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1 Introduction

Once the BEMAS [13] system was completed and recoded in Common Lisp,
research efforts were channeled toward three primary areas. This report
will present a brief review of some research in these areas, which are: par-
allelizing truth maintenance systems, parallelizing production systems, and
paralle] search. The area of parallel search has been studied by many over
the past years and we will only present current research that has been accom-
plished. This review represents the beginning research into the development
of a parallel inference model.

2 Parallel Truth Maintenance Systems

A major problem facing AI techniques today is that computation time for
inferencing and related activities is combinatorially explosive, when based on
sequential reasoning. This means that large knowledge bases become almost
impossible to use in practical applications that require a fast or predictable
response time (such as in any real-time system). However, by designing and
using efficient parallel algorithms, we hope to generate a significant increase
in speed with a guaranteed upper bound on computation time. This approach
will make it possible to apply these powerful logical techniques to larger and
more complex information systems, thus producing more accurate, reliable,
and complete answers for many applications. Since we have done research in
the area of truth maintenance, we will begin by discussing how parallelism
can aid this type of computation.

2.1 Parallel JTMS

The paper “A Diffusing Computation for Truth Maintenance” by Charles
Petrie [23] was published in the 1986 IEEE International Conference on Par-
allel Processing. What is described in the paper is a parallel algorithm for
Doyle’s Truth Maintenance System [7] (termed JTMS for this paper) using
the technique of diffusing computation given by Dijkstra and Sholten [5].
To take advantage of the proofs supplied by Dijkstra using diffusing com-
putation, Petrie proposes a mapping of each node in a TMS to be a sep-
arate processor. Justifications are then represented as directed arcs from



antecedents to the consequent; only a single consequent is computed by each
rule in this representation. The purpose of using diffusing computation is to
give a status assignment of IN or OUT to each node corresponding to the
labeling that is performed in Doyle’s algorithm.

Following is a review of the basic TMS as proposed by Doyle. A TMS
is used along with an inference engine (IE) to maintain a consistent set
of beliefs and inferences. The IE computes its inferences using knowledge.
These inferences are then passed to TMS, which creates a node for each belief
and maintains the dependencies among these beliefs. Queries to the IE can
be directed to the TMS, which can give a truth value for the belief queried
and reasons why this truth value is applicable, Doyle’s JTMS (Justification
TMS) uses the closed world assumption along with the basic nonmonotonic
reasoning facilities. A justification corresponds to the support list of a node
in Doyle’s original work. Since Petrie does not make use of conditional proofs,
also discussed in the original JTMS, we will not discuss them here. But we
wish to point out that usually an implementation of Doyle’s work is not
necessarily complete without the implementation of conditional proofs, or
something that works like a conditional proof.

Each node in the TMS is to be assigned a status of IN or QUT, where an
IN label means the node is believed to be true, and an OQUT label means either
it is not known what truth value the node has or the node is not believed to
be true. Associated with each TMS node is a set of justifications, in which
each justification contains an INSET and an QUTSET. An INSET contains
a reference to those nodes which must be believed in order for the node to be
labeled IN. An OUTSET contains a reference to those nodes which must not
be believed in order for the given node to be labeled IN. A justification in the
justification set of a given node is valid if every node referenced in its INSET
is labeled IN and every node referenced in its QUTSET is labeled QUT. If
one justification in the justification set is valid then the given node is labeled
IN, otherwise the node is labeled OUT. If the INSET and OUTSET of a
justification are empty, then the given node is considered to be a premise, or
fact. If the set of justifications is empty, then there is no support possible
for the given node, so it will always be labeled OQUT. The last definitions
to be given is that of consistency and well-foundedness. A TMS network is
consistent when each node is assigned a status of IN if and only if it has
at least one valid justification and OUT otherwise. A TMS network is well-
founded if no node is in its own believed repercussions, where the set of
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believed repercussions is the transitive closure of the IN consequences which
the node supports.

Status assignments are accomplished by the use of diffusive computation.
Petrie admits that his computation is incomplete is the same sense that
Doyle’s is incomplete, which is with respect to unsatisfiable circularities being
introduced into the network by a new justification. This in turn would create
a graph for which no consistent assignment of statuses can be found. Petrie
assures that his algorithm will terminate even if a consistent labeling is not
found. It will also assign a consistent labeling if possible even if the labeling
is not well-founded.

In this approach, each processor stores the set of justifications for that
node. Messages are sent to consequences and signals are sent to antecedents
in the justification set. When all nodes are in a neutral state, a node becomes
the environment, or root node, when its status changes from OUT to IN by
the entrance of a new justification (passed from the IE). One must assume
that all nodes are in their neutral state, though this is not stated anywhere
in Petrie’s paper. If this assurnption is not made, then it would allow re-
cursive diffusing computation with multiple environments, The proof that
this computation will terminate is not addressed in the Dijkstra and Sholten
paper.

