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ABSTRACT OF THE DISSERTATION

Noncommutative Borsuk-Ulam Theorems

by

Benjamin Passer

Doctor of Philosophy in Mathematics

Washington University in St. Louis, 2016

Professor John McCarthy, Chair

Professor Xiang Tang, Co-Chair

The Borsuk-Ulam theorem in algebraic topology shows that there are significant restric-

tions on how any topological sphere Sk interacts with the antipodal Z2 action of reflection

through the origin (x 7→ −x). For example, any map f : Sk → Sk which is continuous and

odd (f(−x) = −f(x)) must be homotopically nontrivial. We consider various equivalent

forms of the theorem in terms of the function algebras C(Sk) and examine which forms

generalize to certain noncommutative Banach and C∗-algebras with finite group actions.

Chapter 1 contains background material on C∗-algebras, K-theory, and group actions.

Next, in Chapter 2, we examine statements related to the Borsuk-Ulam theorem that may be

applied on Banach algebras with Z2 actions; this work indicates when roots of elements do

not exist and is motivated by the results of Ali Taghavi in [49]. We see that a variant of the

Borsuk-Ulam theorem on C(Sk) written in terms of individual odd elements of C(Sk) does not

extend to the noncommutative setting. In Chapter 3, we show that antipodally equivariant

maps between θ-deformed spheres of the same dimension are nontrivial on K-theory. This

generalizes the commutative case and parallels the work of Makoto Yamashita in [55] on the

q-spheres, although our methods are quite different. Finally, Chapter 4 concerns a conjecture

of Ludwik D
‘
abrowski in [14] that seeks to generalize noncommutative Borsuk-Ulam theory

to arbitrary C∗-algebras through the use of unreduced suspensions. We prove D
‘
abrowski’s

conjecture and propose a new direction for continued study.
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Chapter 1

Background

In 1943, I. Gelfand and M. Naimark proved a landmark theorem that jump-started

the study of abstract C∗-algebras and, in time, brought to life an entirely new field of

mathematics known as noncommutative geometry.

Theorem 1.0.1 (Gelfand-Naimark). If A is a commutative C∗-algebra, then there is a locally

compact Hausdorff space Y such that A ∼= C0(Y ), and Y is unique up to homeomorphism.

This theorem establishes that commutative C∗-algebras are dual to locally compact Hausdorff

spaces, and this provides a lens through which to view noncommutative C∗-algebras; they

should be dual to some object that we call a noncommutative space. Many invariants

on topological spaces are realizable in arbitrary C∗-algebras, such as topological K-theory,

and the field of noncommutative geometry also concerns questions related to differentiable

structure (see [11] and [10]). However, the main goal of this work is to describe in what ways

the famed Borsuk-Ulam theorem of algebraic topology, originally found in the 1933 paper

[6], extends into the world of C∗-algebras.

Theorem 1.0.2 (Borsuk-Ulam). Let Sk = {(x1, . . . , xk+1) ∈ Rk+1 : x2
1 + . . . + x2

k+1 = 1}

be a topological sphere. Then any continuous map f : Sk → Sk which is odd (satisfies

f(−~x) = −f(~x)) is homotopically nontrivial.

This pursuit is motivated by papers of A. Taghavi, M. Yamashita, and L. D
‘
abrowski; I

will prove some results that are analogous to (or are extensions of) their theorems as well as

answer some questions posed in their papers. Some of the content from this dissertation is

contained in [34] (to appear in Journal of Operator Theory) and [35] (under review).
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1.1 The Gelfand-Naimark Theorem

If H is a complex Hilbert space, then B(H) = {T : H → H : T is linear and bounded}

is a space of linear operators with a host of algebraic operations. We may form sums

T + S and scalar multiples λT for operators T, S ∈ B(H) and a scalar λ ∈ C, and we

may also compose operators, which is denoted S ◦ T or ST . The second notation is more

concise, but it also emphasizes a mentality that composition is an abstract multiplication,

and this multiplication distributes over addition. The space B(H) is also equipped with

a norm ||T || = sup{||Th|| : h ∈ H, ||h|| ≤ 1} defined in terms of the Hilbert space norm

||h|| =
√
〈h, h〉. This norm is complete and compatible with the algebraic operations, so

B(H) is a Banach algebra, with additional structure from the operator adjoint. If T ∈ B(H),

then the adjoint T ∗ ∈ B(H) is the unique operator satisfying the following inner product

identity for all h, k ∈ H.

〈Th, k〉 = 〈h, T ∗k〉

The operator adjoint is antilinear and satisfies the identities (ST )∗ = T ∗S∗, T ∗∗ = T , and

||TT ∗|| = ||T ||2, which are generalized in the definition of a C∗-algebra.

Definition 1.1.1. A C∗-algebra A is a Banach algebra with a unary operation ∗ : A → A

satisfying the following identities for all a, b ∈ A and α, β ∈ C.

1. (αa+ βb)∗ = αa∗ + βb∗

2. (ab)∗ = b∗a∗

3. a∗∗ = a

4. ||aa∗|| = ||a||2

The identity operator in B(H) is a multiplicative unit, but existence of an element 1 ∈ A

is not required in the definition of a C∗-algebra. Such algebras where 1 exists are called
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unital or with unit. Any norm-closed ∗-subalgebra of B(H) is a C∗-algebra, and in general

C∗-algebras are not commutative: ab is not necessarily equal to ba. Examples of commutative

C∗-algebras are found in function algebras, whose operations are defined pointwise.

Definition 1.1.2. IfX is a compact Hausdorff topological space, then C(X) = {f : X → C :

f is continuous} is a commutative C∗-algebra with unit. The addition, scalar multiplication,

and element multiplication operations are defined pointwise, the adjoint is defined by complex

conjugation f ∗(x) = f(x), and the norm is the supremum norm ||f ||sup = sup{|f(x)| : x ∈

X}. The multiplicative unit is the function which takes the constant value 1.

The function algebra C(X) is commutative, and because of the assumption that X is

compact and Hausdorff, the functions in C(X) separate the points of X. If C is a nonempty

closed subset of X, the ideal {f ∈ C(X) : f |C = 0} is norm-closed and is itself a commutative

C∗-algebra. However, the multiplicative unit is no longer present, as the only constant

function vanishing on C takes value 0. When C consists of a single point p, it follows that

X \{p} is locally compact, but not necessarily compact, and we may attempt to reconstruct

X from X \ {p}.

Definition 1.1.3. If Y is a locally compact Hausdorff topological space, then the one point

compactification Y + = Y q{∞} is a compact Hausdorff space obtained by adding one point

to Y . The neighborhoods of∞ are of the form {∞}∪(Y \C) where C is a compact subspace

of Y , and the subspace topology on Y ⊂ Y + is exactly the original topology on Y .

A locally compact Hausdorff space Y admits its own function algebra as a maximal

ideal of C(Y +). When Y is actually compact, ∞ is an isolated point, essentially adding no

information.

Definition 1.1.4. If Y is locally compact and Hausdorff, then C0(Y ) is the algebra of func-

tions on Y vanishing at infinity, a C∗-algebra with pointwise operations defined as follows.

3



C0(Y ) = {f ∈ C(Y +) : f(∞) = 0}

∼= {f : Y → C : f is continuous and for any ε > 0, there is a compact C ⊂ Y

such that for any y ∈ Y \ C, |f(y)| < ε}

The C∗-algebra C0(Y ) is unital if and only if Y is compact. In this case, C0(Y ) is isomorphic

to C(Y ).

Function algebras C0(Y ) are commutative, and it turns out that all commutative C∗-

algebras are function algebras. This result is the Gelfand-Naimark theorem, which relies on

the structure of multiplicative linear functionals.

Definition 1.1.5. If A is a unital C∗-algebra, then a multiplicative linear functional on A

is a map φ : A → C which is linear, satisfies φ(ab) = φ(a)φ(b), and is not identically zero

(or equivalently satisfies φ(1) = 1). Any such φ has operator norm 1 and also automatically

satisifies φ(a∗) = φ(a).

The set of multiplicative linear functionalsM =M(A) is a subset of the Banach algebra

dual A∗, which consists of all bounded linear functionals on A. IfM is assigned the subspace

topology of the weak-* topology of A∗, then M is a closed subspace of the unit ball and

therefore is compact by the Banach-Alaoglu theorem. Moreover, for commutative A,M is

in one-to-one correspondence with the maximal ideals of A via φ↔ ker(φ). Proofs of these

facts, as well as proofs of many of the following foundational theorems in this section, can

be found in [19].

Theorem 1.1.6 (Gelfand-Naimark, unital case). If A is a commutative, unital C∗-algebra,

thenX =M(A) is the unique compact Hausdorff space (up to homeomorphism) that satisfies

C(X) ∼= A.
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The Gelfand-Naimark theorem establishes a contravariant isomorphism between two cat-

egories: the category Cpt of compact Hausdorff spaces with continuous maps, and the

category C∗com1 of commutative unital C∗-algebras with unital ∗-homomorphisms. In

other words, X = M(A) completely determines C(X) = A and vice-versa, but the do-

main and codomain of morphisms are reversed. A continuous map f : X → Y generates

a ∗-homomorphism Cf : C(Y ) → C(X), defined by Cf (g) = g ◦ f , and similarly, a ∗-

homomorphism ψ : A → B generates a continuous map Mψ : M(B) → M(A), defined by

Mψ(φ) = φ ◦ψ. All of these properties imply that C∗com1 and Cpt are opposite categories

(see [17]).

If A is a C∗-algebra that is not unital, then A is a maximal ideal of a unitization A+ =

A ⊕ C, which can be given a C∗-algebra structure. If A is commutative, then so is A+,

and A+ is isomorphic to C(X) for some compact Hausdorff X. All ideals of C(X) are of

the form {f ∈ C(X) : f |C = 0} where C ⊆ X is closed, and since A ≤ C(X) is also a

maximal ideal, it corresponds to a space of functions which vanish at one point p ∈ X. This

gives A the structure of C0(X \ {p}), where we note that X \ {p} is locally compact. The

claim that A ∼= C0(Y ) for some locally compact Y is then applicable to both the unital and

nonunital case, as C0(Y ) ∼= C(Y ) when Y is compact. The following general version of the

Gelfand-Naimark theorem is then the same as Theorem 1.0.1.

Theorem 1.1.7 (Gelfand-Naimark, general case). If A is a commutative C∗-algebra (unital

or nonunital), then there is a locally compact Hausdorff space Y such that A ∼= C0(Y ), and

Y is unique up to homeomorphism.

The assumption of commutativity in the Gelfand-Naimark theorem is essential, as C0(Y )

is always commutative. Moreover, there are noncommutative C∗-algebras whose only ideals

are the full ideal and trivial ideal, such as the matrix algebras Mn(C) for n ≥ 2, and these

C∗-algebras do not have enough multiplicative linear functionals to describe their structure.

On the other hand, it is still possible to view noncommutative C∗-algebras through the lens of
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Gelfand-Naimark duality. For example, “noncommutative” compact Hausdorff spaces would

be objects of C∗algop1 (the opposite category to the category of all unital C∗-algebras) that

correspond to noncommutative unital C∗-algebras. This point of view can even sometimes

provide unforeseen information in the topological setting.

1.2 Trace Functions and the Spectrum

If a compact Hausdorff space X is equipped with a positive, finite Baire measure µ, then

every function in C(X) produces an element of the Lebesgue space Lp(X,µ) for 1 ≤ p ≤ ∞.

If µ has full support, then any function in C(X) is completely determined by its values

almost everywhere, so the vector space C(X) is (isomorphic to) a subspace of Lp(X,µ),

which might not be closed in the p-norm. However, since any f ∈ C(X) is bounded, there

is also an associated multiplication operator Mf on the Lebesgue space Lp(X,µ), defined as

follows.

Mf : Lp(X,µ)→ Lp(X,µ) g 7→ f · g

Now, Mf is a bounded linear map with operator norm equal to ||g||sup, the original norm

of C(X). Further, when p = 2, the space of multiplication operators then allows us to view

C(X) as a norm-closed ∗-subalgebra of B(L2(X,µ)). Operator algebras B(H) and their

norm-closed ∗-subalgebras are exactly the objects that motivated the abstract definition of a

C∗-algebra, so one can ask if forming a C∗-algebra embedding A ↪→ B(H) is always possible

regardless of commutativity or measure structure. The GNS construction shows that this is

indeed always possible.

Theorem 1.2.1 (GNS Construction). If A is a C∗-algebra, then there exists a Hilbert

space H and an injective ∗-homomorphism φ : A → B(H), so that A is isomorphic to a

C∗-subalgebra of B(H). If A is unital, we may insist that φ(1) = I.
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The GNS construction is named after Gelfand, Naimark, and I. Segal, and its method of

proof encapsulates the entire Gelfand-Naimark theorem, even though the statements appear

to be quite different. In both theorems, the key idea is to form a space of functionals.

Definition 1.2.2. A bounded linear functional ν : A → C defined on a C∗-algebra A is

called positive if ν(aa∗) ≥ 0 for all a ∈ A.

If ν : A→ C is a positive, bounded linear functional, then the binary operation 〈a, b〉ν =

ν(ab∗) on A satisfies most of the properties of an inner product. One key exception is

nondegeneracy: 〈a, a〉ν might be zero even if a 6= 0. However, a quotient and completion

of A produce a Hilbert space L2(Aν) on which 〈·, ·〉ν defines the inner product. For each

a ∈ A, the multiplication operator Ma : b ∈ A 7→ ab ∈ A densely defines a bounded

linear operator on L2(Aν), giving a homomorphism from A to B(L2(Aν)). To form an

injective homomorphism, this calculation is repeated for multiple functionals ν, giving a

homomorphism from A to B

(⊕
ν∈C

L2(Aν)

)
. If C consists of all bounded positive linear

functionals on A, the homomorphism is certainly injective, but the codomain is much larger

than necessary. On the other hand, it is sufficient to have C consist of extreme points

in the set of positive linear functionals with norm at most 1, retaining injectivity with a

codomain B
(⊕
ν∈C

L2(Aν)

)
that is not too large. Moreover, in the commutative case, these

extreme point functionals are exactly the multiplicative linear functionals on A, and the

GNS construction envelops the Gelfand-Naimark theorem. More details on this critical

construction can be found in [16].

The view of a space X in terms of measure spaces (X,µ) also gives at least two other

points of view that are important for functional analysis. The first is that the multiplication

operator Mf on L2(X,µ) can be defined not just for continuous functions, but for any

members of L∞(X,µ) as well. The associated embedding L∞(X,µ) ↪→ B(L2(X,µ)) identifies

L∞(X,µ) with a ∗-subalgebra that is not only norm-closed, but weakly closed. A weakly

closed ∗-subalgebra of B(H) that includes the identity operator is called a von Neumann

7



algebra, and just as the Gelfand-Naimark theorem shows commutative C∗-algebras can be

written as continuous function algebras, commutative von Neumann algebras take the form

of L∞ spaces. Similarly, the study of noncommutative von Neumann algebras can be called

noncommutative measure theory, which is its own highly developed area of study that uses

techniques quite different than noncommutative topology (see [3]). Although we will not

need to discuss von Neumann algebras themselves any further, there is still one useful idea

that can be motivated in terms of measure spaces. Given (X,µ) as above, we may apply

the integration operator f 7→
∫
f dµ for any f ∈ C(X). The appropriate generalization to

arbitrary C∗-algebras is a trace function.

Definition 1.2.3. A trace on a C∗-algebra A is a linear functional τ : A → C satisfying

τ(ab) = τ(ba) for a, b ∈ A. A trace τ which is also positive as a linear functional is called

faithful if for all a ∈ A \ {0}, τ(aa∗) > 0.

A µ-integration functional on C(X) is certainly a continuous, positive trace, and faith-

fulness of a trace τ is analogous to the claim that supp(µ) = X, for then if f ∈ C(X) is not

identically zero, it follows that ff ∗ = |f |2 is nonnegative and takes values |f(x)|2 > ε > 0 on

a positive measure set for some ε > 0. This implies that
∫
|f |2 dµ > 0. On the other hand, if

µ does not have full support, we may form a nontrivial bump function f with support inside

X \ supp(µ) that has
∫
|f |2 dµ = 0.

Example 1.2.4. On the matrix algebra Mn(C), τ([aij]n×n) =
n∑
i=1

aii defines a positive,

continuous, and faithful trace.

The above example is the traditional trace on square matrices. The commutativity

restriction τ(ab) = τ(ba) implies that τ respects diagonalization, so τ(uau−1) = τ(a) for

invertible u. For diagonalizable matrices, this implies that τ just assigns a matrix the sum

of its eigenvalues repeated with multiplicity, a claim which then holds for all matrices after

we consider continuity. The set of eigenvalues of a matrix is also known as the spectrum of

8



the matrix, a concept which extends to operators on infinite dimensional spaces. However,

in the general case, the spectrum may be strictly larger than the set of eigenvalues.

Definition 1.2.5. If A is a unital Banach algebra and a ∈ A, then the spectrum of a, denoted

σ(a), is the set of all scalars λ ∈ C such that a− λ is not invertible under multiplication.

A function f ∈ C(X) is invertible under multiplication if and only if f never takes the

value zero, so the spectrum of f is just its range.

σ(f) = {λ ∈ C : f − λ is not invertible under multiplication}

= {λ ∈ C : f(x)− λ = 0 for some x ∈ X}

= {λ ∈ C : f(x) = λ for some x ∈ X}

= Ran(f)

In this sense, an integration trace f 7→
∫
f dµ sees more structure than just the spectrum,

as µ may be a nonuniform measure. However, the spectrum of a C∗-algebra element still

contains a large amount of information, as seen in the classical spectral theorems. A spectral

theorem for bounded, normal operators on a Hilbert space follows from the Gelfand-Naimark

correspondence.

Definition 1.2.6. An element a of a C∗-algebra is normal if aa∗ = a∗a, or self-adjoint if

a = a∗. All self-adjoint elements are certainly normal.

Definition 1.2.7. If S is a subset of a C∗-algebra A, then C∗(S) denotes the C∗-algebra gen-

erated by S, which is the smallest C∗-subalgebra of A which contains S. If S = {a1, . . . , an},

then C∗(S) is also denoted C∗(a1, . . . , an). Similarly, if A is unital, the unital C∗-algebra

generated by S is C∗(S ∪ {1}), also denoted C∗(S, 1).

When a ∈ A is a normal element of a unital C∗-algebra, C∗(a) and C∗(a, 1) are commu-

tative, as every element can be approximated by ∗-polynomials in a. The Gelfand-Naimark
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theorem then says that C∗(a, 1) ∼= C(X) for a compact Hausdorff space X, which is a space

of multiplicative linear functionals. Since φ(1) = 1 for every multiplicative linear functional

φ, invertible elements u must satisfy φ(u) 6= 0 from the identity φ(u)φ(u−1) = 1. This implies

that every multiplicative linear functional on C∗(a, 1) sends a to an element of σ(a).

λ 6∈ σ(a) =⇒ a− λ is invertible

=⇒ φ(a− λ) 6= 0

=⇒ φ(a)− λ 6= 0

=⇒ φ(a) 6= λ

On the other hand, the value of φ(a) determines the value of φ on every ∗-polynomial, and

by continuity, on every element of C∗(a, 1), so multiplicative linear functionals on C∗(a, 1)

are determined by points in the spectrum of a. Similarly, a multiplicative linear functional

can be produced for every scalar in σ(a), and the weak-* topology on the space of functionals

agrees with the topology of σ(a). The result is a spectral theorem.

Theorem 1.2.8 (A Spectral Theorem). If a is a normal element of a unital C∗-algebra,

then C∗(a, 1) is isomorphic to C(σ(a)) via an isomorphism which sends a to the functional

identity Id(z) = z and 1 to the multiplicative identity 1(z) = 1.

When A = B(H), this is a spectral theorem for bounded normal operators, which takes

a special form when the operator T is self-adjoint and compact. In this case, the spectrum

σ(T ) ⊂ R is made up of countably many eigenvalues λi that converge to 0, which implies each

λi is of finite multiplicity, along with 0 if 0 is not already an eigenvalue. The isomorphism

in the spectral theorem specifies that T corresponds to the function Id(x) = x in C(σ(T )),

but this can be built from components ci(x) =


1 x = λi

0 x 6= λi

as the sum f =
∞∑
i=1

λici. The

operator corresponding to ci is an orthogonal projection onto the eigenspace Ei for λi, giving
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T the form T =
∞∑
i=1

λiPEi , a condensed form of the traditional spectral theorem. See [19] and

[47] for more information on spectral theory; versions of the spectral theorem which integrate

against a projection-valued measure are more suited for study of von Neumann algebras.

The spectral theorem found in Theorem 1.2.8 paves the way for the continuous functional

calculus on normal elements of C∗-algebras. As C∗(a, 1) is isomorphic to C(σ(a)) via the

specific isomorphism a 7→ Id and 1 7→ 1, any continuous function on σ(a) may be “applied”

to a based on this isomorphism. For example, if a = a∗ has positive spectrum σ(a) ⊂ [0,∞),

then the square root function on σ(a) corresponds to a unique element in C∗(a, 1), which

can be denoted
√
a. Note in particular that in this case, (

√
a)2 = a, because the square

of the square root function on σ(a) is the function composition identity, Id. Further, this

functional calculus agrees with the obvious choices for certain functions: the effect of applying

a polynomial p(x) = c0+c1x+. . .+cnx
n to the element a should be p(a) = c0+c1a+. . .+cna

n,

and the complex conjugate function produces the adjoint a∗. This continuous functional

calculus is more general than the Riesz functional calculus for Banach algebras (see [47],

10.21) in that it applies to more functions at the cost of additional structure required of the

algebra; the Riesz functional calculus applies to any element a of a unital Banach algebra

A, but f(a) ∈ A can only be defined when f : σ(a) → C extends to be holomorphic on a

neighborhood of its domain.

The Gelfand-Naimark theorem and the spectral theorem make up part of a dictionary

that reflects how topological properties appear in function algebras. For locally compact

Hausdorff spaces, compactness of X is dual to unitality of C0(X), and the range of a function

on X is seen as the spectrum in C(X). Further, the ideals of C(X) correpond to functions

which vanish on a closed subset of X, meaning their appropriate domain is the complement

set in X. In other words, ideals correspond to open subsets of X, and similarly, quotients

by ideals correspond to closed subsets of X. Note in particular how traditional theorems in

topology are reflected in this correspondence; just as a closed subset of a compact Hausdorff
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space is itself compact, the quotient of a unital C∗-algebra is again unital. A wonderful

description of this dictionary can be found in [53]. A more complicated concern is how to

encode algebraic topological data from X, which is handled in the following section.

1.3 K-Theory

If A is a C∗-algebra, then there are two abelian groups K0(A) and K1(A) that provide

algebraic invariants; both are defined in terms of special elements in A and in matrix algebras

Mn(A). When A is a function algebra C(X), these groups contain information about vector

bundles over X and the cohomology of X. The standard definitions of K-theory for C∗-

algebras can be found in numerous texts, such as the introductions [46] and [3], and the

thorough reference [4].

Definition 1.3.1. If A is a C∗-algebra, then p ∈ A is a projection if p∗ = p and p2 = p.

Similarly, if A is unital, then u ∈ A is unitary if u is invertible and u∗ = u−1. Let Un(A)

denote the set of unitary matrices in Mn(A).

If A = C(X) and X is connected, then there are no projections besides 0 and 1, as every

projection is a {0, 1}-valued function on X. As such, connected components of projections

in C(X) do not give very much useful information. On the other hand, projections in the

matrix algebra Mn(C(X)) abound. An element of Mn(C(X)) can be realized as a function

from X to Mn(C), and a projection in this algebra is a function which assigns each x ∈ X to

a projection in Mn(C). Every projection in Mn(C) is the orthogonal projection of Cn onto

some subspace E ≤ Cn, so a projection in Mn(C(X)) is the continuous assignment of points

in X to subspaces of Cn. This is just a continuous vector bundle over X that is contained

in an n-dimensional trivial bundle. Roughly speaking, K0(C(X)) studies equivalence classes

of these vector bundles with some additional modifications that create an abelian group.
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For projections P ∈ Mn(A) and Q ∈ Mp(A), the direct sum P ⊕Q ∈ Mn+p(A) is also a

projection in a larger matrix algebra. The ⊕ operation is associative, but it is lacking many

of the properties of an abelian group operation. The most obvious of these is the problem

posed by dimension; applying a direct sum can only strictly increase the dimension of the

matrix algebra, so there cannot exist an identity or an inverse operation for ⊕. A preliminary

solution is to apply an equivalence relation, for which there are many options.

Definition 1.3.2. If A is unital and P1, P2 ∈ Mn(A) are projections, then P1 and P2 are

unitarily equivalent if some U ∈ Un(A) satisfies UP1U
∗ = P2. This is denoted P1 ∼u P2.

Modding out by unitary equivalence forces ⊕ to become abelian, as P ⊕ Q and Q ⊕ P

are unitarily equivalent, but this is not enough to form an abelian group. There must be

an equivalence between projections of different dimensions, or else the dimension will only

increase with direct sums and prevent the existence of an additive identity and inverse. To

accomplish this, the zero matrices 0n and the identity matrices In will play an important

role.

Definition 1.3.3. If A is unital and P ∈ Mn(A), Q ∈ Mp(A) are projections, then P and

Q are stably unitarily equivalent if there are q, r, s ∈ Z+ with the following properties.

1. n+ q + r = p+ s+ r

2. P ⊕ 0q ⊕ Ir ∼u Q⊕ 0s ⊕ Ir

There is no restriction on the matrix dimensions of P and Q, so in particular P and P ⊕0

are stably unitarily equivalent, where 0 denotes any square matrix of zeroes. However, it is

important to note that the two identity matrix summands used in the above definition are

of the same dimension; the definition does not imply that P and P ⊕ Ir are in the same

equivalence class. If we mod out by stable unitary equivalence, all 0 matrices represent the

same equivalence class, and 0 is an additive identity. Unfortunately, there is not yet a way
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to form additive inverses, as we can see by considering the case A = C(X) once again. If

P ∈ Mn(C(X)) represents a vector bundle on a connected space X, then the rank of that

vector bundle is a nonegative integer that is unchanged by unitary conjugation and can only

increase in a direct sum P ⊕Q. So, there is no way that P ⊕Q is stably unitarily equivalent

to the zero projection unless P and Q are both zero, and we must settle for formal inverses

from the Grothendieck group.

Definition 1.3.4. If A is a unital C∗-algebra, then K0(A) is an abelian group consisting of

equivalence classes of formal differences [P ] − [Q] for projections P ∈ Mn(A), Q ∈ Mp(A).

Specifically, [P1]−[Q1] and [P2]−[Q2] represent the same class in K0(A) if and only if P1⊕Q2

and P2 ⊕Q1 are stably unitarily equivalent, and the group operation is the direct sum.

Remark. The same group is obtained if stable unitary equivalence is replaced with stable

path connectedness. Two projections P and Q are stably path connected if there is a path

of projections in some Mt(A) connecting stabilizations P ⊕ 0q ⊕ Ir and Q⊕ 0s ⊕ Ir.

The above definition only applies to the unital case, and the nonunital case is obtained

through a small modification. First, note that the one-dimensional algebra C of complex

numbers has K0(C) ∼= Z; for a projection P ∈Mn(C), the associated integer in K0(C) ∼= Z is

the rank of P . Further, if φ is a unital ∗-homomorphism of unital C∗-algebras, then φ induces

a homomorphism on the associated matrix algebras and also preserves projections, unitary

equivalence, and stable unitary equivalence, inducing a forward map on K-theory. When A

is nonunital, the unitization A+ = A⊕C admits a ∗-homomorphism ψ : A+ → C with kernel

A, defined by ψ(a, z) = z. The inducedK-theory homomorphism ψ∗ : K0(A+)→ K0(C) ∼= Z

is used to define K0(A).

Definition 1.3.5. If A is a nonunital C∗-algebra, then K0(A) is the kernel of ψ∗ : K0(A+)→

K0(C) ∼= Z, where ψ : A+ → C is defined by ψ(a, z) = z.

Every trace τ : A → C extends to a trace on the matrix algebra Mn(A) by summing

14



down the diagonal: τ([aij]n×n) =
n∑
i=1

τ(aii). This new trace respects the stabilization and

unitary conjugation that define K0(A), and τ induces a homomorphism from K0(A) to C.

As such, traces can be used to distinguish elements of K0(A) from each other, as was the

case when A = C, because the rank of a projection in Mn(C) is the value of the standard

trace.

If X is a compact Hausdorff space, then the product X×R ∼= X× (0, 1) has an analogue

in C∗-algebras that behaves extremely well with respect to numerous exact sequences of

K-theory.

Definition 1.3.6. If A is a C∗-algebra, the suspension of A is the path space SA = {f ∈

C([0, 1], A) : f(0) = f(1) = 0}, whose operations are defined pointwise. Iterated suspensions

are denoted with a superscript, such as S2A = SSA.

Because SA is an algebra of loops in A that are anchored to 0, projections in SA and

Mn(SA) ∼= S(Mn(A)) are paths of projections. The group K0(SA) appears frequently in

exact sequences of K-theory, and an isomorphic group can be formulated without reference

to the suspension. This is the remaining K-group K1(A).

Definition 1.3.7. If A is a unital C∗-algebra, thenK1(A) is an abelian group whose elements

are equivalence classes of matrices in
∞⋃
n=1

Un(A). Two unitary matrices U ∈ Mn(A), V ∈

Mp(A) represent the same element of K1(A) if there is some q ∈ Z+ such that U ⊕ Iq−n and

V ⊕ Iq−p are in the same connected component of Uq(A). The group operation is the direct

sum.

Remark. Because polar decomposition allows any invertible matrix over A to be written as

the product of a positive component and a unitary component, “unitary” may be replaced

by “invertible” in the definition of K1(A).

The group operation of K1(A) is abelian because U ⊕ V may be connected to V ⊕ U

within the unitary matrices by continuously changing the basis. The identity element is the
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identity matrix I, which is in the same equivalence class regardless of dimension. Moreover,

if U and V have the same matrix dimension, then U ⊕V represents the same class in K1(A)

as UV . This follows becase V ⊕ I is in the same component of unitaries as I ⊕ V , so since

the product of two unitaries is unitary, UV ⊕ I = (U ⊕ I)(V ⊕ I) is in the same class as

(U ⊕ I)(I ⊕ V ) = U ⊕ V . Consequently, the inverse of U in K1(A) is the multiplicative

inverse U−1. The stabilization process is quite powerful, as it turns the very nonabelian

matrix multiplication into an abelian operation equivalent to direct sum. As usual, the

nonunital case is a slight modification of the unital case.

