y ) + xc ∧Ay) ,Ay) , (W,w)⟩

g

(3.3.4)
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Proposition 3 follows from these remarks, keeping in mind that vc = Az and xc = a.

Let the force be applied on a single point Q = Q(t, g, ġ) ∈ Rn, so that ϕ is supported on Q.

Let u = (dRg)ξ ∈ TqM , ξ = (W,w) ∈ g. Note that we are using right-translation here since we

wish to evaluate the last of the equivalent equations of Proposition 17 on the Lie algebra

element ξ. Then there exists I = I(t, g, ġ) depending only of F such that

F (t, g, ġ)(u) = ∫
B
Vu(b) ⋅ dϕg,ġ(b) = Vu(g−1Q) ⋅ I = (WQ +w) ⋅ I = 1

2
Tr((I ∧Q)W †) + I ⋅w.

This gives

F (t, g, ġ)(u) = ⟨(1

2
Q ∧ I,I) , (W,w)⟩

g

.

It follows from the expression 3.3.4 of F that

AdAL(Y ) + xc ∧Ay = Q ∧ I

Ay = I.

Writing fc ∶= Ay, this is equivalent to fc = I and AdAL(Y ) = (Q − xc) ∧ fc. Therefore, the

equation of motion becomes

mv̇c = fc

mAdA (LŻ − [LZ,Z]) = (Q − xc) ∧ fc

proving Proposition 4.

Our informal discussion of the idea of impulse from earlier and the above remarks now

give the expression ((Q − xc) ∧ Ic,Ic) ∈ g for the change in momentum due to singular forces

applied to Q. This gives the following.

Proposition 18 (Change in momentum due to impulsive forces). If the rigid body with
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mass m, inertia matrix L and associated Lie algebra map L, is subject to an impulsive force

concentrated at point Q ∈ Rn at a given time, then momentum changes discontinuously

according to

mv+c −mv−c = Ic

mAdAL(Z+ −Z−) = (Q − xc) ∧ Ic
(3.3.5)

for some vector Ic ∈ Rn depending on the state of the body. As before, xc = a indicates the

center of mass of the body in configuration g = (A,a), v± = Az± are the velocities of the center

of mass immediately prior to and after the application of the impulse, and (g, (Z±, z±)) are

the pre- and post-impulse states of the body.

3.3.4 Several bodies and momentum conservation

If the mechanical system consists of several unconstrained rigid bodies, B1, . . . ,Bk (in reference

configuration) subject to forces Fj(q, v), j = 1, . . . k, the configuration manifold M is a subset

of the product G ×⋯ ×G, with one copy of G = SE(n) for each body. We consider for now

only motion in the interior of M .

We say that forces are internal to the system if they are somehow due to the influence of

the bodies on each other. More specifically, we use term ‘internal’ when Fj = ∑i≠j Fij and

the Fij = Fij(q, v)—the force body i exerts on body j in state (q, v)—satisfies the property

of action-reaction: Fij = −Fji. If the forces are derived from, possibly singular, measures

ϕq,v(j, b∣i, b′) on Bi ×Bj so that

Fij(q, v)(u) = ∫
Bi
∫
Bj
Vu(b′) ⋅ dϕq,v(j, b′∣i, b),

then the action-reaction property, expressed in terms of ϕ, means that

dϕ(i, b∣j, b′) = −dϕ(j, b′∣i, b)
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for almost every b, b′ (with respect to ϕ). Newton’s equation applied to body j is then

∇
dt
Pj(q, q̇) = ∑

i≠j
Fij(t, q, q̇)

and the total momentum P(q, q̇) = ∑j Pj(q, q̇) is conserved:

∇
dt
P(q, q̇) = ∑

j

∑
i≠j
Fij(t, q, q̇) = 0.

Another way to interpret the notion of forces internal to the system is to assume that the

total work the Fi do along a rigid motion of the entire system, that is, the work along a path

in M of the form γ(t) ∶= etξq = (etξg1, . . . , etξgk) is zero. The total work is then

0 = ∫
b

a
∑
j

Fj(γ(t), γ′(t))(γ′j(t))dt

= ∑
j
∫

b

a
(R∗

gFj(γ(t), γ′(t)))(ξ)dt

= ∑
j
∫

b

a

d

dt
[Pg

j (γj(t), γ′j(t))(ξ)]dt

= ∑
j

Pg
j (γ(b), γ′(b))(ξ) −∑

j

Pg
j (γ(a), γ′(a))(ξ)

and, again, the total momentum (now in the sense of the momentum map on g) is constant.

In this sense, conservation of momentum follows, as expected, from a symmetry property.

Of particular interest here are two bodies that interact through impulses applied to a

common point of collision Q. Then for each body, indicated by the index i = 1,2,

miv
+
c,i −miv

−
c,i = Ic,i

miAdAiLi(Z+
i −Z−

i ) = (Q − xc,i) ∧ Ic,j
(3.3.6)

where the impulse vectors satisfy Ic,1 + Ic,2 = 0 by conservation of momentum. Proposition 5
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is now a consequence of this observation and of Proposition 18.

3.4 Kinematics of two rigid bodies

The configuration manifold of a system of several (unconstrained) rigid bodies in Rn is a

submanifold with boundary of the product of copies of the Euclidean group SE(n), one copy

for each body. The Riemannian metric is then the product of the Riemannian metrics for

each single body. Here we focus on the boundary of the configuration manifold of two bodies

and certain structures therein.

Let B1 and B2 be submanifolds of Rn of dimension n having smooth boundary and

equipped with mass distribution measures µ1 and µ2 with masses mj ∶= µj(Bj) < ∞ and

zero first moment. The bodies need not be bounded. The configuration manifold M is by

definition the closure of

M0 ∶= {q = (g1, g2) ∈ G ×G ∶ g1(B1) ∩ g2(B2) = ∅} (3.4.1)

where G = SE(n). We further assume that each collision configuration q = (g1, g2) ∈ ∂M is

such that g1(B1) ∩ g2(B2) consists of a single point.

The definition of M as the closure of M0 is not a very useful description of M near its

boundary. In particular, it is not so clear how to translate geometric information about

the boundaries of the Bj into information about the boundary of M . For this purpose we

introduce the extended configuration manifold Me defined below.

Let Nj be the boundary of Bj and let νj be the outward-pointing unit normal vector

field on Nj. By a (positive) adapted orthonormal frame at b ∈ Nj of sign ε ∈ {+,−} we mean

a positive orthogonal map σ ∶ Rn → TbRn ≅ Rn such that σen = ενj(b). Here en is the last

vector of the standard basis (e1, . . . , en) of Rn. Hence σ is an element of SO(n) mapping Rn

isometrically to TbNj. If σ is an adapted frame and h ∈ H ∶= SO(n − 1), then σh is also an
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adapted frame with the same base point as σ. In this way, H acts freely and transitively by

right multiplication on the set of adapted frames at any given point of Nj.

Figure 3.3: Interpretation of the map Ψ. The transformation gj sends body Bj from its standard
configuration to the configuration that takes the adapted frame σj to the standard frame in Rn, and
the point bj into the line through the origin along en a distance s/2 from the origin.

We denote by F εj the principal H-bundle of adapted (positive) orthonormal frames over

Nj of sign ε. Elements of F εj will be written (b, σ), where σ is in the fiber F εj (b). The extended

configuration manifold is the product Me ∶= F+
1 ×F−

2 ×G× [0,∞). We can now define the map

Ψ ∶Me → G ×G by Ψ(b1, σ1, b2, σ2, g, s) = (g1, g2) where

g1 = gg1 = g (σ−1
1 ,−σ−1

1 b1 − s/2) = (Aσ−1
1 , a − s

2
Aen −Aσ−1

1 b1)

g2 = gg2 = g (σ−1
2 ,−σ−1

2 b2 + s/2) = (Aσ−1
2 , a + s

2
Aen −Aσ−1

2 b2) .

The geometric interpretation of Ψ is shown in Figure 3.3. Note that points on the boundary

of M correspond under Ψ to points in Me with coordinate s = 0. The groups G and H

naturally act on Me on left and right, respectively:

g(b1, σ1, b2, σ2, g
′, s)h ∶= (b1, σ1h, b2, σ2h, gg

′h, s).

The quotient Me/H is easily seen to be a smooth manifold and the projection Me →Me/H is
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a principal H-bundle. It is also immediate from the definitions that

Ψ(gqh) = gΨ(q)

for all ξ ∈Me, where the action of G on G ×G is defined by g(g1, g2) = (gg1, gg2). Therefore,

Ψ induces a G-equivariant map

Ψ ∶Me/H → G ×G.

Equivariance means Ψ(gq) = gΨ(q). The G-action on Me admits a smooth cross-section:

S ∶= F+
1 × F−

2 × {e} × [0,∞).

The G-action on Me and on Me/H leaves invariant the coordinate s; in particular, it leaves

the boundary of these two manifolds invariant.

Figure 3.4: For Me/H to be a good parametrization of M near the boundary some pathologies
must be avoided. Far left: a boundary configuration in Me/H that is not in ∂M ; middle pair: two
distinct elements of Me/H corresponding to the same element in ∂M ; far right: a curve in Me that
is mapped under Ψ to a single point in M .

It is natural to expect that under reasonable assumptions the restriction of Ψ to a

neighborhood of the boundary of Me/H will be a diffeomorphism onto a neighborhood of the

boundary of M , thus providing a useful parametrization for the purpose of understanding

collisions. Figure 3.4 shows some of the situations that must be avoided. We give shortly a

few sets of sufficient conditions for Ψ to be a local diffeomorphism, but our immediate goal is
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to explore Me, Me/H, and their boundaries a little further.

3.4.1 The tangent bundle of ∂Me and ∂(Me/H)

Recall that the shape operator of a hypersurface N ⊂ Rn with unit normal vector field ν

at a point b ∈ N is the linear map Sb ∶ TbN → TbN defined by v ↦ −Dvν where Dv is the

Levi-Civita connection for the standard Euclidean metric in Rn. We write ∇vX ∶= ΠbDvX

for a tangent vector field X on N , where Πb is the orthogonal projection from Rn to TbN .

This is the Levi-Civita connection on N for the induced metric. Let (b, σ) be a point in

the adapted frame bundle F ε over N and (v, ζ) a tangent vector to F ε at (b, σ). Then, by

differentiating ν(γ(t)) = −(−1)εσ(t)en, where (γ(t), σ(t)) is a smooth curve representing

(v, ζ) at (b, σ) = (γ(0), σ(0)), we obtain

Sb(v) = (−1)εζen = −ζσ−1ν(b) = −σV σ−1ν(b)

where V ∶= σ−1ζ can be regarded as an element of so(n) just as σ is viewed as an element

of SO(n). The tangent bundle of F ε for any smooth hypersurface N has now the following

description. Let (b, σ) ∈ F ε. Then

T(b,σ)F ε ≅ {(v, V ) ∈ TbN × so(n) ∶ Sb(v) = −σV σ−1ν(b)} .

As before, we use the canonical identification TG ≅ G × g and write elements of g in the form

(Z, z) ∈ so(n) ×Rn. The shape operator of Nj will be written S(j). We omit the superscript

when it is clear from the context to which body the operator is associated. Then the tangent
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space of Me at a point q = (b1, σ1, b2, σ2, g, s) is given by

TqMe = {(v1, V1, v2, V2, Z, z, %) ∶ vj ∈ TbjNj, Vj ∈ so(n), (Z, z) ∈ g, % ∈ R,

Sbjvj = −σjVjσ−1
j νj(bj), j = 1,2} .

Tangent spaces to ∂Me consist of those vectors for which % = 0.

