Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-88-18

1988-06-01

DNA Restriction Mapping from Random-Clone Data

Gwangsoo Rhee

This report addresses the problem of constructing DNA restriction maps from random-close
data produced by cutting the whole DNA structure with restriction enzyme and measuring
possibly overlapping segments. Our approach to DNA mapping is based on the overlapping
segments that occur between adjacent clones. The shortest common superstring problem
(SCS) and the shortest common matching string problem (SCMS) are discussed as abstract
computational models of DNA mapping. Since these string problems are NP-complete, we need
efficient approximation algorithms to avoid excessive computational complexity. Some greedy
algorithms to SCMS are presented along with performance data obtained through simulation.

... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Rhee, Gwangsoo, "DNA Restriction Mapping from Random-Clone Data" Report Number: WUCS-88-18
(1988). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/775

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F775&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F775&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F775&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F775&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F775&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/775?utm_source=openscholarship.wustl.edu%2Fcse_research%2F775&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/775

DNA Restriction Mapping from Random-Clone Data

Gwangsoo Rhee

Complete Abstract:

This report addresses the problem of constructing DNA restriction maps from random-close data
produced by cutting the whole DNA structure with restriction enzyme and measuring possibly overlapping
segments. Our approach to DNA mapping is based on the overlapping segments that occur between
adjacent clones. The shortest common superstring problem (SCS) and the shortest common matching
string problem (SCMS) are discussed as abstract computational models of DNA mapping. Since these
string problems are NP-complete, we need efficient approximation algorithms to avoid excessive
computational complexity. Some greedy algorithms to SCMS are presented along with performance data
obtained through simulation.

https://openscholarship.wustl.edu/cse_research/775?utm_source=openscholarship.wustl.edu%2Fcse_research%2F775&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/775?utm_source=openscholarship.wustl.edu%2Fcse_research%2F775&utm_medium=PDF&utm_campaign=PDFCoverPages

DNA RESTRICTION MAPPING FROM
RANDOM-CLONE DATA

Gwangsoo Rhee

WUCS-88-18

June 1988

Department of Computer Science
Washington University

Campus Box 1045

One Brockings Drive

Saint Louis, MO 63130-4899

Abstract

This report address the problem of constructing DNA restriction maps from random-clone data pro-
duced by cutting the whole DNA structure with restriction enzyme and measuring possibly overlap-
ping segments. Our approach to DNA mapping is based on the overlapping segments that occur
between adjacent clones. The shortest common supersiring problem (SCS) and the shortest common
matching string problem (SCMS) are discussed as abstract computational models of DNA mapping.
Since these string problems are NP-complete, we need efficient approximation algorithms to avoid
excessive computational complexity. Some greedy algorithms to SCMS are presented along with
performance data obtained through simulation.

This work was supported by NIH grant RR01380.

DNA Restriction Mapping
from Random-clone Data

Gwangsoo Rhee

1. Introduction

There is no substance as important as DNA. Because it carries within its structure the genetic
information that determines the structures of proteins, it is the prime molecule of life. If we succeed
in unlocking the information within DNA, we shall have taken a giant step toward eventually un-
derstanding the many complex sets of interconnected chemical reactions that cause fertilized eggs
to develop into highly complex multicellular organisms.

The building blocks of the DNA polymer are nucleotides, which in turn consist of a phosphate
group, a sugar ring group and either a purine or a pyrimidine base group. The two possible purines
are adenine (A} and guanine (G); the two possible pyrimidines are cytosine (C) and thymine(T).
The backbone of the DNA strand is formed by covalent bonds connecting alternating sugars and
phosphates. The patterns present on a DNA strand are then the sequential arrangements of A, C, G
and T along the strand. DNA isolated from cells is found to be an antiparallel double-stranded helix,
with the alignment of the two strands mediated through hydrogen bonding between a purine or a
pyrimidine on one strand and a pyrimidine or a purine on the other. Furthermore, this base paring
is quite specific. A is always paired with T, and G is always paired with C. Thus, the base sequence
on one strand completely determines the base sequence on the other, complementary strand. These
A—T or G-C pairs are called basepairs. Now we can view a DNA molecule as a chain of basepairs.