Definition 1.3.8. If A is a nonunital C∗-algebra, then let Ũn(A) denote the set of n × n

unitary matrices over A+ = A⊕C of the restricted form In +W , where W ∈Mn(A). Then

K1(A) consists of equivalence classes of matrices in
∞⋃
n=1

Ũn(A). The matrices U ∈ Ũn(A),

V ∈ Ũp(A) represent the same element of K1(A) if there is some q ∈ Z+ such that U ⊕ Iq−n

and V ⊕ Iq−p are in the same connected component of Ũq(A). The group operation is the

direct sum.

The notation [·]Kj or [·]Kj(A) will denote the equivalence class of a projection or unitary in

Kj(A), and the relation M ∼Kj N or M ∼Kj(A) N will mean that [M ]Kj(A) = [N ]Kj(A). The

two K-groups K1(A) and K0(A) behave well under the suspension in that K0(SA) ∼= K1(A)

and K1(SA) ∼= K0(A), and this produces the phenomenon known as Bott Periodicity.

Theorem 1.3.9 (Bott Peridocity). If A is a C∗-algebra, then Kj(SA) ∼= K1−j(A) and

consequently Kj(S
2A) ∼= Kj(A) for j ∈ {0, 1}.

When A = C(X), the K-groups encode some cohomological information of X, which can

be obtained through the Chern Character.

Theorem 1.3.10. If X is a compact Hausdorff space, then there exist two isomorphisms

χ0 : K0(C(X)) ⊗ Q →
∞⊕
n=0

H2n(X;Q) and χ1 : K1(C(X)) ⊗ Q →
∞⊕
n=0

H2n+1(X;Q). These

are called the even and odd Chern character, respectively.
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The cohomology above is the Čech cohomology, which applies for general spaces, but when

X is a smooth manifold or CW-complex, this is equivalent to more accessible cohomology

groups. The Chern character is natural (see [32]), so in particular if X and Y are compact

Hausdorff spaces and f : X → Y is continuous, then the following diagram commutes for

j ∈ {0, 1}. Here F : C(Y ) → C(X) is the ∗-homomorphism associated to f , F∗ is the

forward map on K-theory induced by F , and f ∗ is the pullback on cohomology induced

by f . In particular, f ∗ is applied individually to each cohomology group in the direct sum
∞⊕
n=0

H2n+j(Y ;Q).

Kj(C(X))⊗Q
∞⊕
n=0

H2n+j(X;Q)

Kj(C(Y ))⊗Q
∞⊕
n=0

H2n+j(Y ;Q)

F∗ ⊗ Id

χj

χj

f ∗

(1.3.11)

Now, cohomology is ripe with exact sequences that arise when a space X is viewed as a

sum of constituent parts. There do exist C∗-algebraic versions of these sequences, and one

of the most important is the standard six-term exact sequence of K-theory.

Theorem 1.3.12 (Six-Term Exact Sequence). If J is a closed ideal of a C∗-algebra A with

inclusion map ι : J → A and quotient map π : A→ A/J , then the following six term exact

sequence of K-theory exists.

K0(J) K0(A) K0(A/J)

K1(A/J) K1(A) K1(J)

ι∗

π∗

π∗

ι∗

The standard six-term sequence is ubiquitous in K-theory computations, and it is the foun-

dation of many other exact sequences.
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1.4 Rieffel Deformation

A noncommutative C∗-algebra with unit is in spirit dual to a noncommutative locally

compact Hausdorff space, but this point of view is a little more grounded when a noncom-

mutative algebra is obtained from a commutative one in some continuous way. The quantum

torus, which is debatably the most fundamental example in all of noncommutative geometry,

arises in this fashion.

Definition 1.4.1 ([42]). Let θ ∈ Mn(R) be an antisymmetric matrix (θT = −θ). Then

Aθ is the universal, unital C∗-algebra generated by unitaries U1, . . . , Un satisfying UkUj =

e2πiθjkUjUk. The C∗-algebra Aθ is called a quantum torus or noncommutative torus of di-

mension n.

Numerous quantum tori are isomorphic to each other because of periodicity of the expo-

nential function, or from changing the order of the generators. When θ ∈ Mn(Z), all of the

unitary generators of Aθ commute, so Aθ ∼= A0 is a commutative C∗-algebra with unit. In

fact, the compact space guaranteed by the Gelfand-Naimark theorem is exactly the n-torus

Tn = {(u1, . . . , un) ∈ C2 : |u1| = . . . = |un| = 1}, and the generators of A0
∼= C(Tn) are the

n coordinate functions of the torus. The other Aθ are not commutative and therefore are

not function algebras, but to emphasize the point of view suggested by the Gelfand-Naimark

theorem, Aθ is sometimes denoted C(Tnθ ). To be consistent with future notation, Aθ will be

denoted C(Tnρ) in future chapters, where ρjk = e2πiθjk .

The quantum tori are indexed by a matrix θ in such a way that the noncommutativity

relations vary continuously in θ. Moreover, the various Aθ can be obtained through a defor-

mation procedure on C(Tn) that is now known as Rieffel deformation, developed in [44] by

M. Rieffel.

Definition 1.4.2. If G is a topological group and A is a C∗-algebra, then an action of G on
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A is a homomorphism α : G→ Aut(A) between G and the group of automorphisms (bijective

∗-homomorphisms) of A under composition. The action is called strongly continuous if for

every a ∈ A, the function g 7→ αg(a) is continuous.

If Rn acts on the commutative torus C(Tn) by translation, so α~x(f) ∈ C(Tn) is a function

whose value at (u1, . . . , un) is f(u1e
2πix1 , . . . , une

2πixn), then the action α is strongly contin-

uous. Moreover, there is a dense ∗-subalgebra of smooth elements for the action, namely

the smooth functions on the manifold Tn = Rn/Zn, denoted C∞(Tn). In general, there is a

dense ∗-subalgebra of smooth elements A∞ of A, so (A∞, ·,+, ∗, || · ||) can be completed in

only one way to form a C∗-algebra. The idea of Rieffel deformation is to modify this picture

slightly by twisting the multiplication on A∞ to form a new product ·J and norm || · ||J , so

the completion of (A∞, ·J ,+, ∗, || · ||J) is a distinct C∗-algebra AJ . The result is a family of

C∗-algebras indexed by J with certain continuity properties. Note that we have changed the

notation very slightly from [44].

Definition 1.4.3 ([44], Chapter 2). If α : Rn → A is a strongly continuous action of Rn on

a C∗-algebra A, then the deformed product ·J is defined by the oscillatory integral

a ·J b =

∫
Rn

∫
Rn
αJ~u(a)α~v(b)e

2πi~u·~v d~u d~v

for antisymmetric matrices J ∈Mn(R) and elements a, b ∈ A∞.

Detailed estimates in Chapter 4 of [44] show that for any fixed antisymmetric matrix

J ∈ Rn and a ∈ A∞, a linear operator on the space of Schwarz functions on A may be used

to define a norm || · ||J on A∞ which is compatible with ·J .

Definition 1.4.4 ([44], Definition 4.8, paraphrased). If α : Rn → A is a strongly continuous

action of Rn on a C∗-algebra A and J ∈ Mn(R) is antisymmetric, then the deformation of

A by J (and α), denoted AJ , is the C∗-algebra formed by completing (A∞, ·J ,+, ∗, || · ||J).
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When the strongly continuous action α : Rn → Aut(A) factors through the torus

Rn/Zn = Tn (so α~x+~n = α~x whenever ~n ∈ Zn), the Rieffel deformation AJ is called a

θ-deformation, and AJ is built of spectral subspaces, defined for ~p ∈ Zn.

A~p = {a ∈ A : α~v(a) = e2πip·~va for all ~v ∈ Rn}

Spectral subspaces are crucial to θ-deformation, as the deformed product ·J can be realized

in terms of the original product on A ([44], Proposition 2.22).

a ∈ A~p , b ∈ A~q =⇒ a ·J b = e−2πi~p·(J~q)ab

The quantum torus C(Tnθ ) is isomorphic to the θ-deformation of C(Tn) corresponding to

the translation action of Rn and the antisymmetric matrix J = θ/2 ([44], Example 10.2).

The generators U1, . . . , Un are the coordinate functions u1, . . . , un ∈ C∞(Tn), which are in

spectral subspaces for e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1) ∈ Zn,

respectively. This imposes the multiplication relation

up ·J uq = e−2πiep·(Jeq)upuq = e2πi (Jep)·equpuq = e2πiJpqupuq = eπiθpqupuq

where concatenation denotes the usual commutative multiplication of functions on C∞(Tn).

Switching the roles of p and q yields

uq ·J uq = eπiθqpuqup = e−πiθpqupuq

and combining these two identites gives a relation exclusively in the product ·J .

uq ·J up = eπiθpqupuq = e2πiθpq(e−πiθpqupuq) = e2πiθpqup ·J uq
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The above equation shows that the coordinate functions of C∞(Tn) under ·J satisfy the

relations required of C(Tnθ ) elements, so there is a homomorphism from C(Tnθ ) to C(Tn)J ,

which is actually an isomorphism. There is a similar action of Rn/Zn on C(S2n−1), coordina-

tized by (z1, . . . , zn) ∈ Cn, and on C(S2n), coordinatized by (z1, . . . , zn, x) ∈ Cn ⊕ R, which

rotates the angular coordinates of z1, . . . , zn. The θ-deformations are given a presentation in

[33] (for the odd case, which generalizes the work of K. Matsumoto in [29]). We include a

definition of matrices ρ which may be writeen ρjk = e2πiθjk for θ antisymmetric in order to

be consistent with Natsume and Olsen’s conventions.

Definition 1.4.5. A matrix ρ ∈ Mn(C) will be called a parameter matrix if it may be

written ρjk = e2πiθjk for a (nonunique) antisymmetric matrix θ ∈ Mn(R). That is, each ρjk

has modulus one, ρjj = 1, and ρjk = ρkj.

Definition 1.4.6 ([33]). Suppose ρ is an n × n parameter matrix. Then C(S2n−1
ρ ) is the

universal, unital C∗-algebra generated by z1, . . . , zn with the following relations.

z1z
∗
1 + . . .+ znz

∗
n = 1 zkzj = ρjkzjzk zjz

∗
j = z∗j zj

These generators automatically satisfy zkz
∗
j = ρjkz

∗
j zk = ρkjz

∗
j zk. Moreover, C(S2n−1

ρ ) is

isomorphic to the Rieffel deformation C(S2n−1)θ/2 where e2πiθjk = ρjk.

Remark. The θ-deformed even spheres are formed as quotients C(S2n+1
ω )/〈zn+1− z∗n+1〉 when

zn+1 is central. So, zn+1 is replaced with a self-adjoint, central generator x. These algebras

were considered in [12], and projections over them were studied in [36].

An important property of Rieffel deformations can be found in [44], which states that

the family of C∗-algebras AtJ for t ∈ [0, 1] forms a strict quantization. This implies that

for smooth elements f, g ∈ A∞ (which belong to all AtJ simultaneously), the multiplications

f ·tJ g satisfy a differentiation identity, and the norms ||f ||tJ vary continuously in t. We will
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only need the following extremely weak expressions of these facts for fixed f, g ∈ A∞, where

· = ·0 is the original multiplication and || · || = || · ||0 is the original norm on A.

lim
t→0
||f ·tJ g − f · g||tJ = 0 lim

t→0
||f ||tJ = ||f || (1.4.7)

Moreover, the Rn action on A which defines a Rieffel deformation AJ also produces an action

on AJ itself, allowing it to be Rieffel deformed again.

(AJ)H ∼= AJ+H (1.4.8)

These crucial properties from [44] will play a key role in our theorems. Also, Rieffel showed

in [45] that the K-groups of a deformation AJ are isomorphic to those of A.

Ki(AJ) ∼= Ki(A) for i ∈ {0, 1} (1.4.9)

The K0 group of a noncommutative 2-torus C(T2
ρ) is isomorphic to Z⊕Z, and when ρ12

is not a root of unity, K0 is completely determined by the values of the canonical trace on

projections.

Definition 1.4.10. Any noncommutative torus C(Tnρ) admits a trace τ which is contin-

uous, positive, and faithful, defined by τ

(∑
finite

a~mU
m1
1 · · ·Umn

n

)
= a~0 on the dense set of

∗-polynomials.

Remark. This trace is not usually denoted with a subscript ρ because each τ = τρ assigns

the same values to members of the dense ∗-subalgebra of smooth elements. In fact, each τ

is the result of passing the standard integration trace with respect to Lebesgue measure on

C(Rn/Zn), which is unchanged by the group action, to the Rieffel deformations.

In 2011, A. Sangha studied the Rieffel deformation and (1.4.9) under the lens of KK-

theory (see [7] and [4], Chapter VIII), which combines K-theory and its paired homology
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theory, in [48]. If α : Rn → Aut(A) is a strongly continuous action, then B = C([0, 1], A)

may be equipped with an Rn action denoted β, defined below by the images of s ∈ [0, 1].

β~xf(s) = α√s~x(f(s)) (1.4.11)

One may then form the Rieffel deformation BJ , which is equipped with a C([0, 1]) structure

Φ : C([0, 1]) → Z(M(BJ)) inherited from B = C([0, 1], A). The fiber at s ∈ [0, 1] is by

definition BJ/{Φ(g) ·J b : b ∈ BJ , g ∈ C([0, 1]), g(s) = 0}, which is isomorphic to AsJ .

Finally, BJ is shown to be a maximal algebra of cross-sections, so BJ is denoted Γ(AtJ)t∈[0,1],

with the quotient maps onto the fibers denoted by πh : Γ(AtJ)t∈[0,1] → AhJ . Sangha’s results

imply that the K-theory isomorphisms of (1.4.9) can be obtained from the section algebra

Γ(AtJ)t∈[0,1], which imposes a kind of continuity on the K-theory in (1.4.9).

Theorem 1.4.12 ([48], Theorem 4.6, restricted to K-theory). Let h ∈ [0, 1]. If A is a

separable C∗-algebra with a strongly continuous action of Rn, then for any antisymmetric

J ∈Mn(R), the quotient map πh : Γ((AtJ)t∈[0,1])→ AhJ induces isomorphisms on K-theory.

One application of this theorem concerns naturality of the isomorphisms in (1.4.9). If A

and B can be Rieffel deformed by actions γ and δ of Rn, respectively, then any equivariant

∗-homomorphism φ : A → B can itself be deformed. The map φ is (γ, δ)-equivariant if

φ(γ~x(a)) = δ~x(φ(a)) holds for any ~x ∈ Rn and a ∈ A, and if φ is (γ, δ) equivariant, then

φ induces a map φJ : AJ → BJ for each antisymmetric J . When the actions γ and δ are

understood, φ is simply called equivariant, or Rn-equivariant.

Corollary 1.4.13. Suppose A and B are separable C∗-algebras equipped with strongly

continuous Rn actions. If J is an antisymmetric n × n matrix and φ : A → B is Rn-

equivariant, then let φJ : AJ → BJ denote the corresponding homomorphism on the Rieffel

deformations. Then the following K-theory diagram commutes for j ∈ {0, 1}.
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Kj(A) Kj(AJ)

Kj(B) Kj(BJ)

φ∗

(π1)∗ ◦ (π0)−1
∗

(π1)∗ ◦ (π0)−1
∗

(φJ)∗

Proof. The map φ induces a homomorphism Γ(φ) between the section algebras by applying

φsJ : AsJ → BsJ fiberwise. This is equivalent to defining a homomorphism Φ : C([0, 1], A)→

C([0, 1], B) using φ pointwise, noting that Φ is itself Rn-equivariant (for actions in the sense

of (1.4.11)), and examining the deformed homomorphism ΦJ . We then have the following

commutative diagram of homomorphisms.

A Γ((AtJ)t∈[0,1]) AJ

B Γ((BtJ)t∈[0,1]) BJ

φ

π0

π0

Γ(φ)

π1

π1

φJ

All that remains is to push this diagram to K-theory, where each (πs)∗ is an isomorphism,

and to cut out the middle.

This small corollary appears not to be stated in Sangha’s work on KK-theory, and it

also appears not to have been published by others, but I am convinced a similar result was

commonly known shortly after Rieffel’s proof of (1.4.9).

1.5 Group Actions and the Borsuk-Ulam Theorem

The Borsuk-Ulam theorem in algebraic topology places restrictions on maps between

spheres Sn = {(x1, . . . , xn+1) ∈ Rn+1 : x2
1 + . . . + x2

n+1 = 1} and Euclidean space Rn of the

same dimension. Specifically, every continuous map f : Sn → Rn must admit some point
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x ∈ Sn such that f(x) = f(−x). The standard proof (see [22]) does not use this form of

the theorem, but rather uses a reformulation in terms of maps between two spheres. First,

decompose f into even and odd components.

f(x) =
f(x) + f(−x)

2
+
f(x)− f(−x)

2

:= e(x) + o(x)

(1.5.1)

If f(x) is never equal to f(−x), then the map g(x) = o(x)
|o(x)| is defined, odd, and maps Sn to

Sn−1. The restriction of g(x) to the equator Sn−1 is then odd and homotopically trivial. All

of the arguments above are reversible, so the theorem has four equivalent forms.

Theorem 1.5.2 (Borsuk-Ulam). Each of the following conditions holds for n ≥ 2.

1. If f : Sn → Rn is continuous, then there is some x ∈ Sn with f(x) = f(−x).

2. If o : Sn → Rn is continuous and odd, then there is some x ∈ Sn with o(x) = 0.

3. There is no odd, continuous map g : Sn → Sn−1.

4. If h : Sn−1 → Sn−1 is odd and continuous, then h is homotopically nontrivial.

The standard proof of the Borsuk-Ulam theorem in [22] uses the top homology group

Hk(Sk,Z) of the sphere Sk. The group Hk(Sk,Z) is isomorphic to Z, leading to the definition

of degree for self-maps of Sk.

Definition 1.5.3. Fix any isomorphism between Hk(Sk,Z) and Z. Then any continuous

map f : Sk → Sk induces a forward map f∗ : Hk(Sk,Z) → Hk(Sk,Z) that is equivalent to a

homomorphism φ : Z → Z. The degree of f is the unique integer n such that φ(m) = mn

for all m ∈ Z.

The degree of a homotopically trivial map is zero. Moreover, the cohomology groups

Hk(Sk;Z) are also infinite cyclic, and the degree of a map may be equivalently defined in
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terms of a pullback on cohomology (even with coefficients in Q or R). The Borsuk-Ulam

theorem is then a consequence of the following stronger theorem, which sometimes goes by

the same name.

Theorem 1.5.4 (Stronger Borsuk-Ulam). Any odd, continuous self-map of a sphere Sk must

have odd degree. Therefore, the degree is nonzero and the map is homotopically nontrivial.

In the extremely interesting paper [49], Taghavi motivates the Borsuk-Ulam theorem in

terms of graded algebras over finite abelian groups and presents a proof (and generalization)

for the S2 case in this context. Perhaps the most novel part of his proof is that it deals

explicitly with formulation 2 of the theorem, and not formulation 4, making particular use

of the identification R2 ∼= C. The role of graded algebras is quite simple: the even/odd

decomposition (1.5.1) is an example of a grading on C(S2) = C(S2,C) by the group Z2.

Definition 1.5.5. If A is a Banach algebra and G is a finite group, then A is G-graded if

it admits a decomposition A =
⊕
g∈G

Ag into closed subspaces which satisfy Ag · Ah ⊂ Agh

for all g, h ∈ G. The elements of Ag are called homogeneous, and when g 6= e, nontrivial

homogeneous.

For convenience, in this section we assume every algebra in unital. When G = Zn, there

is a clear group action by Zn on A associated to the grading, generated by the following

isomorphism T , where ω is a primitive nth root of unity.

T : a = (a0, . . . , an−1) ∈ A 7→ (a0, ωa1, . . . , ω
n−1an−1) (1.5.6)

In other words, Ai is prescribed as the eigenspace of T for eigenvalue ωi, and as a result of the

graded structure, such a map is not only linear, but also a continuous algebra isomorphism

with T n = I. An action of Zn on A is then described by αk(a) = T k(a). Finally, the

projections πj : A→ Aj take the following form, which generalizes (1.5.1).
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aj = πj(a) =
a+ ω−j · Ta+ ω−2j · T 2a+ . . .+ ω−(n−1)j · T n−1a

n
(1.5.7)

Of course, one may start with an action of Zn and recover a grading by this formula.

More generally, if G is a compact, abelian, Hausdorff group which acts strongly contin-

uously on a Banach algebra A by α : G → Aut(A), then for any τ in the Pontryagin dual

Ĝ = {f : G → S1 : f is a continuous homomorphism}, there is a corresponding homoge-

neous subspace Aτ defined as follows.

Aτ = {a ∈ A : for all g ∈ G,αg(a) = τ(g)a} (1.5.8)

The trivial homogeneous subspace {a ∈ A : αg(a) = a for all g ∈ G} is called the fixed

point subalgebra and is often denoted Aα. If µ denotes the unique Haar measure on G with

µ(G) = 1, then there is a homogeneous component projection πτ : A → Aτ defined by an

integral formula.

πτ (a) =

∫
G

τ(g−1)αg(a) dµ ∈ Aτ (1.5.9)

The integral above exists because its integrand is a continuous Banach-space valued

function (and also bounded because G is compact), and µ is a finite Borel measure. When the

group in question is Zn, we have that Ẑn is isomorphic to Zn, generated by a homomorphism

which sends 1 to a primitive nth root of unity, so the previous formula generalizes (1.5.7).

The map a 7→ (πτ (a))τ∈Ĝ is injective, but we should not expect a nice formula such as

a =
∫
Ĝ
πτ (a) (integrating over a suitable Haar measure) to cleanly generalize a graded

decomposition a = π0(a) + π1(a) + . . . + πn−1(a) for a Zn action, as such an overreaching

statement would imply that every continuous function on the circle has a convergent Fourier

series. In particular, Ŝ1 = Z consists of the homomorphisms z 7→ zn, n ∈ Z, and the natural

action of S1 on C(S1) by rotation produces the usual Fourier transform from (1.5.9) in the
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sense that πn(f) is the function mapping z ∈ S1 to f̂(n)zn. As such, the reconstruction of

elements of A from homogeneous components is a process enveloping all of the subtlety of

Fourier series in the classical cases, and it is no surprise that dual groups provide a natural

setting for a generalized Fourier transform. For more information on the role of group actions

on C∗-algebras, see [37] and [38].

In [49], Taghavi proved a theorem about idempotentless Banach algebras with group

actions that allowed for a new proof of the Borsuk-Ulam theorem in dimension 2.

Theorem 1.5.10. ([49], Main Theorem 1) Let A be a [unital] G-graded Banach algebra

[where G is finite and abelian] with no nontrivial idempotents. Let a ∈ A be a nontrivial

homogeneous element. Then 0 belongs to the convex hull of the spectrum σ(ak) [for any

k ∈ Z+]. Further, if A is commutative and a is invertible, then ak and 1 do not lie in the

same connected component of the space of invertible elements G(A).

In Chapter 2 and [34], we prove related results on the nonexistence of roots of certain

homogeneous elements, and we use different arguments to loosen conditions on the Banach

algebras in Taghavi’s proofs. One of these results applies to the noncommutative tori C(Tnρ),

which for most ρ contain many nontrivial projections. The goal of this study was to prove

the higher-dimensional Borsuk-Ulam theorem in terms of similar results on Banach or C∗-

algebras, and to see if such proofs extend to the θ-deformed spheres, as any C(Skρ) is equipped

with a natural Z2 action that negates each generator. We find that the most natural conjec-

ture that extends Theorem 1.5.2 statement 2 in terms of odd elements of C(Skρ) is actually

false; this negatively answers a question Taghavi posed, at least for θ-deformed spheres.

However, certain versions of Theorem 1.5.2 remain true when extended to the noncommu-

tative case, which we investigate in Chapter 3. This lines up with the results of Yamashita

in [55] on the q-spheres, which are the result of a quantization process distinct from Rieffel

deformation. To avoid confusion between the two distinct families of spheres, I will denote

the q-spheres as C(Skq).
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Definition 1.5.11 ([51]). For 0 < q ≤ 1, the quantum sphere C(S2n−1
q ) is the univeral, unital

C∗-algebra generated by elements z1, . . . , zn satisfying zjzi = qzizj for i < j, z∗j zi = qziz
∗
j for

i 6= j, z∗i zi = ziz
∗
i +(1−q2)(zi+1z

∗
i+1+. . .+znz

∗
n) for i < n, and the identity z1z

∗
1+. . .+znz

∗
n = 1.

The quantum sphere C(S2n
q ) is the quotient C(S2n+1

q )/〈zn+1 − z∗n+1〉.

The q-spheres are equipped with a Z2 action that negates each generator zi, and an

analogue of the Borsuk-Ulam theorem holds, which Yamashita proved in [55]. Theorem 1.5.2

item 3 states that there is no continuous, odd map between Sn and Sn−1, or equivalently

from Sn to Sm when m < n. As the Gelfand-Naimark theorem reverses the order of maps,

this is equivalent to the fact that there is no unital ∗-homomorphism from C(Sm) to C(Sn)

that is equivariant for the antipodal action.

Theorem 1.5.12 ([55], Theorem 3). For any 0 < q ≤ 1 and positive integers m < n, there

is no Z2-equivariant unital ∗-homomorphism from C(Smq ) to C(Snq ).

Yamashita’s result is proved using equivariant KK-theory in a very general study of

quantum homogeneous spaces. We prove the following analogous result on the θ-deformed

spheres in Chapter 3 by manipulating fixed point subalgebras, and then we consider exten-

sions to other rotation actions. The content of Chapter 3 overlaps significantly with our

paper [34], and the following theorem summarizes the results that concern the antipodal

action on θ-deformed spheres.

Theorem 1.5.13. Let the θ-deformed spheres be equipped with the antipodal Z2 action,

which negates each generator zi or x. All maps below are unital ∗-homomorphisms.

1. Any equivariant map φ : C(S2n−1
ρ )→ C(S2n−1

ω ) induces a nontrivial map on K1
∼= Z.

2. Any equivariant map φ : C(S2n
ρ )→ C(S2n

ω ) induces a nontrivial map on the component

of K0
∼= Z⊕ Z not generated by the trivial projections.

3. Consequently, there is no equivariant map from C(Skγ) to C(Sk+1
η ).

29



D
‘
abrowski conjectured a possible framework in [14] to generalize the Borsuk-Ulam the-

orem to all C∗-algebras with suitable actions of Z2, citing Theorems 1.5.12 and 1.5.13 as

related examples. This conjecture was also tied to other conjectures in his joint work with P.

Baum and P. Hajac in [2], which primarily concerned quantum groups; [2] appeared slightly

before our results. In D
‘
abrowski’s conjecture from [14], the unreduced suspension

ΣA = {f ∈ C([−1, 1], A) : f(−1), f(1) ∈ C}

of a C∗-algebra A has A as a quotient algebra from evaluation at 0 ∈ [−1, 1], analogous with

the containment of Sk inside Sk+1 (we have changed the domain from [0, 1] to [−1, 1] for

convenience). Any Z2 action α extends to ΣA as

a(f)[t] = α(f(−t))

and this definition is compatible with the unreduced suspension ΣX of a compact Hausdorff

space X, in that ΣC(X) ∼= C(ΣX). In particular, ΣSk ∼= Sk+1, ΣC(Sk) ∼= C(Sk+1), and the

extension of the antipodal action is again antipodal. Now, ΣC(Skρ) is another θ-deformed

sphere, but not every θ-deformed sphere can be obtained this way.

Conjecture 1.5.14 ([14], Conjecture 3.1). For a unital C∗-algebra A with a free action of

Z2, there is no Z2-equivariant ∗-homomorphism φ : A→ ΣA.

We prove this conjecture in Chapter 4 and [35] using what is essentially the weakest

freeness assumption for actions on C∗-algebras, and surprisingly, the proof reduces to the

original Borsuk-Ulam theorem on Sk. Now, D
‘
abrowski also asked in [14] if there is a suitable

definition of a “noncommutative” unreduced suspension; we define one possible version as

well as a noncommutative join of a C∗-algebra and a finite cyclic group. However, these

definitions differ from the noncommutative double unreduced suspension in [24] and the very
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general C∗-algebraic join in [2] that motivated D
‘
abrowski’s question. A crucial component

of this noncommutative unreduced suspension is the crossed product of a C∗-algebra A with

Zk, which is defined in reference to a group action β of Zk. We write the action β in terms

of a generating homomorphism of order dividing k, also denoted β, on A.

Aoβ Zk = {a0 + a1δ + . . .+ ak−1δ
k−1 : a0, . . . , ak−1 ∈ A}

δk = 1 δ∗ = δ−1 aδ = δβ(a) for a ∈ A

The crossed product A oβ Zk is defined for a much larger class of group actions (see [54]),

but we will only need this case. There is a dual action of Ẑk = Zk on A oβ Zk, denoted β̂,

defined as follows when ω is a fixed primitive kth root of unity.

β̂(a0 + a1δ + . . .+ ak−1δ
k−1) = a0 + ωa1δ + . . .+ ωk−1ak−1δ

k−1

When A is given the trivial action, this results in A otriv Zk ∼=
k⊕
i=1

A. In particular, when

A = C, C otriv Zk is just the group C∗-algebra C∗(Zk). We will use the crossed product in

order to encode noncommutativity information with a symbol δ.

The crossed product satisfies an important identity when a Zk action α on A is saturated,

which means that all the homogeneous subspaces Am = {a ∈ A : α(a) = e2πim/ka} satisfy

AmAA∗m = A. When α is saturated, the K-groups of the crossed product are isomorphic to

the K-groups of the fixed point subalgebra (and this fact has a much stronger form).

α saturated =⇒ Kj(Aoα Zk) ∼= Kj(A
α) = Kj(A0) for j ∈ {0, 1} (1.5.15)

This fact is related to [43], Corollary 1.7, and reasonably explicit isomorphisms exist in the

literature. First, follow [38], Definition 5.2, Definition 5.9, and Theorem 5.10 to see the
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strong Morita equivalence of Aα and Aoα Zk, and then use [20], Theorem 5.3 and Theorem

5.5 to see K-theory isomorphisms for strongly Morita equivalent C∗-algebras. Saturation of

an action on A is a freeness property, as an action on a space X is free if and only if the

associated action on A = C(X) is saturated, but for noncommutative C∗-algebras it is not

the only relevant property. In general, saturation is one of the weakest freeness assumptions

to require of an action on A (see [38]).