Let Gq and Hq represent the orbits through q ∈ ∂Me of the (right and left, respectively)

actions of G and H on Me. The tangent spaces at q of the respective orbits will be written

gq and hq. Then

gq = {(0,0,0,0, Z, z,0) ∶ (Z, z) ∈ g} and hq = {(0, Y,0, Y, Y,0,0) ∶ Y ∈ h} . (3.4.2)

At any q ∈ ∂Me the differential of Ψ is

dΨq(v1, V1, v2, V2, Z, z, %) = (Z1, z1, Z2, z2),

where, denoting Adσ(W ) ∶= σWσ−1,

Zj = Adσj(Z − Vj)

zj = σjz −Adσj(Z − Vj)bj − vj − %νj(bj).
(3.4.3)

The next proposition contains as a special case Proposition 2. It uses the notation

Sj ∶= σ−1
j S

(j)
bj
σj ∶ Rn−1 → Rn−1

for any q = (b1, σ1, b2, σ2, g, s). We allow s to be non-zero, in which case S(j) is the shape

operator of the level hypersurface of Me/H corresponding to value s.
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Figure 3.5: Situations for which Proposition 19 applies.

Proposition 19. The map Ψ ∶Me → G ×G is a submersion from a neighborhood U of the

boundary of Me onto a neighborhood of the boundary of M if any of the following conditions

involving U and the shape operators holds.

1. S1 + S2 is non-singular at all points of ∂Me. In this case, U is a neighborhood of ∂Me

where this non-singular condition holds.

2. U is a neighborhood of ∂Me where one of the Sj is non-singular and S1 + S2 − sS1S2 is

also non-singular.

3. If the two bodies are convex and the boundary of one of them has non-vanishing

Gauss-Kronecker curvature so that Sj is everywhere non-singular on Nj for some j,

then U =Me.

In each case U is G-invariant, the kernel of dΨq is hq at each a ∈ U , and Ψ∣U ∶ U → Ψ(U) is a

principal H-bundle. In addition, the boundary of M is a smooth submanifold and there are

smooth functions bj ∶ ∂M → Nj, j = 1,2, such that b1(q), b2(q) are the unique points on the

respective bodies that are brought into contact in collision configuration q.

Proof. By counting dimensions we see that U should be a neighborhood of the boundary of

Me where the kernel of dΨq is hq. It follows from equations 3.4.2 and 3.4.3 above that this

kernel contains hq. We show equality under the conditions of item (2), the other cases being

similar. Say that S2 is non-singular. From the explicit form of dΨq given in 3.4.3 we see that
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ξ = (v1, V1, v2, V2, Z, z, %) lies in that kernel if and only if Z = V1 = V2 and z = σ−1
j vj−(−1)j s2Zen

for j = 1,2. Observe that σ−1
j vj and Zen lie in Rn−1, which is orthogonal to en. Hence % = 0.

Keeping in mind σjVjen = (−1)jSbjvj, we obtain

−S1z = Zen −
s

2
S1Zen

S2z = Zen −
s

2
S2Zen.

From this we conclude that [S1 + S2 − sS1S2]S−1
2 Zen = 0 which, under the conditions of

(2) implies that Zen = 0. Since S2 is non-singular, this also implies that z = 0 and vj = 0.

Therefore, ξ = (0, Z, 0, Z,Z, 0, 0), where Z ∈ h since Zen = 0. That Ψ∣U is a principal H-bundle

is now easy. G-equivariance of Ψ implies that U is G-invariant.

Assuming for simplicity that U of Proposition 19 is all of Me (we only need what follows

on some neighborhood of the boundary of Me), it is useful to know whether the principal

bundle Me →M admits a G-invariant connection since the associated horizontal subspace Hq

can then serve as a proxy for the tangent space of Tq̄M , without having to go to the quotient.

A principal H-connection on Me is given by a one-form ω taking values in h and satisfying

the properties:

1. ωq(Yq) = Y ∈ h, where Yq is the vector induced by the infinitesimal action of h;

2. h∗ω = Adh−1 ○ ω.

Let Π be the orthogonal projection from Rn to Rn−1 = e⊥n.

Proposition 20. For any real constants c1, c2, c3 such that c1 + c2 + c3 = 1 the h-valued

one-form ω on Me given by

ωq(v1, V1, v2, V2, Z, z, %) = c1ΠV1Π + c2ΠV2Π + c3ΠZΠ
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is a G-invariant H-connection on Me.

Proof. This is a simple check.

Let us choose ωq(ξ) ∶= ΠV1Π and denote by Hq the horizontal subspace defined by this

choice of connection form. Recall the maps Sj on Rn−1 for q = (b1, σ1, b2, σ2, g, 0) ∈ ∂Me given

by Sj = σ−1
j Sbjσj. The bj are determined uniquely from Ψ(q) and the σj are determined

uniquely up to an overall common element of H acting on the right.

Proposition 21. Let q = (b1, σ1, b2, σ2, g,0) ∈ ∂Me and suppose that S1 + S2 is invertible.

Then dΨq maps Hq isomorphically onto g × g and

dΨq (Hq ∩ Tq(∂Me)) = {(Z1, z1, Z2, z2) ∈ g × g ∶ ν1 ⋅ (Z1b1 + z1) + ν2 ⋅ (Z2b2 + z2) = 0}

where ν1 = ν1(b1) and ν2 = ν2(b2) are the unit normal vectors.

Proof. The proof is elementary, but we show the main point. Let ξ̄ = (Z1, z1, Z2, z2) ∈ g × g.

We wish to show the existence of a unique ξ = (v1, V1, v2, V2, Z, z, %) ∈ Hq that is sent to ξ̄

under dqΨ. The components of ξ satisfy:

σ−1
j vj ∈ Rn−1, ΠVjΠ = 0, (Z, z) ∈ g, % ∈ R, Sjσ−1

j vj = (−1)jVjen.

and Zj, zj are related to theses quantities by

Zj = Adσj(Z − Vj), zj = σjz −Adσj(Z − Vj)bj − vj − %νj(bj).

Writing g = (A,a) and Ψ(q) = (g1, g2), we have gj = (Aσ−1
j , a −Aσ−1

j bj). Note that

σ−1
1 v1 − σ−1

2 v2 + 2%en = σ−1
2 (Z2b2 + z2) − σ−1

1 (Z1b1 + z1) (3.4.4)
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from which we obtain % and σ−1
1 v1 − σ−1

2 v2 ∈ Rn−1 in terms of the Zj and zj. Also

(Adσ−12 Z2 −Adσ−11 Z1) en = (V2 − V2)en

= S1σ
−1
1 v1 + S2σ

−1
2 v2

= (S1 + S2)σ−1
1 v1 + S2(σ−1

2 v2 − σ−1
1 v1)

= (S1 + S2)σ−1
1 v1 + S2Π{σ−1

2 (Z2b2 + z2) − σ−1
1 (Z1b1 + z1)}

from which we obtain σ−1
1 v1 in terms of the Zj and zj under the assumption that S1 + S2 is

invertible. From Proposition 7, item (8), we deduce

V1 = ΠV1Π + en ∧ V1en = en ∧ V1en = −en ∧ S1σ
−1
1 v1

so that V1 is also uniquely determined by the Zj and zj. From

V2 − V1 = Adσ−12 Z2 −Adσ−11 Z1

we obtain V2 uniquely and from the above 3.4.4 we obtain v2 uniquely. From these we easily

obtain Z and z as well, proving the first part of the proposition. The second part follows

from the observation that a vector is tangent to ∂M if and only if % = 0.

3.4.2 The non-slipping, rolling, and diagonal subbundles

Let γ(t) be a smooth curve in ∂Me such that q = γ(0) = (b1, σ1, b2, σ2, g,0). We omit the

variable s, which is set to 0 for a boundary point. Let (γ1(t), γ2(t)) be the image of γ under Ψ

and write γj(0) = gj, q̄ ∶= (g1, g2), where gj = (Aj, aj) and g = (A,a). Denote the components

of the infinitesimal motion in Me by

ξ ∶= γ′(0) = (v1, V1, v2, V2, Z, z),
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omitting % = 0. The two bodies in configuration q are in contact at g1(b1) = g2(b2).

Definition 9 (Non-slipping and non-twisting conditions). The infinitesimal motion ξ ∈ TqMe

is said to satisfy the non-slipping condition if the velocities of the material points bj at the

contact configuration are equal. It is said to satisfy the non-twisting condition if the tangent

planes to Nj at bj do not rotate relative to each other under ξ.

We now derive an explicit expression for these conditions. The infinitesimal motion of Bj

is given by ξj ∶= (Zj, zj) ∈ g, which is obtained from dΨqξ. We know that

Zj = Adσj(Z − Vj)

zj = σjz −Adσj(Z − Vj)bj − vj.

Due to Proposition 13 Vξj(bj) = Aj(Zjbj + zj) = A(z − σ−1
j vj). The non-slipping condition,

Vξ1(b1) = Vξ2(b2), then reduces to

σ−1
1 v1 = σ−1

2 v2. (3.4.5)

Turning now to the non-twisting condition, let uj be a tangent vector to Nj at bj such that,

in the contact configuration given by q, is sent to a common vector, for j = 1,2, in the plane

of contact. Thus A1u1 = A2u2. The infinitesimal rotation of Ajuj at the point of contact is

AjZjuj = A(Z − Vj)σ−1
j uj.

The orthogonal projection to the plane of contact is AΠA−1, recalling that Π is the orthogonal

projection to Rn−1. (It may be helpful to keep in mind Figure 3.3.) Because A = Ajσj, the

non-twisting condition takes the form ΠV1Π = ΠV2Π and since ΠV1Π = 0 holds for horizontal

vectors, ΠVjΠ = 0 for j = 1,2.

Now let Ψ(q) = (g1, g2), gj = (Aj, aj) and ξ̄ = (Z1, z1, Z2, z2) = dΨqξ. The non-slipping
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condition expressed in terms of ξ̄ becomes

A1[Z1b1 + z1] = A2[Z2b2 + z2]

and the non-twisting condition becomes

AdAjZj =W + νj(bj) ∧wj

for a W ∈ so(n) independent of h and wj ∈ TbjNj.

Definition 10 (Non-slipping, rolling, and diagonal subbundle). The non-slipping subbundle

of T (∂M) consists of all tangent vectors satisfying the non-slipping condition. The rolling

subbundle of T (∂M) consists of all tangent vectors satisfying both the non-slipping and

non-twisting conditions. The diagonal subbundle of T (∂M) is the tangent bundle to the

orbits of the action of G on ∂M defined by g(g1, g2) = (gg1, gg2). We denote these three

subbundles, respectively, S,R,D. We refer to these collectively as the kinematic subbundles

of T (∂M). Notice that DΨ(q) = gq, using previous notation.

Starting from this definition rather than Definition 2, the content of the latter becomes a

statement, which is proved by the above remarks.

3.5 Collision maps

Let nowM ⊂ G×G be the configuration manifold of two rigid bodies in Rn, where G = SE(n).

By condition 2 of Proposition 19 M has smooth boundary and boundary points represent

configurations in which the bodies are in contact at a single point. Let the state of the bodies

before and after collision be given by the element of TqM , q ∈ ∂M , represented by

(Z±
1 , z

±
1 , Z

±
2 , z

±
2 ) ∈ g × g.
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Here the sign ‘+’ indicates post-collision velocities and ‘−’ pre-collision velocities. We obtained

in 3.3.6 a condition on the pre- and post-collision velocities due to impulsive forces that

act at a single point of the body. We restate it here. Let the common point of contact be

Q = Ajbj+aj , where bj is the material point in standard body configuration which corresponds

to Q in configuration gj = (Aj, aj), where aj = xcj is the center of mass of body j in the given

configuration. Then we obtain from expression 3.3.6:

z+j = z−j + uj

Z+
j = Z−

j + L−1
j (bj ∧ uj)

(3.5.1)

where uj = A−1
j Icj/mj. We should add to these equations Ic1 + Ic2 = 0 for conservation of

(linear) momentum.

