Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-88-25

1988-09-01

Relational Completeness of Show and Tell Visual Programming
Language

Takayuki Dan Kimura

In this paper we present the database applications of the Show and Tell Language (STL) and
demonstrate the relational completeness of the language. STL is a visual programming
language designed for novice computer users who are not familiar with keyboarding. A program
can be constructed by using only a pointing device, except for textual data entry. A program can
be constructed by using only a pointing device, except for textual data entry. Various
programming concepts such as subroutine, iteration, recursion, concurrency, exception, and so
forth are represented by two-dimensional graphic patterns and icons. The language is used to
test... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

6‘ Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Kimura, Takayuki Dan, "Relational Completeness of Show and Tell Visual Programming Language" Report
Number: WUCS-88-25 (1988). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/782

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F782&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F782&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F782&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F782&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F782&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F782&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F782&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/782?utm_source=openscholarship.wustl.edu%2Fcse_research%2F782&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/782

Relational Completeness of Show and Tell Visual Programming Language

Takayuki Dan Kimura

Complete Abstract:

In this paper we present the database applications of the Show and Tell Language (STL) and demonstrate
the relational completeness of the language. STL is a visual programming language designed for novice
computer users who are not familiar with keyboarding. A program can be constructed by using only a
pointing device, except for textual data entry. A program can be constructed by using only a pointing
device, except for textual data entry. Various programming concepts such as subroutine, iteration,
recursion, concurrency, exception, and so forth are represented by two-dimensional graphic patterns and
icons. The language is used to test the feasibility of keyboardless programming, Currently the language is
implemented on the Apple Macintosh personal computer. In this paper we will present, first, the Show and
Tell language primitives, then simple database applications through examples, and finally the
representation of the five basic operations in relational algebra; difference, union, Cartesian product,
projection, and selection; all using the Show and Tell visual constructs. This demonstrates that STL is a
visual relational data query language which is complete in the sense of Codd.

https://openscholarship.wustl.edu/cse_research/782?utm_source=openscholarship.wustl.edu%2Fcse_research%2F782&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/782?utm_source=openscholarship.wustl.edu%2Fcse_research%2F782&utm_medium=PDF&utm_campaign=PDFCoverPages

RELATIONAL COMPLETENESS OF SHOW AND TELL
VISUAL PROGRAMMING LANGUAGE

Takayuki Dan Kimura

WUCS-88-25

September 1988

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899

This research was funded by Computer Services Corporation (CSK) of Japan.

1. Introduction

In this paper we present the database applications of the Show and Tell™! Language (STL)
and demonstrate the relational completeness of the langnage. STL is a visual programming
language designed for novice computer users who are not familiar with keyboarding. A program
can be constructed by using only a pointing device, except for textual data entry. Various
programming concepts such as subroutine, iteration, recursion, concurrency, exception, and so
forth are represented by two-dimensional graphic patterns and icons. The language is used to
test the feasibility of keyboardless programming?. Currently the language is implemented on the
Apple® Macintosh™ personal computer.

With Show and Tell we try to integrate the computer capabilities for managing computation,
communication, and database, into a single conceptual framework. From the end user's point of
view, it is desirable to learn only one language, instead of three langnages for three different
areas of application. In order to achieve this goal we use the notion of completion as a
mechanism for integrating computation with database applications.

To end user the STL system is a tool for defining and solving a kind of puzzle, called a
Show and Tell (ST) puzzle. The system provides tools for solving, saving, modifying,
and sharing with other users ST puzzles and solutions. The Show and Tell language is a
specification language for ST puzzles.

A ST puzzle consists of boxes connected by arrows. The arrows define the
neighborhood relationship among the contents of the boxes. Some boxes may be empty in
the problem puzzle. The puzzle is solved when the empty boxes are filled with data objects
satisfying the constraints umposed by the neighboring boxes. The puzzle is consistent if
such a solution exists, and it is inconsistent otherwise. A ST puzzle defines a completion
problem of filling the missing portions of an incomplete pattern, in the same way a jig-saw
puzzle defines a completion problem. A puzzle is solved when the puzzle is completed.
The STL system is a system with completion capability.