When A has an action β (saturated or not) of Zk, we may define a C∗-algebra

A ∗β Zk := {f ∈ C([0, 1], Aoβ Zk) : f(0) ∈ A, f(1) ∈ C∗(Zk)}

with pointwise operations; if β is trivial and A = C(X), A ∗β Zk is the continuous function

algebra for the topological join of X and Zk. Further, A ∗β Z2 is denoted ΣβA, as if k = 2

and β is trivial, A ∗β Z2 is isomorphic to the unreduced suspension ΣA. Together these

ideas suggest that A ∗β Zk may be considered a noncommutative join of A and Zk, or a

noncommutative unreduced suspension if k = 2. This allows us to formulate a conjecture

in the same vein as the conjectures in [14] and [2] when A is equipped with another action

α that is saturated and commutes with β. Note in particular that [2] includes a different

definition of a general C∗-algebraic join, for the purpose of studying actions of compact

quantum groups. Our version of noncommutative join only considers an action of Zk, but

for such an action, it produces a different C∗-algebra. By considering examples based on

noncommutative spheres, we see that additional restrictions on β are necessary and refine

our conjecture. In this pursuit, we also prove a separate K0-based theorem on the antipodal

action for certain noncommutative unreduced suspensions of C(S2n−1
ρ ).

Theorem 1.5.16. For an n × n parameter matrix ρ, let R2n
ρ denote the universal, unital

C∗-algebra generated by normal elements z1, . . . , zn and a self-adjoint element x such that

z1z
∗
1 + . . . + znz

∗
n + x2 = 1, zkzj = ρjkzjzk, and xzk = −zkx. Then R2n

ρ is isomorphic to
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ΣαC(S2n−1
ρ ) where α is the antipodal map, and R2n

ρ is equipped with its own antipodal map

that negates each generator. If a unital ∗-homomorphism φ : R2n
ρ → R2n

ρ is equivariant for

the antipodal map, then φ induces a nontrivial map on the component of K0
∼= Z ⊕ Z not

generated by trivial projections.

The above theorem, along with some other results of Chapter 4 that are also not yet

contained in any arxiv or journal articles, is proved using different techniques than those

used for the θ-deformed even spheres. This appears to be necessary even though R2n
ρ and

C(S2n
ρ ) have similar presentations; the difference between a commutation relation and an

anticommutation relation involving a self-adjoint element is not an issue that can be resolved

continuously. In fact, by [33], Lemma 2.7, the relation zkx = ωxzk for ω 6∈ R would conflict

with normality and self-adjointness to imply that zkx = xzk = 0. We instead use different

techniques in the proof, which is in the final section of Chapter 4 as the closing argument of

this dissertation.
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Chapter 2

Homogeneous Elements of Banach Algebras

2.1 Nonexistence of Roots

The Borsuk-Ulam theorem in dimension 2 states that there is no odd map from S2 to S1,

or that every odd map from S1 to itself is homotopically nontrivial. Odd maps from S1 to

S1 may be represented by the unitary elements of C(S1) that are negated by the antipodal

action; in other words, they are odd unitary elements of the C∗-algebra C(S1). In [49],

Taghavi proved an extension of the 2-dimensional Borsuk-Ulam theorem by showing similar

results hold for many Banach algebras with group actions.

Theorem 2.1.1. ([49], Main Theorem 1) Let A be a [unital] G-graded Banach algebra

[where G is finite and abelian] with no nontrivial idempotents. Let a ∈ A be a nontrivial

homogeneous element. Then 0 belongs to the convex hull of the spectrum σ(ak) [for any

k ∈ Z+]. Further, if A is commutative and a is invertible, then ak and 1 do not lie in the

same connected component of the space of invertible elements G(A).

Note in particular that there are no restrictions on k ∈ Z+; for example, ak might be

a trivial homogeneous element (fixed by the action). If A is equal to C(X) for a compact

Hausdorff space X, then X is connected if and only if A has no nontrivial idempotents. The

spectrum result in Taghavi’s theorem illustrates the following problem: if a is an invertible

element that is nontrivial homogeneous, then in some Zn = G/N grading with associated

isomorphism T and primitive nth root of unity ω, T (a) = ωa. Since σ(a) = σ(Ta) =

σ(ωa) = ωσ(a), if σ(a) is missing values in any particular ray eiθ[0,∞), rotational symmetry
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will disconnect σ(a) into n pieces. The holomorphic functional calculus then provides a

nontrivial idempotent in A, which contradicts the assumptions. This is a proof of a more

general spectral condition than Taghavi claims: the connected set σ(a) will either include

0 or completely surround 0 in C, so we should not expect a logarithm of a (or of ak) using

functional calculus. Taghavi’s full result is a statement about (nonexistence of) logarithms

that is not limited to functional calculus, and we have listed below the most general result

that may be clearly distilled from the original proof; this also resolves our petty quibbles

about the spectrum.

Theorem 2.1.2. ([49], Main Theorem 1, restated) Let A be a unital G-graded Banach

algebra with no nontrivial idempotents, where G is a finite abelian group, and suppose

a ∈ A is a nontrivial homogeneous element. If k ∈ Z+, then there is no b ∈ A with the

following properties.

1. g, h ∈ G =⇒ bgbh = bhbg

2. ab = ba

3. exp(b) = ak

If we return to the motivating example of functional calculus, the same topological ob-

struction on the spectrum occurs when trying to form nth roots of invertible elements instead

of logarithms, so one can ask if similar results hold for roots. Some simple counterexamples

show that there must be a relationship between the size of the group Zn and the order of

the root.

Proposition 2.1.3. Suppose A is a unital Zn-graded Banach algebra with no nontrivial

idempotents. If a is a nontrivial homogeneous element that is also invertible, then a cannot

have an nth root b such that all the homogeneous components bk commute.
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Proof. Suppose b is such an nth root of a, so that b is also invertible and commutes with a.

Consequently, if T is the isomorphism associated to the graded algebra such that T (a) = ωja,

then the fact that the homogeneous components bk of b all commute implies that b−1 and

Tb commute. This shows that (b−1Tb)n = b−nT (bn), which is equal to a−1Ta = ωj. Now,

b−1Tb is an nth root of a constant, so by the spectral mapping theorem, its spectrum is

finite. Also, the spectrum must be connected because A has no nontrivial idempotents, so

σ(b−1Tb) = {c} and b−1Tb = c+ ε, where ε is quasinilpotent (σ(ε) = {0}) and cn = ωj.

All elements that follow are in the closed subalgebra generated by elements of the form T kb

or T k(b−1), which is commutative. The equation b−1Tb = c+ε implies that Tb = b(c+ε), and

an inductive argument shows that T kb = b ·
k∏
j=1

(c+T j−1ε). When k = n this says b = T nb =

b ·
n∏
j=1

(c+T j−1ε). Since ε is quasinilpotent, each T j−1ε is quasinilpotent, and the commuting

product
n∏
j=1

(c+ T j−1ε) is equal to cn + δ = ωj + δ where δ is quasinilpotent. The element δ

commutes with b, so b = b ·
n∏
j=1

(c+ T j−1ε) = b(ωj + δ) = bωj + γ where γ is quasinilpotent.

Finally, a was a nontrivial homogeneous element, so 1 − ωj 6= 0, and (1 − ωj)b = γ is both

invertible (as b is invertible) and quasinilpotent. This is a contradiction.

The proof technique for the previous proposition is directly inspired by Taghavi’s meth-

ods. Invertibility of the element a and the relationship between the order of the group Zn and

the order of the root cannot be removed. These requirements can be seen in the commutative

algebra C(S1) with the standard Z2 antipodal action.

Example 2.1.4. If S1 is realized as the unit sphere of R2, then the coordinate functions x1

and x2 in C(S1) are odd. Since σ(xi) = [−1, 1] and xi is a normal element of a C∗-algebra,

we may apply the continuous functional calculus for the following square root function.

g(t) =


√
t, t ∈ [0, 1]

i
√
−t, t ∈ [−1, 0]
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Now, g(xi) is a square root of the (non-invertible) odd element xi.

Example 2.1.5. The invertible odd function f(z) = z3 in C(S1) certainly has a third root.

Proposition 2.1.3 may also be used to generalize the Borsuk-Ulam theorem in dimension

2, so there are two possible directions for generalization. First, we can modify the restrictions

on the Banach algebra A to include nontrivial idempotents, allowing the results to apply to

many more algebras. Alternatively, we can seek variants that allow discussion of C(Sk) for

higher dimensions. For example, one version of the Borsuk-Ulam theorem implies that there

are no odd, continuous maps from Sk to Rk \ {0}, which means that if a1, . . . , ak ∈ C(Sk)

are self-adjoint and odd elements (i.e., real-valued odd functions), then a2
1 + . . . + a2

k must

not be invertible under multiplication. Taghavi expressed interest in this type of condition

for noncommutative spheres (C∗-algebras which are obtained from some sort of deformation

procedure on C(Sk)), but we will see that these types of conditions do not generalize to the

θ-deformed spheres.

2.2 Projection Conditions

When A is a noncommutative C∗-algebra, there are often nontrivial projections in A,

even if A is related in some way to a connected topological space. For example, there exist

nontrivial projections in most of the quantum tori C(Tnρ), which are Rieffel deformations of

C(Tn), and any matrix algebra Mn(C(X)) will have nontrivial projections from Mn(C).

Theorem 2.2.1. Suppose A is a unital Z2-graded Banach algebra with the property that

no idempotent P satisfies T (P ) = 1 − P . Then if f ∈ A is odd and invertible, there is no

g ∈ A such that g2 = f and g commutes with Tg.

Proof. Suppose g2 = f where g and Tg commute. Then g is invertible and

(T (g)g−1)2 = T (g2)(g2)−1 = T (f)f−1 = −1
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holds. Denote the element T (g)g−1 by a and note that a2 = −1, so a−1 = −a. However, we

also have that T (a) = −a by a simple calculation.

T (a) = T (T (g)g−1) = gT (g)−1 = (T (g)g−1)−1 = a−1 = −a

This means a is odd, so a is an odd square root of −1. It follows that P = 1
2

+ i
2
a is an

idempotent with T (P ) = 1− P .

The condition T (P ) 6= 1−P is not only sufficient in the above theorem, but also necessary.

If T (P ) = 1−P , then π0(P ) = P+T (P )
2

= 1/2, so if we examine the odd component π1(P ) = b,

the idempotent equation (1/2 + b)2 = 1/2 + b implies that b2 = 1/4. Consequently, σ(b) is

finite (and excludes 0) by the spectral mapping theorem. We may then form a square root

c of the invertible odd element b by the holomorphic functional calculus. Since b is odd and

c is in the closed, unital subalgebra generated by b and elements of the form (b − λ)−1, it

follows that cT (c) = T (c)c.

For a Z2 action on a C∗-algebra, if we assume T (P ) 6= 1 − P on the smaller class

of projections (instead of all idempotents), then we obtain a similar result with a slightly

weaker conclusion.

Theorem 2.2.2. Suppose A is a unital C∗-algebra with a Z2 action T such that no projection

P satisfies T (P ) = 1 − P . Then if f ∈ A is an odd unitary element, there is no unitary

g ∈ A such that g2 = f and g commutes with Tg.

Proof. The proof is the same as the proof of the previous theorem, with the addition that

since g is unitary, a = T (g)g−1 = T (g)g∗ satisfies a∗ = a−1 = −a, and the resulting P is

self-adjoint.

Remark. As in the previous theorem, the condition T (P ) 6= 1 − P is also necessary here.

The only change to the argument is that the odd component b of a projection satisfying
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T (P ) = 1−P is also self-adjoint, which with the equation b2 = 1/4 implies that 2b is unitary.

Again, this element has finite spectrum, and the square root formed by the continuous

functional calculus is guaranteed to be unitary.

Since the homogeneous subspaces A0 and A1 of a C∗-algebra with a Z2 action are norm-

closed and closed under the adjoint operation, it follows that for any even or odd element a,

aa∗ and a∗a even. Further, the positive square root of either aa∗ or a∗a from the continuous

functional calculus is even as well (as a limit of ∗-polynomials in an even element). Similarly,

the inverse of an even or odd element remains even or odd, as seen by examining the effect

of the isomorphism T that generates the action. These observations show that if we start

with a homogeneous invertible and scale it to form a unitary, the result is still homogeneous,

giving some equivalent formulations of the projection condition.

Proposition 2.2.3. The following conditions are equivalent for a unital C∗-algebra A with

a Z2 action defined by the isomorphism T .

1. There is a projection P ∈ A with T (P ) = 1− P .

2. There is some a ∈ A which is odd, self-adjoint, and satisfies a2 = 1.

3. There is some b ∈ A which is odd, self-adjoint, and invertible.

Proof. Condition 2 certainly implies condition 3, and the reverse implication holds by scaling

b to a unitary a = b(b2)−1/2 = b|b|−1, which remains odd and self-adjoint. If P is a projection

with T (P ) = 1 − P , then its even component is 1
2
(P + T (P )) = 1/2, so P is of the form

1/2+c, where c is self-adjoint and odd. The idempotent equation (1/2+c)2 = 1/2+c implies

that c2 = 1/4, so a = 2c satisfies a2 = 1, and condition 1 implies condition 2. Similarly, if a

is as in condition 2, then P = 1/2 + a/2 is a projection with T (P ) = 1− P .

When A is a graded unital Banach algebra, Mn(A) is graded as well; the group action

is applied entrywise, and the homogeneous subspaces consist of matrices with entries in the
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homogeneous subspaces of A. However, Mn(A) will always have nontrivial idempotents for

n ≥ 2, so Taghavi’s Main Theorem 1 in [49] and the similar result Proposition 2.1.3 in this

chapter do not apply. However, the new condition T (P ) 6= 1−P allows for some idempotents,

and the matrix dimension will play a key role. For example, if A is a C∗-algebra and there

exists an n × n unitary matrix F over A which has odd entries, then P =

 1/2 F/2

F ∗/2 1/2


is a projection in the 2n× 2n matrix algebra with T (P ) = I −P . This dimension n encodes

important information about how A interacts with its Z2 action.

When A is equal to C(X) for some compact X with finitely many components, and T

arises from an order two homeomorphism h on X, the condition that T (P ) 6= I −P for each

projection P ∈ A has a simple restatement. First, note that h determines a Z2 action on

the set of components of X. If this action has no fixed point, we may define P ∈ C(X) so

that P takes value 1 on exactly one component in each orbit, and 0 on the other component.

This P is a projection satisfying T (P ) = 1 − P . Therefore, insisting that T (P ) is never

equal to 1 − P means that the action on components induced by h has a fixed point. In

this case, the quotient algebra of functions on this component reduces the problem to the

idempotentless case, so the actual benefit of the new condition is found in noncommutative

C∗-algebras. If A = Mn(C(X)), then a projection P ∈ A assigns to each x ∈ X a projection

Px ∈ Mn(C), which as a linear map is the orthogonal projection onto a subspace of Cn,

forming a continuous vector bundle. If A inherits the Z2 action generated by h : X → X,

applied entrywise, and each projection P ∈ A satisfies T (P ) 6= I − P , then there is some

x ∈ X with Ph(x) 6= I − Px. In other words, the vector bundle cannot assign each orbit

{x, h(x)} to a pair of orthogonal complements {Px, I − Px}.

A stronger version of the condition demands that if P ∈ A is a projection with T (P )P =

0, then P = 0. With notation and restrictions as above, if A = C(X), then each component

of X is a fixed point of the action induced by h. Similarly, if A = Mn(C(X)) and P ∈ A is a
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nonzero projection (vector bundle), some x must satisfy Ph(x)Px 6= 0, meaning the subspaces

assigned to x and h(x) must not always be orthogonal. This requirement allows for a stronger

version of Theorem 2.2.2, in which the odd unitary element that allegedly has no square root

is replaced by a projection plus an odd element. This type of element occurs frequently in

K-theory, as a unitary matrix F over a C∗-algebra may have odd entries, but F ⊕ I does

not.

Projection + Odd =

 0 0

0 I

+

 F 0

0 0

 =

 F 0

0 I


Theorem 2.2.4. Suppose A is a unital C∗-algebra with a Z2 action generated by T such

that every nonzero projection P ∈ A satisfies T (P )P 6= 0. If f is a nonzero odd element and

η is a projection such that η+ f is unitary and ηf = fη = 0, then there is no unitary g such

that gT (g) = T (g)g and g2 = η + f .

Proof. The conditions imply that ηf ∗ = f ∗η = 0 and η + ff ∗ = η + f ∗f = 1, the last of

which shows that η is even. Suppose g is unitary with g2 = η+ f and gT (g) = T (g)g. Then

T (g) and g−1 also commute, allowing for the following computation.

(T (g)g−1)2 = T (g2)g−2 = T (η + f)(η + f)∗ = (η − f)(η + f ∗) = η − ff ∗ = 2η − 1

Since η is a projection, the spectrum of 2η−1 is contained in {−1, 1}. The spectral map-

ping theorem then implies that σ(T (g)g−1) ⊂ {i,−i,−1, 1}. Moreover, T (g)g−1 is unitary,

so the continuous functional calculus is applicable, giving the following decomposition.

T (g)g−1 = iP − iQ−R + S (2.2.5)

Here P,Q,R, and S are mutually orthogonal projections with P + Q + R + S = 1. Also,

b := T (g)g−1 is a unitary element satisfying T (b) = b−1 = b∗, so the commutative C∗-algebra
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generated by b is also T -invariant. Consequently, P , Q, R, S, and all of their images under

T pairwise commute. Next, we rephrase (2.2.5) as

T (g) = (iP − iQ−R + S)g (2.2.6)

and apply T to both sides, giving the following.

g = (iT (P )− iT (Q)− T (R) + T (S))T (g)

= (iT (P )− iT (Q)− T (R) + T (S))(iP − iQ−R + S)g

(2.2.7)

As g is invertible, expanding (2.2.7) and canceling g show that

1 = (−1)β−1 + iβi + (−i)β−i + β1 (2.2.8)

where the β terms are defined as follows.

β−1 = T (P )P + T (Q)Q+ T (R)S + T (S)R

βi = T (P )S + T (Q)R + T (R)Q+ T (S)P

β−i = T (P )R + T (Q)S + T (R)P + T (S)Q

β1 = T (P )Q+ T (Q)P + T (R)R + T (S)S

(2.2.9)

Each of the sixteen commuting products of two projections in (2.2.9) is a projection.

Moreover, any two of these sixteen projections annihilate each other: for example, T (R)P ·

T (Q)P = T (Q)P · T (R)P = 0 because RQ = QR = 0. This means that each β term is a

projection, and the four projections are mutually orthogonal. Equation (2.2.8) then implies

that β−1 = 0, so T (P )P + T (Q)Q + T (R)S + T (S)R = 0. As each of the summands is

a projection and therefore positive, it follows that each summand is zero, so in particular

T (P )P = 0 = T (Q)Q. By the assumptions of the theorem, both P and Q must be zero.
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Finally, this gives a simpler form of (2.2.6).

T (g) = (−R + S)g (2.2.10)

The projections R and S annihilate each other and commute with g, as they are in the

C∗-algebra generated by T (g)g−1. Moreover, R+ S = P +Q+R+ S = 1, so we can square

both sides of (2.2.10) to reach that f = 0.

T (g2) = (−R + S)2g2 =⇒ T (η + f) = (R + S)(η + f)

=⇒ η − f = η + f

=⇒ f = 0

2.3 Example: Noncommutative Tori

The quantum tori C(Tnρ), which are obtained as Rieffel deformations of the commutative

torus C(Tn), are equipped with an antipodal action α which negates each generator Ui. The

continuity properties of deformation will be sufficient to show that no projection P in any

odd-dimensional matrix algebra over C(Tnρ) can satisfy α(P ) = I − P . Therefore, Theorem

2.2.2 applies and requires that odd unitary elements do not have certain types of square

roots.

The limits in (1.4.7) and the isomorphism (1.4.8) may be rephrased as follows for any

fixed smooth elements f, g ∈ C∞(Tn) and fixed antisymmetric matrices J and H.

lim
t→0
||f ·H+tJ g − f ·H g||H+tJ = 0 lim

t→0
||f ||H+tJ = ||f ||H (2.3.1)
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If J is an antisymmetric matrix which is only nonzero in one pair of opposite entries, then

(2.3.1) indicates that the multiplication on smooth elements of C(Tnρ) ∼= C(Tn)J behaves

continuously when one pair of conjugate entries in ρ is modified. To avoid switching back

and forth between the two notations, denote ·J as ·ρ, and let Cω denote the set of param-

eter matrices ρ differing from ω in one pair of conjugate entries. The following continuity

restatements then apply and can also be easily extended to matrices of smooth elements.

||f ·ω g − f ·ρ g||ρ → 0 as ρ→ ω within Cω (2.3.2)

||f ||ρ → ||f ||ω as ρ→ ω within Cω (2.3.3)

The antipodal action α is simultaneously compatible with each product ·ρ. This is a

result of the fact that the antipodal map on C(Tn) commutes with the Rn action of transla-

tion in angular coordinates, which defines the quantization. Further, the adjoint operations

on various C(Tnρ) all restrict to the same operation on C∞(Tn), so any time we approxi-

mate elements of C(Tnρ) with smooth elements, we can preserve self-adjointness. Similarly,

we can preserve the homogeneity classes of elements, so we prove that no projection in

M2m+1(C(Tnρ)) satisfies α(P ) = I − P by examining a dense subset of ρ and applying a

continuity argument. When ρ consists of roots of unity, the following lemma shows that

there are unitary matrices over C which satisfy similar noncommutativity relations as the

generators of C(Tnρ).

Lemma 2.3.4. Suppose ρ is an n × n parameter matrix with each entry a root of unity.

Then there are unitary matrices A1, . . . , An over C such that AjAi = ρijAiAj for all i, j ∈

{1, . . . , n}. Moreover, if m is relatively prime to the order of each ρij as a root of unity, we

may insist that the dimension of the matrices Ai is relatively prime to m.

Proof. When n = 2 we choose A1 and A2 to have dimensions q × q, where q is the smallest
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positive integer with ρq12 = 1.

A1 =



1

ρ12

ρ2
12

. . .

ρq−1
12


, A2 =



0 1 0 . . . 0

0 0 1 0 . . . 0

0 0 0 1 0 . . . 0

...

0 0 0 . . . 0 0 1

1 0 . . . 0


These matrices satisfy A2A1 = ρ12A1A2 (and the other AjAi relations follow from the fact

that ρ is a parameter matrix). Now suppose 3 ≤ m ≤ n, and assume we have found unitary

matrices B1, . . . , Bm−1 of some dimension q×q satisfying BjBi = ρijBiBj. Let k be the least

common multiple of the orders of the new noncommutativity coefficients ρim, 1 ≤ i ≤ m−1,

so each ρkim is 1. Then define Ai, i ∈ {0, . . . ,m− 1} and Am in block form.

Ai =



Bi

ρimBi

. . .

ρk−1
im Bi


, Am =



0 Iq 0 . . . 0

0 0 Iq 0 . . . 0

0 0 0 Iq 0 . . . 0

...

0 0 0 . . . 0 0 Iq

Iq 0 . . . 0


These unitary matrices A1, . . . , Am of dimension qk × qk satisfy the conditions AjAi =

ρijAiAj, completing the induction. The block dimension in each step is the least common

multiple of the orders of certain ρij, so if a prime fails to divide each of these orders, it also

fails to divide dim(Ai).

Theorem 2.3.5. There is no projection P with α(P ) = 1− P in any M2m+1(C(Tnρ)).
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Proof. Suppose the theorem fails, which by Proposition 2.2.3 means there is a self-adjoint

odd matrix A ∈ M2m+1(C(Tnρ)) with A ·ρ A = 1. Approximate A with a self-adjoint, odd,

smooth matrix B ∈M2m+1(C∞(Tn)) which has ||B ·ρB−1||ρ < 1. When the parameter of the

algebra C(Tnρ) changes, B remains odd and self-adjoint. Perturb the entries of the parameter

matrix ρ using (2.3.2) and (2.3.3) multiple times to replace ρ with a parameter matrix ω,

where each entry of ω is a root of unity with odd order, maintaining ||B ·ω B− 1||ω < 1. So,

B ∈M2m+1(C∞(Tn)) is still odd, self-adjoint, and invertible as an element ofM2m+1(C(Tnω)).

We may form a homomorphism from C(Tnρ) to a matrix algebra over C(Tn) in a way

similar to [27]. Apply Lemma 2.3.4 to find unitaries A1, . . . , An ∈ Mq(C) with AkAj =

ωjkAjAk. Moreover, because each ωjk is of odd order as a root of unity, we may insist

q = 2p+ 1 is odd. The universal property of C(Tnω) shows that there is a ∗-homomorphism

E : C(Tnω)→M2p+1(C(Tn))

Uj 7→ ujAj

where uj ∈ C(Tn) is the jth coordinate function. Since the generators Uj of C(Tnω) are

odd, and their images ujAj have odd functions in every entry, the map E is equivariant for

the (entrywise) antipodal maps. The image E(B) ∈ M(2p+1)(2m+1)(C(Tn)) is then a self-

adjoint, invertible matrix of odd dimension, with each entry an odd function on Tn. The

determinant of this matrix is a nowhere vanishing, real-valued, odd function on Tn, which

gives a contradiction since Tn is connected.

The theorem does not apply for even dimension matrix algebras, as the existence of an

odd unitary V =
k⊕
i=1

U1 in Mk(C(Tnρ)) implies that P =
1

2

 Iq V

V ∗ Iq

 is a projection in

M2k(C(Tnρ)) with α(P ) = I − P .
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2.4 Counterexample: Noncommutative Spheres

The Rn/Zn action which defines the Rieffel deformations C(S2n−1)J ∼= C(S2n−1
ρ ) of

C(S2n−1) only acts on the unimodular component in the polar decomposition of the co-

ordinates zi = riui, ri ≥ 0, |ui| = 1. In [33], Natsume and Olsen prove that C(S2n−1
ρ ) may

actually be written as a function algebra over the noncommutative tori.

Theorem 2.4.1. ([33], Theorem 2.5) Let Sn−1
+ = {~t = (t1, . . . , tn) : 0 ≤ ti ≤ 1, t21 + . . .+ t2n =

1}. Then C(S2n−1
ρ ) is isomorphic to the C∗-algebra of continuous functions f : Sn−1

+ → C(Tnρ)

which satisfy the condition that whenever ti = 0, f(~t ) ∈ C∗(U1, . . . , Ui−1, Ui+1, . . . Un).

This theorem is akin to writing complex coordinates in polar form zi = tiui and seeing

a function on the unimodular coordinates ui whenever the radial coordinates ti are fixed.

Moreover, when some radial coordinate is 0, the corresponding unimodular coordinate should

be irrelevant. Now, the norm on the function algebra (with operations defined pointwise) is

the unique C∗-norm, ||f || = max
~t∈Sn−1

+

||f(~t )||C(Tnρ ). Also, the generators zi take a simple form.

zi(~t ) = tiUi

An enormous advantage of this formulation is that since every element of C(S2n−1
ρ ) is a

function on a compact space, we see the various topological joys of compact spaces (bump

functions, partitions of unity, and so on) without having to pass to commutative subalgebras.

Moreover, unitaries in C(S2n−1
ρ ) are paths of unitaries in C(Tnρ), a well-studied object, and

any element f ∈ C(S2n−1
ρ ) has the property that f(1, 0, . . . , 0) belongs to the commutative

C∗-algebra C∗(U1) ∼= C(S1) (and similarly for other Ui)! The natural choice of antipodal

map

α : zi 7→ −zi
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on C(S2n−1
ρ ) is also just the pointwise application of the antipodal map on C(Tnρ). Since

the noncommutative tori exhibited behavior similar to C(Tn) with respect to the antipodal

action, it seems feasible that C(S2n−1
ρ ) may behave similarly to C(S2n−1).

Proposition 2.4.2. Suppose F is a matrix inM2k−1(C(S2n−1
ρ )), 2n−1 ≥ 3. Then F cannot

be both invertible and odd (i.e., odd in every entry).

Proof. Suppose F is invertible and odd. Then for ~t = (1, 0, . . . , 0), F (~t ) is a matrix of odd

dimension over C∗(U1) ∼= C(S1) such that each entry is an odd function. Its K1 class over

C(S1) is determined by det(F (~t )), which is an odd, nowhere vanishing function S1 → C.

By the Borsuk-Ulam theorem, this function has odd winding number, so F (~t ) is equivalent

to Ua
1 in K1(C∗(U1)), where a is odd, and certainly F (~t ) and Ua

1 are also equivalent in

K1(C∗(U1, U2)). Similarly, if ~s = (0, 1, 0, . . . , 0), F (~s ) is equivalent to U b
2 in K1(C∗(U1, U2)),

where b is odd. However, there is also a path connecting ~s and ~t within {~r ∈ Sn−1
+ : ri =

0 for i ≥ 3}, so F (~s ) and F (~t ) are in the same component of invertibles over C∗(U1, U2),

which is isomorphic to a 2-dimensional quantum torus. This contradicts the fact that Ua
1

and U b
2 are inequivalent in K1(C∗(U1, U2)) when a or b is nonzero (see [39] for when the

2-torus C∗(U1, U2) is given by an irrational rotation; the result on the rational torus follows

from a homomorphism C∗(U1, U2)→Mp(C(T2)) found, for example, in [27]).

Proposition 2.4.3. There are no nontrivial projections in C(S2n−1
ρ ).

Proof. The θ-deformed spheres each admit a continuous, positive, and faithful trace τ , de-

veloped in [33] by integrating the usual trace on C(Tnρ) over a Borel probability measure. We

may extend τ as a linear map on Mk(C(S2n−1
ρ )) in the usual way by summing over the diag-

onal, and since this map is invariant under unitary conjugation, this allows us to view τ as

a function on K0(C(S2n−1
ρ )). Now, K0(C(S2n−1

ρ )) is generated by the trivial projection 1, so

the only possible values of the trace on projections in Mk(C(S2n−1
ρ )) are integers. However,

faithfulness implies that any nontrivial projection in C(S2n−1
ρ ) must have trace in (0, 1).
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Even though C(S2n−1
ρ ) is often a noncommutative algebra, any element with a one-sided

inverse always has a two-sided inverse. This is a property that distinguishes Mn(C) from

B(H) when H is an infinite-dimensional Hilbert space, so in general a C∗-algebra A is called

finite if whenever x, y ∈ A have xy = 1, it follows that yx = 1. If A also has the property

that Mk(A) is finite for all k ∈ Z+, then A is called stably finite (this does not follow from

finiteness of A; see [9]).