The DNA sequencing problem is to determine a complete sequence of basepairs for a given
DNA chain. There have been some biochemical techniques allowing sequencing of 100~500 basepair
fragments of DNA [1,2,3]. But, most DNA molecules are much larger than this. For example, the
size of DNA from the yeast Saccharomyces has been estimated to be 1.5 x 10% kilobases (kb), and
a human DNA is as large as 3 x 10° kb. Hence it is not possible to apply the existing direct DNA
sequencing methods to a whole DNA molecule.

Since the discovery of site-specific restriction nucleases in 1970, DNA restriction enzymes (RE)
have become very useful in DNA sequencing. Restriction enzymes are chemicals that cut DNA
strands at sites where specific base sequences, called recognition sequences, appear. For instance,
Eco RI cuts at GAATTC. Using Eco R, it is possible in principle to determine all the places
where GAATTC appears. Places where such sequences appear are called RE sifes. The fragments
generated when a specific DNA is cut by one or more restriction enzymes are called restriction
fragmenis, and the restriction mapping problem is to construct a restriction map, a picture showing
the position of restriction fragments in the original DNA. Uses of restriction maps include: (1) a
restriction map tells all the locations in a DNA strand where a specific base sequence appears; (2)
when a complete base sequence for a restriction fragment is known, the restriction map tells where
the fragmentary sequence should be located in the DNA, eventually leading to the complete base

2 Gwangsoo Rhee

sequence of the DNA; (3) in combination with other laboratory analyses, these maps can show the
physical arrangements of closely linked genes.

The first restriction map was constructed in 1971 by Daniel Nathans [4]. Nathans used the Hin
dII enzyme to cut the circular DNA of SV40 into 11 restriction fragments. The order in which these
11 fragments occurred in the SV40 DNA could be deduced by studying the patterns of fragments
produced as the digestion proceeded to completion. The first cut broke the circular molecule into
a linear structure that was then cut into progressively smaller fragments. By following the pattern
of production of, first, the overlapping intermediate-sized fragments and, from them, the fragments
of the complete digest, Nathans produced a restriction map that located the sites on the circular
viral DNA that are cut by Hin dII. Repeating the experiment with other enzymes produced a more
detailed map with many different restriction sites.

In general, the most useful enzymes are the one that have rare recognition sequences and that
therefore produce small numbers of fragments that can be easily separated from one another. It
is also easy to follow the patterns of producing fragments when there are only a small number of
restriction sites, which allows ordering of fragments without excessive computation. Many com-
mercially available DNA restriction enzymes have recognition sequences of six or fewer basepairs,
and a very few of them have recognition sequences longer than eight basepairs. If we consider a
DNA strand as a random sequence of four bases, a specific recognition sequence of length six will
appear once at every 4096 (= 4%) bp long sequence on the average. Since the reverse of a recogni-
tion sequence also forms a recognition sequence, the average restriction fragment size is reduced to
2048 bp. Furthermore many restriction enzymes have multiple recognition sequences. For example,
Hin dII has four different recognition sequences: GTCAAC, GTCGAC, GTTAAC, and GTTCGAC,
Therefore the average restriction fragment length produced by Hin dII is 512 bp. If we use the
enzyme Hin dII to cut a human DNA of length 3 % 10% bp, we'll obtain about § x 10° restriction
fragments, neither the separation nor the analysis of which seems to be tractable. An enzyme with
a unique recognition sequence of length eight will cut the human DNA into about 9 x 10% fragments,
which makes reconstruction a lot more manageable, although still not easy.

For more insight, let’s look at the actual steps of the experiment used to consiruct a DNA
restriction map [5).

step 1. Start with a sample of multiple source DNA molecules and a restriction enzyme that cuts
DNA into segments.

step 2. Add the restriction enzyme and limit reaction so that only about one site in £ (say 10) is
cut. Take a random sample of n (say 5000) of these coarse segments(clones). Such a coarse
segment contains £ restriction fragments on the average.

step 3. Separate and replicate using gene splicing techniques. This yields n clones, each containing
many copies of a particular coarse segment.

step 4. Add restriction enzyme to each clone, cutting at all RE sites. Measure length of resulting
fine segments (restriction fragments) by electrophoresis.

step 5. List the fragment lengths for each clone. Note that neither the order of clones nor the order
of fragments within a clone is known from previous steps.

step 6. Use the data to infer positions of initial RE sites. Algorithms for the last step are the
subject of this thesis.