Proof of Theorem 1. A simple dimension count gives dimCq = n and dimSq = 2 dimg − n so

that the sum of the two dimensions equals dimTqM . Therefore, it suffices to show that these

subspaces are orthogonal. The Riemannian metric on M is the restriction of the product

metric on G × G (each factor having a possibly different metric as the bodies may have

different mass distributions.) Explicitly, let u, v ∈ TqM and write

v = ((Y1, y1), (Y2, y2)), w = ((Z1, z1), (Z2, z2)).

Then

⟨v,w⟩q = ∑
j

mj [
1

2
Tr (Lj(Yj)Z†

j ) + yj ⋅ zj] . (3.5.2)

Now consider the vectors

v = ((L−1
1 (b1 ∧ u1), u1), (L−1

2 (b2 ∧ u2), u2)) ∈ Cq

w = ((A−1
1 Z1A1,A

−1
1 z

∗ −A−1
1 Z1A1b1), (A−1

2 Z2A2,A
−1
2 z

∗ −A−1
2 Z2A2b2)) ∈Sq
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where Zj = Z − Vj and z∗ = z − z′. Observe that

Tr ((bj ∧ uj)(A−1
j ZjAj)†)) = 2uj ⋅ (A−1

j ZjAjbj).

Then

⟨v,w⟩q = ∑
j

mj [
1

2
Tr ((bj ∧ uj)(A−1

j ZjAj)†)) + (A−1
j z

∗ −A−1
j ZjAjbj) ⋅ uj]

= ∑
j

mj [uj ⋅ (A−1
j ZjAjbj) + (A−1

j z
∗ −A−1

j ZjAjbj) ⋅ uj]

= ∑
j

mj(A−1
j z

∗) ⋅ uj

= z∗ ⋅ ∑
j

mjAjuj.

But m1A1u1 +m2A2u2 = 0 by the definition of Cq so the two vectors are orthogonal.

Proof of Corollary 2. Let C be a linear involution in O(n − 1). Then C is diagonalizable

over R with eigenspace decomposition Rn−1 = (C + I)Rn−1⊕(C − I)Rn−1 and eigenvalues 1,−1

having multiplicities n − k − 1 and k, respectively, where k ∈ {0,1, . . . , n − 1}. Thus for each

such C there is k and A ∈ GL(n−1,R) such that C = A−1JkA where Jk is the diagonal matrix

diag(In−k−1,−Ik) and Il indicating the l × l identity matrix. We can take A to be orthogonal.

In fact, let A = SU be the polar decomposition of A into a positive symmetric part S =
√
A†A

and orthogonal part U . The condition C†C = I implies that S2 and Jk commute, from

which it follows that S2, hence S, is also a block matrix with 0 on the off-diagonal blocks

of size k × (n − k − 1) and (n − k − 1) × k. Therefore, S commutes with Jk whence the claim.

Thus the set of all orthogonal involutions in dimension n − 1 is the disjoint union of the sets

Jk = {U †JkU ∶ U ∈ O(n − 1)}. It is clear from this description that Jk is the homogeneous

space O(n − 1)/L, where L is the isotropy group of Jk. Equivalently, L is the subgroup of all

U that commute with Jk, which is easily seen to be the product O(n − k − 1) ×O(k).
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The following proposition gives a concrete expression for the unit normal vector field.

Proposition 22. Let νj(bj) denote the unit outward pointing normal vector to body Bj at

the boundary point bj. Then the unit normal vector to ∂M at q is given by

nq = (c1(L−1
1 (b1 ∧ ν1(b1)), ν1(b1)), c2(L−1

2 (b2 ∧ ν2(b2)), ν2(b2)))

where c1, c2 are defined up to a common sign by the equations m1c1 =m2c2 and

∑
j

c2
jmj [1 +

1

2
Tr ((bj ∧ νj(bj))(L−1

j (bj ∧ νj(bj)))†)] = 1.

Proof. The unit normal vector nq, being an element of Cq, can be written as

nq = ((L−1
1 (b1 ∧ u1), u1), (L−1

2 (b2 ∧ u2), u2))

for some uj ∈ Rn. Recall that a vector v = ((Z1, z1), (Z2, z2)) tangent to ∂M has the form

Zj = Adσj(Z − Vj)

zj = σjz −Adσj(Z − Vj)bj − vj

where Vj and vj are related through the shape operators as discussed earlier and vj is tangent

to the boundary of body Bj at bj . Let as before νj(bj) denote the unit normal vector to body

Bj at bj. Using the explicit form of the Riemannian metric we obtain after straightforward

computation that

0 = ⟨nq, v⟩q = −∑
j

mjvj ⋅ uj.

This being true for all vj implies that uj = cjνj(bj). But m1σ−1
1 u1 +m2σ−1

2 u2 = 0 by the

definition of Cq and σ−1
j νj(bj) = −(−1)jen. Thus the first equation. The second equation

corresponds to the condition ∥nq∥2 = 1.
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Chapter 4

The Dynamics of No-slip Billiards

In this chapter we investigate the dynamics of no-slip billiards in more detail. In the first

section we return to the no-slip strip of Example 1, giving an alternate proof of boundedness

and considering periodicity. Section 4.2 focuses on the wedge of Example 2, developing the

notion of the axis of periodicity which lead to the proof of Theorem 3. In the final section we

take a closer look at the no-slip circle and its double circle caustic. But first, we review the

no-slip transformation, uniting the alternate descriptions given in the two preceding chapters.

If the unconstrained model for two rigid bodies in Chapter 3 is adapted to one fixed body

and a non-intersecting but otherwise unconstrained disk of uniform mass distribution, then

rewriting Equation 3.1.3 using a rotation matrix, the post-collision rotational and linear

velocity (v+0 , v+) is the function of the pre-collision velocities (v−0 , v−) given by

v+0 = −1

3
v−0 +

2
√

2

3
v ⋅ (Rπ

2
ν)

v+ = [2
√

2

3
v−0 +

1

3
v− ⋅ (Rπ

2
ν)]Rπ

2
ν − (v− ⋅ ν)ν,

(4.0.1)

where in general we write Rθ for the matrix of counterclockwise rotation by angle θ and ν is

the inward normal vector at the point of contact. For dimension two we may use coordinates

x = (x0, x1, x2)†, with planar position (x1, x2) = (x, y) and normalized rotational position

x0 = R√
2
θ, where R is the radius of the disk. If the upward normal is in the direction x2, then

by 4.0.1 the pre- and post-collision velocities are related by v+ = Tv− where v = (ẋ0, ẋ1, ẋ2)†
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and the transformation matrix T ∈ O(3) is

T =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

−1
3

2
√

2
3 0

2
√

2
3

1
3 0

0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

, (4.0.2)

identical to 2.1.8.

4.1 Parallel Boundaries

The following strengthening of this main result in [5] holds for unit velocity and fixed unit

separation, letting x1 be the parallel direction, so that the time between collisions will be

t = 1
∣ẋ2∣ , constant as ẋ2 only changes sign at collisions.

ro
tat
io
n

Figure 4.1: One orbit segment of the no-slip strip viewed with rotational position as the third
dimension. Figure 1.2 is the projection of this one to the plane of the billiard table.

Proposition 23. Orbits of a two dimensional system of no-slip collisions with parallel

boundaries have horizontal displacement no more than
√

3
2 ( 1
(ẋ2)2 − 1).

Proof. Viewing the trajectories in three dimensions, we will show that for each boundary

plane the set of collision points is contained in a line (Figure 4.1). Consider any two successive
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collision points q− and q+ on the upper wall, choosing coordinates with the origin at the

intermediate collision on the lower wall and letting ẋ = (ẋ0, ẋ1, ẋ2) be the velocity after the

collision at q−. Then t = − 1
ẋ2

and 2.1.8 gives

q− = ( ẋ0

ẋ2

,
ẋ1

ẋ2

,1)

and

q+ = (
1
3 ẋ0 − 2

3

√
2ẋ1

ẋ2

,
−1

3 ẋ1 − 2
3

√
2ẋ0

ẋ2

,1) .

The slope in the x1x0 (horizontal-rotational) plane is

∆x1

∆x0

=
2
3

√
2ẋ0 + 4

3 ẋ1

2
3 ẋ0 + 2

3

√
2ẋ1

=
√

2,

independent of the initial conditions. Therefore, all of the collision points on the upper wall

lie on a line of slope
√

2, and a similar argument on the lower wall shows that all collisions

occur on a line of slope −
√

2.

As no velocity is exchanged between the horizontal-rotational component and the vertical

component, the length of segments representing the projection of the orbits between successive

collisions will be
√

1
(ẋ2)2 − 1. Geometrically, the orbits are contained in an astroid (Figure

4.2) with the given bound, the maximal horizontal displacement being achieved when the

(projection of) the trajectories is perpendicular to the contact line.

Remark 1. The no-slip strip can never have more than three consecutive trajectory segments

in the same horizontal direction: considering the trajectory segments in the upper, left, lower,

and right quadrants of the x0x1 plane as delineated by the contact lines (as in Figure 4.2),

no two consecutive trajectories both lie in the upper (or lower) quadrants. At most two

consecutive trajectories may lie in the left (or right) quadrants.

In the case of three spacial dimensions, the argument of Proposition 23 may be generalized
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Figure 4.2: For the no-slip strip, the projections of the orbits onto the horizontal-rotational plane
are contained in an astroid. Each orbit must be a segment of fixed length in this plane from one
contact line to the other.

to two hyperplanes of the phase space in both of which the projected velocity is constant.

The contact points occur on lines of slope
√

5
2 and similar bounds can be obtained in terms of

the constant velocity in (or excluding) the hyperplanes, yielding the following result suggested

by Example 6.

Proposition 24. Orbits of three dimensional no-slip collisions between parallel planes are

bounded.

Next we consider the question of periodic orbits in the strip case. If the velocity is entirely

vertical there will be a period two orbit, where the disk’s velocity is vertical with no rotation.

This is a simple example of an axis of periodicity. It is useful to consider the composition

of transformations on the velocity through a complete cycle of two collisions. In the no-slip

strip case, v+ = Sv− where S ∈ SO(3) is given by

S = (FT )2 =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

−7
9 −4

9

√
2 0

4
9

√
2 −7

9 0

0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

(4.1.1)
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with T as in equation 2.1.8 and F the appropriate frame adjustment.

The fact that there are no higher order periodic orbits for the strip will follow from

considering iterations of S and the possible values of cos θ when θ is a rational multiple of π.

Suppose θ = p
qπ for p, q ∈ Z and cos(θ) ∈ Q. By Euler’s identity

2 cos(θ) = e−
p
q
πi + e

p
q
πi. (4.1.2)

For any integers p, q, e−
p
q
πi and e

p
q
πi are roots of xq±1 and therefore are in the ring of algebraic

integers. By 4.1.2 their sum 2 cos(θ) is also an algebraic integer and can only be rational if it

is an integer [26], namely −1, 0, or 1, proving the following lemma of Niven [22].

Lemma 25. If θ is a rational multiple of π, the only possible rational values of cos(θ) are

0,±1
2 , and ±1.

Proposition 26. The no-slip billiard system on the infinite strip has no periodic orbits

besides the trivial period-two orbit.