The algorithm begins by the root node issuing a “NIL sweep”, which sets
the status of the transitive closure of consequences to NIL. This is done by
the use of diffusing computation and presents no problems in itself. Once the
“NIL sweep” is performed, diffusing computation begins for the assignment
of IN/OUT status assignments.

The definition of the engager corresponds to Dijkstra’s in [5], in which the
sender of the first message to a successor is called the engager of the successor
and this sender will be the last to receive a signal from the successor before
the successor becomes neutral, i.e. neither sending messages nor signals.
Once a node receives its first message from its engager, it checks to see if its
status will change. NIL status will change to IN or OUT, so all statuses will
change at least once. If the status is unchanged, a signal is sent back to the
predecessor and no messages are sent to the consequents. If the status of the
node is changed, it sends messages $o its consequents. A processor also replies
to any sender “immediately” if it has already received another message to
which it has not replied, i.e. it is engaged, if the message does not change
the node’s current status assignment. A node replies to the engager (under
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normal circumstances) when it receives replies from all of its consequences
OT SUCCESSOrS.

To detect unsatisfiable circularities, Petrie proposes the following ap-
proach. Along with a status message, the sending node sends a list of the
transitive closure of its antecedents or predecessors to its consequent node,
Then if the consequent node appears in the list it is sent by an antecedent
that changes its status, it signals a “trouble reply” to its engager.

In [12] we present the problems with this algorithm and a solution.

2.2 Paralle] ATMS

Efforts have been made to parallelize the other major TMS systems. Dixon
and de Kleer [6] recently presented their algorithms to parallelize the As-
sumption Based Truth Maintenance System, or ATMS [2] [3] [4], and Vilain
[29] also presented his paper on parallelizing the McAllester’s Logic Based
Truth Maintenance System, or LTMS [21]. The next two section describe
both attempts.

de Kleer’s ATMS is a propositional inference engine designed to simplify
the construction of problem solvers that search complex search spaces effi-
ciently. ATMS provides a general mechanism for controlling problem solvers
by explicitly representing the structure of the search space and the depen-
dencies of the reasoning steps. However the ATMS achieves problem solver
efficiency by propositional reasoning about problem solver steps, and for
large problems these operations comprise a significant amount of computa-
tion themselves. ATMS is the basis for the Multiple World System used in
KEETM,

Massively parallel computers provide orders of magnitude more compu-
tational power that serial machines by connecting thousands or millions of
processors with some form of communication network. The processors are
kept very simple, operating from a shared instruction stream and provid-
ing a limited instruction set. The difficulty with such massive parallelism is
making use of such a machine, i.e. distributing the tasks among the proces-
sors so that the limited computational power and communication available
at each processor are well matched to the operations that need to be per-
formed. Dixon and de Kleer's paper shows how the propositional reasoning
performed by the ATMS is well suited to massively parallel hardware. This
is shown by implementing the ATMS on a Connection Machine, in which
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the implementation provides a superset of the functionality of the original
sequential implementation.

When ATMS is used, problem solving becomes a cooperative process.
First the problem solver determines the choices to be made and their im-
mediate consequences, and transmits these to the ATMS. Then the ATMS
determines which combinations of choices are consistent and which conclu-
sions they lead to. With these results, the problem solver explores additional
consequences of those conclusions, possibly introducing new choices. The cy-
cling between the problem solver and the ATMS ends when a set of choices
is found to satisfy the goal or all combinations are proven contradictory.
Some definitions are as follows. An assumption is a problem state represent-
ing primitive binary choices. A node is a problem state corresponding to
propositions whose truth is dependent on the truth of the assumptions. A
Justification is a dependency relationship among assumptions and nodes as
determined by the problem solver and presented to the ATMS.

To the problem solver, nodes and assumptions represent propositions in
the problem domain. Their structure is used by domain-specific inference
rules and the results of inference are recorded as justifications. To the ATMS,
assumptions and nodes are atomic. The only relations among them are the
justifications the problem solver has reported to the ATMS so far in the
computation. Thus, all the relevant domain knowledge and structure can
bee represented with justifications.

Other important definitions utilized by the parallel ATMS are as follows.
An assumption space is a boolean n-space defined by the set of all assump-
tions, in which each point corresponds to some total assignment of truth
values to assumptions. A support is a point in the assumption space that
supports a node if the truth values of assumptions at that point together
with the justifications logically entail the node’s truth. Consistency means
a point is consistent if the truth values of assumptions at that point are
consistent with the justifications. Otherwise, if a contradiction is entailed,
the point is inconsistent. The exztension of a node is the subset of the as-
sumption space that supports that node, excluding inconsistent points. IN
or OUT means that a node is labeled IN if it is supported by at least one
consistent point in the assumption space, otherwise it is OUT.