The system solves a puzzle either by computation or by database search of existing
solutions. A puzzle is said to be solved by computation when the empty boxes are filled by
transfer of data objects from the neighboring boxes. The computation model for STL is
similar to the dataflow model3. A database search in STL. consists of selecting a solution
from the database that is consistent with the partial information given in the remaining part
of the puzzle. From this point of view the STL system functions as an associative
memory. It is possible to combine computation and database search in solving a single ST
puzzle.

A solution for a ST puzzle is a tuple of data objects to be assigned to the empty boxes
of the puzzle, and a set of solutioris constitutes a relation. The puzzle defines what tuples
could be contained in the relation, i.e., it defines the schema of the relation.

In this paper we will present, first, the Show and Tell language primitives, then simple
database applications through examples, and finally the representation of the five basic operations

1 Show and Tell is a trademark of Computer Services Corporation.
Macintosh is a trademark of Apple Computer, Inc. _

2 Kimura, T.D., Choti, J.W., and Mack, J.M., "A Visual Language for Keyboardless
Programming,” Technical Report WUCS-86-6, Department of Computer Science,
Washington University, St. Louis, March 1986.

- ~ckerman, W.B., "Data flow language," Computer 15,2 (1982), pp. 15-25.

in relational algebra; difference, union, Cartesian product, projection, and selection; all using the
Show and Tell visual constructs. This demonstrates that STL is a visual relational data query

language which is complete in the sense of Codd4.

2. Show and Tell Primitives

This section presents the basic language constructs through a sequence of examples
based on the factorial function. The next section will present the constructs necessary for
database applications.

A Show and Tell puzzle consists of three comnponents; name, background, and
boxgraph. Figure 1 shows a screen display of the system containing a puzzle tha: defines
the factorial function recursively. A name is a rectangular bit image at the upper-left corner
of the Edit window, and is used to identify the puzzle. The name is translated into an icon
of standard size displayed on top of the trash can. The icon can be dragged into any box in
the boxgraph representing the entire boxgraph itself. A background can be any bitmap
pictare or text, commenting about the puzzle like the equation in Figure 1. The boxgraph is
the main component of a puzzle that the STL. system interprets. It can spatially overlap
with the name and/or background. The editing tools are provided in the horizontal menu on
the left of the screen.

A boxgraph consists of one or more boxes connected by a set of arrows. An arrow
connects one box to another, defining a flow of data, either scalar or vector, from the
originating source box to the destination box. Figure 2 illustrates simple dataflow. Figure
2(a) is for computing factorial 5 and 2(b) for factorial 4. Two boxes may be connected by
more than one arrow. An arrow may intersect with other arrows and boxes. While no two
boxes may overlap with each other, nesting of boxes is allowed, i.e., one box may contain
other boxes. The boxes and arrows may not form any cycle or a loop; a boxgraphisa
partially ordered set of nested boxes. Itis characterized formally as a directed acyclic
multi-graph5. The acyclicness is required for making computation history independent and
deadlock free.

There are many different types of box frames (Figure 3), but there is only one kind of
arrow, a solid line with an arrow-head. The top four types of Figure 3 are used primarily
for computational problems and will be illustrated in this section. The bottom three types
are used for database applications and will be explained in the next section.

A closed box may contain nothing (empty), a data object (number, text, or picture),
an icon (32X32 fixed-size picture) naming a boxgraph, or another boxgraph; representing a
local variable, a constant, an operation, and a block structure, respectively. An open box
may contain an icon or another boxgraph. A boxgraph can be recursively defined by
having its name icon inside the boxgraph as in Figure 1.

A closed box and an open box differ in the ways the inconsistency is propagated to
the outside of the box as illustrated by Figure 4. When a data value, 2, in Figure 4(a), is
transferred to another box containing a different value, 3, the smallest boxgraph containing
the destination box will become primitively inconsistent, i.e., it contains a conflicting
dataflow. A boxgraph is defined to be inconsistent if and only if it is primitively
inconsistent or it has an open box containing an inconsistent boxgraph. If an inconsistent

1 70dd, E.F., "Relational completeness of data base sublanguages,” in Data Base Systems
-2. Rustin, ed.) Prentice Hall, 1972, pp. 65-98.

boxgraph is contained in a closed box, The smallest boxgraph containing the closed box
may or may not be inconsistent. A closed box confines the inconsistency inside the box
while an open box does not.