Proof. Notice that v = Sv only if the velocity is vertical, giving the trivial period two orbit.

Suppose ẋ0 ≠ 0 or ẋ1 ≠ 0. A necessary condition for higher order periodicity is then that

v = Snv for some n > 1. S ∈ SO(3) is a rotation matrix and will have finite order precisely

when it is a rotation through an angle which is a rational multiple of π. But here the angle is

α = cos−1(7
9) is not a rational multiple of π by Lemma 25.

It follows from Proposition 26 that the bounds of Proposition 23 are optimal. If ẋ2 = 1

then the bound is 0 which holds trivially for the simply periodic case. Otherwise, the orbit is

not periodic and will come arbitrarily close to the geometric limit on the astroid by invariance

of measure. Notice that for a certain initial velocity it is possible to have a ray-like orbit which

achieves the limit on one side and then reverses direction. However, by the non-existence of

higher order periodic orbits it cannot also achieve the limit on the other side.
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The matrix S and corresponding rotation angle α in the proof of Proposition 26 will

generalize. S has an eigenvalue of 1 corresponding to the eigenvector (0,0,1), the axis of

periodicity. Because the axis corresponds to a coordinate axis, S is easily identified with

an S′ ∈ SO(2), which suggests a natural connection to the [5] proof in terms of rotation in

the complex plane. For the wedge example, though, the axis will have a component in the

rotational direction; however, the axis and rotation angle will still be fundamental.

Another approach to the no-slip strip which provides a closed form expression for the

horizontal displacement and can be generalized to the case of the wedge in the next section

is to view the velocity vector at collision points in coordinates (ψ, r, y) relative to the axis

of periodicity, where y is the velocity component along the axis of periodicity–which is just

the spacial axis perpendicular to the walls in this case–and ψ, r represent the component

in the perpendicular plane in polar coordinates, taking ψ to be the angle relative to the

positive horizontal direction x1. In these coordinates, if v(0) = (ψ0, r0, y0) then the no-slip

transformation is given by

Tv(0) = (β + ψ0 + π, r0,−y0).

If we let v(0) = (0, r,
√

1 − r2) for an arbitrary 0 < r < 1, then

v(k) = (r sin(ψ + k(β + π)), r cos(ψ + k(β + π)),
√

1 − r2).

The time between collisions is then (assuming unit separation) τ = r√
1−r2

and the horizontal

displacement after k + 1 collisions is given by hk+1 = hk + τr cos(ψ + k(β + π)), or

hk =
r√

1 − r2

k−1

∑
j=0

cos(ψ + j(β + π)).
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By the Lagrange trigonometric identity we get the the closed form

hk =
√

3r√
2
√

1 − r2
sin(k

2
(β + π)) cos(ψ + k − 1

2
(β + π) + π

2
) . (4.1.3)

4.2 Open wedges

x0
(rotation)

x1

x2

Axis of Periodicity

Figure 4.3: Adjusting the rotational velocity (the vertical component) appropriately will give a
2-periodic orbit.

In this section we return to Example 2, looking at no-slip billiards on an open wedge

of angle θ, and prove Theorem 3. Let x2 be the direction of the outward bisector, x1 the

perpendicular spatial direction, and x0 the rotational position. We begin by considering an

important type of periodic orbit which will always exist in wedge billiards.
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Definition 11. A trajectory between two successive contact points in a no-slip billiard is an

axis of periodicity if the direction is reversed at collisions, resulting in a 2-periodic orbit.

Informally, consider trajectories in the plane orthogonal to the x2 (outward) direction.

Due to the wedge angle, a trajectory with small rotational component, shown in the vertical

direction in Figure 4.3, would reflect in an outward direction, while a large enough rotation

would reflect inward towards the wedge vertex after a collision. As the transformation is

continuous, there is a direction which will exactly reflect. By this process, given any two

points in a two dimensional no-slip billiard with no obstructions there exists a rotational

direction which will yield a single reflection. Notice, however, that for the wedge the change of

frames between collisions is given by rotating the x0x1 plane around the x2 axis, a symmetry

which ensures subsequent collisions will remain along the axis. Figure 4.4 shows the case

θ = π
2 .

Figure 4.4: The trajectories for the wedge angle π
2 and initial velocities (-1,1,ẋ2), satisfying Equation

4.2.1, with ẋ2=0.25, 0.1, 0.02, and 0. As ẋ2 approaches zero the orbit approaches the axis of
periodicity.

Formally, the following holds:

Proposition 27. An orbit of an angle θ wedge billiard with initial velocity (ẋ0, ẋ1, ẋ2) will

have period two if and only if
ẋ0

ẋ1

= −
√

2 sin
θ

2
(4.2.1)

and ẋ2 = 0.

Proof. Consider Sθ ∈ SO(3) giving the transformation of the velocity after two collisions for a

wedge of angle θ. Adjusting the normal for the angle, we have Sθ = (R′
θ
2

TR′
− θ

2

)2, where R′
θ is
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the frame adjusted rotation. Then v = (−
√

2 sin θ
2 ẋ1, ẋ1, 0) is an eigenvector of S corresponding

to the eigenvalue 1. Since the outward component ẋ2 is zero, the position as well as the

velocity is unchanged.

The no-slip strip case might be thought of as the limit as θ approaches zero. (Note, that

the two spatial axes are reversed here: 4.2.1 would imply ẋ0 = 0, ẋ1 ≠ 0, giving the x2 axis as

the axis of periodicity.)

Turning to the question of higher periodicity for no-slip wedges, it is again useful to

approach the question in terms of the velocity transformation Sθ. In order to have an orbit

of period 2n it is necessary for the velocity to return to the initial velocity after n iterations,

hence a necessary condition is v = Snθ v. As Sθ simply rotates the velocity vector around

the axis of periodicity, this condition will depend on the rotation angle α being a rational

multiple of π. Notice that w = (0,0,1) is orthogonal to the v given in Proposition 27 giving

the axis of periodicity. Then cos(α) = v ⋅Sθv. A direct calculation gives the following relation

between θ and α.

Proposition 28. The wedge angle θ and the rotational angle α of Sθ ∈ SO(3), the corre-

sponding transformation of the velocity after one cycle of two no-slip collisions, are related

by

32

9
cos4 (θ

2
) − 16

3
cos2 (θ

2
) + 1 = cos(α).

Corollary 4. For any n ≥ 2 there is an angle θ ∈ (0, π) such that all (nondegenerate) bounded

orbits in an angle θ wedge have period 2n.

Proof. By the proposition θ can be chosen so that the velocities are transformed by a rotation

of α = π
n around the axis of periodicity in the half-sphere representation of the velocities,

ensuring the necessary condition that the velocities are periodic. Preservation of measure
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Figure 4.5: The velocity vector is rotated about the axis of periodicity by an angle α, determined
by the wedge angle θ.

implies that this condition is also sufficient to ensure the orbit is periodic. (See Lemma 30

below.) Degenerate cases may occur with period less than 2n, but a small perturbation of

initial conditions will yield an orbit of maximal period.

Corollary 5. The set of wedge angles θ giving periodic orbits is dense in (0, π).

Figure 4.6: For any n ≥ 2 a wedge angle θ can be chosen such that all bounded orbits are periodic of
period 2n. For n = 4, θ ≈ 2.16598 gives a (two-cycle) rotation angle α =

π
2 and period 8 trajectories.

Figure 4.6 shows the predicted period eight example. The degenerate cases occur where

the spacial projection contains repeated segments; these are resolved when the rotational

dimension is incorporated. This may happen in any higher order periodic case with appropriate

initial conditions.

Recall that the strip produced bounded orbits for all initial conditions except for the

horizontal trajectory. With the wedge there are many trajectories that escape, but the
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analogous result below says that the velocity phase space may be similarly partitioned.

By the assumption of unit velocity, the set of velocities may be identified with the sphere

S2, excluding the two ẋ0 poles representing the cases in which the there is only rotational

motion. By time reversibility antipodal points correspond to the same trajectories and may

be identified. The existence of an axis of periodicity for all wedge angles θ implies the region

of S2 corresponding to bounded orbits is not empty. Numerically, one finds two antipodal

non-escape regions with area a decreasing function of θ, approaching 0 as θ approaches π
2

and growing to 2π, an entire hemisphere, as θ approaches 0. The latter limit is consistent

with the fact that almost all initial conditions yield bounded orbits in the no-slip strip.

To specify these regions formally, let E0
θ be the sector of the sphere corresponding to

directions of direct escape from the θ wedge, along with the antipodal sector. Then for

Sθ ∈ SO(3) we may define the escape region for θ as

Eθ = ⋃
n∈Z

SnθE
0
θ ,

and its complement Ec
θ will be the region of non-escape velocities.

Proposition 29. Every orbit with a non-escape velocity remains in the non-escape region.

Proof. First suppose θ is not periodic, that is, the corresponding angle of rotation for the

transformation Sθ is not a rational multiple of π. Distance from the axis of periodicity is

invariant under rotation by Sθ, so the closest point in E0
θ is rotated around a fixed spherical

circle whose center is the axis point. Every point outside of it eventually is mapped to the

escape sector, while no points inside are. Hence the escape and non-escape regions partition

the sphere, except for a circular boundary. See Figure 4.7.

If θ is periodic of period 2n, then the non-escape region Ec
θ is a curvilinear regular polygon,

an n-gon if n us odd and a 2n-gon in n is even, which remains fixed with sides permuted

under Sθ.
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Figure 4.7: The velocity space may be represented as a sphere for wedge systems. The velocity
transformation rotates the escape sector (light area, left) around the axis of periodicity. The dark
region for the right three spheres is the non-escape region, with polygonal boundary for periodic θ
(left middle, right middle) and caustic circle for non-periodic θ (right).

We can now prove the following lemma which was used above in establishing periodicity.

Lemma 30. For a given orbit, if two collision points on the same edge of a no-slip wedge

have identical velocities then their positions also correspond and the orbit is periodic.

Proof. Suppose an orbit has a velocity vector repeated at distinct positions, and consider the

trajectory of k collisions between the two points oriented in the direction from the outer point

to the inner point. The velocity pattern will then repeat the same cycle of k trajectories as

the orbit continues inward indefinitely. Consider the action of k iterations of the billiard map

on the subset of phase space consisting of the product of the non-escape velocities and a

small rectangle in the rotational and spacial dimensions. The velocities are invariant while

the rectangle contracts exponentially in the spacial dimensions and expands at most linearly

in the rotational dimension, which violates preservation of measure.

Using the approach of the alternative proof of the boundedness for the no-slip strip at

the end of the last section, it is possible to describe the displacement in the direction of the

wedge bisector, of interest in establishing that the orbits are bounded, by a product. Letting

80



0 10,000iterations

1

1.3

Figure 4.8: Graph of the wedge displacement for θ = π
2 and r = 0.1 using the product formula.

q(n+1) be the position at the n + 1 collision, we have

q(n+1) =
n

∏
k=0

⎛
⎜⎜⎜
⎝

1 + 2

cos θ
2√

2−cos θ
(
√

1
r2 − 1 csc θ

2 sec(n(αθ + π)) +
√

2 tan(n(αθ + π))) − 1

⎞
⎟⎟⎟
⎠
, (4.2.2)

where θ is the wedge angle and αθ the corresponding rotation angle, with r the magnitude

of the velocity vector in the direction orthogonal to the axis of periodicity, which remains

constant at collisions. The corresponding closed form is not yet known, but numerically it

appears bounded for most values of r and θ.

The following theorem summarizes the main results of this section.