The ATMS performs four basic operations for the problem solver. They
are to create a new assumption, create a new node, record a justification,
and return a node’s extension. In addition, the ATMS maintains an efficient
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representation of each node’s current extension, and the set of points discov-
ered to be inconsistent. Quickly updating these representations after each
operation is the key to any ATMS implementation. Creating a node and
returning an extension require no changes. Creating an assumption doubles
the assumptions space and doubles the extensions of each node. Adding a
justification can change node extensions in complex ways. The extension of
the consequent of a node must include the intersection of the extensions of
its antecedents. If there is no circularity of justifications, then the exten-
sion of each node is the union over all its justifications. If the justifications
are circular the ATMS must find the set of minimal extensions that satisfy
the constraints made by the additional justifications. To compute the new
extensions when a justification is added, ATMS uses a form of constraint
relaxation.

The operations on extensions are as follows. The first is to compute the
infersection of the antecedents’ extensions. Then it should be determined
whether the result is subsumed by the current extension of the consequent.
If it is not subsumed, compute the new extension of the consequent from the
union of the old extension with the intersection of the antecedents’ extensions.
Lastly, remove a set of points that has been discovered to be inconsistent from
each node and double the extensions of every node when a new assumption
is added.

The Connection Machine [16] was chosen to be the architecture on which
to implement the ATMS. This architecture consists of from 16K to 64K pro-
cessors, each with 4K to 64K bits of memory. Each processor can emulate
several processors, allowing, for example, 256K virtual processors on a 64K
machine, each with one quarter the memory of a real processor. The proces-
sors execute from a single instruction stream produced by a host computer.
The basic operations of the Connection Machine are as follows: a general
bit-field combine operation, a very low overhead bit move operation between
adjacent processors, a higher-overhead general bit move operation from each
processor to any other processor, implemented by special purpose routing
hardware, and an operation that ORs together one bit from each processor.
Not all processors need to execute every instruction. Processors may be in-
dividually deactivated and reactivated as determined by computations that
are performed.

In this paper, Dixon and de Kleer give two representations for extensions
on the Connection Machine and sketch the necessary algorithms. These al-
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gorithms are far from complete. The first algorithm associates one processor
with each consistent point in the assumption space. Node extensions are
represented as a subset of the consistent point, by assigning an additional
bit per processor for each node to record whether this point supports the
node. Intersections and unions can then be computed by using single bit
operations that can be performed in parallel. The extension of a node can be
returned to the host machine by retrieving the truth value assignments from
each active processor that has the appropriate bit set. When a new assump-
tion is created, a forking operation is used to double the number of active
processors. This operation along with the initialization of the assumption
can be done in parallel.

The second representation for extensions delays the forking from a new
assumptions as long as possible, on a per processor basis. This is done so
that contradictions may be discovered elsewhere and reduce the number of
activated processors. It is possible that the assumption will cause a contra-
diction that has been found already in a processor, eliminating the need to
fork at all. To do this they allow each active processor to represent a sub-
space of the assumption space, by an assignment to each assumption of true,
false, or both. The processor subspaces are disjoint, and together include all
consistent points. Node extensions are represented as a union of these sub-
spaces, again with one bit per processor. This makes computing intersections
more complicated, as it is no longer a one-bit parallel operation.

One can see that these algorithms may need an exponential number of
processors in the worst case. They remedy this problem by utilizing a chrono-
logical backtracking algorithm. This algorithm aids in cutting the number
of processors by not allowing the earlier algorithm to create a processor for
each point in the assumption space or fork.

They implemented a parallel ATMS which can broadcast justifications
with forking inhibited, so that those processors that would deactivate or force
an assumption’s truth value do so, while those that would fork do nothing.
It is only necessary to record that some processors were blacked from forking
and that the justification should be rebroadcast at some later point. All
justifications must be processed before computing a node’s extension. This
algorithm was run on the thirteen queens problem, on a thirteen by thirteen
chess board. It ran 70 times faster on a 16K Connection Machine than the
fastest sequential implementation on a Symbolics Lisp Machine. The actual
parameters were 60 seconds vs. 4235 seconds to find 73,712 solutions.
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2.3 Parallel LTMS

Vilain, in a recent paper [29], describes a parallel implementation of McAllester’s
RUP TMS (also termed Logic Truth Maintenance System, or LTMS), which

is a single-context (as compared to a multiple-context ATMS), monotenic (as
compared to a non-monotonic JTMS) truth maintenance system. His target
hardware is the BBN Butterfly multiprocessor, which is an MIMD machine
that supports up to 256 independent processors with fully shared memory.

In McAllester’s model of a TMS, beliefs are ground propositions and the
dependencies between beliefs are expressed as a database of logical clauses,
each of which is a disjunct of literals. Propositions can take on one of three
truth values, TRUE, FALSE, or UNKNOWN. Truths are either assigned to
propositions by user assertions, or as a result of truth maintenance which is
simple deduction, using Waltz-style [31] constraint propagation. A propo-
sition is a node in a constraint graph and each clause is a constraint link.
Constraints are propagated when the truths of the propositions in all but
one literal in a clause become known. If the literals are all unsatisfied, the
clause is then used to deduce the truth of the remaining literal.