An inconsistent boxgraph is non-existing by definition. Any dataflow passing through
a box containing an inconsistent boxgraph will be terminated with the box, For example,
in Figure 4(a) the constant data object 1 cannot reach the destination box. In (b) the
inconsistency is contained inside the smaller closed box and the larger closed box is
consistent, therefore the constant 1 can reach the destination box. In (c) the inconsistency
propagates out of the smaller open box, and the larger closed box also becomes
inconsistent. Note that the Show and Tell system hatches all inconsistent boxgraphs.

A base box may contain nothing or a datum. It represent an input/output parameter in
a procedure definition. In Figure 1 the puzzle has one input and one output parameter.

An iteration box may contain only a boxgraph. The iteration box represents an array
of identical spatially spreading boxgraphs. There are two different forms of interaction
between the components of the array and their environment; serial interaction and paraliel
interaction.

A serial iteration, represented by a pair of small triangles (serial port), provides a serial
communication among the components. Figure 5 shows the syntax and semantics of serial
iteration. The system dynamically creates a new copy of the boxgraph inside the iteration
box, and transfers the data from the latest component to the new one. The process
terminates when the newly created boxgraph is evaluated as inconsistent. The puzzle in
Figure 6 is equivalent to the puzzle in Figure 2(b). Note that it does not terminate because
the component boxgraph will never be inconsistent. Figure 7 presents a terminating
version. Note that the data value 5 flows into every component of the iteration as a global
constant, since there is no serial port designation on the arrow from the constant 5 into the
iteration box,

A parallel iteration, represented by a striped rectangle (parallel port) on the iteration
box, provides a parallel communication between two arrays of boxgraphs. Figure 8 shows
the syntax and semantics of a simple parallel iteration. The source iteration box has a serial
port as well as a parallel one and its execution terminates when an inconsistent boxgraph is
created. The number of iterations at the destination box is the same as that of the source
box minus the number of inconsistent components created by the destination box. The
arrow connecting the paralle] ports transfers a vector of data values in parallel. The puzzle
in Figure 9 is equivalent to the puzzle in Figure 2(a). The definition of the operation
[1,2,...] is given in Figure 10. It generates, as output, a sequence of integers from one to
the input number.

When an iteration box has two parallel ports as in Figure 11(a), the iteration is
interpreted as two nested parallel iterations, generating the cross product of the two
incoming sequences. The semantics of (a) is given in (b} and (c). The utility of this
construct will be illustrated in the next section.

3. Database Applications

A file in STL is a sequence of known solutions for a puzzle that has at least one base
box. A solution is a set of data values which makes the puzzle consistent when they are
ssigned to the base boxes. A solution is a tuple of data values, and a file is a set of tuples.

« nuzzle and its file can be saved together in a drawer . The directory of a drawer is a set

of icon names representing the puzzles contained in the drawer. When the puzzle consists
of base boxes only, and no arrow appears, it defines a record structure of a traditional
programming language, where each base box represents a record field. A setof filesin a
drawer represent a relational database and the corresponding puzzles define schemata of the

database.

A partially filled schema puzzle represents a simple data query. The STL system
completes the puzzle, i.e., fills the empty base boxes, with a solution in the file that is
consistent with the information in the partially filled puzzle More complex queries can be
constructed using the file box and the sttucture box constructs, as shown below.

An example of simple file definition is given in Figure 12. The puzzle defines a schema
for recording golf score. The user fills each base box with proper information through a

keyboard and saves the record into the puzzie by selecting the $81Fe menu command. The
small box next to the name area indicates how many solutions (records) are currently saved
in the file associated with the puzzle. Any text outside of the base boxes is a part of the
background and should be considered as a comment. The puzzle and its six solutions are

stored in the drawer named golf.

For retrieving a particular record, the user can modify the puzzle to include a query
condition and order the system to complete the puzzle. Figure 13(a) gives an example of
such query specification. The query is "When did Kathy Smith score less than 1007"

After the user selects the FInd menu command, the system completes the boxgraph, as in
Figure 13(b), with the first solution in the file that makes the boxgraph consistent.

For more complex data query specifications, a file box and 2 structured box of Figure 3
will be used. A file box containing a name icon represents the file of the named puzzlc as
a sequence of tuples. In semantics it is equivalent to a parallel iteration that produces or
accepts a vector of records (Figure 14). A structure box represents the record structure
of the schema puzzie. It is used to compose and decompose a tuple data structure. A set of
values contained in a structure hox can be treated as a single value.