Theorem 3. For a no-slip billiard wedge of angle θ ∈ (0, π), let x0 be the rotational axis, x2

the direction of the wedge bisector, and x1 the perpendicular spacial direction.

i There exists a periodic axis, a direction in which all trajectories are periodic. Specifically,
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for velocity (ẋ0, ẋ1, ẋ2), the orbit will be periodic whenever

ẋ0

ẋ1

= −
√

2 sin
θ

2
.

ii For any n ∈ Z+, wedge angle θn can be chosen so that all non-escape velocities yield

2n-periodic orbits. Furthermore, the set of all such θn is dense in (0, π).

iii The angle ψ between the velocity and the axis of periodicity is invariant throughout an

orbit, remaining unchanged after collisions.

4.3 Circles

In this section we give a characterization of the orbits of no-slip circular billiards. As noted

in [29, 13], such systems generally have double circular caustics.

Figure 4.9: No-slip collisions result in alternating incident angles for circular billiards, with
trajectories tangent to alternating circular caustics.

Proposition 31. For a billiard system with circular table of radius r and no-slip collisions,

the projections of trajectories from the 3-dimensional angle-position space to the disk in
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position plane have the property that the vertex angle at each collision is a constant of motion.

Moreover, for each projected trajectory γ, there exists a pair of concentric circles of radius

less than r that are touched tangentially and alternately by the sequence of line segments of

γ at the middle point of these segments.

Implicit in the alternating caustics is the fact that the incoming angle relative to the

tangent will alternate between angles β1 and β2 with successive collisions, or equivalently the

internal angles between the trajectories and a radius will alternate between the complementary

angles θ1 and θ2. (See Figure 4.9.)

Figure 4.10: Projection of velocity phase space in rotational and tangential direction, with examples.
The two caustics converge along B yielding orbits identical to those of standard billiards.

Consider three successive collisions, q0, q1, and q2, and choose coordinates with q1 at the

origin, with rotational direction x0, x1 in the tangent direction, and x2 in the radial direction.

Let v = (ẋ0, ẋ1, ẋ2) be the velocity after the collision at q0. All circular billiards up to a

rotation or reflection may be considered by varying v and changing q0 and q2 accordingly,

leaving q1 fixed, hence requiring ẋ2 ≠ 0. Then the orbit is determined by the choice of v, and
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in particular we can express the two caustic radii in terms of the components vi. Immediately

we have r1 = sin θ1 and tan θ1 = ẋ1
ẋ2
, and using the post-collision velocity Tv we also have

r2 = sin θ2 and tan θ2 = (2
√

2
3 ẋ0 + 1

3 ẋ1) /(−ẋ2). Hence

r1 =
ẋ1√
ẋ2

1 + ẋ2
2

(4.3.1)

and

r2 =
2
√

2
3 ẋ0 + 1

3 ẋ1√
(2
√

2
3 ẋ0 + 1

3 ẋ1)2 + ẋ2
2

(4.3.2)

Notice that in the above equations requiring the numerators to be equal guarantees the

denominators are equal, thus we may ensure that r1 = r2 (and θ1 = θ2) by choosing v with

ẋ1 =
√

2ẋ0. If we further require ẋ2 = tan (π
n
) ẋ1 the orbit will be a regular n-gon. These

two requirements correspond respectively to segment B and the numbered elliptic curves

in Figure 4.10, with regular n-gons at the intersections. Additionally, the family of orbits

with coinciding caustics r1 = r2 are those in which there is no change in rotational velocity, a

family corresponding precisely to the orbits of standard billiards. For standard billiards on a

circle, or more generally on a smooth convex boundary, there is a countably infinite family

of n-periodic billiards for any n ≥ 2. (See [27].) For no-slip billiards there is a continuum of

initial conditions that give periodic orbits for a given n.

Remark 2. For any boundary arc of angle greater than π
2 , there is a positive measure region

of phase for which the double caustics persist.
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Chapter 5

Ergodic No-Slip Billiards

In this final chapter we look at the ergodic theory of no-slip billiards. The necessary

prerequisite of determining that the no-slip map is invariant (at least in dimension two) is

dealt with in Section 5.1. In Section 5.2 we discuss ergodic candidates.

5.1 The invariance of the no-slip map

A fundamental property of the dynamics of standard billiard systems is the existence of

a canonical invariant measure on constant energy surfaces, sometimes referred to as the

Liouville measure. We give here a sufficient condition for the same measure to be invariant

under non-standard collisions.

Let S denote the boundary of the configuration manifold of the two-bodies system. As

before, we assume that S is smooth. We fix a value E of the kinetic energy and denote

NE = {(q, v) ∈ TM ∶ q ∈ S, 1

2
∥v∥2 = E} .

Define the contact form θ on TM to be the 1-form such that θv(ξ) = ⟨v, dπvξ⟩q, where π is

the base point projection from TM to M (and we indicate the element of TM by v rather

than (q, v) in subscripts). It is well-known that dθ defines a symplectic form on TM . It can

also be shown that the restriction of dθ to NE defines a symplectic form on NE ∖ TS. (See,

for example, [11].)

The billiard map T on NE associates the post-collision state of the system at the time of

a collision to the post-collision state at the next collision. There are well-known issues about
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this map, even for standard billiards in dimension 2, that make the precise specification of

its domain difficult to describe. See, for example, [9]. Here we assume that the domain of

T consists of a “large” open set of full Lebesgue in NE and omit any further reference to it

since this issue of domains is not specific to our rough billiards. The next result is shown by

a local argument and considerations of domain do not play a role.

billiard table

ret
ur
n s
ide

Figure 5.1: Angle-position parallelepiped R for rectangular billiard table and disc. The canonical
invariant billiard measure on a constant energy hypersurface is, up to multiplicative constant, the
product of the Euclidean area measure on the boundary of R and the measure on the hemisphere of
velocity directions given by cosφdA where dA is the Euclidean area measure on the hemisphere. If
billiard trajectories are initiated on the side x2 = 0 with random initial condition given by the just
described measure, return trajectories will have the same distribution. See Figure 5.2.

Theorem 4. Suppose that the field of collision maps q ∈ S ↦ Cq is piecewise smooth and

parallel (where it is smooth) with respect to the Levi-Civita connection associated to the

kinetic energy Riemannian metric. Let Ω = dθ ∧⋯∧ dθ be the form (of degree 2n− 2, where n

is the dimension of the ambient Euclidean space) derived from the canonical symplectic form

dθ on NE ∖ TS. Then Ω is, up to sign, invariant under the billiard map.

The theorem will be proved in 5.1.1.

The boundary of M is a flat surface with the Euclidean metric and the vectors e0, Jν(b)

shown on the right-hand side of Figure 1.4 constitute a parallel frame. The orthogonal line

distributions Cq and Sq are also parallel as the angle between each of them and e0 is constant.

But these are the eigenspaces of Cq for the eigenvalues −1 and 1, respectively. It follows
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that the field of rough collision maps is parallel, yielding the following essential result for

considering questions of ergodicity in the two dimensional case.

Theorem 5. The canonical billiard measure on the boundary of the phase space of a planar

no-slip billiard is invariant under the billiard map.

We illustrate Theorem 4 with a numerical observation concerning the motion of a disc in

a rectangular table with rough collisions. The geometric set-up is shown in Figure 5.1. The

configuration manifold in this case is a parallelepiped R in dimension 3 and the canonical

billiard measure on the manifold N of unit length vectors with base points on the boundary of

R has density proportional to ρ(v) = v ⋅nq = cosφ, 0 ≤ φ ≤ π/2, with respect to the Riemannian

volume measure on N , where φ is the angle the vector v makes with the normal vector to the

boundary.

It can be shown that Theorem 4 applies to this case. As an experiment to illustrate

invariance of the billiard measure for rough collisions we sample initial conditions on the

face x2 = 0 with the uniform distribution for the (x0, x1) positions and initial velocity v

having probability density proportional to cosφ relative to the uniform probability on the

unit hemisphere. If the return states to the face x2 = 0 are distributed according to the same

measure, then the angle φ for the return velocity must be distributed relative to Lebesgue

measure on [0, π/2] with density sin(2φ), which is the marginal density function for the angle

distribution with respect to the Lebesgue measure dφ on [0, π/2], under the assumption that

the billiard measure is invariant.

This is indeed the case as shown in Figure 5.2. A large number (105) of initial conditions

starting from one side of the rectangle are sampled from the normalized billiard measure

restricted to that side. For each trajectory, the return state to that side is computed and the

angle relative to the normal (to the side of the angle-position parallelepiped corresponding

to that side of the rectangle) is recorded. The distribution of values is shown in the above
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Figure 5.2: Experiment to illustrate invariance of the billiard measure for a rectangular table.

histogram. The superimposed line is the graph of sin(2φ).

5.1.1 Proof of Theorem 4

Define the one-form θ on TM from the kinetic energy Riemannian metric on M so that

θ(ξ) = ⟨v, dπvξ⟩ for each ξ ∈ Tq,v(TM), where dπv is the map induced on the tangent space

at (q, v) of the base-point projection map π ∶ TM →M . We briefly recall the definition of

the vertical and horizontal subbundles EV and EH of T (TM). For simplicity of notation we

denote points in TM by v rather than (q, v). Then the fiber EV
v above v is the kernel of

dπv and EH
v is the kernel of the connection map Kv ∶ Tv(TM) → TqM , defined as follows: if

ξ = w′(0) where w(t) is a curve through v representing ξ, then Kvξ = ∇
dt
∣
t=0
w(t). If now X

and Y are vector fields on TM , then

dθv(X,Y ) = ⟨KvX,dπvY ⟩ − ⟨KvY, dπvX⟩. (5.1.1)

See [11] for more details.

Now let S denote the boundary of M , N the pull-back to S of the tangent bundle TM

under the inclusion map and for each value E > 0 define

NE ∶= {(q, v) ∈ N ∶ 1

2
∥v∥2

q = E} .
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So NE is a level set of the kinetic energy function. It is shown in [11], that the pull-back of

dθ to NE under the inclusion map is non-degenerate on NE ∖ TS, and so it defines there a

symplectic form. If the ambient space of the system is Rn then NE has dimension 2n−2. The

canonical billiard measure is now the measure associated to the (2n − 2)-form Ω = (dθ)n−1

pulled-back to NE ∖ TS.

The smooth field q ↦ Cq of collision maps defines a smooth map (away from singularities)

C ∶ NE → NE . The pull-back of θ under this map is easily shown to be

(C∗θ)v(ξ) = ⟨v,Cqdπvξ⟩q.

Note that dπvξ ∈ TqS whenever ξ ∈ TvN . Define the projections Π±
q from TqS to the eigenspaces

of Cq associated to eigenvalues ±1. The assumption that C is parallel is equivalent to one of

these projections (equivalently, both) being parallel. Now define θ±v (ξ) = ⟨v,Π±
qdπvξ⟩, so that

θ = θ+ + θ− and C∗θ = θ+ − θ−. Consequently,

C∗dθ = dθ+ − dθ−.

The projections Π± can also be defined on TNE by requiring

Π±
qdπv = dπvΠ±

v , KvΠ
±
v = Π±

qKv.

Using these maps we define 2-forms ω± by ω±v (ξ, η) ∶= dθv(Π±
vξ,Π

±
vη). We now wish to relate

ω± and dθ±.

First define a tensor field ϑ± on S such that for u, v ∈ TqS and any vector fields X,Y on

S such that Xq = u and Yq = v, we have

ϑ±q (u, v) ∶= (∇uΠ
±)Y − (∇vΠ

±)X.
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It is not difficult to verify that this is indeed a tensor field and the definition does not depend

on the extensions X,Y of u, v. Furthermore, ϑ± vanishes under the conditions of Theorem 4.