McAllester notes that his TMS is essentially performing unit clause reso-
lution, which is P complete. Problems in this class are strongly conjectured
not to have a parallel solution that is guaranteed to terminate in less than
polynomial time. So the worst-case performance of any parallel algorithm
for McAllester’s TMS can not be expected to improve on that of the best se-
rial solution. What Vilain aims to do is to find parallel TMS strategies that
exploit sources of concurrency that are independent of any inherent TMS
sequentiality.

The parallel algorithm that Vilain presents is implemented in Butterfly
LISP. The TMS constraint graph can be distributed across all the proces-
sors, providing a global data structure for the graph, to which each processor
has independent access with the same average time. Within the constraint
propagation algorithm, constraints attached to a node are checked for po-
tential deductions when a truth value is determined for that node. The
concurrency is introduced by checking the clauses in parallel. Synchroniza-
tion is only a problem when two processes attempt to set the truth of a node
simultaneously. This could lead to redundant propagation or undetected
contradictions if the simultaneous attempts disagree in truth values for the
given node. Thus, Vilain makes the testing for an unknown truth value of




a node an atomic operation, and as implemented on the Butterfly, only one
competing process can set the truth value of the node. Vilain presents his
algorithm in Butterfly LISP code and proves its correctness when the TMS
database is restricted to Horn and NoGood clauses.

Vilain presents a worst-case example of the inherent sequentiality of
McAllester's TMS. He notes that these pathological cases seldomly occur.
The cases where they occur in circuit simulation were those examples with
a moderate constraint fanout with a predominance of constraints that had a
low probability of leading to an actual deduction when checked. He presents
a way to transform the constraint graph to a new compiled graph, but notes
that this still doesn’t eliminate the inherent sequentially of the problem, but
can increase the degree of run-time concurrency if the M (n?) processor re-
quirement can be satisfied. The interested reader can refer to the paper for
the exact translation algorithm of the original graph to the compiled one.

Then what are the ways in which concurrency can be increased even
though this problem exists? Asserting multiple premises simultaneously will
increase the degree of useful parallelism. This type of assertion occurs when
multiple hypotheses are to be checked. Multiple retraction of assertions is
another strategy to increase concurrency. But assertions and retractions can-
not be performed in parallel. Also, since there are concurrent strategies for
construction of the constraint graph, they can be coupled with the constraint
propagation method to occur simultaneously.

When these strategies are utilized, it is necessary to change the TMS
model to mix problem solving with truth maintenance, i.e. instead of the
problem solver finishing before passing its results to the TMS and the TMS
finishing before passing its results back.

Vilain proposes a way of handling the mixing with the use of noticers or
demons that concurrently inform the problem solver of the changing $ruth
values of beliefs. Issues such as database consistency must then be dealt
with, which Vilain leaves as an open question. Again, this is a question that
the reviewing author is also attempting to answer. His implementation does
not explicitly address this issue, but deals with only those contradictions and
inconsistencies which are detected.

As far as the speed-up in performance achieved by such an implemen-
tation, Vilain had problems using an uncompiled version of Butterfly LISP,

and is in the process of reevaluating his parallel TMS on a new compiled
version of LISP.
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3 Parallel Production Systems

Production systems (or rule-based systems) are widely used in AT for mod-
eling intelligent behavior and building expert systems. The problem with
production systems is the same problem seen in the previously discussed
AT techniques. For reasonably sized domains, production systems quickly
become too computationally expensive and very slow. Thus, research in
parallelizing production systems has emerged in order to speed up problem
execution time,

To discuss this research, it is necessary to present some background on the
OPS5 system [10] and general productions systems, though we will assume
reasonable familiarity with the material. Because this work is very detailed,
it will be necessary to gloss over several important aspects m order to get
the full picture.

A production system has a database of rules or productions, called the
production memory, and a database of working memory elements (WME’s)
or facts, called the working memory. Each rule consists of a conjunction of
condition elements called the left hand side (LHS) and a set of actions called
the right hand side (RHS). The LHS identifies when a rule can be executed by
matching it against the working memory. The RHS specifies which WME’s
are to be added or deleted when the rule is executed.

The production-system interpreter is the underlying mechanism that de-
termines the set of satisfied productions and controls the execution of the
production-system program. The interpreter executes a production-system
program by performing the following recognize-act cycle. (1) Match step:
matches the LHS of all productions against the contents of working memory.
(2) Conflict-Resolution step: one of the instantiated productions is chosen
for execution. (3) Act step: the chosen production is executed.

3.1 Parallelizing OPS5

In Gupta’s [15] research on parallelizing OPS5, he discusses two general types
of search used in production systems. The first is knowledge search, finding
information relevant to solving the problem. The second is problem-space
search, search for the goal state., Problem space search is basically a combi-
natorial AND/OR search. But, if the problem space search is done sequen-
tially, then if knowledge search is done intelligently, problem space search
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can be pruned. But the more intelligent the knowledge search, the more
knowledge is needed to guide the search, thus possible making the search
combinatorially explosive. Knowledge search is performed during the match
phase of the recognize-act cycle, and this is the step in which Gupta places
most of his efforts of parallelism.