Figure 135 illustrates how a structure box can be used to decompose a record structure.
The puzzle prints the only records whose score is less than 100.

A parallel] iteration can be used to construct a new file from an old file. For example,
Figure 16 presents a program that constructs a file of good players based on the golf score
file. The new file will contain the records of name and score, where the score value is less
than 100. After the file is created, the user can browse through the good player file using
the direct query method illustrated by Figure 13.

A parallel iteration box can also be used to combine more than one file to create a new
file. The join operation, in the terminology of relational data model, can be implemented by
the cross product mode of parallel iteration. Figure 17 illustrates the join operation in STL.
We assume that the two schema puzzles of Figure (a) and (b) are already defined, and that
the score file of Figure 12(a) and the player age file, a set of records consisting of name
and age, were already created. The puzzle of Figure 17(¢c) constructs a new file, age
score, which is a set of records consisting of age and score. For each record of score,
and for each record of player age, the two name fields are compared to test the
consistency. If there is no conflict, i.e., the two names are identical, then the entire
boxgraph inside the iteration box is consistent and a new record of age score will be
seated. If two names are different, then the inside boxgraph will be evaluated as

inconsistent and no record will be generated out of the iteration box for this particular
combination of input records.

Figure 18 demonstrates another example of database application in STL, involving
image data objects. Figure 18(a) defines the schema of the Show and Tell personnel
database, and (b) defines a query procedure of finding the profile of a record whose name
field contains an occurrence of the input text. The procedure is used to construct a simple
query, (c), to find a person's profile.

For manipulating a sequence of tuples, two primitive operations are made available in
the STL system whose icon names are given below.

3 Dr

construct decompose

The construct operation appends a tuple in front of a sequence, and the decompose
operation produces the head and tail of a sequence.

4, Relational Completeness

A relational database query language is complete if the language can simulate relational
algebra that is defined by the five basic operations on sets of tuples; difference, union, Cartesian
product, projection, and selections . In this section we will show that these five operations can

be represented in STL. This demonstrates the adequacy of STL as a relational query language.
We assume that the reader is familiar with the definitions of the basic operations.

Membership: Before we construct the union operation, we need an operation for testing
the membership of an object in an array of objects, so that we can eliminate duplicate elements in

the set union. Figure 19 defines the membership operation with the single input & and the array
input A. If a is contained in A, then some copy of the boxgraph inside the parallel iteration is
consistent and data object 1 flows into 0, causing the entire boxgraph inconsistent. If & is notin

A, then all the copies of the iteration boxgraph are inconsistent and no communication between
the constant 1 and the constant 0 occurs, leaving the boxgraph consistent.

Difference: Figure 20 defines the set difference operation, C = A - B.

Union: Figure 21 defines the set union operation with two array inputs, A and B, and one

array output C, where C= A B. Each component of B is tested for the membership in A, and
if it is not contained in A, then it is appended in front of the resulting array.

Cartesian Product: Figure 22 defines a Cartesian product of the set of 3-tuples, A, and

the set of 2-tuples, B, producing the set of 5-tuples, C, i.e., C=A x B, Note that a parallel
iteration box with more than one parallel ports generates the cross product of the input arrays.

© iwan, J.D., Principles of Database Systems, Computer Science Press, 1980.

Projection: Figure 23 defines a projection operation from 4-ary relation, A, to binary
relation, B, e, B=x14 (A).

Selection: Figure 24 defines a selection operation on a relation A, selecting every tuple of
A that satisfies the predicate F, and producing a new relation B, i.e., B = o (A), where F 18 the
selection criteria. For example, using the golf score file of Figure 12, a selection of good score

can be displayed by the procedure given in Figure 25(a). The selection criteria is specified in
Figure 25(b).

5. Conclusion

We have shown that keyboardless programming and keyboardless data query are possible in
Show and Tell. Also we demonstrated that, as a query language, Show and Tell is theoretically
as much powerful as any other relational query language. It remains to be seen, however,
whether the concepts introduced in Show and Tell are viable or not, in large scale practical
applications.