A straightforward calculation now shows that

dθ±v (ξ, η) = ω±v (ξ, η) + ⟨v, ϑ±(dπvξ, dπvη)⟩.

Therefore, dθ± = ω± when the field of collision maps is parallel. Moreover, dθ = ω+ + ω− and

C∗ω± = ±ω±. It is now easy to check that

(dθ)n−1 = ±(ω+)n+ ∧ (ω−)n−

where n± are the dimensions of the eigenspaces of Cq associated to eigenvalue ±1, and we

finally obtain C∗(dθ)n−1 = ±(dθ)n−1. Therefore, the measure induced by (dθ)n−1 is invariant

under C.

5.2 Ergodic considerations

Figure 5.3: (Left) A sampling of phase space of the no-slip isosceles triangle. The axis of periodicity
yields the two prominent pairs of concentric circles in the upper right and lower left, with many
neighborhoods of higher order periodic points creating more complex symmetries. (Right) A single
orbit near a high order periodic point.
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We begin by looking at (the projection of) the velocity phase portraits of polygons. Wedge

examples support Conjecture 1 and suggest that polygon portraits should exhibit a pervasive

elliptic structure. Indeed, that is the case, as in the velocity phase portrait of an isosceles

triangle no-slip billiard is given in Figure 5.3. Note that the overlapping orbits, a feature

absent in standard billiards, are the result of the projection.

This pattern is typical of polygons, with most orbits appearing as closed curves around

periodic points, the number of components matching the period of the central point. Numerical

evidence suggests that for no-slip polygons, not only is the no-slip map not ergodic, but there

are no positive measure ergodic components and extremely intricate orbits (as in Figure

5.3, right) are common. Experiments using a range of polygons and a range of variation in

curvature have not produced examples free from evidence of non-ergodic behavior. Figure

5.4 gives the phase portraits for three small but increasing C2 perturbations of the no-slip

regular pentagon, demonstrating the persistence of the dynamics for small curvature.

Figure 5.4: For small perturbations of the pentagon, the phase portraits suggest the non-ergodic
dynamics persist.

Standard billiards with entirely concave boundaries are dispersing, with wave fronts

expanding at every collision. In contrast, the chaotic behavior of the Bunimovich stadium

depends upon a defocusing mechanism: convex boundaries create a focusing front, but under

circumstances in which the front passes through a focusing point and sees a net expansion
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Figure 5.5: Straight edges are identified, so that collisions only occur at the curved boundaries. Left
and middle left: examples of dispersion for standard and no-slip billiards. Middle right and right:
examples of focusing.

before colliding at the next boundary. Looking at billiards with left and right edges identified

and concave (or convex) upper and lower boundaries, both mechanisms appear to arise in

the no-slip case as well. In Figure 5.5, we started with flat boundaries for both the standard

and no-slip model, then gradually increased (decreased) the curvature until arriving at the

examples above, in which dispersion (focusing) became evident. To trigger a comparable level

of dispersion after the same number of collisions for an equally spaced wave front, a greater

curvature is required for the no-slip case. Notably, however, the curvature required to produce

focusing was similar, a phenomenon show rigorously in [29]. As the no-slip examples are

projections, with independent expansion or contraction arising in the rotational dimension,

the behavior may be more nuanced.

In spite of the apparent defocusing, the stadium has a bounded positive measure component

phase space and is not ergodic. Similarly, other known standard billiard examples fail to be

ergodic in the no-slip case: the ‘mushroom’ billiard [7] has a similar bounded component in

the stem, the ‘flower’ billiard fails to be ergodic by Remark 2, while ‘pocket’ billiards are

not ergodic for both of the above reasons. In these cases the no-slip phase portraits show a
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mixture of structured orbits mixed surrounded by potential chaotic seas (Figure 5.6). The

‘moon’ billiard, recently shown to exhibit ergodic behavior for some parameters [12], does not

appear to be ergodic in the no-slip case. Along with the mushroom billiard, its phase portrait

exhibits segments along which orbits linger before moving to apparent chaotic regions. This

behavior is qualitatively similar to the known marginally unstable periodic orbits of standard

billiards which both the moon [12] and mushroom [1, 15] are known to exhibit.

Figure 5.6: Velocity phase portraits of the stadium (upper left), the mushroom (lower left), a
pocketed rectangle (upper right), and a moon billiard (lower right) exhibit closed orbits from bounded
regions, but possibly large ergodic components as well.

Looking at the differential of the no-slip map in the case of 2-periodic orbits between

collisions at boundary points with parallel tangents, Wojtjowski [29] showed ellipticity and

linear stability for a sufficiently small product of curvature and orbit length relative to the

moment of inertia. Applying this result to a Sinai billiard with a single dispersing disk on a

torus, we may increase the curvature by decreasing the radius. By the formula in [29] applied
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to this model, the breakdown in ellipticity should occur at the point when the radius becomes

smaller than 2
3 . Looking at a small perturbation of the horizontal orbit, one finds that indeed

the dispersion occurs rapidly once the threshold is passed.

Figure 5.7: The orbit in the upper left corner is stable, with radius very slightly larger than 2
3 .

The radius is increased slightly until in the bottom right (r = .664) the orbit is no longer stable and
dispersion occurs.

Unlike the case of standard billiards, periodic points for this dispersing billiard may also

appear for horizontal trajectories colliding at any point on the disk, with the appropriate

rotational velocity to align with the axis of periodicity. Figure 5.8 shows the result of the

corresponding experiment, which suggests that a similar dispersion occurs.
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0.67 0.66 0.65

0.65 0.64

0.60 0.59

0.43 0.42 0.41

Figure 5.8: By row, trajectories at height 0.1, 0.2, 0.3, and 0.4, near an axis of periodicity. Numbers
give the radius of the dispersing disk. More curvature is required than for the parallel case, but
dispersion appears to occur. Note that the r=0.42 example (bottom middle) will continue until it
reaches the bottom of the disk and then disperse, as the rotation will be reversed.
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Appendix A

General Billiards (1.03)

import copy

#constants
m=1 #positions
n=1 #velocities
eps=0.000000000001 #approximation error
res=21 #circle resolution
large=1000
eps2=.001

#rough collisions uniform distribution constants
a=1/3
b=2*sqrt(2)/3a=1/3
b=2*sqrt(2)/3

#position and velocity matrices
P0=matrix(RR,m,n)
V0=matrix(RR,m,n)
P1=matrix(RR,m,n)
V1=matrix(RR,m,n)
P2=matrix(RR,m,n)
V2=matrix(RR,m,n)

def rot(x):
return matrix(RR,[[-1,0,0],[0,cos(x),-sin(x)],[0,sin(x),cos(x)]])

U=matrix(RR,[[-a,b,0],[b,a,0],[0,0,-1]]) #rough collision with upward normal
S=matrix(RR,[[1,0,0],[0,1,0],[0,0,-1]]) #specular collision with upward normal

#defaults
# coordinates [angle position, x, y]
p=[[0,0,0],[0,-.1,.1],[0,.1,-1],[0,.1,.1]]
# velocities
v=[[0,.1,1],[.1,1,2],[-.1,-1,-1],[-.1,2,-1]]

#filling matrices from position and velocities, allowing for an mXn array
def create_matrices(p,v):
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P0=matrix(RR,m,n)
V0=matrix(RR,m,n)
P1=matrix(RR,m,n)
V1=matrix(RR,m,n)
P2=matrix(RR,m,n)
V2=matrix(RR,m,n)

for i in range(0,m):
for j in range(0,n):

P0[i,j]=p[i][0]

for i in range(0,m):
for j in range(0,n):

P1[i,j]=p[i][1]

for i in range(0,m):
for j in range(0,n):

P2[i,j]=p[i][2]

for i in range(0,m):
for j in range(0,n):

V0[i,j]=v[j][0]

for i in range(0,m):
for j in range(0,n):

V1[i,j]=v[j][1]

for i in range(0,m):
for j in range(0,n):

V2[i,j]=v[j][2]

return (P0,P1,P2,V0,V1,V2)

#default graph
graph=Graphics()

# Catalogue of boundaries
# wall_segment= [ starting x, starting y, ending x, ending y, starting vector x,
# starting vector y, 1=line 0=circle, 0=not end 1=end, number of component,
# 0=smooth 1=rough (,associated wall)]

easy_walls=[[1,1,-1,1,-1,0,1,0,1,0],[-1,1,-1,-1,0,-1,1,0,1,0],[-1,-1,1,-1,1,0,1,0,1,0],
[1,-1,1,1,0,1,1,0,1,0]]
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rough_square=[[1,1,-1,1,-1,0,1,0,1,1],[-1,1,-1,-1,0,-1,1,0,1,1],[-1,-1,1,-1,1,0,1,0,1,1],
[1,-1,1,1,0,1,1,0,1,1]]
pretty_easy_walls=[[0,1,-1,0,-1,-1,1,0,1,0],[-1,0,0,-1,0,-1,0,0,1,0],
[0,-1,1,0,1,1,1,0,1,0],[1,0,0,1,-1,1,1,0,1,0]]
medium_walls=[[0,1,-1,0,-1,-1,1,0,1,0],[-1,0,0,-1,0,-1,0,0,1,0],[0,-1,1,0,1,1,1,0,1,0],
[1,0,0,1,-1,1,1,0,1,0],[.5,.2,-.5,-.2,0,1,1,0,2,0],[-.5,-.2,.5,.2,-.2,.5,0,0,2,0]]
medium_walls2=[[0,1,-1,0,-1,-1,1,0,1,0],[-.5,-.2,.5,.2,-.2,.5,0,0,2,0],
[-1,0,0,-1,0,-1,0,0,1,0],[0,-1,1,0,1,1,1,0,1,0],[1,0,0,1,-1,1,1,0,1,0],[.5,.2,-.5,-.2,0,1,1,0,2,0]]
astroid=[[0,1,-1,0,0,-1,0,0,1,0],[-1,0,0,-1,1,0,0,0,1,0],[0,-1,1,0,0,1,0,0,1,0],
[1,0,0,1,-1,0,0,0,1,0]]
astroid2=[[-.1,1,-1,.1,0,-1,0,0,1,0],[-1,-.1,-.1,-1,1,0,0,0,1,0],[.1,-1,1,-.1,0,1,0,0,1,0],
[1,.1,.1,1,-1,0,0,0,1,0]]

astroid3=[[.1,1,-.1,1,-1,0,1,0,1,0],
[-.1,1,-1,.1,0,-1,0,0,1,0],
[-1,.1,-1,-.1,0,-1,1,0,1,0],
[-1,-.1,-.1,-1,1,0,0,0,1,0],
[-.1,-1,.1,-1,1,0,1,0,1,0],
[.1,-1,1,-.1,0,1,0,0,1,0],
[1,-.1,1,.1,0,1,1,0,1,0],
[1,.1,.1,1,-1,0,0,0,1,0]
]

astroid4=[[.1,1,-.1,1,-1,0,1,0,1,1],
[-.1,1,-1,.1,0,-1,0,0,1,1],
[-1,.1,-1,-.1,0,-1,1,0,1,1],
[-1,-.1,-.1,-1,1,0,0,0,1,1],
[-.1,-1,.1,-1,1,0,1,0,1,1],
[.1,-1,1,-.1,0,1,0,0,1,1],
[1,-.1,1,.1,0,1,1,0,1,1],
[1,.1,.1,1,-1,0,0,0,1,1]
]

stadium=[[1,1,-1,1,-1,0,1,0,1,1],
[-1,1,-1,-1,-1,0,0,0,1,1],
[-1,-1,1,-1,1,0,1,0,1,1],
[1,-1,1,1,1,0,0,0,1,1]]