For this research, the Rete [11] match algorithm in OPS5 and Soar system
is chosen to be parallelized. Soar [20] is a new production system formalism
to provide expert systems with general reasoning power and the ability to
learn. More detail on Soar will be presented in the next section. The Rete
algorithm is very detailed, and we will refer the reader to a quite lengthy
description in Gupta’s book. For our purposes we will concentrate on the
general ideas behind parallelizing the Rete match algorithm which extends
to other match algorithms.

The data-flow like organization of the Rete network is the key feature that
permits exploitation of parallelism at a relatively fine grain. It is possible to
evaluate the activations of different nodes in the Rete network in parallel and
to evaluate multiple activations of the same node in parallel and to process
multiple changes to working memory in parallel. The parallel evaluation of
node activations in the Rete network also corresponds to higher-level, more
intuitive forms of parallelism in production systems. For example, evaluating
different node activations in parallel corresponds to (1) performing match
for different productions in parallel (also called production-level parallelism)
and (2) performing match for different condition elements within the same
production in parallel (also called condition-level parallelism). Reteis a state-
saving model. That is, the algorithms store the results of the execution match
from previous recognize-act cycles, so that only the changes made to the
working memory by the most recent production firing need be processed every
cycle. For this model the state corresponding to only fixed combinations
of condition elements in the left-hand side is stored. This imposes some
sequentiality on the evaluation of nodes, but the tradeoffs are worthwhile.

Gupta describes the characteristics of six OPS5 and Soar application
production systems with which he performs essentially complete evaluations
of his algorithms in order to find where bottlenecks were and how to improve
the algorithm to its maximum efficiency. The systems have different numbers
of productions and operate differently with the constraints of the algorithm,
giving a good overall measure of the performance of the algorithm.

Overall parallelism can be used while performing each of the three steps
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of the production system execution; match, conflict-resolution, and act. It
is also possible to overlap the parallel processing performed in the match
step with the conflict resolution step in the same cycle, and to overlap the
act step of one cycle with the match step of the next cycle. All processors
must synchronize after the match and conflict-resolution steps of a cycle
before proceeding to the act step of that same cycle. But parallelism can be
introduced within that act step.

Gupta describes (and implements a simulator) for the architecture of the
production-system machine (PSM). The major characteristics of this archi-
tecture are: (1) Shared-memory multiprocessor with about 32-64 processors.
(2) The individual processors should be high performance computers, each
with a small amount of private memory and a cache. (3) The processors
should be connected to the shared memory via one or more shared buses.
(4) The multiprocessor should support a hardware task scheduler to help
enqueue node activations that need to be evaluated on the task queue and
to help assign pending node activations to idle processors.

The results of this parallelization were not what was expected, yet they
were still satisfactory and encouraging. Initial expectations were of 100-
fold to 1000-fold speed-up when parallelism was introduced. But the actual
speed-up was about 10-fold.

3.2 Parallelism in a Learning Production System

In this section, Soar will be presented along with other results found when
parallelism was introduced into the production system. Soar is a system
developed to be capable of general intelligence. It is a system which uses
a learning mechanism called chunking to create new productions which are
summaries of results and adds these productions to the system. When the
chunks eventually fire, the provide a learning-transfer mechanism. In this
paper by Tambe, et al [28], the Soar/PSM-E implementation is presented.
PSM-E is a C-based implementation of OPS5 on the Encore Multimax.

As with all production systems, execution is slow for large systems built
in Soar, due to the matching procedure. Because chunking adds new pro-
ductions, matching becomes even more of a bottleneck. Also, the additions
of such chunks present various other computation problems that do not arise
in non-learning production system. This paper concentrates only on the
optimization of the matching procedure.
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PSM-E is a highly optimized C-based parallel implementation of OPS5
on the Encore Multimax. This implementation consists of a control process
that selects and fires an instantiation, and one or more match processes that
actually perform the RETE match, as has been discussed in the previous
section in the work by Gupta [15].

Soar consists of three modules: decide, chunking, and a production sys-
tem. The production system in Soar is similar to that of OPS5. The modi-
fications to OPS5 are that RETE must support the addition of productions
at run-time, conjunctive negations. Also, all productions may be fired in
parallel and only add working memory elements.

The decide module is responsible for the creation and deletion of all of
the system’s goals, as well as the selection of problem spaces, states and op-
erators. The elaboration phase of this module matches the productions to
determine the conflict set. Then all of the instantiations of the conflict set are
fired in parallel. The phase cycles until no new instantiations are generated.
The decision phase of this module attempts to make a decision about the
problem space, state, or operation to be used to continue toward the goal.
If a decision cannot be reached a subgoal is created on which it applies its
problem solving capabilities. The chunking module is the learning mecha-
nism. It creates new productions by generalizing and caching the results of
problem-solving. The addition of chunks improves the Soar’s performance
when viewed in terms of subproblems required and the number of decisions
within the subproblem.