Proposition 2.4.4. Each C(S2n−1
ρ ) is stably finite.

Proof. Without loss of generality, suppose W ∈ Mk(C(S2n−1
ρ )) is right invertible, so that

W (~t ) is right invertible in Mk(C(Tnρ)) for any ~t. Let G and Gr be defined as follows.

G := {a ∈ C(Tnρ) : a is invertible}

Gr := {a ∈ C(Tnρ) : a has a right inverse but is not invertible}

The preimage of Gr∪G underW is all of Sn−1
+ . Moreover, A = W−1[G] and B = W−1[Gr] are

disjoint since G and Gr are disjoint. However, G and Gr are both open (see [19], Proposition

2.7), so A and B form a separation of Sn−1
+ unless one of the sets is empty. Now,W (1, 0, . . . , 0)

is a right invertible in the C∗-algebra Mk(C
∗(U1)) ∼= Mk(C(S1)) ∼= C(S1,Mk(C)). In Mk(C),

every right invertible is invertible, so W (1, 0, . . . , 0) is invertible, A is nonempty, and A =

Sn−1
+ . Finally, each W (~t ) is invertible, and W is invertible.

Corollary 2.4.5. If 2n− 1 ≥ 3 and w ∈ C(S2n−1
ρ ) is odd, then ww∗ is not invertible.

Proof. If w is odd and ww∗ is invertible, the previous proposition implies that w is invertible.

This contradicts Proposition 2.4.2 for 2k − 1 = 1.

In the commutative case, there is no odd, continuous function F : S3 → R3 \ {0}. By

identifying R3 ∼= C⊕R, we see that if w, x ∈ C(S3) are odd and x is self-adjoint, |x|2 + |w|2 =

49



x2 +ww∗ cannot be invertible. The above corollary makes a somewhat similar claim in the θ-

deformed spheres when 2n− 1 = 3, but it is missing the self-adjoint odd element x. Further,

when we try to rewrite the claim that there is no odd, continuous F : S2n−1 → R2n−1 \ {0}

into a conjecture on elements of C(S2n−1
ρ ), there is an abundance of ambiguity. This comes

from the fact that if s and t are self-adjoint, s2 + t2 = (s + it)(s − it) = (s + it)(s + it)∗

only when s and t commute, which is the same as insisting s+ it is normal. The distinction

means that the identifications R2n−1 ∼= R ⊕
n−1⊕
i=1

C and R2n−1 ∼=
2n−1⊕
i=1

R lead to at least two

separate questions.

Question 2.4.6. If x ∈ C(S2n−1
ρ ) is odd and self-adjoint, and w1, . . . , wn−1 ∈ C(S2n−1

ρ ) are

odd, must x2 + w1w
∗
1 + . . .+ wn−1w

∗
n−1 fail to be invertible?

Question 2.4.7. If f1, . . . , f2n−1 ∈ C(S2n−1
ρ ) are odd and self-adjoint, must f 2

1 + . . .+ f 2
2n−1

fail to be invertible?

The second of these questions was posed by Taghavi in [49], as a general question about

no particular family of noncommutative spheres. There are also similar questions formed by

replacing some, but not all, of the expressions wiw∗i with the square sum of two self-adjoint

elements. However, regardless of formulation, the answer to each question is no.

Theorem 2.4.8. If C(S2n−1
ρ ) is noncommutative, then Questions 2.4.6 and 2.4.7, and all

intermediate versions, have a negative answer.

Proof. Decompose the generators as zm = xm+iym where xm and ym are self-adjoint, and pick

two generators zj and zk which do not commute. Since each zm is normal, zmz∗m = x2
m + y2

m,

so consider the following sum.

(xj + xk)
2 + (yj + yk)

2 +
∑

m 6∈{j,k}

zmz
∗
m (2.4.9)
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The n−2 elements zm present in the sum are odd, and both xj+xk and yj+yk are self-adjoint

and odd. So, (2.4.9) is of the form in Question 2.4.6, where w1 is actually self-adjoint. After

replacement of every term zmz
∗
m with x2

m + y2
m, as zm is normal, (2.4.9) becomes the square

sum of 2 + 2(n − 2) = 2n − 2 odd self-adjoint elements, so it can be written in the form

of Question 2.4.7 where f2n−1 = 0. For intermediate versions of the two questions, expand

some (but not all) of the terms zmz∗m. To see that (2.4.9) is invertible, we first rewrite

(xj + xk)
2 + (yj + yk)

2.

(xj + xk)
2 + (yj + yk)

2 = x2
j + x2

k + xjxk + xkxj + y2
j + y2

k + yjyk + ykyj

= x2
j + y2

j + x2
k + y2

k + (xjxk + xkxj + yjyk + ykyj)

= zjz
∗
j + zkz

∗
k + (xjxk + xkxj + yjyk + ykyj)

This gives a simpler form for the original sum (2.4.9).

(xj + xk)
2 + (yj + yk)

2 +
∑

m6∈{j,k}

zmz
∗
m = (xjxk + xkxj + yjyk + ykyj) +

n∑
m=1

zmz
∗
m

= (xjxk + xkxj + yjyk + ykyj) + 1

It suffices to show ||xjxk + xkxj + yjyk + ykyj|| < 1. First, we rewrite the components

xj, yj, xk, yk in terms of zj and zk via xm =
zm + z∗m

2
and ym =

zm − z∗m
2i

. Then we rearrange

terms and apply the adjoint noncommutativity relation zkz∗j = ρkjz
∗
j zk. Now, xjxk + xkxj +

yjyk + ykyj is equal to

zj + z∗j

2
·
zk + z∗k

2
+
zk + z∗k

2
·
zj + z∗j

2
+
zj − z∗j

2i
·
zk − z∗k

2i
+
zk − z∗k

2i
·
zj − z∗j

2i
=

1

4
[2zjz

∗
k + 2z∗j zk + 2z∗kzj + 2zkz

∗
j ] =
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1

2
[zjz

∗
k + z∗j zk + ρkjzjz

∗
k + ρkjz

∗
j zk] =

1 + ρkj

2
[zjz

∗
k + z∗j zk]

and the norm of this element is determined by viewing it as a function from Sn−1
+ to the

noncommutative torus C(Tnρ), as in Theorem 2.4.1, where zi(~t ) = tiUi.

∣∣∣∣∣∣∣∣1 + ρkj
2

[zjz
∗
k + z∗j zk]

∣∣∣∣∣∣∣∣ =
|1 + ρkj|

2
· max
~t∈Sn−1

+

{
||(tjUj)(tkUk)∗ + (tjUj)

∗(tkUk)||C(Tnρ )

}

=
|1 + ρkj|

2
· max
~t∈Sn−1

+

{tjtk} · ||UjU∗k + U∗j Uk||C(Tnρ )

≤
|1 + ρkj|

2
·

1

2
· 2

< 1

At the last step, we have used that ρkj is unimodular, but not equal to 1, as zj and zk do

not commute. Finally, the sum (2.4.9) is invertible.

The answers to Questions 2.4.6 and 2.4.7 (and all questions in between) for θ-deformed

spheres are negative, and the proof above shows that the disconnect between the commutative

and noncommutative cases is quite large. In the commutative (2n− 1)-dimensional sphere,

no square sum of 2n − 1 odd self-adjoint elements is invertible, but in a sphere where just

one pair of generators fails to commute, we can form an invertible square sum using only

2n − 2 odd self-adjoint elements. Further, when 2n − 1 = 3, this invertible sum is of the

form s2 + t2, even though (s + it)(s + it)∗ cannot be invertible by Corollary 2.4.5. In other

words, s and t will definitely not commute. Finally, because a counterexample was reached

using fewer elements than expected, these arguments pass easily to even θ-deformed spheres

C(S2n
ρ ), which are quotients of (2n+1)-dimensional θ-deformed spheres where zn+1 is central.
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If C(S2n
ρ ) is noncommutative, then there are 2(n + 1)− 2 = 2n self-adjoint odd elements of

C(S2n
ρ ) whose square sum is invertible, in stark contrast with the commutative case.
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Chapter 3

Equivariant Maps on θ-Deformed Spheres

3.1 Embeddings between Spheres

In [33], Natsume and Olsen described θ-deformed odd spheres C(S2n−1
ρ ) in two additional

formats, as a universal C∗-algebra and as an algebra of functions over the quantum torus.

Definition 3.1.1 ([33], Definition 2.1). If ρ is a parameter matrix, then C(S2n−1
ρ ) is the

universal, unital C∗-algebra generated by z1, . . . , zn with the following identities.

z1z
∗
1 + . . .+ znz

∗
n = 1 zkzj = ρjkzjzk zjz

∗
j = z∗j zj

These generators automatically satisfy zkz∗j = ρjkz
∗
j zk = ρkjz

∗
j zk ([33], Lemma 2.6), and when

dealing with two separate θ-deformed spheres, we will sometimes denote the generators as

z1, . . . , zn.

Theorem 3.1.2 ([33], Theorem 2.5). Let Sn−1
+ = {(~t = (t1, . . . , tn) : 0 ≤ ti ≤ 1, t21 + . . . +

t2n = 1}. Then C(S2n−1
ρ ) is isomorphic to {f ∈ C(Sn−1

+ , C(Tnρ)) : if ti = 0, then f(~t ) ∈

C∗(U1, . . . , Ui−1, Ui+1, . . . , Un)}.

As seen in Section 2.4, the structure of C(S2n−1
ρ ) places some restrictions on the existence

of odd elements and matrices, but not enough for an element-based Borsuk-Ulam theorem

to hold on C(S2n−1
ρ ). In other words, the requirement that there is no odd map from S2n−1

to R2n−1 \ {0} does not have an analogue in the θ-deformed case. However, other equivalent

formulations of the traditional Borsuk-Ulam theorem do hold on the θ-spheres; these results

are analogous to the q-sphere results of Yamashita in [55], but use different methods.
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The K-theory of C(S2n−1
ρ ) is the same as that of C(S2n−1), as θ-deformation preserves K-

theory, but in [33] Natsume and Olsen gave a very particular structure to K1(C(S2n−1
ρ )) ∼= Z

(K0(C(S2n−1
ρ )) ∼= Z is generated by 1, a trivial projection). Every U ∈ Uk(C(S2n−1

ρ )) defines

a multiplication operator on Mk(C(S2n−1
ρ )), and C(S2n−1

ρ ) may be completed to a Hilbert

space L2(S2n−1
ρ ). The inner product comes from a continuous, positive, and faithful trace on

C(S2n−1
ρ ), which integrates the standard trace τ on C(Tnρ).

τ(f) =

∫
Sn−1
+

τ(f(~t )) dµ

〈f, g〉 = τ(fg∗)

The measure µ is obtained by passing through a homeomorphism from Sn−1
+ to an (n− 1)-

simplex and using normalized Lebesgue measure. Regarless, the inner product defines a

completion L2(S2n−1
ρ ) of C(S2n−1

ρ ), and a noncommutative Hardy space arises from the closure

of analytic polynomials (no z∗1 , . . . , z∗n terms) in the generators.

H2(S2n−1
ρ ) = spanC{zm1

1 · · · zmnn : m1, . . . ,mn ≥ 0}

Natsume and Olsen showed that noncommutative Toeplitz operators

F ∈Mk(C(S2n−1
ρ )) =⇒ TF (g) = P (F · g) for g ∈

k⊕
i=1

H2(S2n−1
ρ )

are well-defined using the entrywise projection P : L2(S2n−1
ρ ) → H2(S2n−1

ρ ), and that many

(but not all) of the properties of standard Toeplitz operators carry over to this case. In

particular, TF is a Fredholm operator if and only if F is invertible, and the index of TF

completely characterizes the K1 class of F in this case. A unitary matrix with Toeplitz

index one is then necessarily a generator of K1(C(S2n−1
ρ )), and such a matrix can be specified
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using a similar form to the commutative case. The standard K1 generator of C(S2n−1) is a

2n−1 × 2n−1 matrix Z(n), which is defined recursively.

Z(1) = z1 Z(k + 1) =

 Z(k) zk+1I2k−1

−z∗k+1I2k−1 Z(k)∗


The modification Natsume and Olsen used for the θ-deformed spheres replaced I2k−1 with

diagonal unitary matrices over C.

Zρ(1) = 1 Zρ(k + 1) =

 Zρ(k) zk+1D1

−z∗k+1D2 Zρ(k)∗


Diagonal unitaries D1 and D2 such that Zρ(k + 1)Zρ(k + 1)∗ = Zρ(k + 1)∗Zρ(k + 1) =(
k+1∑
i=1

ziz
∗
i

)
I2k are guaranteed to exist at each recursive step, but they are non-unique; any

choice resulting in a unitary matrix Zρ(n) produces a K1 generator. We have chosen to use

a subscript ρ here (as D1 and D2 depend on ρ), and in the next section we prove that this

K1 generator, which did not have uniquely specified coefficients in [33], may be chosen such

that the entries of D1 and D2 in each stage vary continuously in ρ. This is consistent with

the continuity results of Sangha in [48].

Any unital ∗-homomorphism φ : C(S2n−1
ρ )→ C(S2n−1

ω ) induces a homomorphism on the

K1 groups, and any homomorphism φ∗ : Z→ Z is associated to a unique integer n such that

φ(m) = mn. This number n is analogous to the degree of a function on a sphere S2n−1. One

way to produce a map between θ-deformed spheres is to replace z1 with a power zk1 , modulo

scaling issues.

Proposition 3.1.3. If ρ =

 1 ρ12

ρ12 1

 and ω =

 1 ρk12

ρ12
k 1

 for a fixed k ∈ Z+, then

C∗(Uk
1 , U2) ≤ C(T2

ρ) is isomorphic to C(T2
ω).
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Proof. Define a map ψ from C(T2
ω) = C∗(V1, V2) to C(T2

ρ) = C∗(U1, U2) as follows.

ψ(V1) = Uk
1 ψ(V2) = U2

The images are unitary and satisfy U2U
k
1 = ρk12U

k
1U2 = ω12U

k
1U2, so ψ is a well-defined

∗-homomorphism. Moreover, ψ respects the standard traces τρ and τω, as seen by checking

on the dense set of ∗-polynomials.

τρ

(
ψ

(∑
finite

amnV
m

1 V n
2

))
= τρ

(∑
finite

amnU
km
1 Un

2

)

= a00

= τω

(∑
finite

amnV
m

1 V n
2

)

If f ∈ ker(ψ), then ψ(ff ∗) = 0, and 0 = τρ(ψ(ff ∗)) = τω(ff ∗), so by faithfulness of τω, f

must be 0. Now, ψ is injective, and any injective ∗-homomorphism between C∗-algebras is

norm-preserving, so Ran(ψ) is closed. As Ran(ψ) includes every ∗-polynomial in Uk
1 and U2,

it follows that Ran(ψ) = C∗(Uk
1 , U2).

This proposition (which is undoubtedly a folklore result) allows us to view a “coarser”

torus as a subalgebra of a “finer” torus, so in particular if ρ12 is of finite order, a copy of the

commutative torus C(T2) sits inside C(T2
ρ). A similar embedding result applies for spheres,

where again ρ =

 1 ρ12

ρ12 1

 and ω =

 1 ρk12

ρ12
k 1

 for a fixed k ∈ Z+.

C(S3
ω) ∼= {f ∈ C(S1

+, C(T2
ω)) : f(0, 1) ∈ C∗(V2), f(1, 0) ∈ C∗(V1)}

∼= {f ∈ C(S1
+, C(T2

ρ)) : f(~t ) ∈ C∗(Uk
1 , U2), f(0, 1) ∈ C∗(U2), f(1, 0) ∈ C∗(Uk

1 )}

≤ C(S3
ρ)
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Similar results follow for higher order tori and spheres, with more complicated notation.

Now that it is clear embeddings of the type C(S3
ω) ↪→ C(S3

ρ) exist, we now determine what

effect they have on K1. The generators of C(S3
ω) ≤ C(S3

ρ) may be written easily as functions.

f1(~t ) = t1U
k
1 f2(~t ) = t2U2

In fact, f2 is equal to z2, and f1 takes a very similar form to zk1 (t) = tk1U
k
1 . The K1(C(S3

ω))

generator is then

 f1 f2

−ω12f
∗
2 f ∗1

 =

 f1 f2

−ρ12
kf ∗2 f ∗1

, which is connected within the in-

vertible matrices over C(S3
ρ) to

 zk1 z2

−ρ12
kz∗2 z∗k1

 by scaling t1 to tk1 continuously.

Proposition 3.1.4. The invertible matrix M =

 zk1 z2

−ρ12
kz∗2 z∗k1

 over C(S3
ρ) has [M ]K1 =

k. That is, the index of the Toeplitz operator TM is −k.

Proof. Because C(S3
ρ) is a Rieffel deformation C(S3)J wherein z1, z2, z

∗
1 , z
∗
2 are smooth el-

ements, the matrix M = M(ρ) of smooth elements varies continuously in every deformed

norm. This defines an invertible matrix M̃ over the section algebra Γ(C(S3)tJ)t∈[0,1]. By The-

orem 1.4.12 (due to Sangha), the quotient maps πs : Γ(C(S3)tJ)t∈[0,1] → C(S3)sJ induce au-

tomorphisms on K1, so in particular K1(Γ(C(S3)tJ)t∈[0,1]) ∼= Z. The integer associated to M̃

is the same as the integer associated toM = π1(M̃) and π0(M̃). But π0(M̃) =

 zk1 z2

−z∗2 z∗k1


is an invertible matrix over the commutative sphere, and the K1-class of π0(M̃) is the image

of the K1(C(S3)) generator under (z1, z2) 7→ (zk1 ,z2)

||(zk1 ,z2)|| . This map has degree k in topology

([56], Lemma 3.1), so naturality of the Chern character (1.3.11) shows that [ψ(Z(2))]K1 is

k.

Remark. Alternatively, the kernel of the Toeplitz operator TM is trivial, and the cokernel is
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spanned by

 zm1

0

 for 0 ≤ m ≤ k− 1. This method involves a vary tedious computation of

formal power series, so it is omitted. Direct calculation of the index is also much harder (for

me) to do in higher dimensions, whereas the above method generalizes to higher dimensions

once we know Zρ(n) and similar matrices in zk11 , . . . , z
kn
n may be specified continuously.

The embedding C(S3
ω) ↪→ C(S3

ρ) existed whenever ω12 was a power of ρ12, indicating that

ω is a coarser rotation than ρ. It is not always possible to form an embedding in the other

direction (for example, if C(S3
ω) = C(S3) is commutative but C(S3

ρ) is noncommutative,

because ρ12 is a nontrivial root of unity). However, we can instead form a map from C(S3
ρ)

to a matrix algebra over C(S3
ω). The key is to find matrices over C which satisfy noncom-

mutativity relations from a given parameter matrix. An important example (in arbitrary

dimension) is when C(S2n−1
ρ ) is formed from a parameter matrix ρ of roots of unity, and we

wish to map into a matrix algebra over the commutative sphere C(S2n−1). This idea was

seen in Theorem 2.3.5 and generalized a map from [27].

Lemma 3.1.5. Suppose ρ is an n×n parameter matrix with each entry a root of unity, and

let A1, . . . , An ∈ Uk(C) be the unitaries from Lemma 2.3.4. Then

E : zi 7→ ziAi

defines a unital ∗-homomorphism E : C(S2n−1
ρ )→Mk(C(S2n−1)).

Proof. It is only necessary to check that the matrices ziAi satisfy the relations defining

C(S2n−1
ρ ). First, since Ai is unitary it is simple to check that (ziAi)(ziAi)

∗ and (ziAi)
∗(ziAi)

both equal ziz∗i Ik, so ziAi is normal. The square sum is then
n∑
i=1

(ziAi)(ziAi)
∗ =

n∑
i=1

ziz
∗
i Ik =

Ik. Finally, the noncommutativity conditions on Ai give similar conditions on ziAi.

(zjAj)(ziAi) = zjziAjAi = zizj(ρijAiAj) = ρij(ziAi)(zjAj)
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The mapE induces a homomorphism E∗ betweenK1(C(S2n−1
ρ )) andK1(Mk(C(S2n−1))) ∼=

K1(C(S2n−1)). Since both groups are isomorphic to Z, we seek the integer associated with

E∗ : Z → Z, namely, [E(Zρ(n))]K1(C(S2n−1)). Here E is extended to matrix algebras over

C(S2n−1
ρ ) entrywise.

Definition 3.1.6. For 1 ≤ m ≤ n and d ∈ Z+, let S [d]
m be the set of d × d matrices M

over the commutative sphere C(S2n−1) such that MM∗ = M∗M =

(
m∑
i=1

ziz
∗
i

)
Id. When the

dimension d is understood, S [d]
m will be denoted by Sm. Also, for a fixed d let ∼m denote

the equivalence relation from the partition of Sm = S [d]
m into path components.

Note that S [d]
m is closed under the adjoint operation and under multiplication by d × d

unitaries with scalar entries. Further, because there is a path of unitaries connecting any

U ∈ Ud(C) to the identity, if M ∈ S [d]
m , then M ∼m UM ∼m MU . The following lemma

describes what happens when a block matrix is in S [2d]
m+1.

Lemma 3.1.7. Fix 1 ≤ m ≤ n and d ∈ Z+. If A,B ∈ Ud(C(S2n−1)) and U, V ∈ Ud(C) are

unitaries of dimension d, then

M =

 A zm+1U

z∗m+1V B


is in S [2d]

m+1 if and only if A ∈ S [d]
m and B = −V A∗U .

Proof. Consider the following matrix multiplications and note that the lemma concerns the

commutative sphere, so zm+1 and its adjoint commute with any matrix.

MM∗ =

 AA∗ + zm+1z
∗
m+1Id zm+1(AV ∗ + UB∗)

z∗m+1(V A∗ +BU∗) zm+1z
∗
m+1Id +BB∗
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M∗M =

 A∗A+ zm+1z
∗
m+1Id zm+1(A∗U + V ∗B)

z∗m+1(U∗A+B∗V ) zm+1z
∗
m+1Id +B∗B


If M ∈ S [2d]

m+1, then MM∗ = M∗M =

(
m+1∑
i=1

ziz
∗
i

)
I2d, which in block form is equal to

(
m+1∑
i=1

ziz
∗
i

)
Id 0

0

(
m+1∑
i=1

ziz
∗
i

)
Id

. It follows from the top left blocks of MM∗ and M∗M

that AA∗ = A∗A =

(
m∑
i=1

ziz
∗
i

)
Id. That is, A ∈ S [d]

m . The top right block of MM∗ shows

that zm+1(AV ∗ + UB∗) = 0, and since the complement of the zero set of zm+1 is dense in

S2n−1, this means AV ∗ + UB∗ = 0. Rearranging the unitaries shows B = −V A∗U .

If A ∈ S [d]
m and B = −V A∗U , then A∗A = AA∗ =

(
d∑
i=1

ziz
∗
i

)
Id is central and BB∗ =

V A∗UU∗AV ∗ = V A∗AV = (A∗A)(V V ∗) = A∗A. Similarly, B∗B = AA∗. The diagonal

blocks of MM∗ and M∗M are then
(
d+1∑
i=1

ziz
∗
i

)
Id. Finally, the off-diagonal blocks all vanish

due to B = −V A∗U , and M ∈ S [2d]
m+1.

The above lemma will be useful for an inductive proof regarding the relation ∼m and the

recursive definition of Zρ(n).

Lemma 3.1.8. Suppose ρ is a parameter matrix of roots of unity and the expansion map

E : C(S2n−1
ρ ) → Mk(C(S2n−1)) is defined as in Lemma 3.1.5 for unitaries Ai of dimension

k× k. Also, extend E to matrix algebras over C(S2n−1
ρ ) by entrywise application. If F is an

invertible matrix over C(S2n−1
ρ ), then [E(F )]K1(C(S2n−1)) = k · [F ]K1(C(S2n−1

ρ )).

Proof. It is only necessary to check the result on the K1 generator, namely, to check that

[E(Zρ(n))]K1(C(S2n−1)) = k. First, for 1 ≤ m ≤ n, the fact that the image of

Zρ(m)Zρ(m)∗ = Zρ(m)∗Zρ(m) =

(
m∑
i=1

ziz
∗
i

)
I2m−1
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under the ∗-homomorphism E is

E(Zρ(m))E(Zρ(m))∗ = E(Zρ(m))∗E(Zρ(m)) =

(
m∑
i=1

ziz
∗
i

)
Ik2m−1

establishes that E(Zρ(m)) ∈ S [k2m−1]
m := Sm. When m = 1,

E(Zρ(1)) = E(z1) = z1A1 ∼1


z1

. . .

z1

 =
k⊕
i=1

Z(1)

as a result of following a path connecting A1 to the identity within Uk(C). Now, for induction

suppose E(Zρ(m)) ∼m
k⊕
i=1

Z(m). The matrix Zρ(m+1) is of the form

 Zρ(m) zm+1D1

−z∗m+1D2 Zρ(m)∗

,
where D1 and D2 are unitary diagonal matrices with scalar entries. If we apply the expansion

map to zm+1D1, the result is a block diagonal matrix whose diagonal blocks are unimodu-

lar scalar multiples of zm+1Am+1. A similar result applies when we expand −z∗m+1D2. We

conclude that

E(Zρ(m+ 1)) =

 E(Zρ(m)) zm+1U

z∗m+1V E(Zρ(m)∗)


for some U, V ∈ Uk2m−1(C). Since E(Zρ(m+ 1)) ∈ Sm+1, Lemma 3.1.7 demands the follow-

ing.

E(Zρ(m)) ∈ Sm

E(Zρ(m)∗) = −V (E(Zρ(m))∗)U

The first of these conditions is already known, and in addition we have assumed that

E(Zρ(m)) ∼m
k⊕
i=1

Z(m), so there is a path φ(t) connecting φ(0) = E(Zρ(m)) to φ(1) =

k⊕
i=1

Z(m) within Sm. In addition, let Ut and Vt denote paths in Uk2m−1(C) connecting U = U0
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to I = U1 and V = V0 to −I = V1. Then the new path

Φ(t) =

 φ(t) zm+1Ut

z∗m+1Vt −Vtφ(t)∗Ut


satisfies Φ(t) ∈ Sm+1. By Lemma 3.1.7 again, Φ(t) demonstrates that Φ(0) = E(Zρ(m+ 1))

is equivalent under ∼m+1 to a particular block matrix.

E(Zρ(m+ 1)) ∼m+1


k⊕
i=1

Z(m) zm+1Ik2m−1

−z∗m+1Ik2m−1

k⊕
i=1

Z(m)∗



=


k⊕
i=1

Z(m)
k⊕
i=1

zm+1I2m−1

−
k⊕
i=1

z∗m+1I2m−1

k⊕
i=1

Z(m)∗


After a reordering of the standard orthonormal basis (which preserves the ∼m+1 relation, as

it applies a conjugation by a unitary matrix over C), this matrix is equivalent under ∼m+1

to
k⊕
i=1

 Z(m) zm+1I2m−1

−z∗m+1I2m−1 Z(m)∗

 =
k⊕
i=1

Z(m+ 1). The induction is complete, so in the end

we reach E(Zρ(n)) ∼n
k⊕
i=1

Z(n). The ∼n relation is just path connectedness within unitary

matrices of a fixed dimension, which in particular implies the two matrices are equivalent in

K1. Finally, [E(Zρ(n))]K1(C(S2n−1)) = k.

For embeddings of θ-deformed spheres into (matrix algebras over) other θ-deformed

spheres, the effect on K-theory is reasonable. Generally speaking, an expansion into k × k

matrices shoud multiply the index by k, and embedding a sphere into a sphere defined by a

finer rotation multiplies the index by a factor related to order, which we have shown for some

special cases. When C(S2n−1
ρ ) is given the antipodal action α : zi 7→ −zi and this action is

extended entrywise to the matrix algebras, E is an equivariant map, because it sends the
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odd generators to matrices with odd entries. Similarly, an embedding between spheres is

equivariant if and only if the powers applied to the generators are all odd. This suggests

that K1 will behave well with respect to the antipodal map α (after all, the generator Zρ(n)

has odd entries). This is established in later sections using a continuity argument to reduce

to the commutative case.

3.2 Continuity in K-Theory

In this section, we show that the K1 generator Zρ(n) for K1(C(S2n−1
ρ )), which is defined

by the ambiguous recurrence relation

Zρ(1) = z1

Zρ(k + 1) :=

 Zρ(k) zk+1D1

−z∗k+1D2 Zρ(k)∗

 (3.2.1)

where D1 and D2 are any diagonal matrices over C which make the resulting matrix satisfy

Zρ(k + 1)Zρ(k + 1)∗ = Zρ(k + 1)∗Zρ(k + 1) = (z1z
∗
1 + . . . zk+1z

∗
k+1)I, may be specified in a

well-defined and continuous way. First, according to [33], regardless of the choices made for

D1 and D2, Zρ(n) will generate K1(C(S2n−1
ρ )). We use a different argument than in [33], and

we may even choose coefficients so that if z1, . . . , zm generate a (2m − 1)-sphere C(S2m−1
ω )

with the same noncommutativity relations as the first m generators z1, . . . , zm of C(S2n−1
ρ ),

n > m, then Zρ(k) = Zω(k) (as formal ∗-monomial matrices) for all k between 1 and m.

First, we demand that any 3-sphere given by z2z1 = ρ12z1z2 must have the following K1

generator.

Zρ(2) =

 z1 z2

−ρ21z
∗
2 z∗1

 =

 z1 z2

−ρ12z
∗
2 z∗1
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Together with the convention Zρ(1) = z1, this makes a consistent, continuous choice

for all 1 and 3-dimensional spheres, and that choice is compatible with extending a list of

generators (z1 alone) to form a larger sphere (in z1 and z2). Now, for induction we suppose

we have achieved the same for all spheres of dimension up to 2(n− 1)− 1 = 2n− 3. If ρ is

an n× n parameter matrix, then Zρ(n− 1) has been specified continuously by the inductive

assumption, with upper left block Zρ(n − 2) and diagonal unitaries G1 and G2 over C, as

follows.