starsmooth=[[0,1,-.3,.3,-.3,-.7,1,0,1,0],
[-.3,.3,-1,0,-.7,-.3,1,0,1,0],
[-1,0,-.3,-.3,.7,-.3,1,0,1,0],
[-.3,-.3,0,-1,.3,-.7,1,0,1,0],
[0,-1,.3,-.3,.3,.7,1,0,1,0],
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[.3,-.3,1,0,.7,.3,1,0,1,0],
[1,0,.3,.3,-.7,.3,1,0,1,0],
[.3,.3,0,1,-.3,.7,1,0,1,0] ]

starrough=[[0,1,-.3,.3,-.3,-.7,1,0,1,1],
[-.3,.3,-1,0,-.7,-.3,1,0,1,1],
[-1,0,-.3,-.3,.7,-.3,1,0,1,1],
[-.3,-.3,0,-1,.3,-.7,1,0,1,1],
[0,-1,.3,-.3,.3,.7,1,0,1,1],
[.3,-.3,1,0,.7,.3,1,0,1,1],
[1,0,.3,.3,-.7,.3,1,0,1,1],
[.3,.3,0,1,-.3,.7,1,0,1,1] ]

partrough=[[0,1,-.3,.3,-.3,-.7,1,0,1,0],
[-.3,.3,-1,0,-.7,-.3,1,0,1,0],
[-1,0,-.3,-.3,.7,-.3,1,0,1,0],
[-.3,-.3,0,-1,.3,-.7,1,0,1,0],
[0,-1,.3,-.3,.3,.7,1,0,1,0],
[.3,-.3,1,0,.7,.3,1,0,1,1],
[1,0,.3,.3,-.7,.3,1,0,1,1],
[.3,.3,0,1,-.3,.7,1,0,1,0] ]

roughstar=[[0,1,-.3,.3,-.3,-.7,1,0,1,1],
[-.3,.3,-1,0,-.7,-.3,1,0,1,1],
[-1,0,-.3,-.3,.7,-.3,1,0,1,1],
[-.3,-.3,0,-1,.3,-.7,1,0,1,1],
[0,-1,.3,-.3,.3,.7,1,0,1,1],
[.3,-.3,1,0,.7,.3,1,0,1,1],
[1,0,.3,.3,-.7,.3,1,0,1,1],
[.3,.3,0,1,-.3,.7,1,0,1,1] ]

triangle=[[1,1,-1,1,-1,0,1,0,1,0],
[-1,1,0,-1,1,-2,1,0,1,0],
[0,-1,1,1,1,2,1,0,1,0]]

rough_triangle=[[1,1,-1,1,-1,0,1,0,1,1],
[-1,1,0,-1,1,-2,1,0,1,1],
[0,-1,1,1,1,2,1,0,1,1]]

circle=[[1,0,-1,0,0,1,0,0,1,0],[-1,0,1,0,0,-1,0,0,1,0]]
circle2=[[1,0,0,1,0,1,0,0,1,0],[0,1,-1,0,-1,0,0,0,1,0],
[-1,0,0,-1,0,-1,0,0,1,0], [0,-1,1,0,1,0,0,0,1,0]]
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circlesr=[[1,0,0,1,0,1,0,0,1,1],[0,1,-1,0,-1,0,0,0,1,0],
[-1,0,0,-1,0,-1,0,0,1,1], [0,-1,1,0,1,0,0,0,1,0]]

delta=.1
stadiumdelta=[[delta,1,-delta,1,-1,0,1,0,1,1],[-delta,1,-1-delta,0,-1,0,0,0,1,1], [-1-delta,0,-delta,-1,0,-1,0,0,1,1],[-delta,-1,delta,-1,1,0,1,0,1,1],
[delta,-1,1+delta,0,1,0,0,0,1,1], [1+delta,0,delta,1,0,1,0,0,1,1]]

# basic functions concerning wall segments
def qb(wall_segment):

return (wall_segment[0],wall_segment[1])
def qe(wall_segment):

return (wall_segment[2],wall_segment[3])
def diff(u1,u2):

return (u2[0]-u1[0],u2[1]-u1[1])
def veclen(u):

return (u[0]^2+u[1]^2)^.5
def innprod(u1,u2):

return u1[0]*u2[0]+u1[1]*u2[1]

# this returns the (smallest) angle between two vectors
def vecang(u1,u2):

return RR(arccos(innprod(u1,u2)/(veclen(u1)*veclen(u2))))

# print(vecang((0,1),(0,-1)))

def ub(wall_segment):
w=(wall_segment[4],wall_segment[5])
l=veclen(w)
return (wall_segment[4]/l,wall_segment[5]/l)

# Testing simple functions above:
# show(veclen(diff(qb(easy_walls[1]),qe(easy_walls[1]))))

# normal vector from qb and qe
def normal(u1,u2):

w=diff(u1,u2)
l=veclen(w)
return (-w[1]/l,w[0]/l)

#show(normal(qb(easy_walls[1]),qe(easy_walls[1])))

def curv(u1,u2,u3):
# u1=qb, u2=qe, u3=ub
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norm=normal(u1,u2)
return 2*(u3[0]*norm[0]+u3[1]*norm[1])/veclen(diff(u1,u2))

#show(curv(qb(easy_walls[1]),qe(easy_walls[1]),ub(easy_walls[1])))

def ue(u1,u2,u3):
# u1=qb, u2=qe, u3=ub
norm=normal(u1,u2)
#show(norm)
#show(u3)
l=(2*(u3[0]*norm[0]+u3[1]*norm[1]))
w=(norm[0]*l,norm[1]*l)
return diff(w,u3)

#show( ue( qb(easy_walls[1]),qe(easy_walls[1]),ub(easy_walls[1])) )

def theta(u1,u2,u3,u4):
# qb,qe,ub,ue
if innprod(diff(u1,u2),u3)>=0:

return arccos(innprod(u3,u4))
if innprod(diff(u1,u2),u3)<0:

return 2*pi-arccos(innprod(u3,u4))

# show(theta(qb(easy_walls[1]), qe(easy_walls[1]), ub(easy_walls[1]), ue(qb(easy_walls[1]),qe(easy_walls[1]),ub(easy_walls[1]))))

def center(u1,u2,u3):
#qb,qe,ub
cu=curv(u1,u2,u3)+eps
return diff((-u3[1]/cu,u3[0]/cu),u1)

#show(center(qb(easy_walls[1]), qe(easy_walls[1]), ub(easy_walls[1])))

def pdistance(u1,u2):
return ((u1[0]-u2[0])^2+(u1[1]-u2[1])^2)^(1/2)

def getangle(A):
# return the angle of the vector A relative to the pos x-axis
if A[0]>=0:

if A[1]>=0:
return (arcsin((A[1]-eps)/veclen(A)))

if A[1]<0:
return (arcsin((A[1]+eps)/veclen(A)))
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else:
#print(’down here’)
return RR(pi-arcsin((A[1]-eps)/veclen(A)))

def circ_or(v,w):
if v[0]*w[1]-v[1]*w[0]>0:

#print(’counter clockwise’)
return 0

else:
#print(’clockwise’)
return 1

def draw_table(wall_segments):
#print(len(wall_segments))
newgraph=Graphics()
for i in range(0,len(wall_segments)):

#print(’i’,i)
if wall_segments[i][6]==1:

# draw line
newgraph+=plot(line([(wall_segments[i][0],wall_segments[i][1]),
(wall_segments[i][2],wall_segments[i][3])]))

else:
u1=qb(wall_segments[i])
u2=qe(wall_segments[i])
u3=ub(wall_segments[i])
u4=ue(u1,u2,u3)
#print(u1,u2,u3,u4)
C=center(u1,u2,u3)
#print(’center’,C)
arc_angle=RR(theta(u1,u2,u3,u4))
#print(’total angle’, arc_angle)
radius=1/abs(curv(u1,u2,u3))
#print(’radius’, radius)
x0=u1[0]
y0=u1[1]
startvec=diff(C,u1)
#print(’start vector’,startvec)
alpha=getangle(startvec)
#print(’alpha’,alpha)
for j in range(0,res+1):

omega=(-1)^(circ_or(u3,diff(u1,u2)))*j/res*arc_angle
#print(omega)
#print(alpha)
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#print(radius*cos(alpha+omega),radius*sin(alpha+omega))
#print(j,alpha+omega)
x1=radius*cos(alpha+omega)+C[0]
y1=radius*sin(alpha+omega)+C[1]
#print(x1,y1)
L=line([(x0,y0),(x1,y1)])
newgraph=newgraph+plot(L)
x0=x1
y0=y1
#show(newgraph)

#show(newgraph)
return newgraph

def pointonarc(x,y,wall):
u1=qb(wall)
u2=qe(wall)
u3=ub(wall)
u4=ue(u1,u2,u3)
C=center(u1,u2,u3)
thet=theta(u1,u2,u3,u4)
v1=diff(C,(x,y))
v2=diff(C,u1)
ori=circ_or(diff(C,u1),diff(C,u2))
#print(’ori’,ori)
ang=vecang(v1,v2)
#print(’theta’, thet, ’ang’,ang)
if circ_or(v1,v2)==0:

angdis=2*pi-ang
else:

angdis=ang
if ori==1 and (thet>pi+eps or thet<pi-eps):

if thet>2*pi-angdis:
#print(’1’)
return True

if thet<2*pi-angdis:
return False

if ori==0 and (thet>pi+eps or thet<pi-eps):
if thet>angdis:

#print(’2’)
return True

if thet<angdis:
return False
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if thet==pi:
if innprod(v1,u3)>0:

return True
else:

return False

def wall_collide(pos,vel,wall):
#print(’in collide’)

# first check if the trajectory intersects the segment for linear boundaries
# Note: works for only some circles--need better solution
# It will excluse some legitimate circles if the trajectory passes in and out the arc
if wall[6]==1:

v1=diff(pos,(wall[0],wall[1]))
v2=diff(pos,(wall[2],wall[3]))
#print(v1,v2,(vel[1],vel[2]))
#print(vecang((vel[1],vel[2]),v1),vecang((vel[1],vel[2]),v2),vecang(v1,v2))
#print(vecang((vel[1],vel[2]),v1)+vecang((vel[1],vel[2]),v2))
angle_difference=vecang((vel[0],vel[1]),v1)+vecang((vel[0],vel[1]),v2)-vecang(v1,v2)
#note cannot use vel directly as it is 3D
#print(angle_difference)
if angle_difference>0.001:

#print(’does not collide’)
return (0,0,large+1)

# m2 is the slope of vel, handling infinite case by making it large
if vel[0]==0:

m2=1000000000
else:

m2=vel[1]/vel[0]

if wall[6]==0:
#print(’checking arc’)
u1=qb(wall)
u2=qe(wall)
u3=ub(wall)
C=center(u1,u2,u3)
radi=pdistance(C,u1)
#print(’radius’,radi)
A=1+m2^2
B=-2*C[0]+2*m2*(pos[1]-m2*pos[0]-C[1])
c=C[0]^2+m2^2*pos[0]^2+2*m2*pos[0]*(C[1]-pos[1])+(pos[1]-C[1])^2-radi^2

106



x1=(-B+(B^2-4*A*c)^(1/2))/(2*A)
x2=(-B-(B^2-4*A*c)^(1/2))/(2*A)
# This handles the cases where the trajectory misses the circle entirely
if x1.imag()<>0:

return (0,0,large+1)