Soar/PSM-E operates in a mode where Soar uses PSM-E as a match-
ing engine. For this work, both Soar and PSM-E keep separate copies of
working memory, since only the matching facility is being optimized. When
productions are fired, both Soar and PSM-E update their working memories.
Chunks, which are formed in Soar are passed to PSM-E as they are added
in Soar,

The productions added due to chunking must be compiled into machine
code like the rest of the system. Two mechanisms are used to make the
compilation faster and provide sharing; a tree data structure for the RETE
network and a jumptable to integrate the new code. As stated in the previous
section, node sharing in RETE is necessary for speedup in parallelism.

Three tasks were run, one of which was the 8-puzzle. Without chunking,
all speedups were fairly low due to contention for shared memory objects.
Two shared memory objects in this system are the memory nodes of RETE
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and the single shared task queue. Hashing was used to decrease contention
of the memory nodes, but the main source of contention was the task queue.
This contention was reduced by the use of multiple task queues, one for each
process, but the speedups are still much less that ideal speedups.

Other problems with speedup are the presence of long chains which are
long chains of dependent node activations caused by productions with large
number of condition elements. Even given more processors, the system can-
not get through a long chain any faster. They plan to introduce a constrained
bilinear network organization to reduce the length of the long chains, but this
was not done for this paper.

High speedup was obtained in the update phase when chunking was used.
High degrees of parallelism can be achieved since the entire set of wmes is
matched and the chunks are matched while updating them. In conclusion,
the authors believe that such a learning production system is not bounded
by the 10-20 fold empirical bound that applies to non-learning production
systems.

3.3 Parallel Asynchronous Rule System

Schmolze [27] proposes a new sirategy for executing production systems
in parallel, called PARS (Parallel Asynchronous Rule System), which has
been implemented on a hypercube machine and has promised high levels of
speedup as shown by recent preliminary tests. His approach is somewhat like
that of Ishida and Stolfo [17], in which many rules can be executed simulta-
neously, with each rule execution on a separate processor. The problem with
Ishida and Stolfo’s system is that all processors must complete the match
step before beginning the conflict-resolution step, and then again before the
act step. Thus, there is no overlapping of any of the steps in execution cycle,
nor is there overlapping of one execution cycle with a following execution
cycle. Schmolze’s proposal intends a more asynchronous system and better
performance that Ishida and Stolfo. A consequence of this is that his sys-
tem departs from the overall semantics of an OPS5-like system, with the
drawback being that OPS5 is almost an accepted standard in building pro-
duction systems. Another major drawback in this system is the amount of
programmer involvement necessary to parallelize the system.

In Schmolze’s system, each of the processors is essentially a separate pro-
duction system with local production and working memories. The programe-
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mer, along with possibly having to modify some of the initial rules, must
specify an addressing scheme that determines which processors are to receive
each possible WME (called the address of the WME) and which processors
are to receive each rule (called the address of the rule). There is no restric-
tion on the processors having disjoint rule addresses or WME addresses. The
reader can see that this is quite a lot of work for the programmer to perform.

Each processor maintains a queue of actions and executes a similar basic
loop to the OPS5 system, with the conflict-resolution step called the select
step. The match step is performed by each processor, matching the LHS
of its local rule set to its local working memory. The select step selects
one of the matched rules for execution per processor. An additional step
is added, called the “send step”. This step sends the actions of the rule
to the appropriate processors. The local act step then removes actions of
the processor’s queue, and updates its own working memory, in addition to
possibly responding to commands sent from an overall controlling process.
Since the choice of a rule to execute is a local decision, this basic loop can be
executed asynchronously among all processors. Though this eliminates the
problems with synchronization in previous systems, the addressing scheme
for WME’s and rules must be extremely effective.

Thus the programmer must discover the manner in which effective paral-
lelism can be achieved and program the production system accordingly. The
addressing scheme must be complete in the sense that no rule firings are
missed. Because of the extra work necessary for the programmer, Schmolze
proposes the development of an “assistant” which will perform some of ad-
dressing and aid the programmer. This assistant will have dynamic address-
ing available, and also distribute the rules across the processors using the
algorithm given by Ishida and Stolfo. Programmers must also write a com-
plete rule set, so that the same result is achieved no matter the order in
which the rules are chosen or the type of conflict-resolution used, since this
step is local to each processor. One final problem given to the programmer
is to write a serializable rule set, in which case the final results produced by
the parallel system can also be produced by the serial system. An algorithm
to automate this activity is currently being developed by Schmolze.
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4 Parallel Search

Heuristic search is a technique used to reduced the computational complexity
of exhaustive search. Such strategies as alpha-beta pruning have been used
to prune search trees for two player games. When nodes in such strategies
are examined in parallel, it is likely that branches will be searched that would
otherwise be pruned in sequential alpha-beta.