Zρ(n− 1) =

 Zρ(n− 2) zn−1G1

−z∗n−1G2 Zρ(n− 2)∗

 (3.2.2)

Next, form a matrix minor ω of ρ by removing row and column n − 1, so the sphere

C(S2n−3
ω ) may be given with generators relabeled as z1, . . . , zn−2, zn. Note that as formal

∗-polynomial matrices, Zω(n− 2) = Zρ(n− 2), as the relations on the first n− 2 generators

are the same. By the inductive assumption, diagonal unitary matrices D1 and D2 over C

are specified (and vary continuously in parameter) to form Zω(n− 1) from Zω(n− 2).

Zω(n− 1) =

 Zω(n− 2) znD1

−z∗nD2 Zω(n− 2)∗

 =

 Zρ(n− 2) znD1

−z∗nD2 Zρ(n− 2)∗

 (3.2.3)

The off-diagonal block entries of Zω(n− 1)Zω(n− 1)∗ = (z1z
∗
1 + . . .+ zn−2z

∗
n−2 + znz

∗
n)I

show that

Zρ(n− 2)(−znD∗2) + znD1Zρ(n− 2) = 0

and the equivalent equation

Zρ(n− 2)zn = D1znZρ(n− 2)D2 (3.2.4)

are constraints for D1 and D2, which vary continuously with ω (and therefore also with ρ).
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The reverse order of multiplication, Zω(n− 1)∗Zω(n− 1) = (z1z
∗
1 + . . .+ zn−2z

∗
n−2 + znz

∗
n)I,

then provides

Zρ(n− 2)∗(znD1) + (−znD∗2)Zρ(n− 2)∗ = 0

and the equivalent equation

Zρ(n− 2)∗zn = D∗2znZρ(n− 2)∗D∗1 (3.2.5)

as additional constraints.

To form a matrix which satisfies similar equations in the next dimension up, let F1 =

D1 ⊕ ρn−1,nD
∗
2 and F2 = D2 ⊕ ρn,n−1D

∗
1 = D2 ⊕ ρn−1,nD

∗
1. The matrices Gi and Dj of

(3.2.2) and (3.2.3) are diagonal with scalar entries, so they commute. We may then compute

Zρ(n− 1)zn using equations (3.2.4) and (3.2.5).

Zρ(n− 1)zn =

 Zρ(n− 2) zn−1G1

−z∗n−1G2 Zρ(n− 2)∗

 zn =

 Zρ(n− 2)zn zn−1G1zn

−z∗n−1G2zn Zρ(n− 2)∗zn



=

 D1znZρ(n− 2)D2 ρn,n−1znzn−1G1

−ρn−1,nznz
∗
n−1G2 D∗2znZρ(n− 2)∗D∗1



= (D1 ⊕ ρn−1,nD
∗
2)

zn
 Zρ(n− 2) zn−1G1

−z∗n−1G2 Zρ(n− 2)∗


 (D2 ⊕ ρn,n−1D

∗
1)

= F1(znZρ(n− 1))F2

A nearly identical computation applies to Zρ(n− 1)∗zn.

Zρ(n− 1)∗zn =

 Zρ(n− 2)∗ −zn−1G
∗
2

z∗n−1G
∗
1 Zρ(n− 2)

 zn =

 Zρ(n− 2)∗zn −zn−1G
∗
2zn

z∗n−1G
∗
1zn Zρ(n− 2)zn
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=

 D∗2znZρ(n− 2)∗D∗1 −ρn,n−1znzn−1G
∗
2

ρn−1,nznz
∗
n−1G

∗
1 D1znZρ(n− 2)D2



= (D∗2 ⊕ ρn−1,nD1)

zn
 Zρ(n− 2)∗ −zn−1G

∗
2

z∗n−1G
∗
1 Zρ(n− 2)


 (D∗1 ⊕ ρn,n−1D2)

= F ∗2 (znZρ(n− 1)∗)F ∗1

Finally, these equations ensure that we can define

Zρ(n) :=

 Zρ(n− 1) znF1

−z∗nF2 Zρ(n− 1)∗


so that Zρ(n)Zρ(n)∗ = Zρ(n)∗Zρ(n) =

(
n∑
i=1

ziz
∗
i

)
I = I. The matrices Fi depend continu-

ously on the entries of ρ, completing the induction. The result is summarized in the following

proposition.

Proposition 3.2.6. If ρ is an n × n parameter matrix and 1 ≤ k ≤ n, then there is a

formal ∗-monomial matrix Zρ(k) (given recursively as above) of dimension 2k−1×2k−1 whose

coefficients vary continuously in ρ. This matrix satisfies Zρ(k)Zρ(k)∗ = Zρ(k)∗Zρ(k) =

(z1z
∗
1 + . . . zkz

∗
k)I. If ω is another parameter matrix (perhaps of different dimension) whose

upper left k × k submatrix agrees with that of ρ, then Zω(k) and Zρ(k) are equal as formal

∗-monomial matrices. Moreover, Zρ(n) gives a generator of the cyclic group K1(C(S2n−1
ρ )).

From now on, any mention of Zρ(k) will refer to this single, continuous choice of coeffi-

cients, as in the previous proposition.

Example 3.2.7. Consider a 5-sphere with parameter matrix ρ such that z2z1 = αz1z2,

z3z1 = βz1z3, and z3z2 = γz2z3. We know that the 3-sphere with generators z1 and z2 will
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have the matrix

Zρ(2) =

 z1 z2

−αz∗2 z∗1


as a K1 generator, so this will be a building block for Zρ(3). Now consider the 3-sphere

whose generators follow the same relations as z1 and z3. Its K1 generator

 z1 z3

−βz∗3 z∗1


is formed from Zρ(1) = z1 using diagonal matrices D1 = [1] in the upper right and D2 = [β]

in the lower left. This allows us to form F1 = D1⊕γD∗2 =

 1 0

0 γβ

 and F2 = D2⊕γD∗1 =

 β 0

0 γ

, giving
Zρ(3) =

 Zρ(2) z3F1

−z∗3F2 Zρ(2)∗



=



z1 z2 z3 0

−αz∗2 z∗1 0 γβz3

−βz∗3 0 z∗1 −αz2

0 −γz∗3 z∗2 z1


as the K1 generator for C(S5

ρ). One can verify that the noncommutativity relations above

and the adjoint versions (z∗2z1 = αz1z
∗
2 , etc.) give that Zρ(3) is, in fact, unitary.

The algebras C(S2n−1
ρ ) are obtained as Rieffel deformations C(S2n−1)J , so for any fixed n×

n antisymmetric J , (C(S2n−1)tJ)t∈[0,1] forms a continuous field of C∗-algebras ([44], Theorem

8.13). Existence of a continuous choice of K1 generators Zρ(n) is consistent with Theorem

1.4.12, a theorem of Sangha that concerns one-directional continuity in Rieffel deformations.
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3.3 Odd Dimension

One version of the Borsuk-Ulam theorem insists that if f : Sk → Sk is an odd, continuous

function, then f is homotopically nontrivial, and more specifically, the degree of f on top

cohomology is odd. Oddness of the function f means that f(−~x) = −f(~x); in other words,

f is equivariant for the antipodal Z2 action. For the odd case k = 2n − 1, the K1 group

of C(S2n−1) is cyclic and contains information on the top cohomology of S2n−1 via the odd

Chern character. The Chern character is natural (see (1.3.11)) and an isomorphism, so the

Borsuk-Ulam theorem translates as follows.

Theorem 3.3.1 (Odd Dimension Borsuk-Ulam). If Φ : C(S2n−1) → C(S2n−1) is a unital

∗-homomorphism that is equivariant for the antipodal Z2 action α : zi 7→ −zi, then φ∗ :

K1(C(S2n−1)) → K1(C(S2n−1)) is nontrivial, as under the isomorphism K1(C(S2n−1)) ∼= Z,

φ∗ is multiplication by an odd integer.

Our goal is to extend the above theorem to the θ-deformed spheres, after which we will

consider more general actions and the even-dimensional case. If Φ : C(S2n−1
ρ )→ C(S2n−1

ω ) is a

unital ∗-homomorphism that is equivariant for the antipodal ∗-homomorphism α : zi 7→ −zi,

then in particular it sends the K1 generator Zρ(n), which has each entry a multiple of zi or

z∗i , to a matrix Φ(Zρ(n)) which is odd in each entry. This implies that Zω(n)∗ · Φ(Zρ(n))

is a 2n−1 × 2n−1 matrix of even elements. If we assume that every invertible matrix with

even entries is represented by an even integer in K1, then we can conclude that Φ(Zρ(n))

corresponds to an odd integer in K1 and is therefore nontrivial. In other words, we conclude

that Φ∗ is nontrivial on K1. Note that the Z2 action α does not change the K1 class of an

invertible matrix, as verified by checking on the K1 generator Zρ(n). This matrix satisfies

α(Zρ(n)) = −Zρ(n), which is K1-equivalent to Zρ(n) by scaling −1 to 1 within the nonzero

constants. In other words, α is orientation preserving.
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Lemma 3.3.2. If F is an invertible matrix over C(S2n−1
ρ ) and each entry of F is even, then

the K1 class of F is an even multiple of the generator.

Proof. Consider the fixed point subalgebra C(S2n−1)α of the commutative sphere and the

ideal J of even functions which vanish on an equator X. Then part of the six-term exact

sequence of K-theory is

K1(J)→ K1(C(S2n−1)α)→ K1(C(X)α)

where C(X) is given the restricted antipodal action also denoted by α, forming the fixed

point subalgebra C(X)α. Now, the equator X is homeomorphic to S2n−2, and C(X)α is

isomorphic to C(RP2n−2), which has trivial K1 group ([1], Proposition 2.7.7). Therefore,

the map K1(J)→ K1(C(S2n−1)α) is surjective. This implies that every unitary matrix V of

even functions in C(S2n−1) may be stably connected within the unitaries to a matrix of even

functions that assigns the identity on X. Such a function U may be written as a commuting

product U = F ·G where F assigns the identity on one side of X, and G assigns the identity

on the other half. Moreover, α(F ) = G, so F and G are in the same class of K1(C(S2n−1)).

This implies that U (and therefore also V ) is represented by an even integer in K1(C(S2n−1)).

The antipodal action on the commutative sphere commutes with the Rn action of coor-

dinatewise rotation that defines C(S2n−1
ρ ) ∼= C(S2n−1)J for a suitable antisymmetric J . As

such, the fixed point subalgebra C(S2n−1)Z2 is itself Rn-equivariant, and we may form its

Rieffel deformation (C(S2n−1)Z2)J . From the inclusion map ι : C(S2n−1)α → C(S2n−1) we

reach the following commutative diagram of Corollary 1.4.13.

K1(C(S2n−1)α) K1((C(S2n−1)α)J)

K1(C(S2n−1))) K1(C(S2n−1)J)

ι∗

∼=

∼=

(ιJ)∗
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All of the groups above are Z; Rieffel deformations preserveK-theory, K1(C(S2n−1)) ∼= Z,

and K1(C(S2n−1)α) ∼= K1(C(RP2n−1)) ∼= Z ([1], Proposition 2.7.7). Since ι∗ has range 2Z,

(ιJ)∗ must also have range 2Z. On the other hand, ιJ is the inclusion map of C(S2n−1
ρ )α

into C(S2n−1
ρ ), so the K1(C(S2n−1)) of any invertible matrix F over C(S2n−1

ρ )α is an even

integer.

This theorem is enough to determine the possible K1 classes of odd unitaries, based solely

on their dimension.

Corollary 3.3.3. Suppose U ∈ Uk(C(S2n−1
ρ )) is a unitary with odd entries. Then k decom-

poses as k = (2m+ 1)2q where q ≥ n− 1. Further, if q = n− 1, then [U ]K1 is an odd integer,

and if q ≥ n, then [U ]K1 is an even integer.

Proof. First, suppose U has dimension k = (2m+1)2n−1, and let V =
2m+1⊕
i=1

Zρ(n), which has

odd entries, has [V ]K1 = 2m+1, and is of the same dimension as U . Then UV is a matrix of

even entries, so [UV ]K1 = [U ]K1 + [V ]K1 = [U ]K1 + (2m+ 1) is an even integer. This implies

that [U ]K1 is odd.

Next, suppose U has dimension k = (2m+ 1)2q for q ≥ n. Then consider W =
2q−(n−1)⊕
i=1

V ,

where V is defined as above. Then W has the same dimension as U , has odd entries, and

has [W ]K1 = 2q−(n−1)(2m+ 1), an even integer. Since UW has even entries, [UW ]K1 is again

even and equal to [U ]K1 + [W ]K1 , so [U ]K1 is even.

Finally, suppose U has dimension k = (2m+ 1)2q for q ≤ n− 2. Then X =
2n−1−q⊕
i=1

U has

odd entries and dimension (2m+ 1)2n−1, but [X]K1 = 2n−1−q[U ]K1 is even. This contradicts

the first paragraph of the proof.

Corollary 3.3.4. Suppose a unital ∗-homomorphism Φ : C(S2n−1
ρ ) → C(S2n−1

ω ) maps be-

tween two θ-deformed spheres of the same odd dimension. If Φ is equivariant for the antipodal

maps, then Φ induces a nontrivial map on K1. More precisely, Φ∗ : Z→ Z is multiplication

by an odd integer.
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Proof. The K1 generator Zρ(n) is of dimension 2n−1× 2n−1 and has odd entries, so the same

applies to Φ(Zρ(n)). Therefore, [Φ(Zρ(n))]K1 is an odd (hence nonzero) integer.

Remark. In [49], Taghavi asks if equivariant homomorphisms on noncommutative spheres

have to be homomotopically nontrivial. This corollary gives a positive answer for θ-deformed

spheres of odd dimension. A more general formulation will be considered in the next chapter.

This noncommutative Borsuk-Ulam theorem shows that maps between θ-deformed odd

spheres behave in much the same way as maps between topological spheres with respect to the

standard Z2 action. The following corollary also places restrictions on maps between spheres

and matrix algebras over spheres. Recall that in Lemma 3.1.5, an expansion map E between

C(S2n−1
ρ ) and Mq(C(S2n−1)) was defined, which placed noncommutativity information from

the generators of C(S2n−1
ρ ) (where ρ consists of roots of unity) onto q × q matrices with

complex entries. The map E can be defined in a similar fashion even when the matrix

algebra Mq(C(S2n−1)) is replaced with a θ-deformation Mq(C(S2n−1
ω )), and ρ is no longer

required to have entries of finite order; the map makes sense so long as the matrix expansion

zi 7→ ziVi is compatible with the noncommutativity relations. Regardless of the dimension

q, E is equivariant for the antipodal maps, as it sends odd generators to matrices with odd

entries. On the other hand, a reverse order map cannot always happen.

Theorem 3.3.5. Suppose q ∈ 2Z. Then if ψ : Mq(C(S2n−1
ρ )) → C(S2n−1

ω ) is a unital

∗-homomorphism, ψ is not equivariant for the antipodal maps.

Proof. Suppose ψ is equivariant. Define a map φ : C(S2n−1
ρ ) → Mq(C(S2n−1

ρ )) by φ(g) =

g

g

. . .

g


. Then φ is a unital ∗-homomorphism that is equivariant for the antipodal

maps, and moreover φ(Zρ(n)) is unitarily equivalent to q copies of Zρ(n). It follows that
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ψ ◦ φ : C(S2n−1
ρ ) → C(S2n−1

ω ) is also equivariant, and ψ(φ(Zρ(n))) ∼K1 ψ

(
q⊕
i=1

Zρ(n)

)
∼K1

q⊕
i=1

ψ(Zρ(n)) represents an even integer in K1, contradicting Corollary 3.3.4.

Now, just as the antipodal map α on the noncommutative sphere C(S2n−1
ρ ) supplies a

Z2 action which generalizes the topological antipodal map (z1, . . . , zn) 7→ (−z1, . . . ,−zn) on

S2n−1, there is nothing stopping us from defining a similar map for higher order rotations

on each coordinate zi. Let β1, . . . , βn be primitive kth roots of unity, k ≥ 2. Then there is a

unital ∗-homomorphism

R : C(S2n−1
ρ )→ C(S2n−1

ρ ) (3.3.6)

zi 7→ βizi

which generalizes coordinatewise rotation (with the same finite order on each coordinate)

on the sphere S2n−1. Again, R exists due to the fact that the elements βizi satisfy relations

defining C(S2n−1
ρ ) as a universal C∗-algebra, and this action is again just a remnant of

the Rn rotation action which deforms C(S2n−1). The K1 generator Zρ(n) is usually not

homogeneous for R; the entries are all homogeneous, but the homogeneity class changes

by entry. This differs from the Z2 case, in which we could simply observe that each entry

was odd. However, a quick inductive argument on the recursive definition Zρ(1) = z1,

Zρ(k+ 1) =

 Zρ(k) zk+1D1

−z∗k+1D2 Zρ(k)∗

 shows that independent of ρ, there are diagonal unitary

matrices A and B over C with Ak = Bk = I for which

R(Zρ(n)) = AZρ(n)B (3.3.7)

holds. These matrices encode the homogeneity classes of the different entries of Zρ(n). Fur-

ther, since A and B have scalar entries, R(Zρ(n)) and Zρ(n) are equivalent in K1(C(S2n−1
ρ )).

It follows that R preserves the K1 class of any invertible matrix. As usual, we have extended
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R to matrix algebras by entrywise application.

Because Zρ(n) does not have consistent homogeneity among its entries, it is not immedi-

ately clear how to start with an arbitrary unital ∗-homomorphism Φ : C(S2n−1
ρ )→ C(S2n−1

ω )

which respects a rotation and form an element that is fixed by the same rotation. This was

the main trick of the previous results: if Φ respects the antipodal map, then since Zρ(n) and

Zω(n) are odd, Zω(n)∗ · Φ(Zρ(n)) is even. Equation (3.3.7) includes a matrix multiplication

on both sides, so R(Zω(n)∗ · Φ(Zρ(n))) = B∗Zω(n)∗Φ(Zρ(n))B, and there is still a scalar

matrix conjugation present. Because of this complication, we should examine the fixed point

subalgebras of the various actions

RU : M 7→ U∗R(M)U

for unitaries U ∈ Ud(C) whose orders divide k (the order of R). When U is fixed, but we

wish to increase the dimension of M , we allow M ∈ Mqd(C(S2n−1
ρ )) and let RU act on each

d× d block, or equivalently apply a conjugation by a diagonal block matrix of q copies of U .

RU : M 7→

(
q⊕
i=1

U∗

)
R(M)

(
q⊕
i=1

U

)

It is not hard to show that for large q, there is a qd × qd invertible matrix, fixed by

RU , whose class in K1(C(S2n−1)) ∼= Z is represented by k. First, take a K1 generator

G = Z(n) ⊕ I of size qd × qd, scale G by a unitary matrix over C to assign the identity

matrix at a pole, and then form a continuous path of invertibles that starts with G and ends

with a matrix H that assigns the identity outside of a small neighborhood of the opposite

pole. If the neighborhood is small enough that it does not intersect any of its images under

the Zk rotation R, then the product G · RU(G) · · ·RU
k−1(G) will commute and produce an

RU -invariant matrix with K1 class equal to k ∈ Z. This matches with our intuition from the

antipodal map, where even invertibles were assigned even integers.
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Lemma 3.3.8. If U ∈ Ud(C) is a scalar unitary whose order divides k (the order of the

rotation R), and M ∈ GLd(C(S2n−1)) is an invertible matrix over the commutative sphere

with RU(M) = M , then the K1(C(S2n−1)) class of M is in kZ. Further, the fixed point

subalgebra Md(C(S2n−1))RU has K1 group isomorphic to Z.

Proof. Let Xn = {(z1, . . . , zn) ∈ S2n−1 : zn = 0 or
(
zn
|zn|

)k
= 1}, so X1 is a finite set and Xn,

n ≥ 2, is a union of k closed balls B2n−2 which intersect only on their boundaries. In any

case, Xn is an invariant set for any kth order coordinate rotation. Let Jn denote the ideal

of the fixed point subalgebra Md(C(S2n−1))RU that consists of matrix functions vanishing

on Xn. Now, Jn is isomorphic to C0(B2n−1), since S2n−1 \ Xn is k disjoint copies of B2n−1

which are orbits of a single ball under R. This produces an exact sequence from part of the

six-term sequence for Jn.

K1(C0(B2n−1))
ψ−→ K1(Md(C(S2n−1))RU )→ K1(Md(C(Xn))RU ) (3.3.9)

We induct on the claim that the final group K1(Md(C(Xn))RU ) in the sequence is trivial.

For the base case n = 1, this is trivial for all choices of R and U (of appropriate order)

because X1 has k points, and invariant functions on X1 are determined by values at only one

point. Now, whenever we know the final group of (3.3.9) is trivial, this implies the first map

ψ is surjective, and K1(Md(C(S2n−1))RU ) is the surjective image of a cyclic group, making it

cyclic as well. Any image of ψ may always be written in the form of a commuting product

G · RU(G) · · ·RU
k−1(G), where G assigns the identity matrix on all but one component of

S2n−1 \Xn. All elements of the product are K1(C(S2n−1))-equivalent, meaning the product’s

class in K1(C(S2n−1)) must lie in kZ. If q is chosen such that qd ≥ 2n−1, there is always

an example of a qd × qd matrix M which is RU -invariant, invertible, and represented by

k 6= 0 in K1(C(S2n−1)) ∼= Z, so this implies that the induced map K1(Md(C(S2n−1))RU ) →

K1(C(S2n−1)) from inclusion is an injective map between infinite cyclic groups, with image
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exactly kZ.

To complete the induction, assume for a fixed n that the final group of (3.3.9) is trivial

for all coordinate rotations and unitaries U of the appropriate order. Let S be a rotation on

C(S2n+1) of order k ≥ 2, with R denoting the rotation on C(S2n−1) obtained from restricting

S via the inclusion (z1, . . . , zn) 7→ (z1, . . . , zn, 0). Note that sinceXn+1 is the union of k copies

of B2n which overlap only on their boundaries, it follows that Md(C(Xn+1))SU is isomorphic

to {F ∈ Md(C(B2n)) : F |S2n−1 is invariant under RU}. Again, examine part of a six term

sequence.

K1(C0(B2n))→ K1(Md(C(Xn+1))SU )
φ−→ K1(Md(C(S2n−1))RU )

The inductive assumption shows that the final group is infinite cyclic and has an injective

image into K1(C(S2n−1)) via the inclusion map. This immediately implies that φ is trivial, as

every image of φ comes from the boundary data of a function on B2n. Since K1(C0(B2n)) is

also trivial, it follows that K1(Md(C(Xn+1))SU ) is trivial, and the induction is complete.

The above lemma is what one would expect given the Z2 case, where the additional

conjugation by U is treated as merely a technical annoyance. If U is the identity matrix,

the computations include terms for the odd K-theory of lens spaces. Moreover, the role of

functions on a closed ball with boundary symmetry is somewhat reminiscent of the discussion

in section 6.2 of [28] (which proves a generalization from [18] of the Borsuk-Ulam theorem

to other free actions by groups on Sk), although the context and conclusions are different.

Theorem 3.3.10. If U ∈ Ud(C) is a scalar unitary whose order divides k (the order of the

rotation R), and M ∈ GLd(C(S2n−1
ρ )) is an invertible matrix with RU(M) = M , then the

K1(C(S2n−1
ρ )) class of M is in kZ.

Proof. The action RU commutes with the Rn action of entrywise rotation on Md(C(S2n−1)),

so we may deform the fixed point subalgebra Md(C(S2n−1))RU using the restricted action.
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With the previous lemma establishing the commutative case, the proof is identical to that

of Lemma 3.3.2.

The unitary conjugation present in this section’s results serves to solve the following

dilemma. For rotations of order k > 2, the K1 generator of the noncommutative sphere

is not homogeneous, so when we consider a homomorphism Φ between two spheres, it is

difficult to construct a matrix fixed by R.

Corollary 3.3.11. Suppose a unital ∗-homomorphism Φ : C(S2n−1
ρ ) → C(S2n−1

ω ) satisfies

R ◦ Φ = Φ ◦ R. Here R (on either sphere) denotes a rotation map defined in (3.3.6) for the

same list of primitive kth roots of unity β1, . . . , βn, where k ≥ 2. Then Φ∗ is nontrivial on

K1. Specifically, it is given by multiplication by an integer in kZ + 1.

Proof. Equation (3.3.7) gives that R(Zρ(n)) = AZρ(n)B and R(Zω(n)) = AZω(n)B, where

A and B are diagonal unitaries with scalar entries that do not change with the sphere

parameter, and further Ak = Bk = I. Since Φ is a unital ∗-homomorphism and respects the

rotation maps, this implies that

R(Zω(n)∗ · Φ(Zρ(n))) = R(Zω(n))∗ · Φ(R(Zρ(n)))

= (AZω(n)B)∗ · Φ(AZρ(n)B)

= B∗Zω(n)∗A∗ · AΦ(Zρ(n))B

= B∗(Zω(n)∗ · Φ(Zρ(n)))B

and Zω(n)∗ ·Φ(Zρ(n)) is fixed by the operation RB∗ : M 7→ BR(M)B∗. Since B∗ is a unitary

over C with B∗k = I, by the previous theorem the K1 class of Zω(n)∗ · Φ(Zρ(n)) is in kZ.

Finally, the K1 class of Φ(Zρ(n)) is congruent to 1 mod k.

The above corollary is a noncommutative version of the following fact: if β1, . . . , βn are

primitive kth roots of unity (k ≥ 2), and f : S2n−1 → S2n−1 is continuous and respects
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the rotation (z1, . . . , zn) 7→ (β1z1, . . . , βnzn), then f is homotopically nontrivial. Just as in

the Z2 case, there is a consequence regarding spheres of different dimensions. Specifically,

there exists no g : S2n−1 → S2n−3 which is continuous and equivariant for the coordinatewise

rotations sending (z1, . . . , zn) to (β1z1, . . . , βnzn) and (z1, . . . , zn−1) to (β1z1, . . . , βn−1zn−1).

This result is only necessary to state when k is an odd prime (which gives the result when k is

not prime, but has an odd prime divisor), as we have already stated the usual Borsuk-Ulam

theorem for k = 2. In [50], Z. Tang showcases a proof of this topological result using the

reduced K-theory of lens spaces; in contrast, our proofs in the noncommutative setting work

entirely with K1. The nonexistence of equivariant g : S2n−1 → S2n−3 can also be shown using

homology; see [26] for this type of approach (and a generalization). The analogous result on

θ-deformed spheres is as follows.

Corollary 3.3.12. Suppose k ≥ 2 and β1, . . . , βn are primitive kth roots of unity. If Ψ :

C(S2n−3
ω ) → C(S2n−1

ρ ) is a unital ∗-homomorphism, then R ◦ Ψ 6= Ψ ◦ R′, where R denotes

the rotation map for β1, . . . , βn and R′ denotes the rotation map for the first n− 1 of these

scalars β1, . . . , βn−1.

Proof. Suppose Ψ satisfies R ◦ Ψ = Ψ ◦ R′. Choose an n × n parameter matrix Ω which

contains ω in the upper left, and let π : C(S2n−1
Ω ) → C(S2n−3

ω ) be the map defined by

zi 7→ zi for i ≤ n − 1 and zn 7→ 0. The map π is K1-trivial because π(ZΩ(n)) = Zω(n− 1) 0

0 Zω(n− 1)∗

, which is equivalent inK1(C(S2n−3
ω )) to Zω(n−1)Zω(n−1)∗ = I,

the trivial element. Moreover, the homogeneity classes of π(zi) show that R′ ◦ π = π ◦ R,

so Φ = Ψ ◦ π : C(S2n−1
Ω ) → C(S2n−1

ρ ) is K1-trivial and has Φ ◦ R = R ◦ Φ. This contradicts

Corollary 3.3.11.

If k = 2, this is not the full strength of the Borsuk-Ulam theorem, which is instead found

in Corollary 3.4.8. Similarly, if k is even, equivariant maps for order k rotations are also
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equivariant for the antipodal map, so the antipodal results are often preferable. However, if

k is odd, the map R on C(S2n−1
ρ ) relies heavily on the complex coordinates zi, so the results

cannot be stated using the even dimensional spheres. In this sense both Corollary 3.3.11 and

Corollary 3.3.12 may be viewed as full-strength noncommutative Zk Borsuk-Ulam theorems

when k is odd.

3.4 Even Dimension

The even-dimensional θ-deformed spheres C(S2n
ρ ) can be defined as a quotient of certain

odd-dimensional spheres, but this also gives them their own presentation. If ρ is an n × n

parameter matrix, then C(S2n
ρ ) is generated by z1, . . . , zn, x satisfying the following relations.

zjz
∗
j = z∗j zj x = x∗

zkzj = ρjkzjzk xzj = zjx

x2 + z1z
∗
1 + z2z

∗
2 + . . .+ znz

∗
n = 1

The presence of the central, self-adjoint generator x is reflected in the fact that the Rn/Zn

action on C(S2n) defining its θ-deformations ignores the final coordinate on S2n. The K-

theory of C(S2n
θ ) also matches that of the commutative sphere, as θ-deformation preserves

K-theory. This can be seen from the generators and relations in [36]; see also [13] and [12]

for further discussion of these algebras.

K0(C(S2n
ρ )) ∼= Z2 K1(C(S2n

ρ )) ∼= {0}

As noted by D
‘
abrowski in [14], the generator x may be used to write C(S2n

ρ ) as a space

of paths into C(S2n−1
ρ ), forming an algebra known as the unreduced suspension. Chapter 4

investigates this topic further and proves a conjecture from [14]. Because we will need to use
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a similar idea for odd dimension, below are two lemmas defining isomorphisms with function

algebras; these types of examples have undoubtedly been known since early results on Rieffel

deformations.

Lemma 3.4.1. Let C(Tn+1
ρ ) be a quantum torus such that Un+1 is central. If ω is the top

left n×n minor of ρ, then C(Tn+1
ρ ) is isomorphic to the C∗-algebra C(S1, C(Tnω)), which has

pointwise operations.

Proof. Let S1, . . . , Sn ∈ C(S1, C(Tnω)) be defined by Si(eiθ) = Ui, and let Sn+1 ∈ C(S1, C(Tnω))

be defined by Sn+1(eiθ) = eiθ. Then these n+1 elements are unitary and satisfy the relations

in the presentation of C(Tn+1
ρ ), so there is a ∗-homomorphism ψ : C(Tn+1

ρ )→ C(S1, C(Tnω))

defined by ψ(Ui) = Si, which will turn out to be an isomorphism.