#if x2.real==False:
# return (0,0,large+1)
else:

y1=pos[1]+m2*(x1-pos[0])
y2=pos[1]+m2*(x2-pos[0])
#print(x1,y1,pointonarc(x1,y1,wall))
d2=pdistance(pos,(x2,y2))
d1=pdistance(pos,(x1,y1))
#print(d1,d2)
if pointonarc(x1,y1,wall):

#print(’made it here’)
pointonarc(x2,y2,wall)==False, (vel[0]<0 and x2-pos[0]>0) or (vel[0]>0 and x2-pos[0]<0) )
if d1>eps and ((vel[0]>0 and x1-pos[0]>0) or (vel[0]<0 and x1-pos[0]<0)) and (d1<d2 or pointonarc(x2,y2,wall)==False or (vel[0]<0 and x2-pos[0]>0) or (vel[0]>0 and x2-pos[0]<0)):

#print(’returning x1’)
return (x1,y1,d1)

#print(x2,y2,pointonarc(x2,y2,wall))
if pointonarc(x2,y2,wall):

#print(’made it to x2 part’)
#print(d2>eps,d2,eps)
if d2>eps and ((vel[0]>0 and x2-pos[0]>0) or (vel[0]<0 and x2-pos[0]<0)):

#print(’returning x2’)
return (x2,y2,d2)

#print(x1,y1,d1)
#print(x2,y2,d2)

return(0,0,large+1)

if wall[6]==1:
# find the intersection point
if wall[2]==wall[0]:

m1=(wall[3]-wall[1])/(eps)
else:

m1=(wall[3]-wall[1])/(wall[2]-wall[0])

if m2==m1:
m2=m2-eps

x=(m2*pos[0]-pos[1]-m1*wall[0]+wall[1])/(m2-m1)
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y=pos[1]+m2*(x-pos[0])
if ((x-pos[0])^2+(y-pos[1])^2)<eps:

#print(’not supposed to be here’)
return (0,0,large+1)

else:
#print(’found a collision’)
return (x,y,((x-pos[0])^2+(y-pos[1])^2))

def next_wall(walls,rotational_position,x,y,rotational_velocity,vx,vy):
#print(’in next wall’)
best_dist=large
bestx=x
besty=y
best_wall=0
for i in range(0,len(walls)):

#print(’wall’, i)
#note: dist=distance squared
(xnew,ynew,dist)=wall_collide((x,y),(vx,vy),walls[i])
#print(’dist’,dist)
if eps<dist<best_dist:

bestx=xnew
besty=ynew
best_dist=dist
best_wall=i

return ((best_dist/(vx^2+vy^2)^(1/2))*rotational_velocity+rotational_position,bestx,besty,best_wall)

def new_positions(walls,M0,M1,M2,N0,N1,N2):
#print(’new positions’)
Mw=matrix(QQ,m,n)
for i in range(0,m):

#print(i)
for j in range(0,n):

#$print(j)
#show(M1)
(M0[i,j],M1[i,j],M2[i,j],Mw[i,j])=next_wall(walls,M0[i,j],M1[i,j],M2[i,j],N0[i,j],N1[i,j],N2[i,j])

#show(Ptemp)

return (M0,M1,M2,Mw)

def get_tangent(wall,x,y):
if wall[6]==1:
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return getangle(diff(qb(wall),qe(wall)))
if wall[6]==0:

#print(’circ tan’)
u1=qb(wall)
u2=qe(wall)
u3=ub(wall)
C=center(u1,u2,u3)
perp=getangle(diff(C,(x,y)))
return perp+pi/2

else:
return False

def reflect(wall,x,y,vr,vx,vy):
V=matrix(RR,3,1)
V[0,0]=vr
V[1,0]=vx
V[2,0]=vy
#show(V)
# omega is the angle of the line or tangent to the circle, oriented by the direction
omega=get_tangent(wall,x,y)
U1=rot(omega)
U2=rot(-omega)
if wall[9]==0:

#print(’here thu’)
#show(U1,U2)
T=matrix(RR,n,n)
T=U1*S*U2
#show(V)
V=T*V

else:
V=rot(omega)*U*rot(-omega)*V

#show(V)
return (V[0,0],V[1,0],V[2,0])

def new_velocities(walls,P1,P2,V0,V1,V2,Pw):
for i in range(0,m):

for j in range(0,n):
(V0[i,j],V1[i,j],V2[i,j])=reflect(walls[Pw[i,j]],P1[i,j],P2[i,j],V0[i,j],V1[i,j],V2[i,j])

return (V0,V1,V2)

def Draw_paths(X1,Y1,X2,Y2):
paths=Graphics()
#show(X1,X2,Y1,Y2)
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for i in range(0,m):
for j in range(0,n):

#print((O[i][j][1],O[i][j][2]),(N[i][j][1],N[i][j][2]))
paths+=plot(line([(X1[i,j],Y1[i,j]),(X2[i,j],Y2[i,j])]))
#show(paths)

return paths

# This tests Draw_paths
# P1=[[[1,1,1],[1,1,1],[1,1,1]],[[1,1,1],[1,1,1],[1,1,1]],[[1,1,1],[1,1,1],[1,1,1]]]
# P2=[[[1,2,2],[1,0,0],[1,2,4]],[[1,12,12],[1,12,12],[1,11,1]],[[1,11,1],[1,11,1],[1,11,21]]]
# testgraph=Draw_paths(P1,P2)
# show(testgraph)

# wall_segments is a k by 10 matrix, Renato’s 9 plus the tenth: 0=smooth, 1=rough
# N_max is the maximum iterations before stopping
# draw
def aalpha(x):

return RR(arccos(32/9*(cos(x))^4-16/3*(cos(x))^2+1))

def Billiard(wall_segments, N_max, draw, p, v, theta):
print(RR(pi/2+aalpha(theta)/2))
if draw==1:

graph=draw_table(wall_segments)
(P0,P1,P2,V0,V1,V2)=create_matrices(p,v)
graphtemp=Graphics()
graphtemp1=Graphics()
graphtemp2=Graphics()
v1=1
x0=5
r0=0
pl=[]
su=0
su2=0
count1=0
count2=0
maxx=0
for i in range(0,N_max):

v0=v1
v1=abs(V2[0,0])
#print(’loop’,i)
OP1=P1[:]
OP2=P2[:]
or0=r0
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r0=P0[0,0]
#print(r0)
ox0=x0
x0=P1[0,0]
y0=P2[0,0]
#print(x0)
r0p=RR((2^.5*sin(theta/2)*y0+r0)/(1+2*(sin(theta/2))^2))
y0p=RR((2^.5*sin(theta/2)*(2^.5*sin(theta/2)*y0+r0))/(1+2*(sin(theta/2))^2))
#r0ps=RR(r0p/(x0*tan(theta/2)))
#if r0p>0:
# par=0
#else:
# par=1
#r0ps=RR((r0p^2+y0p^2)^.5*(-1)^par/(x0*tan(theta/2)/v0))
#print(r0,r0p)
#print(x0,x0p)
#show(V1,V2)
(P0,P1,P2,Pwall)=new_positions(wall_segments,P0,P1,P2,V0,V1,V2)
#print(’made’)
rv0=V0[0,0]
xv0=V1[0,0]
yv0=V2[0,0]
rvp0=RR((2^.5*sin(theta/2)*yv0+rv0)/(1+2*(sin(theta/2))^2))
(V0,V1,V2)=new_velocities(wall_segments,P1,P2,V0,V1,V2,Pwall)
rv1=V0[0,0]
xv1=V1[0,0]
yv1=V2[0,0]
rvp1=RR((2^.5*sin(theta/2)*yv1+rv1)/(1+2*(sin(theta/2))^2))

pathgraph=Draw_paths(OP1,OP2,P1,P2)
#show(pathgraph)
r1=P0[0,0]
x1=P1[0,0]
if x1>x0:

col=’red’
else:

col=’blue’
y1=P2[0,0]
r1p=RR((2^.5*sin(theta/2)*y1+r1)/(1+2*(sin(theta/2))^2))
#r1ps=RR(r1p/(x1*tan(theta/2)))
y1p=-RR((2^.5*sin(theta/2)*(2^.5*sin(theta/2)*y1+r1))/(1+2*(sin(theta/2))^2))
#if r1p>0:
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# par=0
#else:
# par=1
#r1ps=RR((r1p^2+y1p^2)^.5*(-1)^par/(x1*tan(theta/2)/v1))
lineover=line([(x1,r1),(x0,r0)], thickness=.3, dpi=200,color=col)
PP0=point((x0,r0),size=40)
PP1=point((x1,r1),size=40)

lineover1=line([(x1,r1p),(x0,r0p)], thickness=.3, dpi=200)
PP0p=point((x0,r0p),size=40)
PP1p=point((x1,r1p),size=40)
graph=graph+pathgraph
if x1>maxx:

if (-1)^i>0:
maxang=getangle([xv1,rvp1])

else:
maxang=getangle([xv1,-rvp1])

maxx=x1
if i>0:

#print(RR(xv1^2+rvp1^2))
if (-1)^i>0:

pl+=[[getangle([xv1,rvp1]),x1]]
else:

pl+=[[RR(getangle([xv1,-rvp1])),x1]]
#pl+=[[xv1,rvp1],[xv0,rvp0]]
#pl+=[[i,(getangle([xv1,rvp1])+getangle([xv0,rvp0]))/2]]

if x1>5 and x0>5:
if r1>r0:

count1+=1
tem=(r1-or0)/(x1-ox0)
su+=tem

if r1<r0:
count2+=1
tem2=(r1-or0)/(x1-ox0)
su2+=tem2

graphtemp=graphtemp+plot(lineover)+plot(PP0)+plot(PP1)
if i>0:

graphtemp1=graphtemp1+plot(lineover1)+plot(PP0p)+plot(PP1p)
#lineover2=line([(x1,r1ps),(x0,r0ps)], thickness=.3, dpi=200)
#PP0ps=point((x0,r0ps),size=40)
#PP1ps=point((x1,r1ps),size=40)
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#if i>0:
# graphtemp2=graphtemp2+plot(lineover2)+plot(PP0ps)+plot(PP1ps)
if OP1==P1 and OP2==P2:

print(’error’)
print(i)
#return

#if i>14:
# print(’P1’,P1)
# print(P2)
# print(V1)
# print(V2)
#print(P0)

#P=NewP
#V=NewV
#print(2*su/N_max)
#print(RR(2*su/N_max/theta))
#pl+=[[RR(theta),2*su/count1],[RR(theta),2*su2/count2]]
print(maxang,maxx,aalpha(theta))
pl2=[[theta,maxang]]
return (P0,P1,P2,V0,V1,V2,graph,graphtemp,graphtemp1,pl)

graph=Graphics()
graphlist=[]
def triangle(theta,s):

y=RR(s*tan(theta/2))
return [[s,y,0,0,-s,-y,1,0,1,1],[0,0,s,-y,s,-y,1,0,1,1],[s,-y,s,y,0,1,1,0,1,1]]

for i in range(0,10):
print(i)
graph=Graphics()
graphpr=Graphics()
graphax=Graphics()
graphax2=Graphics()
table=triangle(.01+pi/25*i,1+5*(i+1))
p=[[0,5,0]]
v=[[-.1,.1,RR((1-.1^2*2)^.5)]]
(P0,P1,P2,V0,V1,V2,graph,graphpr,graphax2,pl)=Billiard(table, 500, 1, p, v,.01+pi/25*i)
graphlist+=pl
#graph.show(aspect_ratio=True,axes=False)
#graphpr.show(axes=1, figsize=10)
#graphax.show(axes=False)
#graphax2.show(axes=False)

graph2=list_plot(graphlist,size=5,color=’black’)
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graph2.show(axes=1, figsize=5)
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