4.1 Advancements in Parallel Heuristic Search

Ferguson and Korf [9] put the different approaches to parallelizing search
algorithms into three categories. One is to parallelize the processing of in-
dividual nodes, such as move generation and heuristic evaluation. Another
approach, called parallel window search, was first developed by Baudet [1].
In this approach, different processors are assigned non-overlapping ranges for
alpha and beta, with one processor having the true minimax value within its
window, and finding it faster by virtue of starting with narrow bounds. The
third, which they feel is the most promising approach, is tree decomposition,
in which different processors are assigned different parts of the tree to search.
The most recent experimental work on this has been done by Kumar, et al
[25], to parallelize an algorithm called IDA* [18]. We will be discussing this
algorithm in a later section. In IDA*, the total amount of work done is
independent of the order in which the tree is searched.

The Ferguson and Korf have begun the development of a distributed
tree search (DTS) strategy which can apply to those cases where alpha-beta
search prunes and parallel search does not. Their algorithm is based on the
idea that different processors will be assigned to search different parts of the
tree. It is a generic algorithm that uses an arbitrary number of processors
without shared memory or centralized control and is independent of the type
of tree search to be performed.

There have been algorithms which perform parallel branch and bound
searches with the best for alpha-beta pruning by Vornberger [30], as specifi-
cally applied to chess. But DTS is general and can apply to alpha-beta, but
can also apply to other types of tree searches which gives this algorithm more
generality than other more specific algorithms.

DTS works as follows. Given a tree with non-uniform branching factor
and depth, the problem is to search it in parallel with an arbitrary number

17




of processors as fast as possible. DTS is begun by creating a root process
(corresponding to the root of the tree to be searched) and assigning to this
root node all available processors. Then expand the node and divide the
processors among the children. The parent process then blocks awaiting the
return of the processes the children have used. If some child processes are
returned before others the parent node reassigns these available processes to
“help out” the other children. Results of the search are also returned with
the processes. These results may indicate success, failure, alpha, or beta
values, etc., depending on the application. This process allocation results in
efficient load balancing among processors which is a general concern when
implementing parallel algorithms.

Once all child processes have completed, the parent node returns its re-
sults and processes to its parent. When only one processor is available to a
node for searching, a depth-first search would take place. If DTS is given n
processors where n is the number of tree nodes, search is done breadth-first.

When applied to alpha-beta search, the problem of communication-overhead
arises, since an alpha or beta cutoff value for one branch of the tree may be
determined at another distinct part of the tree. Also, during parallel search,
the algorithm cannot take advantage of all the heuristic information the se-
quential search uses, so wasted work may be performed. This is termed
search overhead.

Because of these problems, Ferguson and Korf developed a Branch-and-
Bound processor allocation strategy for performing parallel alpha-beta search.
They introduce a cutoff bound that corresponds to alpha and beta cutoffs
so that the same pruning performed by serial alpha-beta is performed by
parallel alpha-beta. If no cutoff bound exists at a node, then the processors
are assigned depth first. A cutoff bound can then be established quickly. If a
cutoff bound is initially passed to a node, or has been established by the first
child of the node, then the processors are assigned in the usual breadth-first
manner. The idea is to establish useful bounds before searching the children
in parallel, in order to avoid evaluating extra nodes that would be pruned by
the serial alpha-beta.

A proof that in the case of perfect node ordering, the Branch-and-Bound
allocation strategy will evaluate the same nodes as serial alpha-beta is given
in the paper. Also, a discussion of the algorithm as applied to the game
Othello is presented. More evaluation of performance is needed before solid
results can be given.
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4.2 Parallel IDA*

Iterative-deepening A* is an important admissible algorithm for state-space
search which has been shown to be optimal both in time and space for a wide
variety of state-space search problems. In contrast, A* [22] requires expo-
nential storage for most practical problems, and is less easily parallelizable
that IDA* in terms of simplicity and overhead. Iterative deepening consists
of repeated bounded depth-first search over the search space. In each it-
eration, IDA* performs a cost-bounded depth-first search by cutting off a
branch when its total cost exceeds a given threshold. For the first iteration,
the threshold is set to the cost of the initial state. Then for each successive
iteration, the threshold used is the minimum of all node costs that exceeded
the previous threshold in the preceding iteration. The algorithm continues
until a goal is expanded. I the cost function is admissible, the IDA* is guar-
anteed to find an optimal solution. IDA¥* expands asymptotically the same
number of nodes as A*, and its storage requirement is linear with respect to
the depth of the solution.

Rao, et al, have developed a parallel version of IDA* that does not appear
to be limited in the amount of parallelism, They tested its effectiveness by
implementing their algorithm for the 15-puzzle on a Sequent Balance 21000
parallel processor and have been able to obtain almost linear speedup using
up to 30 processors that are available on the machine.