Define a trace on C(S1, C(Tnω)) by tr(f) = 1
2π

2π∫
0

τn(f(eiθ)) dθ, where τn is the usual trace

of C(Tnω). Now, if τn+1 denotes the usual trace of C(Tn+1
ρ ), then tr ◦ ψ = τn+1, as seen by

checking on ∗-polynomials of the generators. Since τn+1 is a continuous, positive, faithful

trace, ψ must be injective, as otherwise there would be a nonzero a ∈ C(Tn+1
ρ ) such that

ψ(a) = 0 = ψ(aa∗) and τn+1(aa∗) = tr(ψ(aa∗)) = tr(0) = 0.

To show ψ is surjective, it suffices to show that ψ has dense range, as every injective

∗-homomorphism between C∗-algebras is norm-preserving and therefore has closed range. If

f ∈ C(S1, C(Tnω)) is of the form eiθ 7→
∑
finite

fm(eiθ)Um1
1 . . . Umn

n where fm(eiθ) is scalar-valued

and has an absolutely convergent Fourier series for each m ∈ Zn, then f ∈ Ran(ψ). Any

f ∈ C(S1, C(Tnω)) may be approximated by continuous functions from S1 to C(Tnω) which

are piecewise linear in the angular variable θ and whose values on a prescribed finite set are

∗-polynomials. These may be decomposed into the form
∑
finite

fm(eiθ)Um1
1 . . . Umn

n where the

scalar functions fm are continous and piecewise linear (in θ), meaning they satisfy a Lipschitz

condition and have absolutely convergent, therefore uniformly convergent, Fourier series by

[25], Theorem 6.3. Finally, this implies that the closed set Ran(ψ) is dense (as it contains

these finite sums), and therefore ψ is surjective.
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Because the θ-deformed sphere C(S2n−1
ω ) is isomorphic to the set of continuous functions

f from Sn−1
+ = {(t1, . . . , tn) ∈ Rn : ti ≥ 0 and t21 + . . . t2n = 1} to C(Tnω) satisfying the

boundary condition f(~t ) ∈ C∗(U1, . . . Ui−1, Ui+1, . . . , Un) whenver ti = 0, a similar lemma

holds for spheres.

Lemma 3.4.2. If C(S2n+1
ρ ) is such that zn+1 is central, and ω is the top-left n× n minor of

ρ, then C(S2n+1
ρ ) is isomorphic to the following C∗-algebra with pointwise operations.

Dρ = {f ∈ C(D, C(S2n−1
ω )) : for all w ∈ ∂D, f(w) ∈ C}

Proof. Let Ci ∈ Dρ be defined by Ci(w) =
√

1− |w|2zi for i ∈ {1, . . . , n} and by Cn+1(w) =

w. The functions Ci satisfy the relations demanded by the generators of C(S2n+1
ρ ), so there

is a ∗-homomorphism φ : C(S2n+1
ρ ) → Dρ defined by φ(zi) = Ci, which will have an inverse

and therefore be an isomorphism.

If f ∈ Dρ, then for each w ∈ D, f(w) ∈ C(S2n−1
ω ) may be realized as a continuous function

from Sn−1
+ to C(Tnω) satisfying boundary conditions. Define F : Sn+ → C(S1, C(Tnω)) ∼=

C(Tn+1
ρ ), where F represents an element of C(S2n+1

ρ ) and a candidate for φ−1(f), as follows.

F (t1, . . . , tn+1) : eiθ ∈ S1 7→ f(tn+1e
iθ)

[
t1√

1− t2n+1

, . . . ,
tn√

1− t2n+1

]

The first point to be checked is that this function is well-defined. When tn+1 = 1, f(eiθ)

is a scalar in C(S2n−1
ω ) and therefore is a constant function on Sn−1

+ . For each individual

choice of (t1, . . . , tn+1), including the special case (0, . . . , 0, 1), F (t1, . . . , tn+1) is a continuous

function of eiθ ∈ S1 with image in C(Tnω) because f is by definition (uniformly) continuous.

Further, F (t1, . . . , tn+1) varies uniformly continuously in (t1, . . . , tn+1) away from the remov-

able singularity, and the following inequality demonstrates continuity near (0, . . . , 0, 1). This

inequality, valid for (t1, . . . , tn+1) 6= (0, . . . , 0, 1), relies on the fact that if w ∈ ∂D, then f(w)

81



is a scalar, or a constant function, and can therefore be evaluated at any input point.

∣∣∣∣∣
∣∣∣∣∣f(tn+1e

iθ)

[
t1√

1− t2n+1

, . . . ,
tn√

1− t2n+1

]
− f(eiθ)

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣f(tn+1e

iθ)

[
t1√

1− t2n+1

, . . . ,
tn√

1− t2n+1

]
− f(eiθ)

[
t1√

1− t2n+1

, . . . ,
tn√

1− t2n+1

]∣∣∣∣∣
∣∣∣∣∣ ≤

||f(tn+1e
iθ)− f(eiθ)||

Finally, uniform continuity of f and this inequality show that F also varies continu-

ously at (0, . . . , 0, 1). Further, F satisfies the desired boundary conditions: when tn+1 = 0,

F (t1, . . . , tn+1) is independent of θ, and when ti = 0 for some i ≤ n, the range values of

F (t1, . . . , tn+1) exclude Ui terms by the boundary conditions on C(S2n−1
ω ). This means that

under the isomorphism C(S1, C(Tnω)) ∼= C(Tn+1
ρ ), F represents a unique element of C(S2n+1

ρ ).

The assignment ψ : f ∈ Dρ 7→ F ∈ C(S2n+1
ρ ) is a ∗-homomorphism, and ψ is injective; if

two functions f, g ∈ Dρ disagree at some point, then their corresponding functions from Sn+

to C(S1, C(Tnω)) ∼= C(Tn+1
ρ ) disagree at some point, and ψ(f), ψ(g) ∈ C(S2n+1

ρ ) are distinct.

Since ψ : Dρ → C(S2n+1
ρ ) is injective, to prove ψ = φ−1 it suffices to show ψ ◦ φ = IdC(S2n+1

ρ ),

as this will establish that ψ is also surjective, and its one-sided inverse φ will be its two-sided

inverse. Moreover, as φ and ψ are both ∗-homomorphisms (and automatically continuous),

we need only show that ψ(φ(zi)) = zi for i ∈ {1, . . . , n+ 1}. First, check for 1 ≤ i ≤ n.

φ(zi) = Ci Ci : w ∈ D 7→
√

1− |w|2zi ∈ C(S2n−1
ρ )

ψ(Ci)[t1, . . . , tn+1] : eiθ 7→ Ci(tn+1e
iθ)

[
t1√

1− t2n+1

, . . . ,
tn√

1− t2n+1

]

=
√

1− t2n+1

ti√
1− t2n+1

Ui

= tiUi
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The function (t1, . . . , tn+1) 7→ tiUi is exactly the form of zi, so ψ ◦ φ(zi) = zi for 1 ≤ i ≤ n.

The computation is slightly different for zn+1.

φ(zn+1) = Cn+1 Cn+1 : w ∈ D 7→ w ∈ C(S2n−1
ρ )

ψ(Cn+1)[t1, . . . , tn+1] : eiθ 7→ Cn+1(tn+1e
iθ)

[
t1√

1− t2n+1

, . . . ,
tn√

1− t2n+1

]

= tn+1e
iθ

In the isomorphism between C(S1, C(Tnω)) and C(Tn+1
ρ ), eiθ corresponds to Un+1, so ψ(Cn+1) =

ψ ◦ φ(zn+1) is the function (t1, . . . , tn+1) 7→ tn+1Un+1, or the generator zn+1. This completes

the proof.

Realizing a sphere C(S2n+1
ρ ) with zn+1 central as a function algebra {f : D→ C(S2n−1

ω ) :

f is continuous and for all w ∈ ∂D, f(w) ∈ C} also gives the standard function representa-

tion of C(S2n
ω ) = C(S2n+1

ρ )/〈zn+1 − z∗n+1〉. To see this, note that as a function, zn+1 − z∗n+1

assigns w ∈ D to w−w = 2i Im(w), which vanishes on [−1, 1]. Limits of polynomial functions

in Im(w) with no constant term are sufficient to generate functions

pn(w) =


0 if w ∈ D and |Im(w)| ≤ 1

n

n|Im(w)| − 1 if w ∈ D and 1
n
≤ |Im(w)| ≤ 2

n

1 if w ∈ D and 2
n
≤ |Im(w)|

in the ideal generated by zn−z∗n. These act as an approximate identity for functions vanishing

on [−1, 1]: if f vanishes on [−1, 1], then ||f − f · pn|| → 0 as n→∞ and f ∈ 〈zn− z∗n〉. This

means that the ideal and its quotient are completely characterized.

〈zn − z∗n〉 ∼= {f ∈ C(D, C(S2n−1
ω )) : f |[−1,1] = 0, and if w ∈ ∂D, then f(w) ∈ C}
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C(S2n
ω ) ∼= C(S2n+1

ρ )/〈zn − z∗n〉 ∼= {g ∈ C([−1, 1], C(S2n−1
ω )) : g(1), g(−1) ∈ C} (3.4.3)

This form of C(S2n
ω ) is called the unreduced suspension of C(S2n−1

ω ). Unreduced sus-

pensions and Z2 actions are discussed by D
‘
abrowski in [14], and the next chapter proves

a conjecture from that paper. For now, note that the antipodal actions on C(S2n+1
ρ ) and

C(S2n
ω ) are reflected in their function algebras over C(S2n−1

ω ) as follows. First, negate the

domain variable in D or [−1, 1], and then apply the antipodal action pointwise on C(S2n−1
ω ).

α2n+1(f)[w] = α2n−1(f(−w)), w ∈ D

α2n(f)[x] = α2n−1(f(−x)), x ∈ [−1, 1]

This fact will be useful when pushing homogeneous matrices between even and odd spheres.

If P ∈ Mk(C(S2n
ω )) is a projection, then B = 2P − I is a self-adjoint square root of

I, or equivalently B is self-adjoint and unitary. Viewing B as a function of x ∈ [−1, 1]

with (self-adjoint and unitary) values in Mk(C(S2n−1
ω )), we may form a unitary function

B̃ : D→Mk(C(S2n−1
ω )) by introducing an additional coordinate.

B̃(x+ iy) =
√

1− y2B

(
x√

1− y2

)
+ iyIk

The function B̃ appears to be only well-defined on D \ {±i}, but the term B

 x√
1− y2


is bounded, as B has norm 1, and the multiplication by

√
1− y2 implies that B̃ extends

continuously to D by the squeeze theorem. Because B is self-adjoint and unitary, B̃ is unitary.

Moreover, the boundary conditions on P and B = 2P − I imply that if x2 + y2 = 1, then

B̃(x + iy) ∈ Mk(C), so B̃ represents a unitary element of Mk(C(S2n+1
ρ )). The association

P 7→ B 7→ B̃ between projections of dimension k over C(S2n
ω ) to unitaries of dimension k over
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C(S2n+1
ρ ) is continuous, meaning it respects path components, and in addition it is compatible

with the direct sum. Also, if P is a trivial projection Ik⊕0l, then the function B̃ takes values

in Uk(C). The domain D is contractible, so B̃ is connected within Uk+l(C(S2n+1
ρ )) to a scalar-

entried matrix, which is then connected to the identity. (Note that this contraction was only

possible because the range of B̃ only included scalar-valued matrices, which did not conflict

with boundary conditions. In general an element in Uk+l(C(S2n+1
ρ )) is not connected to the

identity, as attempting to contract D to a point conflicts with the boundary conditions.) In

other words, if Ωk denotes the function P 7→ B̃ for projections P of dimension k, then the

various Ωk are compatible and produce a single homomorphism

Ω : K0(C(S2n
ω ))→ K1(C(S2n+1

ρ ))

on the K-groups, and Ω has all trivial projections Ik ⊕ 0l in its kernel. Moreover, each Ωk

is compatible with the Z2 antipodal action in the following way. If P ∈ Mk(C(S2n
ω )) is a

projection satisfying α2n(P ) = I − P , then B = 2P − I has α2n(B) = −B, or rather, B is

odd. This is reflected in the function algebra as α2n(B)[x] = α2n−1(B(−x)) = −B(x), which

will help show that Ωk(P ) = B̃ is also odd.

α2n+1(B̃)[x+ iy] = α2n−1(B̃(−x− iy))

= α2n−1

(√
1− (−y)2B

(
−x√

1− (−y)2

)
+ i(−y)Ik

)

=
√

1− y2

[
α2n−1

(
B

(
−x√
1− y2

))]
− iyIk

=
√

1− y2

(
−B

(
x√

1− y2

))
− iyIk

= −

(√
1− y2B

(
x√

1− y2

)
+ iyIk

)

= −B̃(x+ iy)
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The above computation allows us to prove a K0 theorem that states certain projections

are nontrivial, based on how they interact with the antipodal map. Unforunately, the group

operation of K0 is only realized as the direct sum, as opposed to the group operation of K1,

which can be realized as either the direct sum or matrix multiplication. This means that if a

statement in K0 like Corollary 3.3.3 is desired, there is not a clear way to move the argument

to the fixed point subalgebra by multiplication. Instead, we glean K0 information on C(S2n
ω )

from K1 information of C(S2n+1
ρ ).

Theorem 3.4.4. If P is a projection matrix over C(S2n
ω ) of dimension (2m + 1)2n that

satisfies α(P ) = I−P , then when P is viewed in K0(C(S2n
ρ )) ∼= Z2, P is not in the subgroup

generated by trivial projections.

Proof. Suppose α is in the subgroup generated by trivial projections. Then V := Ω(2m+1)2n(P )

is in U(2m+1)2n(C(S2n+1
ρ )), where ρ is an (n + 1) × (n + 1) parameter matrix with ω in

the upper left and 1 in all other entries. Because α is in the subgroup of trivial projec-

tions in K0, [V ]K1 = Ω([P ]K0) is the trivial element of K1(C(S2n+1
ρ )). However, V is odd

and of dimension (2m + 1)2n, so this contradicts Corollary 3.3.3 for spheres of dimension

2n+ 1 = 2(n+ 1)− 1.

This theorem shows that the Z2 structure of even spheres is reflected in their K-theory.

Just as in the odd case, we now prove a noncommutative Borsuk-Ulam theorem.

Corollary 3.4.5. Suppose Φ : C(S2n
ω )→ C(S2n

δ ) is a unital ∗-homomorphism that is equiv-

ariant for the antipodal maps. Then the induced map on K0
∼= Z2 has non-cyclic range (that

is, its image is not in the subgroup generated by trivial projections).

Proof. Consider the projection P =

 1+x
2
I2n−1 Zω(n)

Zω(n)∗ 1−x
2
I2n−1

. Here Zω(n) denotes the for-

mal ∗-mononomial matrix in z1, . . . , zn that, if evaluated in the lower dimensional sphere

C(S2n−1
ω ), would produce its K1-generator. The projection P is of dimension 2n and satisfies
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α(P ) = I − P . Because Φ is equivariant, the same applies to Φ(P ), so by the previous

corollary Φ(P ) is not in the subgroup generated by trivial projections.

Remark. The projection P takes a similar form to projections in [15] on q-spheres of dimen-

sion 4 and in [36] for θ-deformed spheres of dimension 4.

Corollary 3.3.4 and Corollary 3.4.5 together generalize one version of the topological

Borsuk-Ulam theorem in all dimensions: every odd, continuous function from Sk to Sk is

homotopically nontrivial (because it is nontrivial on top cohomology). In the topological

case, this is equivalent to the claim that there is no odd map from Sk to Sk−1. The topo-

logical sphere Sk−1 sits inside Sk as the equator, in such a way that the antipodal maps are

compatible and Sk−1 lies inside a contractible subset of Sk. A similar phenomenon occurs

in the θ-deformed case, so the next two definitions give algebraic versions of this topological

embedding; note that the maps are automatically K1-trivial since the even spheres have

trivial K1 groups.

Definition 3.4.6. Suppose ρ is an n×n parameter matrix with ρin = ρni = 1 for all i, and let

ρ̃ be the minor of ρ formed by removing row and column n. Then π : C(S2n−1
ρ )→ C(S2n−2

ρ̃ )

is the unique, unital ∗-homomorphism defined by zi 7→ zi for 1 ≤ i ≤ n− 1 and zn 7→ x.

Definition 3.4.7. Suppose ρ is an n×n parameter matrix. Then π : C(S2n
ρ )→ C(S2n−1

ρ ) is

the unique, unital ∗-homomorphism defined by zi 7→ zi and x 7→ 0.

In both cases, π exists due to the relations defining the algebras, π respects the Z2

structure, and π is automatically K1-trivial. This leads to the following consequence of

Corollary 3.3.4.

Corollary 3.4.8. There is no unital ∗-homomorphism Ψ : C(Sk−1
ρ ) → C(Skω) which is

equivariant for the antipodal maps.
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Proof. Suppose the theorem fails. If k = 2n, then consider π : C(S2n
ω ) → C(S2n−1

ω ). Since

π is equivariant and K1-trivial, Φ = π ◦ Ψ : C(S2n−1
ρ ) → C(S2n−1

ω ) is also equivariant and

K1-trivial. This contradicts Corollary 3.3.4.

If k = 2n−1, then ρ has dimensions (n−1)×(n−1). Let P be the n×n parameter matrix

with ρ in the upper left and all other entries equal to 1, and form π : C(S2n−1
P )→ C(S2n−2

ρ ).

Then Φ = Ψ ◦ π : C(S2n−1
P )→ C(S2n−1

ω ) contradicts Corollary 3.3.4.

This corollary generalizes the Borsuk-Ulam theorem in all dimensions, as desired, and

it is analogous to Yamashita’s theorem on q-spheres (Theorem 1.5.12). As noted earlier, it

is also possible to prove this corollary only from the K0 theorems on even spheres. Now,

the presentation of C(S2n
ω ) imposes that the self-adjoint generator x be central, which seems

very restrictive. Certainly an arbitary noncommutation relation xzj = ωjzjx would be prob-

lematic, as this would impose the restriction xzj = ωjzjx as well, since x is self-adjoint and

zj is normal ([33], Lemma 2.6). However, there is not an immediate reason why insisting x

commutes with some zj, but anticommutes with other zj, would be flawed. The implications

of this assertion are investigated in Chapter 4 as part of a study of general C∗-algebras with

Z2 actions.
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Chapter 4

Unreduced Suspensions and Anticommutation

4.1 Saturated Actions

In the previous chapter, we established noncommutative Borsuk-Ulam theorems on the

θ-deformed spheres, which produced results that parallel those of Yamashita in [55] on q-

spheres and partially answered a question of Taghavi in [49]. In 2015, D
‘
abrowski formulated

a conjecture in [14] that seeks a general form of a noncommutative Borsuk-Ulam theorem,

applicable for all unital C∗-algebras with suitable Z2 actions. If A is a unital C∗-algebra with

a Z2 action generated by α : A→ A, then this action extends to the unreduced suspension

ΣA = {f ∈ C([−1, 1], A) : f(−1), f(1) ∈ C}

in a natural way that includes an effect of the domain variable. (We use a domain of [−1, 1]

instead of [0, 1] for convenience, slightly different than the convention in [14].)

a(f)[t] = α(f(−t)) (4.1.1)

The unreduced suspension of a unital C∗-algebra is dual to the unreduced suspension

ΣX (or SX, for some authors) of a compact space X, which is the quotient of a cylinder

X × [−1, 1] that collapses X × {1} to a point and X × {−1} to a point. For example,

ΣSk = Sk+1, so ΣC(Sk) = C(Sk+1), and the extension of the antipodal action is again

antipodal. For a θ-sphere C(Skρ), ΣC(Skρ) is another θ-sphere, but not all θ-spheres come
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about this way; the new generator f(t) = t is central. D
‘
abrowski conjectured the following.

Conjecture 4.1.2 ([14], Conjecture 3.1). For a unital C∗-algebra A with a free action of

Z2, there is no Z2-equivariant ∗-homomorphism φ : A→ ΣA.

While there is only one definition of freeness for a group action on a topological space

X, C∗-algebras have numerous inequivalent properties that could be called freeness (see

[38]); in proving this conjecture as Theorem 4.1.9, we will assume the action is saturated, a

very weak assumption. The conjecture holds for the θ-deformed spheres because ΣC(Skρ) is

another θ-deformed sphere of dimension k + 1, and Corollary 3.4.8 forbids the existence of

φ. The commutative case A = C(X) was previously known only when X is of finite covering

dimension, but this restriction will not persist. Also, the suspension of a topological space X

is the same as a join of X with Z2, and in a different paper [2], Baum, D
‘
abrowski, and Hajac

formulated a join of C∗-algebras, which is particularly relevant when one of the algebras is

a quantum group acting on the other, and the following conjecture.

Conjecture 4.1.3 ([2], Conjecture 2.3 Type 1). Let A be a unital C∗-algebra with a free

action of a nontrivial compact quantum group (H,∆). Also, let A ∗δ H be the equivariant

noncommutative join C∗-algebra of A and H with the induced free action of (H,∆) given

by δ∆. Then there is no H-equivariant ∗-homomorphism from A to A ∗δ H.

We introduce a type of noncommutative join, for actions of Zk only, that is different

from that of [2] and formulate a similar conjecture (in noncommittal question form) as

Question 4.3.3, with comments about special cases. Methods used for the suspension are

partially applicable, proving the following topological analogue (another conjecture by Baum,

D
‘
abrowski, and Hajac in [2]) in the special case that G has nontrivial torsion.

Conjecture 4.1.4 ([2], Conjecture 2.2). Let X be a compact Hausdorff space with a con-

tinuous free action of a nontrivial compact Hausdorff group G. Then for the diagonal action

of G on X ∗G, there does not exist a G-equivariant continuous map f : X ∗G→ X.
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The following theorem shows the extent to which the topological version of Conjecture

4.1.2 was already known before our work.

Theorem 4.1.5. Suppose X is a compact Hausdorff space with finite covering dimension

equipped with a free Z2 action α. Then there is no continuous, equivariant map from ΣX

to X, where ΣX has the action (x, t) 7→ (α(x),−t). Equivalently, every Z2-equivariant

continuous map from X to itself is homotopically nontrivial.

Descriptions of the proof of the result, which applies in a similar form for Zk actions,

k > 2, may be found in [8], Theorem 4 for CW-complexes, [18] for compact Hausdorff

spaces, and [55], Remark 17 for the noncommutative (KK-theoretic) point of view. The

assumption of finite covering dimension of X allows discussion of top Čech cohomology,

which is a homotopy invariant. Alternatively, the proof in [18] uses simplicial methods

to show that finite dimensionality of X may be used to reduce from the case of free Zk

actions on X to standard rotation actions on spheres, for which every equivariant self-map is

homotopically nontrivial. Our proof of Conjecture 4.1.2 results from an attempt to find the

only “obvious” type of counterexample that might exist in the topological case: a compact,

infinite-dimensional space X which includes a copy of each Sk.

Let Sk map injectively into Sk+1 via x 7→ (x, 0), and form the increasing union, denoted

S∞, by taking a direct limit. The topology of S∞ is given by the final topology, meaning

that a subset O of S∞ is open if and only if O ∩ Sk is open in Sk for all k. Now, S∞ is not a

(locally) compact space, but it is equal to its own unreduced suspension, and its Stone-Čech

compactification βS∞ is compact and admits a Z2 action generated by the antipodal map

α, as follows. Note that while S∞ is not locally compact, it is a Tychonoff space, so the

inclusion map ι : S∞ → βS∞ exists, has non-open range, and satisfies the universal property

of Stone-Čech. So, since ι ◦ α : S∞ → βS∞ is a map from S∞ into a compact Hausdorff

space, there exists a continuous map α̃ : βS∞ → βS∞ which extends it. On the dense subset

ι(S∞) of βS∞, α̃ ◦ α̃ is the identity map, so α̃ is of order 2.
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S∞ βS∞

S∞ βS∞

α

ι

α̃

ι

By the definition of the topology of S∞, if a sequence of continuous maps ψk : Sk → X

is consistent with all of the inclusions Sk ↪→ Sk+1, then the sequence produces a unique

continuous map ψ : S∞ → X. If X is compact and Hausdorff, this extends to ψ̃ : βS∞ → X.

If all of the ψk are equivariant maps for the antipodal action and a Z2 action on X, then

ψ and ψ̃ are also equivariant. Such a map ψ̃ can actually be produced any time there is

an equivariant map from ΣX to X by the following iteration scheme. If f : ΣX → X

is equivariant, then we can suspend f to form an equivariant map from Σ2X to ΣX, and

repeated suspensions produce a sequence

. . .→ Σ3X → Σ2X → ΣX → X (4.1.6)

of equivariant maps. Now, ΣX contains an equivariant copy of Z2 = S0, Σ2X contains an

equivariant copy of ΣS0 = S1, and so on. This forms a sequence of equivariant, continuous

maps ψk : Sk → X that are consistent with the inclusions Sk ↪→ Sk+1, and by the above

discussion, these extend to a continuous, equivariant map ψ̃ : βS∞ → X.

From this discussion, we reach a crossroads. It was natural to consider compactifications

of S∞ because S∞ is its own unreduced suspension (including the form of the antipodal

action), and if that property were preserved by a compactification on which the antipodal

action remained free, this would disprove D
‘
abrowski’s conjecture, as Theorem 4.1.5 would

truly require the assumption of finite dimensionality. However, if the antipodal action on

βS∞ is not free (i.e., has a fixed point), then for any compact Hausdorff space X with a Z2

action and an equivariant map from ΣX to X, the equivariant map from βS∞ to X produced
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above actually implies that the Z2 action on X cannot be free!

Fixed points of maps on Stone-Čech compactifications of normal spaces were studied in

Theorem 2.3 of [5], which shows that the compactification f̃ : βY → βY of a map f : Y → Y

has a fixed point if and only if Y fails to admit a finite open cover with disjointness properties

under f -images. Similarly, from the main result of [52], the antipodal map on the Stone-

Čech compactification of the disjoint union of spheres Sk must have a fixed point, again by

considering open covers, and in [40], section 3, the antipodal map is used to construct a zero

dimensional space and a fixed point free map whose compactification does admit a fixed point.

In general, we find that fixed points are likely to exist on Stone-Čech compactifications, and

section 4 of [21] shows that βS∞ does have a fixed point for the antipodal map.

Theorem 4.1.7. If X is a compact Hausdorff space (possibly infinite dimensional) with a

free Z2 action, then there is no equivariant, continuous map from ΣX to X.

Proof. If an equivariant map from ΣX to X exists, the iteration technique in (4.1.6) yields

an equivariant map from S∞ to X, which may be lifted to the Stone-Čech compactification

as ψ̃ : βS∞ → X. The image of a fixed point of βS∞ is a fixed point of X.

Remark. The theorem has a converse, as if the action on X is not free, and x0 ∈ X is a fixed

point, then the constant map that sends any element of ΣX to x0 is equivariant.

In the topological setting, the image of a fixed point of βS∞ produces a fixed point of

X, contrary to assumption. Because a noncommutative C∗-algebra with unit cannot be a

function algebra, in order to apply similar techniques on C∗-algebras, we must see this fixed

point from a different perspective, in which covering lemmas are replaced with equivalent

facts about functions. A Z2 action on a C∗-algebra A, generated by α : A → A, gives

rise to a grading of A into even elements, A0 = {a ∈ A : α(a) = a}, and odd elements,

A1 = {a ∈ A : α(a) = −a}. The action is saturated if A0AA∗0 = A and A1AA∗1 = A, which

in particular implies that the right ideal generated by odd elements is full. If A = C(X),
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then the Z2 action on A is dual to a Z2 action on X, and freeness is equivalent to saturation

(see [38]).

Consider the C∗-algebra C(βS∞) = Cb(S∞) of bounded functions on S∞. We should find

that the antipodal action on Cb(S∞) is not saturated; indeed, if f1, . . . , fn ∈ Cb(S∞) are odd

functions and a1, . . . , an ∈ Cb(S∞) are any functions such that ||f1a1 + . . .+ fnan − 1|| < 1,

then f1a1+. . .+fnan is nowhere-vanishing, and the odd functions f1, . . . , fn have no common

zeroes. These may be combined into a single odd function F : S∞ → Cn \ {0} ∼= R2n \ {0},

and the restriction of the domain to S2n would contradict the Borsuk-Ulam theorem. In other

words, another way to see that a fixed point of βS∞ exists is that the number of odd functions

required to generate an invertible in C(Sk) increases without bound as k increases, so an

approximation using finitely many odd functions cannot be done in Cb(S∞). If we exploit

the setting of C∗-algebras further, we can prove D
‘
abrowski’s conjecture while avoiding the

unwieldly Stone-Čech compactification all together.

Lemma 4.1.8. Suppose φ : A→ B is a unital ∗-homomorphism that is (α, β)-equivariant for

Z2 actions α on A and β on B. Let a and b denote the associated Z2 actions on the unreduced

suspensions. Then Φ = Σφ : ΣA→ ΣB defined by Φ(f)[t] = φ(f(t)) is equivariant for (a, b).

Proof. This is a direct check, by evaluating each at t.

b(Φ(f))[t] = β(Φ(f)[−t]) = β(φ(f(−t))) = φ(α(f(−t))) = φ(a(f)[t]) = Φ(a(f))[t]

Theorem 4.1.9. Suppose A is a unital C∗-algebra with a saturated Z2 action α, which

defines the Z2 action a on ΣA. Then there is no (α, a)-equivariant, unital ∗-homomorphism

from A to ΣA.

Proof. Suppose the theorem fails and ψ : A → ΣA is equivariant. Then by the previous

lemma, we may repeatedly suspend the map to an equivariant homomorphism from ΣnA to
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Σn+1A, where iterated unreduced suspensions have the Z2 actions obtained from repeatedly

applying (4.1.1). By composing these maps in a chain, for each k we can form a unital,

equivariant ∗-homomorphism from A to ΣkA. Now, ΣkA has an equivariant quotient algebra

Σk−1C(Z2) = C(Sk−1) seen by evaluating on the boundary, so for any k we may form an

equivariant, unital ∗-homomorphism ψk : A → C(Sk−1), where C(Sk−1) has the antipodal

action.