File Edit

Goodies

Puzzie

Answer

Drawers

ShowdTell

Edit

e ———

ls

Figure 1: Show and Tell Screen Display

[
\ o

AN
Wl
L

FACT(X) = IF #=0 THEN 1 ELSE ¥ * FACT(X-1)

{b) Factorial 4

Figure 2: Dataflow

IREINEAREIRE
T T T 11
DLy 22 Lt 32 |9 28 [2 [B
(2) Factorial 5
| Skl M El s s Bl B
I :
L IS > 2 > 2 - 2 24

L

closed open base iteration

]]

closed structure open structure file

Figure 3: Types of Box Frames

NN, \\\\

| \\Q@ \\\\\\\
SNANSNNNNNNNN

{a)

> RSN
RN

v

LS

Yy

r

{b)

‘\\Qx\\\\ Ry
N

o AaaRiiaay
RO

(c)

Figure 4: Inconsistency in Closed Box and Open Box

k4

=} fofe -

(a) Syntax {b) Semantics

Figure 5: Serial {teration

LR N I P I I Y T S
v
[N (I —

Figure 6: Nonierminating Serial Iteration

5
g +—|
i Y
B &= r,
|4 I_’,_.J b‘ 7 P
4
bH— 22 e

Figure 7: Terminating Serial Iteration (Factorial 5)

b :C&rj - (0
i
i
¥ 4
(k)
(a) Syniax

Figure 8: Parallel Iteration

(b) Semantics

12
|
|
hd
&

¥

5
¥

X

Figure 9: Factorial Function with Parallel Iteration

Edit

2 T

¥

il

<P

-

¥

Figure 10: Function for Imeger Sequence Generation

i F_n i T
[T I
J S e
T
(b) Semantics

{c) Expansion of Semantics

Figure 11: Cross Product Mode of Parallel Iteration

Edit E) golf

el ¥

¥ DATE | 6/11/86 5CORE
SCORE 3t

HRME Steve Parker .

{b) Directory of gotf Drawer
SCORE g4
(a) Schema

Figure 12: File Definition for Golf Score

E:] il
, B

T DATE

SCORE

NANE Kathy Smith

SCORE > & | 100

{a) Specification

01 il Y=
&F 2

T DATE | 5/23/86

SCORE

NANE Kethy Smith

SCORE o5 d % 100

(b) Solution

Figure 13: Direct Database Query

sl —

>~ £ .
I £
(a) Syntax (b} Semantics
Figure 14: File Box
e——————— Edit =]
00D
SCORE

¥

Lia

& | 100

=

I

Figure 15: Smucture Box for Record Decomposition

Sl————— Bl

Figure 16: Constuction of New File

Edit Edit
PLAYER AGE
pge | MAME scope | AGE
foe SCORE

{a) Schema of Player Age File (b} Schema of Age Score File

Edit

Rt
SCORE

T PERYER
PL:E;H }_E«- | —

{c}) Join Operation

Figure 17: Combining Two Files

28 it E—————
ol Mo
,..n.:‘““ E' Name Profile
. EAR
PERSDNNEL Dan Kimura
Affitiation CS Dept

Title Associate Prof

Work | Lengusge Design
Prototyping
Siave Driver

FEee——

Julie

SONNNSAN RN

SRR

Rty

“

Y
5%

A}
:

4

<t

(b) Picture Data Query Program
=. .
PROFILE HANE
F{Eﬂ(]\ 4 jene
—

{c) Profile function

Figure 18: Picure Database

=[] Hil HVFficetFte——=
=0 THIE——
ZErs R B
A
L
0 I.‘ ! ‘v
' C

Figure 19: Membership Predicate Figure 20: Difference Operation

Em—— ——— MTheE———————— — |

i o e,

1
;

Figure 21: Union Operation

Tl

i

A4

L

LA 4

A4

¥

Figure 22; Cartesian Product x

Edit

¥

—
[1
1
-

[T«

[T

Figure 23: Projection Operation =, .

—— Edit —r

Figure 24: Selection Operation op

Edit

(a) Displaying Selection of Good Score

Edit
<100
]
-, 1
3 > — 100
(b) Selection Criteria

Figure 25: Example of Selection Operation

	Relational Completeness of Show and Tell Visual Programming Language
	Recommended Citation
	Relational Completeness of Show and Tell Visual Programming Language

	tmp.1460750766.pdf.gdldP