Rao has parallelized IDA* by sharing the work done in each iteration
among a number of processors. Fach processor searches a disjoint part of
the search space depth-first. When a processor has finished, it attempts to
search a branch that another processor has yet to search. Once the space
has been completely searched, termination is detected for the iteration, and
a new threshold is computed. All processors quit when a solution is found.

Since the cost bounds for each iteration of PIDA* are identical to that
of IDA¥, the first solution found by any processor in PIDA* is an optimal
solution, so computation ends when the first solution is found. It is possible
for PIDA* to expand fewer nodes on the last iteration than that of IDA¥*,
which leads to the observation of speedup greater than N using N processors
(this is called acceleration anomaly).

Each processor maintains a local stack of the nodes to be searched. When
1t empties its stack it can take work off of the stack of another processor.
Three basic procedures are executed by each processor. The first is to perform
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a bounded depth-first search as long as work is available on the stack. When
no work is available, try to get work from other processors. When no work
can be obtained, attempt to detect termination. The objective of this work
is to minimize communication overhead between processors, keep the work
exchange infrequent, and detect termination quickly.

The actual results that were achieved showed superlinear speedup, i.e.
greater than N for N processors. They then modified PIDA* to find all
optimal solutions and compared it against IDA* finding all optimal solutions,
producing speedup close to N for N processors.

4.3 Parallel Window Search

Powley [24] presents another view of the use of IDA*, This research is based
on attempts to improve sequential IDA* and to use it in paralle] search. His
paper combines node ordering and parallel window search with IDA*. In A*
and IDA*, for each node n, g(n) is the cost of reaching the node so far, h{n)
is the estimated cost of a path from the node to a goal state. A* will expand
the node with the minimum f(n) = g(n) + h(n). IDA* uses this to compute
its thresholds.

The idea of node ordering in pure depth-first search is to expand the
children of a node in an order that minimizes the time to find a goal. The
ordering is performed for an iteration by using the heuristic information from
the last iteration. Thus, the heuristics are used to order the nodes and after
the ordering, pure depth-first search is used to find the next iteration of
nodes. In IDA* with node ordering the nodes with the smallest h values or
largest g values are expanded first, since the nodes with the smallest h values
are likely to be closest to a goal, and the nodes with the largest g values
require less search to find that a node does not lead to a goal. The reason
is that every move increases g and the total cost g + h is limited by the
threshold for the iteration, making the maximum depth that can be reached
below a node n in that iteration be t - g(n). Thus the nodes with the largest
values of g generate the shallowest subtrees below them. Ideally, what is
needed is to generate the final iteration using an ordering of all the nodes
from the next-to-last iteration, but this requires storing the complete next-
to-last iteration, requiring exponential memory. A solution to this is to save
only a fixed number of paths. But in IDA* good node ordering really only
effects the time spent in the last iteration. It has no effect on the previous
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iterations and there are serious disadvantages to only saving certain paths.

Parallel window search is the use of different processes to search to dif-
ferent thresholds or windows simultaneously, in the hope that one of them
will find a solution. Window search originated in two-player game search [1]
[19], but has not yet been applied to single-agent search, which is the focus
of this research. The thresholds are those determined by IDA*. Though the
first solution found may not be optimal, optimality can still be guaranteed
by completing all shallower thresholds and comparing their solutions to that
of the best goal found. Only limited speedup is achieved by this approach,
because the search is dominated by the time to perform the last iteration,
even if the others are performed in parallel. Since parallel window search
speeds up the time to perform every iteration but the last and node ordering
only speeds up the last iteration, an algorithm that used a combination of
the two approaches was developed and tested.

This algorithm works as follows. N search processors are initially assigned
the first N thresholds to search, with each process searching a different thresh-
old. All processes use the ordering scheme previous discussed. Then when
a process finishes searching to its current threshold, it re-orders its node set
and broadcasts this ordering information to all other processes. Next, the
process jumps over the other processes to the next threshold to be searched.
The search terminates when the first goal is found.

The problem with the speedup results achieved by this algorithm is the
comparisons the authors made. They compared their algorithm to the serial
IDA* algorithm running the same problem instances. But their algorithm
uses serial IDA* and embellishes it with node ordering and parallelizes it
with window search. It seems that comparisons should only be made run-
ning the embellished algorithm on sequential machine and comparing that to
the parallel implementation. Since the serial IDA* will have less overhead,
speedup results will be lower. This is exactly what the authors experienced,
a peak in the speedup and then a sharp decrease as the number of processes
(and overhead) grew. Their best result, using the 15-puzzle problem, was on
the most difficult problem instances, in which the elapsed real time was on
average 1820 times faster that serial IDA¥ in terms of nodes generated.
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5 Conclusion

We have presented a synopsis of papers which were reviewed as part of the
beginning research for developing a parallel inference model. Current work
is being done to improve Petrie’s algorithm and to prove the correctness of
the new algorithm [12].
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