Since the action on A is saturated, the right ideal generated by odd elements is full,

so let f1, . . . , fn ∈ A be odd elements and let a1, . . . , an ∈ A be such that ||f1a1 + . . . +

fnan − 1|| < 1. Now that n is fixed, consider ψ2n+1 : A → C(S2n), so the images

ψ2n+1(f1), . . . , ψ2n+1(fn) are odd complex-valued functions on S2n. Since ψ2n+1 is a uni-

tal map and all C∗-homomorphisms have operator norm at most 1, we obtain the estimate

||ψ2n+1(f1)ψ2n+1(a1) + . . .+ ψ2n+1(fn)ψ2n+1(an)− 1|| < 1. This implies that the closed ideal

generated by ψ2n+1(f1), . . . , ψ2n+1(fn) is full, so these n complex-valued, odd functions on

S2n have no common zeroes, a contradiction of the traditional Borsuk-Ulam theorem.

Remark. There is no general converse to this theorem. Let A be a noncommutative, simple

C∗-algebra, such as an irrational quantum 2-torus, with the trivial action. This action is

certainly unsaturated. Nevertheless, there is no unital ∗-homomorphism from A to ΣA, as

such a map would produce a maximal ideal from evaluation at t = 1.

Based on the discussion in [14], we reach the following additional corollaries, which are

also related to questions in [49].

Corollary 4.1.10. The following statements hold.

1. IfX is a compact Hausdorff space with a free Z2 action, then there is no continuous map

from the cone ΓX to X whose restriction to X ⊂ ΓX is equivariant (or in particular is

the identity map). So, any equivariant map fromX to itself is homotopically nontrivial.
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2. If A is a unital C∗ algebra with a saturated Z2 action, then there is no unital ∗-

homomorphism from A to the cone ΓA = {f ∈ C([0, 1], A) : f(1) ∈ C} which is

equivariant on the boundary t = 0. So, any equivariant map from A to itself must not

be homotopically equivalent in the strong topology to a representation of A into C.

The unreduced suspension of a space X may be written as a join X ∗ Z2, where the join

of two topological spaces X and Y is defined as the following quotient space.

X ∗ Y ∼= X × Y × [0, 1]/ ∼

(0, x0, y) ∼ (0, x1, y) for all x0, x1 ∈ X, y ∈ Y

(1, x, y0) ∼ (1, x, y1) for all x ∈ X, y0, y1 ∈ Y

If G acts on X freely, then X ∗G admits a free action induced by h ·(x, g, t) = (h ·x, hg, t). In

[2], the authors ask (for G and X also compact and Hausdorff) if there is ever an equivariant,

continuous map from X ∗ G to X. Similar techniques as above settle this conjecture when

G has nontrivial torsion; we may appeal to the Stone-Čech compactification of infinite joins,

which is considered for finite groups in [21], or we may use Zk Borsuk-Ulam theorems, which

can be found in [18]. The proofs use the correspondence between free actions on X and

saturated actions on C(X) by more general groups than Z2, as follows (see [38]).

Definition 4.1.11. Suppose a compact abelian group G acts on a unital C∗-algebra A via

α. This gives rise to homogeneous subspaces Aτ = {a ∈ A : αg(a) = τ(g)a for all g ∈ G},

which are defined for any τ ∈ Ĝ, the Pontryagin dual of G. The action is saturated if for

each τ ∈ Ĝ, AτAA∗τ = A. When A = C(X) is commutative, the action on C(X) is saturated

if and only if the associated action on X is free.

The Pontryagin dual of Zk is Zk, more specifically given by the kth roots of unity, and

the homogeneous subspace An consists of elements of A such that α(a) = e2πin/ka. This

property is more visible when Z2 acts on A = C(X); elements of A0 are even functions, and
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elements of A1 are odd functions.

Lemma 4.1.12 (Rephrasing Classical Results). Let Zk, k ≥ 2, act freely on itself by mutli-

plication. Denote Zk by G0, and let Gn+1 = Gn ∗Zk, which has a free Zk action determined

recursively as above. Equip C with the Zk rotation action, z 7→ e2πi/kz. If n ≥ 2 and

f1, . . . , fn ∈ C(G2n) are equivariant for these actions, then f1, . . . , fn have a common zero.

Proof. If f1, . . . , fn ∈ C(G2n) do not have a common zero, then we may may scale them to

form a single map F : G2n → S2n−1. If S2n−1 is given the same type of coordinate rotation

action (z1, . . . , zn) 7→ (e2πi/kz1, . . . , e
2πi/kzn), F is also equivariant. This contradicts the

main theorem in [18], which is written in more modern language as Theorem 6.2.6 in [28].

Specifically, G2n is (2n− 1)-connected (see [28], Definition 4.3.1 and Proposition 4.4.3) and

S2n−1 has dimension 2n− 1, so there are no equivariant maps between them for free actions

of Zk.

Theorem 4.1.13. Suppose X and G are compact and Hausdorff, where G is a topological

group acting freely onX andG has a nontrivial torsion element. Then there is no equivariant,

continuous map from X ∗G to X, and any equivariant, continuous map from X to itself is

homotopically nontrivial.

Proof. Suppose the theorem fails. Since G has nontrivial torsion, choose a subgroup Zk ≤ G

for k ≥ 2. Then Zk acts freely onX, and by restriction, there is also a continuous, equivariant

map φ : X ∗ Zk → X. We may iterate this map on higher joins, and compose these new

maps to form an equivariant map from (X ∗Zk) ∗Zk ∗ · · · ∗Zk to X for any number of joins.

These restrict to equivariant maps from Zk ∗ · · · ∗ Zk to X. Dualizing these maps, we reach

equivariant, unital ∗-homomorphisms ψn : C(X) → C(Zk ∗ · · · ∗ Zk). The action of Zk on

C(X) is saturated, so the ideal generated by elements in the e2πi/k eigenspace of the action

is full. By examining ψn for n large enough, we reach a contradiction of the previous lemma,

just as in the Z2 case.
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The infinite join of a finite group G was considered by J. Milnor in [30] and [31] as a

universal G-bundle, and the issue of fixed points on the Stone-Čech compactification of G-

bundles was once again considered in [21]. However, one may easily write a C∗-algebraic

variant of the above theorem using its connectivity-based proof, which is the advantage of

an approach using connectivity instead of the Stone-Čech compactification (an equally valid

approach in the topological setting). Unfortunately, the (non)existence of equivariant maps

from X ∗G to X when G is torsion-free is still open, as both Stone-Čech techniques in the

literature and general Borsuk-Ulam theorems do not seem applicable in that case. Instead

of considering X ∗ G for any torsion-free compact group, we may restrict to the join with

the closed subgroup generated by a single nontrivial element in G, reducing the problem to

the case when G is compact, abelian, and torsion-free. Such groups are fairly exotic, such

as G = (̂Q, τ) where τ is the discrete topology, but if there is a counterexample (unlikely) to

be found, then it can be found among those groups. A general classification of such groups

can be found in [23].

Question 4.1.14. Let G be a compact, Hausdorff, abelian, torsion-free, nontrivial group.

LetG act (freely) on itself by multiplication and extend this action to iterated joins. Any such

action is free, so the associated action α on A = C(G∗· · ·∗G) is saturated, and consequently

the closed ideal generated by any Aτ is full. Does the number of Aτ elements required to

approximate the multiplicative identity 1 remain bounded as the number of iterated joins

increases? This would be of particular interest for the evaluation homomorphisms at points

q ∈ (Q, τ) =
̂̂
(Q, τ), and similarly for related groups.

4.2 Anticommutation in Sphere Relations

In [14], D
‘
abrowski asked if there was a form of noncommutative unreduced suspension of

C∗-algebras that introduces non-central elements, based primarily on the noncommutative
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double unreduced suspension in [24]. With this in mind, note that the presentation of

even θ-spheres as unreduced suspensions of odd θ-spheres includes a self-adjoint, central

coordinate x which, when viewed in terms of generators and relations alone, appears to

be somewhat artificial. For example, the following universal C∗-algebras replace this with

anticommutation.

Definition 4.2.1. Let ω be an n × n-dimensional parameter matrix. Then let R2n
ω denote

the universal, unital C∗-algebra generated by normal elements z1, . . . , zn and a self-adjoint

element x satisfying the following relations.

zkzj = ωjkzjzk xzj = −zjx z1z
∗
1 + . . .+ znz

∗
n + x2 = 1

We also use the convention that R2n with no subsript indicates R2n
ω when ω has 1 in every

entry, so the generators z1, . . . , zn commute with each other and anticommute with x.

The relation algebras R2n
ω appear to be different from the mirror quantum spheres of

[24]. Moreover, unlike the θ-deformed even spheres, the lowest dimension noncommutative

relation algebra is R2, generated by anticommuting z1 and x, whereas the only θ-deformed

sphere of dimension 2 is commutative. However, R2n
ω is still a quotient of a higher dimension

θ-deformed sphere C(S2n+1
ρ ), where ρ has the minor ω in the upper left corner, and its final

row and column indicate anticommutation. Specifically, R2n
ω
∼= C(S2n+1

ρ )/〈zn+1 − z∗n+1〉. To

avoid switching notation, we indicate this C(S2n+1
ρ ) as R2n+1

ω ; whether the dimension is even

or odd, algebras Rk
ω have anticommutation properties in the final generator.

Definition 4.2.2. If ω is an n × n-dimensional parameter matrix, then let R2n+1
ω denote

C(S2n+1
ρ ), where ρjk = ωjk for j, k ∈ {1, . . . , n}, ρn+1,n+1 = 1, and ρj,n+1 = ρn+1,j = −1 for

j ∈ {1, . . . , n}.

A quotient of R2n
ω that removes the coordinate x is a θ-deformed odd sphere: R2n

ω /〈x〉 ∼=
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C(S2n−1
ω ). In order to realize Rk

ω as an algebra of functions, we must use the crossed product,

but otherwise the procedure is very similar to previous computations.

Lemma 4.2.3. If ρ is an (n+ 1)× (n+ 1) parameter matrix with ρj,n+1 = ρn+1,j = −1 for

all j 6= n+ 1, and ω is the top left n× n minor of ρ, then

C(Tn+1
ρ ) ∼= {f ∈ C(S1, C(Tnω) oα Z2) : α̂(f(−eiθ)) = f(eiθ)}

where α is the antipodal action on C(Tnω) and α̂ is the dual action on C(Tnω)oαZ2 (meaning

α̂(a+ bδ) = a− bδ).

Proof. The restriction α̂(f(−eiθ)) = f(eiθ) means that if f(eiθ) is decomposed as g(eiθ) +

h(eiθ)δ in C(Tnω) oα Z2, then g(−eiθ) = g(eiθ) and h(−eiθ) = −h(eiθ). A homomorphism

from C(Tn+1
ρ ) to the function algebra is defined as follows.

U1 7→ f1(eiθ) = U1

...

Un 7→ fn(eiθ) = Un

Un+1 7→ fn+1(eiθ) = eiθδ

As usual, this homomorphism is guaranteed to exist because f1, . . . , fn+1 satisfy the neces-

sary relations; the group element δ anticommutes with each Uj, which matches the demands

of the parameter matrix ρ. The usual trace τn+1 on C(Tn+1
ρ ) corresponds to the trace

g+ hδ 7→ 1
2π

∫ 2π

0
τn(g(eiθ)) dθ, so as in Lemma 3.4.1, the homomorphism is injective. Surjec-

tivity is also established in a similar way to Lemma 3.4.1; a dense subspace of the function

algebra consists of sums
∑
finite

gp(e
iθ)Up1

1 · · ·Upn
n +

∑
finite

hp(e
iθ)Up1

1 · · ·Upn
n δ where gp and hp are

continuous and piecewise linear, gp(−eiθ) = gp(e
iθ), and hp(−eiθ) = −hp(eiθ). The functions

gp and hp have uniformly convergent Fourier series, so finite sums of these functions are in
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the range. An injective homomoprhism between C∗-algebras has closed range, so the map is

an isomorphism.

Unsurprisingly, this idea extends to relation algebras in the following lemma.

Lemma 4.2.4. If ω is an n× n parameter matrix, then

R2n+1
ω

∼= {f ∈ C(D, C(S2n−1
ω )oαZ2) : α̂(f(−w)) = f(w), and w ∈ ∂D implies f(w) ∈ C+Cδ}

where α̂ is the dual action to the antipodal action α on C(S2n−1
ω ).

Proof. A homomorphism from R2n+1
ω to the function algebra is defined as follows.

z1 7→ f1(w) =
√

1− |w|2z1

...

zn 7→ fn(w) =
√

1− |w|2zn

zn+1 7→ fn+1(w) = wδ

The inverse is formed from viewing C(S2n−1
ω ) as a function algebra into C(Tnω) and noting that

the antipodal action on C(S2n−1
ω ) is the pointwise antipodal action on C(Tnω), so C(S2n−1

ω )oα

Z2 is a function algebra into C(Tnω) oα Z2. Besides this change, the details are the same as

the proof of Lemma 3.4.2.

Now that the C∗-algebraR2n+1
ω is an algebra of functions, its quotientR2n

ω
∼= R2n+1

ω /〈zn+1−

z∗n+1〉 consists of functions on a smaller domain, where zn+1 − z∗n+1 vanishes. The argument

is essentially identical to that for (3.4.3).

R2n
ω
∼= {f ∈ C([−1, 1], C(S2n−1

ω ) oα Z2) : α̂(f(−t)) = f(t), and for t ∈ {±1}, f(t) ∈ C + Cδ}

We are careful to label the coordinate from [−1, 1] as t (instead of x), as the generator x,
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given as x(t) = tδ, also includes a group element term. On the other hand, use of the crossed

product makes the domain [−1, 1] redundant. An element f = g+hδ ∈ R2n
ω has g(−t) = g(t)

and h(−t) = −h(t), so we may restrict to the domain [0, 1] without losing any information,

noting that h(0) = 0, so f(0) ∈ C(S2n−1
ω ).

R2n
ω
∼= {f ∈ C([0, 1], C(S2n−1

ω ) oα Z2) : f(0) ∈ C(S2n−1
ω ) and f(1) ∈ C + Cδ} (4.2.5)

In the above expression, if the antipodal action α is replaced by the trivial action, one

recovers the θ-deformed sphere C(S2n
ω ), where the crossed product is artificially encoding

even and odd components of functions on [−1, 1]. Further, the function algebra on the

right hand side is sensible for any Z2 action, and this suggests an approach to forming

“noncommutative” unreduced suspensions of C∗-algebras, which will be investigated in the

next section. Computations of the K-theory of R2n
ω will be aided by the following matrix

expansion map.

Definition 4.2.6. The expansion map Eα : C(S2n−1
ω )oαZ2 →M2(C(S2n−1

ω )) is the injective,

unital ∗-homomorphism defined by the following rule.

f + gδ 7→

 f g

α(g) α(f)


See [54], section 2.5 for a similar map. The dual action α̂(f + gδ) = f − gδ is seen in

M2(C(S2n−1
ω )) as negating the off-diagonal, and the extension of α to the crossed product as

α(f + gδ) = α(f) + α(g)δ comes from applying α entrywise. The map Eα is certainly not

surjective, as all matrices in its range satisfy a very visible symmetry condition.

Proposition 4.2.7. If M =

 f g

α(g) α(f)

 ∈ Ran(Eα), then M satisfies the symmetry
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condition M =

 0 1

1 0


∗

α(M)

 0 1

1 0

. That is, if U =

 0 1

1 0

, then αU(M) = M .

The antipodal action α is saturated, which gives vital information about the crossed

product. In particular, K-theory of the crossed product C(S2n−1
ω )oαZ2 is isomorphic to the

K-theory of the fixed point subalgebra C(S2n−1
ω )α (see (1.5.15)), the algebra of even elements.

This is useful when considering the ideal J of R2n
ω consisting of functions which vanish at

the endpoints 0 and 1, so J ∼= S(C(S2n−1
ω ) oα Z2) and Ki(J) ∼= Ki(S(C(S2n−1

ω ) oα Z2))) ∼=

K1−i(C(S2n−1
ω )oαZ2) ∼= K1−i(C(S2n−1

ω )α). The fixed point subalgebra C(S2n−1
ω )α is a Rieffel

deformation of C(RP2n−1) ∼= C(S2n−1)α and therefore has identical K-theory (K-theory

of real projective space is computed in [1], Proposition 2.7.7). Boundary information is

contained in the quotient R2n
ω /J

∼= C(S2n−1
ω )⊕ (C⊕Cδ), and K-theory respects direct sums,

so the six term exact sequence yields

K0(S(C(S2n−1
ω ) oα Z2)) K0(R2n

ω ) K0(C(S2n−1
ω ))⊕K0(C + Cδ)

K1(C(S2n−1
ω ))⊕K1(C + Cδ) K1(R2n

ω ) K1(S(C(S2n−1
ω ) oα Z2))

η

γ

λ

υ

κ

σ

(4.2.8)

and will be used to partially describe the isomorphism classes of the two unspecified K-

groups. The following version of the same sequence includes the known isomorphism classes.

Z K0(R2n
ω ) Z⊕ Z⊕ Z

Z K1(R2n
ω ) Z⊕ Z2n−1

η

γ

λ

υ

κ

σ

(4.2.9)

The subalgebra C+Cδ ≤ C(S2n−1
ω )oαZ2 is two dimensional and isomorphic to a continu-
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ous function algebra on two points, C({±1}), so an evaluation of δ at 1 or −1 can be used on

this subalgebra (however, an evaluation does not make sense on the entire crossed product).

Moreover, K0(C(S2n−1
ω )⊕ (C+Cδ)) ∼= Z⊕Z⊕Z is essentially rank data in three instances:

a rank for K0(C(S2n−1
ω )) ∼= Z and two ranks for K0(C({±1})) ∼= Z⊕Z based on evaluations

δ = ±1. However, the map υ above is not surjective by the following argument. First, the

projections
1± δ

2
∈ C + Cδ that generate its K0 group are sent under Eα to rank one pro-

jections

 1/2 ±1/2

±1/2 1/2

 in M2(C(S2n−1
ω )), so in K0(M2(C(S2n−1

ω ))) ∼= K0(C(S2n−1
ω )) ∼= Z

these are the generator 1. Next, if we consider C(S2n−1
ω ), whose K0 group is again cyclic

and generated by the trivial projection 1, the image Eα(1) = I2 has doubled in rank, and

the same will happen to any projection over C(S2n−1
ω ) when Eα is applied. Now, any matrix

over R2n
ω is a path of matrices over C(S2n−1

ω ) oα Z2, so the K0-class of the images remains

constant along the path. Based on the previous computations, if P ∈Mk(R
2n
ω ) is viewed as

a path into Mk(C(S2n−1
ω )oα Z2), then there is the following restriction on the ranks of P (t).

2 · RankC(S2n−1
ω )(P (0)) = RankC(S2n−1

ω )(Eα(P (0)))

= RankC(S2n−1
ω )(Eα(P (1)))

= Rankδ=1(P (1)) + Rankδ=−1(P (1))

Note that the ranks Rankδ=±1 are only defined for projections over C + Cδ; in general

we cannot evaluate δ to a number on the entire crossed product C(S2n−1
ω ) oα Z2, as δ is a

symbol encoding noncommutativity information. Regardless, the above equation limits the

range of υ in (4.2.9).

(l,m, n) ∈ Ran(υ) =⇒ 2l = m+ n (4.2.10)

The first clear projection in Ran(υ) is the identity element, which produces the predictable

ranks (1, 1, 1). The second is based on adjusting coefficients from a projection over θ-
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deformed even spheres. It is easiest to write this projection in terms of the generators

z1, . . . , zn, x, using the formal ∗-monomial matrix Zω(n) described in [33] and in Section 3.2.

P =
1

2
I2n +

1

2

 xI2n−1 Zω(n)

Zω(n)∗ xI2n−1

 (4.2.11)

When viewed as a path, the projection P has P (0) =
1

2

 I2n−1 Zω(n)

Zω(n)∗ I2n−1

, which has

rank 2n−1 in K0(C(S2n−1
ω )), and P (1) = 1+δ

2
I2n , which has rank 2n at δ = 1 and rank 0 at

δ = −1. Therefore, P produces the element (2n−1, 2n, 0) ∈ Ran(υ). The tuples (1, 1, 1) and

(2n−1, 2n, 0) are independent, so their span has free rank 2, but for large n the second tuple is

not in reduced form, meaning we cannot tell if 2l = m+n completely characterizes elements

of Ran(υ) (that is, if Ran(υ) is a full or proper subset of spanZ{(1, 1, 1), (1, 2, 0)}).

spanZ{(1, 1, 1), 2n−1(1, 2, 0)} ≤ Ran(υ) ≤ spanZ{(1, 1, 1), (1, 2, 0)}

The above containments show that Ran(υ) is isomorphic to Z ⊕ Z, so K0(R2n
ω ) has

free rank at least 2 and is not generated by trivial projections alone. An examination of

the maps η and γ will show that K0(R2n
ω ) is actually isomorphic to Z ⊕ Z. First, note

that K1(C(S2n−1
ω ) oα Z2) ∼= K1(C(RP2n−1)) ∼= Z is generated by Zω(n), which is again

seen through Eα. The expansion Eα(Zω(n)) is of index 2 because it is unitarily equivalent to

Zω(n)⊕Zω(n), and by Proposition 4.2.7, any matrix in Ran(Eα) satisfies αU(M) = M for an

order 2 unitary over C. By Theorem 3.3.10, any invertible matrix in Ran(Eα) will correspond

to an even integer in K1(C(S2n−1
ω )), so an index 2 matrix in K1(Ran(Eα)) ∼= K1(C(S2n−1

ω )oα

Z2) ∼= Z is a generator. Since Eα is an isomorphism between C(S2n−1
ω oα Z2) and Ran(Eα),

this implies that K1(C(S2n−1
ω )oαZ2) is generated by Zω(n). The connecting map η between

K1(C(S2n−1
ω ) ⊕ (C + Cδ)) ∼= K1(C(S2n−1

ω )) and K0(S(C(S2n−1
ω ) oα Z2)) from the six term
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sequence (see [3], V.1.2.12 for the general form of the connecting map K1(A/J) → K0(J))

mimics the form of the isomorphism K1(C(S2n−1
ω )oα Z2)→ K0(S(C(S2n−1

ω oα Z2))) of Bott

periodicity (see [41], 6.1.2), but now that we know K1(C(S2n−1
ω ) oα Z2) is generated by a

unitary over C(S2n−1
ω ) alone, we can conclude that η is surjective. Therefore γ is the zero map

and υ is injective, so K0(R2n
ω ) is isomorphic to Ran(υ) ∼= Z ⊕ Z. This means an analogous

question to Theorem 3.4.4 can be asked on this group. Even though the K0 groups of R2n
ω

and C(S2n
ω ) are abstractly isomorphic, the generators are different in that K0 data of R2n

ω is

contained in the possibly distinct ranks Rankδ=1 and Rankδ=−1, whereas K0(C(S2n
ω )) inherits

its K-theory from K0(C(S2n)), which has one summand for rank and another for a nontrivial

vector bundle. Despite all of this, the form of the generator P in (4.2.11) is just a slight sign

change from a projection over C(S2n
ω ) seen in the proof of Corollary 3.4.5!

The group K1(R2n
ω ) has not been completely determined, but we can still obtain some

information. Since η is a nontrivial homomorphism between Z and Z, it is injective, so λ is

the zero map. The images of σ and κ are not clear from this computation, but it is clear

from Ran(υ) that Ran(σ) includes a copy of Z, and therefore Ran(κ) ∼= K1(R2n
ω ) is a torsion

group (possibly trivial). These results are summarized in the following proposition.

Proposition 4.2.12. The group K0(R2n
ω ) is isomorphic to Z⊕Z, and if matrix projections

P ∈ Mk(R
2n
ω ) are considered as paths from (4.2.5), the K0 data is obtained from the two

ranks Rankδ=±1(P (1)). On the other hand, K1(R2n
ω ) is either trivial or a torsion group.

It is sensible to define a universal algebra that allows x to anticommute with some

zj and commute with other zj, but the K-theory computations are not as obvious, as the

corresponding isomorphism to a path algebra such as (4.2.5) would include a crossed product

by an action that is not saturated. On the other hand, it is possible that sufficient information

could be obtained by θ-deforming the algebra so that z1, . . . , zn all commute with each other,

so now certain zj are central, as they also commute with x. Presence of central generators

suggests that these algebras might arise from an even number of unreduced suspensions of
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R2k, where k < n is the number of zj which anticommute with x. However, I will not

attempt to carry this pursuit out here, as later Borsuk-Ulam results concern only R2n
ω or

may be proved in such a way that does not benefit from those ideas.

4.3 Noncommutative Suspensions and Zk-Joins

D
‘
abrowski’s Conjecture 4.1.2 concerns the unreduced suspension ΣA, which has A as

a quotient, but it also includes a self-adjoint, central element from the function Id(t) =

t. Consequently, our proof of the conjecture reduced to the classical case of the Borsuk-

Ulam theorem by examining endpoint data for iterated unreduced suspensions. The relation

algebra R2n
ω of the previous section is the result of adjoining a self-adjoint coordinate that

anticommutes with the generators of C(S2n−1
ω ), and it was isomorphic to the path algebra

ΣαC(S2n−1
ω ) := {f ∈ C([0, 1], C(S2n−1

ω ) oα Z2) : f(0) ∈ C(S2n−1
ω ), f(±1) ∈ C + Cδ}

where α is the antipodal action on C(S2n−1
ω ). In a sense, this is a noncommutative unreduced

suspension of C(S2n−1
ω ), and the idea can be generalized to any unital C∗-algebra.

Definition 4.3.1. If A is a unital C∗-algebra with a Z2 action β, then the noncommutative

unreduced suspension of (A, β) is defined as follows.

ΣβA := {f ∈ C([0, 1], Aoβ Z2) : f(0) ∈ A, f(±1) ∈ C + Cδ}

Remark. This noncommutative unreduced suspension does not appear to relate to the non-

commutative double unreduced suspension in [24].

When β is the trivial action, Σtriv is isomorphic to the usual unreduced suspension, where

the crossed product encodes homogeneity classes of functions. Specifically, ΣA ∼= ΣtrivA via

f(t) 7→ f(t)+f(−t)
2

+ f(t)−f(−t)
2

δ, where we note that while f(t) is defined on [−1, 1], the image
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functions are only defined on [0, 1]. To form the inverse, start with an element h+kδ ∈ ΣtrivA,

let H denote the even extension of h, and let K denote the odd extension of k. Then the

inverse image of h+ kδ is H +K.

For the usual unreduced suspension, any Z2 action on A could be extended to ΣA in a

natural way, by applying the action pointwise and composing with t 7→ −t. For ΣβA, we

may extend an action γ only if it commutes with β, and in this case we apply γ pointwise on

Aoβ Z2 and compose with β̂, which negates the group element δ. The new action is denoted

c.

c : f(t) + g(t)δ 7→ γ(f(t))− γ(f(t))δ

Removing the component t 7→ −t (which relied on the domain being [−1, 1]) suggests

that this idea could be applied more generally for a larger class of actions, and indeed this

idea extends naturally to the join by finite cyclic groups. If X is a compact Hausdorff space

on which a topological group G acts, then the noncommutative join of [2] is motivated by

the following identification.

C(X ∗G) ∼= {f ∈ C([0, 1], C(X ×G)) : f(0) is G-independent, f(1) is X-independent}

∼= {f ∈ C([0, 1], C(X)⊗ C(G)) : f(0) ∈ C(X), f(1) ∈ C(G)}

A different noncommutative join for finite cyclic groups may be developed from realizing

C(X)⊗ C(Zk) as a trivial crossed product.

C(X ∗ Zk) ∼= {f ∈ C([0, 1], C(X) otriv Zk) : f(0) ∈ C(X), f(1) ∈ C∗(Zk)}

Definition 4.3.2. Let A be a C∗-algebra with a Zk action β. Then the noncommutative

join A ∗β Zk is defined as follows.

A ∗β Zk := {f ∈ C([0, 1], Aoβ Zk) : f(0) ∈ A, f(1) ∈ C∗(Zk)}
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An action γ of Zk on A which commutes with β may be extended to A ∗β Zk by applying

γ pointwise and also applying the dual action of β. Since the Pontryagin dual of Zk is

isomorphic to Zk in a non-canonical way, we fix a primitive kth root of unity ω = e2πi/k. An

element of A ∗ Zk may be viewed as f0 + f1δ + . . .+ fk−1δ
k−1 where f1, . . . , fn are functions

from [0, 1] into A. Then we extend γ to A ∗α Zk as c, just as in the Z2 case.

c(f0 + f1δ + . . .+ fk−1δ
k−1)(t) := γ(f0(t)) + ωγ(f1(t))δ + . . .+ ωk−1γ(fk−1(t))δk−1

The isomorphism C(Zk) ∼= C∗(Zk) may be written in such a way that the dual action of

Ẑk ∼= Zk on the group C∗-algebra is equivalent to the translation action of Zk on its algebra

of functions. We ask the following question in analogy with [2] and [14].

Question 4.3.3. Suppose A is a unital C∗-algebra with two commuting Zk actions β and

γ. If β is unsaturated and γ is saturated, must there not exist any unital, (γ, c)-equivariant

∗-homomorphisms from A to A ∗β Zk?

When β is the trivial action, the techniques of Theorem 4.1.13 give a positive answer,

but we are interested in the case where β is nontrivial. Any odd θ-deformed sphere C(S2n−1
ρ )

admits Zk actions which rotate the coordinates z1, . . . , zn, so the generator for an action β

could map zi to ωizi where the ωi are kth roots of unity, not all of which need to be primitive.

If γ denotes another such action where the roots are primitive, then γ is a saturated action,

β and γ commute, and γ extends to an action c on C(S2n−1
ρ ) ∗α Zk.

Example 4.3.4. Let C(S2n−1
ρ ) be equipped with coordinate rotations β and γ, as above.

Then there is no (γ, c)-equivariant, unital ∗-homomorphism from C(S2n−1
ρ ) to the noncom-

mutative join C(S2n−1
ρ ) ∗β Zk.

Proof. If such a homomorphism existed, then evaluate at t = 0 to form a γ-equivariant map

ψ from C(S2n−1
ρ ) to itself. The image of the K1 generator Zρ(n) under ψ is a matrix over
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C(S2n−1
ρ ) which is trivial in K1(C(S2n−1

ρ ) oβ Zk) by following a path from t = 0 to t = 1.

The endpoint t = 1 corresponds to an invertible matrix with entries in C∗(Zk), which is

K1-trivial. However, K1(C(S2n−1
ρ )) maps injectively into K1(C(S2n−1

ρ )oβ Zk), so ψ(Zρ(n)) is

trivial in K1(C(S2n−1
ρ )) as well. It follows that ψ is a K1-trivial map, contradicting Theorem

3.3.11.

In the above example, a homomorphism to the join did not exist because it would trivialize

a certain algebraic invariant,K1. However, the proof method of Theorem 4.1.13 and Theorem

4.1.9 is to iterate a map through higher suspensions, a technique which is not applicable to

Question 4.3.3 by design. In particular, we require β to be unsaturated to rule out some

simple counterexamples. If γ = β were saturated, one could attempt to prove a version of

Question 4.3.3 by using iteration techniques, which would suggest examining iterated joins

of C∗(Z2) by Z2 in analogy with the commutative case. This method will surely fail.

Example 4.3.5. Let Bn be the universal, unital C∗-algebra generated by self-adjoint ele-

ments x1, . . . , xn+1 which pairwise anticommute and satisfy x2
1 + . . . + x2

n+1 = 1. Equip Bn

with a Z2 action β that negates each generator. Then there is an odd, self-adjoint, uni-

tary element x1 + . . .+ xn+1, and therefore there is also an equivariant homomorphism from

B0 = C(S0) to Bn. Composing the equivariant map B0 → B1 with the map B1 → B0 ∗β Z2

guaranteed by the universal property gives an equivariant map B0 → B0 ∗β Z2 = ΣβB0.

The assumption that β and γ have different saturation properties removes the above

pathological case, which is similar to the counterexample used in Theorem 2.4.8 for purely

element-based Borsuk-Ulam theorems on C(S2n−1
ρ ). Question 4.3.3 (in the Z2 case) is an

attempt at removing the commutative spheres lurking in the background of any equivariant

map A → ΣA found when resolving D
‘
abrowski’s conjecture, in pursuit of an algebraic

invariant that must behave nontrivially.
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4.4 A K0 Borsuk-Ulam Theorem

The algebra R2n
ω may be obtained as the noncommutative suspension ΣαC(S2n−1

ω ) of

C(S2n−1
ω ), where α is the antipodal action on C(S2n−1

ω ). The antipodal action on R2n
ω , which

negates each generator and will be denoted a, comes from the composition of α and α̂

pointwise on ΣαC(S2n−1
ω ). This action behaves well with respect to the projection

Pω(n) =
1

2
I2n +

1

2

 xI2n−1 Zω(n)

Zω(n)∗ xI2n−1


in that a(Pω(n)) = I − Pω(n). Based on the results for θ-deformed spheres, we can ask if

2n × 2n projections satisfying this identity are always nontrivial in K0. This is evident for

Pω(n) from the ranks Rankδ=±1, which take different values, as the endpoint evaluation of

Pω(n) at t = 1 is 1+δ
2
I2n . This nontriviality does hold in general, and the proof requires

study of a non-free Z2 action on commutative spheres C(Sk).

Theorem 4.4.1. Let the commutative sphere C(Sk) be equipped with a Z2 action γ that

fixes a distinguished real-valued coordinate h but negates the remaining coordinates x1, . . . , xk,

and let U be a unitary matrix over C(Sk) with γ(U) = U∗ and U |h=±1 = I. Then the fol-

lowing hold.

1. If U represents a trivial element in K1(C(Sk)), then there is a path connecting U ⊕ I

to I within the unitaries that satisfy γ(M) = M∗ and M |h=±1 = I.

2. If k is odd, then U corresponds to an even integer in K1(C(Sk)) ∼= Z.

Proof. We proceed by induction, noting that the only applicable unitaries over C(S0) are the

identity matrices, so the claim at dimension 0 is automatically satisfied. If the claim holds

for k, then suppose U is a unitary matrix over C(Sk+1) with γ(U) = U∗ and U |h=±1 = I.
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Let Sk denote the equator in Sk+1 determined by xk = 0 (xk is a coordinate negated by

γ), so that the restriction γ̃ of γ to C(Sk) is an action of the same type: it fixes h and

negates x1, . . . , xk−1. Also note that the fixed points h = ±1 are in this equator Sk. To

use the inductive hypothesis, first form a path of unitaries that “stretches” the equator data

of U . Realize C(Sk+1) as the unreduced suspension ΣC(Sk), with xk representing the path

coordinate in [−1, 1]. Then U = U(xk) represents a path of unitary matrices over C(Sk),

and we form a continuous path Ut as follows.

Ut(xk) =


U
( −2
t−2

(xk + 1)− 1
)

if −1 ≤ xk ≤ −t
2

U(0) if −t
2
≤ xk ≤ t

2

U
( −2
t−2

(xk − 1) + 1
)

if t
2
≤ xk ≤ 1

This path connects U = U0 to V = U1, which has its equator data repeated on a band

neighborhood −1
2
≤ xk ≤ 1

2
. The path Ut also satisfies γ(Ut) = U∗t and still assigns the

identity on h = ±1, as these points are in the equator xk = 0. The equator function

U(0) = V (0) is trivial in K1(C(Sk)) because Sk sits inside a contractible subset of Sk+1; it

also satisfies γ̃(U(0)) = U(0)∗ and sends the fixed points at h = ±1 to the identity matrix.

By the inductive hypothesis, there is a path Wt connecting W0 = U(0)⊕ I to W1 = I within

the unitaries over C(Sk) that also satisfy γ̃(Wt) = W ∗
t and assign the fixed points h = ±1

to the identity matrix. Apply this path to the equator of V ⊕ I while maintaining the same

values on the path for |xk| ≥ 1
2
.

Vt(xk) =

 Wφt(xk) if |xk| ≤ 1
2

V (xk)⊕ I if 1
2
≤ |xk| ≤ 1

φt(xk) =

 −2|xk|+ t if |xk| ≤ t
2

0 if t
2
≤ |xk| ≤ 1

2
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The path Vt connects V0 = V ⊕ I to V1, where the unitaries Vt still satisfy γ(Vt) = V ∗t ,

and by the inductive assumption, the fixed points h = ±1 of γ are still always assigned

the identity. Because V1 also assigns the identity matrix on the entire equator, V1 is the

commuting product of two unitary matrices F and G, where F assigns the identity matrix

for xk ≥ 0, G assigns the identity matrix for xk ≤ 0, and γ(F ∗) = G. How to proceeed is

slightly different based on the parity of k + 1.

If k+1 is even, then K1(C(Sk+1)) is the trivial group, so let Ft denote a path of unitaries

connecting F0 = F ⊕ I to I. Moreover, we can insist that Ft always assigns the identity

matrix on points with xk ≥ 0, as this region is contractible to a point and K1(C(Sk+1\{pt}))

is also trivial. Then the commuting product Qt = Ft · γ(F ∗t ) forms a path of unitaries that

connects V1 ⊕ I to I, satisfies γ(Qt) = Q∗t , and assigns the identity matrix at (at least)

h = ±1. Tracing back all of the paths used so far shows that U ⊕ I is connected to I within

the same set of restricted unitaries.

If k + 1 is odd, then K1(C(Sk+1)) ∼= Z, and as γ and the adjoint are both orientation-

reversing, F and G = γ(F ∗) represent the same element in K1(C(Sk+1)). The product

V1 = F ·γ(F ∗) shows that the class of V1 (and therefore of U) in K1 is 2[F ]K1 , an even integer.

If this integer is zero, then once again, K1(C(Sk+1 \ {pt})) is isomorphic to K1(C(Sk+1)), so

just as in the previous paragraph, the trivial element F ⊕ I can be connected to I in a path

of unitaries Ft that always assign the identity on points with xk ≥ 0. Finally, the commuting

product Qt = Ft · γ(F ∗t ) connects V1 ⊕ I to I, satisfies γ(Qt) = Q∗t , and always send the

points h = ±1 to the identity matrix. A composition of paths establishes the same for U

and completes the induction.

In the above theorem, the set of matricesM satisfying γ(M) = M∗ is not a C∗-subalgebra

of the matrix algebra over C(Sk), as the adjoint operation reverses the order of multiplication.

As such, some of the ideas in the proof are motivated by the six term exact sequence, but

cannot be implemented this way. Mention of function values at the fixed points h = ±1
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appears to be unnecessary on first glance, but this is crucial even at low dimensions.

Example 4.4.2. Let C(S1) be generated by the complex coordinate z = x + iy with a Z2

action γ that negates y but fixes x. Then γ(z) = z∗, but z is the generator of K1(C(S1)),

associated to the odd integer 1. The fixed points are x = 1 and x = −1, and z assigns

these points to ±1. The previous theorem does not apply, as it only considers matrices

which assign the identity matrix on the fixed points of γ. The same scenario happens in any

C(S2n−1) for the standard K1 generator Z(n).

Theorem 4.4.1 concerns an action γ that is not free, but it will be instrumental in defining

an invariant for unitaries that satisfy α(U) = U∗, where α is the antipodal map on C(S2n−1).

In turn, this invariant will show that the relation algebras R2n
ω have a Borsuk-Ulam property

for projections in K0, by first proving the case when z1, . . . , zn all commute with each other.

Definition 4.4.3. Fix an isomorphism C(Sk) ∼= ΣC(Sk−1), with the path coordinate denoted

by h. If M ∈ Mp(C(Sk)) is such that M(0) ∈ Mp(C) (i.e., it has constant entries), then let

M+ ∈Mp(C(Sk)) ∼= Mp(ΣC(Sk−1)) be defined as follows for h ∈ [−1, 1].

M+(h) = M

(
h+ 1

2

)

The matrix M+ encodes information about M only for points h ≥ 0. Note in particular

that M is also only defined in reference to a particular, fixed coordinate h and a suppressed

isomorphism with an unreduced suspension. We do not expect that anyM+ that is definable

with respect to multiple coordinate choices has any uniqueness properties of any kind.

Theorem 4.4.4. Suppose U0, U1 ∈ Uk(C(S2n−1)) are unitary matrices which assign an equa-

tor h = 0 to the identity matrix and satisfy α(Uj) = U∗j . If there is a path of unitary matrices

Ut connecting U0 and U1 that satisfy α(Ut) = U∗t (but have no restriction on the equator),

then the classes of U+
0 and U+

1 in K1(C(S2n−1)) ∼= Z differ by an even integer.
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Proof. Fix an isomorphism C(S2n−1) ∼= ΣC(S2n−2), with the path coordinate specified by h,

and let γ be a Z2 action on C(S2n−1) that fixes h but applies the antipodal map pointwise

on C(S2n−2). Define Vt ∈ Uk(C(S2n−1)) as follows.

Vt(h) =

 U−h(0) if −1 ≤ h ≤ −t

Ut(
h−1
1+t

+ 1) if −t ≤ h ≤ 1

Note that Vt(−1) = U1(0) is always the identity matrix and Vt(1) = Ut(1) is a constant

matrix, meeting the necessary boundary conditions to define a unitary over the sphere.

Further, V1 is equal to U+
1 , and V0 contains data of U+

0 with equator information of Ut.

V0(h) =

 U−h(0) if −1 ≤ h ≤ 0

U0(h) if 0 ≤ h ≤ 1

Since U0(0) is the identity matrix, this formula shows that V0 can be written as a commuting

product of two unitaries F ·G, as follows.

F (h) =

 I if −1 ≤ h ≤ 0

U0(h) if 0 ≤ h ≤ 1
=⇒ [F ]K1 = [U+

0 ]K1

G(h) =

 U−h(0) if −1 ≤ h ≤ 0

I if 0 ≤ h ≤ 1

Now, the path matrices Ut satisfy α(Ut) = U∗t , and the matrix G contains equator data

from Ut, so it satisfies γ(G) = G∗ where γ negates every coordinate in C(S2n−1) except h.

That is, γ applies the antipodal map of C(S2n−2) pointwise on ΣC(S2n−2). G also assigns

the fixed points of γ, h = ±1, to the identity matrix, so the class of G in K1(C(S2n−1)) is

an even integer by Theorem 4.4.1. The formulas V0 = F ·G and [F ]K1 = [U+
0 ]K1 imply that
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[V0]K1 is an even integer away from [U+
0 ]K1 , and [V0]K1 is the same as [V1]K1 = [U+

1 ]K1 .

The above theorem defines a Z2 invariant for any unitary over C(S2n−1) satisfying α(U) =

U∗ which assigns the identity on a specified equator h = 0: [U+]K1 mod 2. This invariant

is preserved by paths Ut satisfying α(Ut) = U∗t where U0 and U1 assign the identity on the

equator. It is important to note that only the endpoints of the path have specified equator

data; if the equators of Ut were also the identity, U+
t would be a well-defined path and the

K1 classes of U+
0 and U+

1 would be equal, with no need for modding by 2. Some examples

of unitary paths with α(Ut) = U∗t will be necessary for later calculations.

Example 4.4.5. Fix an isomorphism C(S2n−1) ∼= ΣC(S2n−2) with path coordinate x1 =

Re(z1), and consider the standard K1 generator Z(n) ∈ U2n−1(C(S2n−1)). Define a unitary

V ∈ U2n−1(C(S2n−1)) as follows.

V (x1) = −Z(n)[2|x1| − 1]

Now, V has V (±1) = −Z(n)[1] = −I and V (0) = −Z(n)[−1] = I, and the antipodal map α

on C(S2n−1) comes from applying x1 7→ −x1 and the pointwise antipodal map α̃ on C(S2n−2).

α(V )[x1] = α̃(V (−x1)) = α̃(V (x1)) = α̃(−Z(n)[2|x1| − 1])

The application of α̃ to −Z(n)[2|x1|− 1] negates y1 = Im(z1) and z2, . . . , zn, which produces

(−Z(n)[2|x1|−1])∗ by an inductive argument, so α̃(V (x1)) = V (x1)∗ for each x1. Finally, the

above equation implies that α(V ) = V ∗. Since V (0) = I and V + = −Z(n), it follows that

[V +]K1 = 1. Moreover, V is connected to −I2n−1 within the unitaries satisfying α(M) = M∗

by considering the following path Vt.

Vt(x1) = V ((1− t)|x1|+ t)
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Now, V0(x1) = V (|x1|) = V (x1), so V0 = V , and V1(x1) = V (1) = −I2n−1 .

α(Vt)[x1] = α̃(Vt(−x1))

= α̃(Vt(x1))

= α̃(V ((1− t)|x1|+ t))

= V ((1− t)|x1|+ t)∗

= Vt(x1)∗

Finally, V is connected to −I2n−1 within the unitary matrices satisfying α(M) = M∗.

Example 4.4.6. Fix an isomorphism C(S2n−1) ∼= ΣC(S2n−2) with path coordinate x1. Sup-

pose U0 ∈ Uk(C(S2n−1)) is anti self-adjoint (U∗0 = −U0) and odd (α(U0) = −U0), which

implies that α(U0) = U∗0 . Define a path Ut as follows.

Ut(x1) =



α̃(U0( 2
2−t(−x1 − 1) + 1)∗) if −1 ≤ x1 ≤ − t

2

(t+ 2x1)I +
√

1− (t+ 2x1)2 α̃(U0(0)∗) if − t
2
≤ x1 ≤ 0

(t− 2x1)I +
√

1− (t− 2x1)2 U0(0) if 0 ≤ x1 ≤ t
2

U0( 2
2−t(x1 − 1) + 1) if t

2
≤ x1 ≤ 1

Note that U0(0) is anti self-adjoint and odd under the antipodal action α̃ on C(S2n−2),

so Ut is well-defined and unitary with α(Ut) = U∗t . Let U1 = W0 and define another path of

unitaries Wt which have α(W ∗
t ) = Wt and also assign the equator to I.

Wt(x1) =



α̃(U0(−2x1 − 1)∗) if −1 ≤ x1 ≤ −1+t
2

(1 + 2
1+t
x1)I +

√
1− (1 + 2

1+t
x1)2 α̃(U0(t)∗) if −1+t

2
≤ x1 ≤ 0

(1− 2
1+t
x1)I +

√
1− (1− 2

1+t
x1)2 U0(t) if 0 ≤ x1 ≤ 1+t

2

U0(2x1 − 1) if 1+t
2
≤ x1 ≤ 1

Note that the formula defining Wt produces a unitary matrix because each U0(t) is anti
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self-adjoint, as is each α̃(U0(t)∗). Finally, W1(0) = I, and because U0(1) has scalar entries,

W1(x1) has scalar entries for each x1, which implies that [W+
1 ]K0 = 0.

Consider the relation algebra R2n ∼= ΣαC(S2n−1), in which z1, . . . , zn commute with each

other. Because the antipodal map a is implemented as αα̂ pointwise on C(S2n−1) oα Z2, an

element or matrix F (t) + G(t)δ over R2n
ρ is odd if and only if each F (t) is odd in C(S2n−1)

and each G(t) is even in C(S2n−1), which implies that G(t) commutes with δ and F (t)

anticommutes with δ. An odd matrix F (t) + G(t)δ is then self-adjoint if and only if F (t)

and G(t) are self-adjoint. If F (t)+G(t)δ is also unitary, then it satisfies (F (t)+G(t)δ)2 = 1,

which places tight restrictions on F and G.

(F (t) +G(t)δ)2 = F (t)2 + (G(t)δ)2 + F (t)G(t)δ +G(t)δF (t)

= (F (t)2 +G(t)2) + (F (t)G(t)−G(t)F (t))δ

= 1 + 0δ

(4.4.7)

This implies that the self-adjoint elements F (t) and G(t) must commute and satisfy F (t)2 +

G(t)2 = 1. In other words, U(t) = G(t) + iF (t) is a unitary matrix over C(S2n−1) for each

t, and because G(t) is even and F (t) is odd, α(U(t)) = U(t)∗.

Theorem 4.4.8. Let α denote the antipodal action on the commutative sphere C(S2n−1)

and consider the path algebra R2n = ΣαC(S2n−1) with antipodal action a = αα̂. If P ∈

M(2m+1)2n(R2n) is a projection with a(P ) = I−P , then [P ]K0 is not in the subgroup generated

by trivial bundles.

Proof. Write P = 1
2
I + 1

2
B where B is an odd, self-adjoint unitary matrix. By the cal-

culation (4.4.7), B(t) = F (t) + G(t)δ produces a path of unitaries U(t) = G(t) + iF (t) ∈

U(2m+1)2n(C(S2n−1)) with α(U(t)) = U(t)∗. Since B(1) is a matrix over C + Cδ, but F (1)

must be odd, it follows that F (1) = 0 and B(1) = G(1)δ where G(1) is a self-adjoint ma-

trix with constant entries. Moreover, the boundary conditions of ΣαC(S2n−1) imply that

118



G(0) = 0, so U(0) = iF (0) is an anti self-adjoint odd unitary. If [P ]K0 is in the subgroup

generated by trivial bundles, then the ranks Rankδ=±1(P (1)) are equal, so U(1) = G(1)

is a self-adjoint, unitary matrix over C whose eigenspaces for eigenvalues ±1 are of equal

dimension. It follows that U(1) may be connected within the self-adjoint, unitary matrices

over C to I(2m+1)2n−1 ⊕−I(2m+1)2n−1 , and the matrices in this path satisfy α(M) = M = M∗.

Because U(0) is an anti self-adjoint, odd, unitary matrix, by Example 4.4.6, U(0) is

connected via a path of unitaries satisfying α(M) = M∗ to a matrix W with identity on the

equator and [W+]K1
∼= 0 mod 2. Similarly, since U(1) is connected via a path of unitaries

satisfying α(M) = M∗ to I(2m+1)2n−1 ⊕ −I(2m+1)2n−1 , repeated use of Example 4.4.5 for

(2m + 1) summands of −I2n−1 shows U(1) is also connected to a matrix V such that V

assigns the identity on the equator and [V +]K1
∼= (2m + 1) ∼= 1 mod 2. This contradicts

Theorem 4.4.4, as V and W assign the identity on the equator and are connected via a path

of unitaries satisfying α(M) = M∗ (with no assumption on the path’s equator data), even

though their invariants [V +]K1 mod 2 and [W+]K1 mod 2 are different.

All that remains is to remove the assumption that z1, . . . , zn commute with each other.

First, note that the expansion map Eα : C(S2n−1
ω ) oα Z2 → M2(C(S2n−1

ω )) shows that the

relation algebra R2n
ω = ΣαC(S2n−1

ω ) embeds into M2(C(S2n
ω )), as follows.

ΣαC(S2n−1
ω ) = {f ∈ C([0, 1], C(S2n−1

ω ) oα Z2) : f(0) ∈ C(S2n−1
ω ), f(1) ∈ C + Cδ}

∼= {f ∈ C([−1, 1], C(S2n−1
ω ) oα Z2) : f(−1) ∈ C(S2n−1

ω ), f(1) ∈ C + Cδ}

∼= {f ∈ C([−1, 1],M2(C(S2n−1
ω ))) : f(t) =

 g(t) h(t)

α(h(t)) α(g(t))

 for all t,

h(−1) = 0, and g(1), h(1) ∈ C}

≤M2(ΣC(S2n−1
ω )) = M2(C(S2n

ω ))
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Denote this subalgebra of M2(C(S2n
ω )) isomorphic to R2n

ω as Bω. The antipodal action

a on Bω is realized as

 g(t) h(t)

α(h(t)) α(g(t))

 7→
 α(g(t)) −α(h(t))

−h(t) g(t)

, which is entrywise

application of α and conjugation by

 1 0

0 −1

. The spheres C(S2n
ω ) are θ-deformations

of C(S2n), so if f and g are fixed (matrices of) smooth elements, the following continuity

properties apply (as in (2.3.2) and (2.3.3)). Here Cω denotes the collection of parameter

matrices ρ which differ from ω only in one pair of conjugate entries, (i, j) and (j, i).

||f ·ω g − f ·ρ g||ρ → 0 as ρ→ ω within Cω

||f ||ρ → ||f ||ω as ρ→ ω within Cω

Any smooth approximations in M2(C(S2n
ω )) to an element of Bω can be made with-

out leaving Bω. Note that the pointwise action α on ΣC(S2n−1
ω ) = C(S2n

ω ) is an action

γ on C(S2n
ω ) which fixes x but negates every generator zi, so γ commutes with the ro-

tation action of Rn defining the Rieffel deformation. Moreover, because the antipodal

map on Bω is implemented with an entrywise action and a conjugation, a matrix func-

tion

 g(t) h(t)

α(h(t)) α(g(t))

 =

 g h

γ(h) γ(g)

 in Bω is odd if and only if γ(g) = −g and

γ(h) = h. Together, these observations imply that smooth approximations to Bω elements

may be made in Bω while preserving homogeneity properties in the antipodal action. Also,

as the adjoint operations of Rieffel deformations all have the same effect on smooth elements,

smooth approximations can also be made to preserve self-adjointness.

Theorem 4.4.9. Suppose p ∈ Z≥0 and P ∈ M(2p+1)2n(R2n
ω ) is a projection with a(P ) =

I − P . Then [P ]K0 is not in the subgroup generated by the trivial projections.

Proof. Suppose the theorem fails for P ∈ M(2p+1)2n(R2n
ω ), so there is a path of projections
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connecting P ⊕ 0⊕ I to a trivial bundle I ⊕ 0. If this path is viewed under the isomorphism

R2n
ω
∼= Bω ≤ M2(C(S2n

ω )), then any matrix over Bω can be approximated by matrices with

smooth entries, and this approximation can be done without leaving Bω. Moreover, if the

original matrix is odd or self-adjoint, these properties can be preserved in the approximation.

Any smooth matrix over Bω ≤ M2(C(S2n−1
ω )) may then be viewed as a matrix over Bρ ≤

M2(C(S2n−1
ρ )) for any ρ.

The path of projections connecting P ⊕ 0 ⊕ I to I ⊕ 0 is uniformly continuous, so let

P0, . . . , Pk be finitely elements of this path with the following properties.

P0 = P ⊕ 0⊕ I ||Pm − Pm−1||ω < ε Pk = I ⊕ 0

Fix 0 < ε < 1
13

and let Q be a self-adjoint smooth approximation to P such that a(Q) = I−Q

and ||Q ·ω Q−Q||ω < ε, and let Q0 = Q⊕ 0⊕ I, so that ||Q0 ·ω Q0 −Q0||ω < ε. The matrix

Pk = I ⊕ 0 is already smooth, so let Qk = Pk. Finally, choose smooth approximations

Q1, . . . , Qk−1 of P1, . . . , Pk−1 so that these restrictions hold for each m.

Q0 = Q⊕ 0⊕ I Qm = Q∗m ||Qm ·ωQm−Qm||ω < ε ||Qm−Qm−1||ω < ε Qk = I ⊕ 0

If ρ is another parameter matrix differing from ω only in a prescribed pair of conjugate

entries, then if ρ is close enough to ω, similar inequalities hold.

Q0 = Q⊕ 0⊕ I Qm = Q∗m ||Qm ·ρQm−Qm||ρ < ε ||Qm−Qm−1||ρ < ε Qk = I ⊕ 0

Let Rt, t ∈ [0, 1], denote the piecewise linear path connecting Q0, . . . , Qk, so each Rt is self-

adjoint and has ||Rt||ρ ≤ max {||Qm||ρ : m ∈ {0, . . . , k}} ≤ 1 + ε. Further, for any t there is

an m such that ||Rt − Qm||ρ < ε, so liberal use of the triangle inequality and properties of

121



Qm shows that ||Rt ·ρ Rt −Rt||ρ < 3ε+ 2ε2.

R0 = Q⊕ 0⊕ I Rt = R∗t ||Rt ·ρ Rt −Rt||ρ < 3ε+ 2ε2 R1 = I ⊕ 0

Write Rt = 1
2
I + 1

2
Ft, so Ft is self-adjoint and ||Ft ·ρ Ft − 1||ρ < 12ε + 8ε2 < 1. This

implies that Ft is invertible, so normalize Ft to a self-adjoint unitary (under ·ρ) to produce

Ft ·ρ |Ft|−1ρ and the projection R̃t = 1
2
I + 1

2
Ft ·ρ |Ft|−1ρ . Note that this normalization process

does nothing to R1 and respects the summands of R0: R̃0 = Q̃⊕0⊕I where Q̃ is a projection

obtained from Q in the (2p+ 1)2n-dimensional matrix algebra by similar means. Moreover,

since Q = 1
2
I + 1

2
F satisfies a(Q) = I −Q, F is a self-adjoint odd invertible, so F ·ρ |F |−1ρ is

a self-adjoint odd unitary, and a(Q̃) = I− Q̃. Finally, the path R̃t is a path of projections in

Bρ
∼= R2n

ρ connecting Q̃⊕ 0⊕ I to I ⊕ 0, and Q̃ ∈M(2p+1)2n(Bρ) = M(2p+1)2n(R2n
ρ ) is in the

K0 subgroup generated by trivial projections. This means that assuming the theorem fails

for a single parameter matrix ω implies that the theorem fails for all ρ that are sufficiently

close to ω and differ from ρ in a prescribed pair of conjugate entries. We may select ρ such

that this pair of conjugate entries consists of roots of unity of odd order, and then repeat the

argument starting with ρ and another pair of conjugate entries. In finitely many iterations,

it will follow that the theorem fails for a parameter matrix µ which has odd order roots of

unity in every entry. This is a contradiction by the following argument.

Suppose µ is a parameter matrix with an odd order root of unity in each entry such that

the theorem fails for a projection P ∈ M(2p+1)2n(R2n
µ ), and consider R2n = ΣαC(S2n−1). By

Lemma 2.3.4 there are unitary matrices V1, . . . , Vn ∈ U2q+1(C) such that VkVj = µjkVjVk, so

define B : R2n
µ 7→M2q+1(R2n) as follows.

B : zj 7→ zjVj B : x 7→ xI2q+1

The ∗-homomorphism B exists because the desired images satisfy the relations defining R2n
µ ,
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as all noncommutativity information among z1, . . . , zn is pushed to the matrices Vj. Further,

B is equivariant for the antipodal map, as the odd generators are sent to matrices with odd

entries. So, if P ∈M(2p+1)2n(R2n
µ ) satisfies a(P ) = I−P and [P ]K0 is in the subgroup gener-

ated by trivial projections, then the same properties apply to B(P ) ∈ M(2q+1)(2p+1)2n(R2n),

contradicting Theorem 4.4.8.

Corollary 4.4.10. Suppose φ : R2n
ω → R2n

ρ is a unital ∗-homomorphism that is equivariant

for the antipodal map. Then the induced map on K0
∼= Z⊕Z is nontrivial on the component

that is not generated by trivial projections.

Proof. The image E(Pω(n)) is a 2n×2n projection that satisfies α(E(Pω(n))) = I−E(Pω(n))

and is therefore not in the K0 subgroup generated by trivial projections.

Remark. Because the θ-deformed spheres have the same nontriviality statement in K0, the

domain or codomain could be replaced by some C(S2n
η ).

Finally, the anticommutation relation algebras R2n
ω satisfy a noncommutative Borsuk-

Ulam theorem analogous to that of C(S2n
ω ). A curious aspect of these proofs is that the

theorem on relation algebras pushed the problem down one dimension to discuss unitaries

satisfying α(M) = M∗ over C(S2n−1
ω ), whereas the argument for C(S2n

ω ) worked by pushing up

one dimension and focusing on odd unitaries. In both cases, the alternative method of proof

appears to have “insurmountable” road blocks, where one switch of sign devastates an entire

argument. It is not clear to me if this indicates key differences in structure or just a technical

problem; after all, the first algebra embeds into a matrix algebra over the second. Further,

the noncommutative unreduced suspensions ΣβC(S2n−1) for various Z2 actions β that negate

some, but not all, generators zj produce a similar family of universal algebras, and the results

of Section 4.2 up to and including (4.2.5) can be generalized to this case, but the computation

of K-theory is not quite as clear. The action β is not saturated, and saturation was a crucial

point for K0 computations of R2n
ω (although there is an analogous projection to Pω(n),

123



which might be a candidate nontrivial element), and preliminary computations suggest that

they might not satsify the same type of K0 Borsuk-Ulam theorem for projections of certain

dimensions. Along with the almost antithetical problem of saturation in Example 4.3.5

and Question 4.3.3, this shows that the exact Borsuk-Ulam properties that noncommutative

suspension preserves are not yet clear – a story, perhaps, for another time.
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