An example of the experimental process is shown in Figure 1, where each list of fragments is a
clone containing those fragments. With a number of clones sufficient to provide redundant sampling

DNA Restriction Mapping from Random-clone Data 3

RE sites

source
L1 A O S N VI S B |
DNA I N N I I T B R S |

clones TR N 0 N N S R T I | L1

Experimental Data
(lists of fragments)

HHHHHF— HH——
HHH i e o e

HHHF— HHHF
HHHHHF— L e e

Figure 1: An example of experimental process

of most regions of the DNA, it is possible to extract mapping information from the unordered
fragment-length lists using an algorithm that systematically imposes the requirement that the set
of restriction fragments from a single clone should be contiguous.

Given a short DNA region and an enzyme cleaving the region at a few sites, it is easy to construct
a restriction map. For example, consider a region that has only four recognition sites so that it can
be broken into five fragments. Then the number of all the possible clones generated from that region
1515 (= 1 + 2+ 3 4 4 + 5). It won’t be difficult to obtain all these clones, which provides sufficient
information to sequence the fragments. In this case, it is also easy to doublecheck the fact that the
given region has only four recognition sites, which was not known in advance. This checking can be
done by comparing the length of the full region and the sum of the lengths of fragments. Since all
the lengths from this experiment are subject to measurement error, this checking may not be done
in the cases involving a large number of fragments. Moreover for large DNA molecules, obtaining
all the possible restriction fragments is impractical.

The DNA restriction mapping problem can be abstracted to the shortest common matching
problem (SCMS) and NP-completeness proofs of SCMS appear in [6] and also in [7]. The object
of the problem is to find a minimum length string that matches every bag in the problem instance,
where a bag is an unordered collection of symbols from a finite alphabet and the same symbol can
appear more than once in a bag. A string is said to match a bag if the string contains some substring
that has exactly the same symbols as the bag has. The DNA mapping problem is abstracted to

4 Gwangsoo Rhee

SCMS by viewing restriction fragment lengths as symbols and clones as bags. More details about
SCMS are given in section 4.

There is a gap between the DNA mapping solution and the SCMS solution. The DNA mapping
problem is to construct the original sequence of the restriction fragments from the experimental
data, and SCMS, when applied to DNA mapping, is to find the shortest sequence that matches
the data. Because of the NP-completeness of SCMS, there can be no efficient algorithm for SCMS
unless P = NP. Even if we knew the shortest sequence, it isn’t necessarily the original one, even if
it is likely to be. The solution of SCMS, however, is useful in organising the experimental data and
planning experiments,

For regions spanning up to 50 kb, restriction maps are routinely constructed. In a few favorable
cases, maps as long as 600 kb have been constructed at a resolution of a few kb (8,9,10], where
fragments smaller than 0.5 kb are not visible by gel electrophoresis, but it has proven to be difficult
to extend existing mapping methods beyond this range. Given that human DNA contains about
3 x 10° kb and that yeast DNA contains 1.5 x 10% kb, there is a gross disparity between the limits
of those methods and the sequence complexity of DNA.

Direct DNA sequencing methods attempt to find complete basepair sequences of small DNA
fragments and piece them together using restriction maps. The first substantial work on direct
DNA sequencing methods was reported by Fred Sanger and A. R. Coulson in 1975; their method
is now called the plus-minus method [I]. It is based on the elongation of DNA chains with DNA
polymerase. With this technique the 5386-basepair sequence of the small DNA phage & X176 was
determined [11]. An equally powerful method based on the chemical degradation that breaks a
terminally labeled DNA molecule partially at each repetition of a base, was developed by Allan
Maxam and Walter Gilbert in 1977 [2]. All the 5226 basepairs of V40 DNA became quickly known
in Gilbert’s laboratory. Sanger later devised a third method for sequencing DN A, and again he used
enzymatic rather than chemical techniques [3]. This method, which is based upon the incorporation
of dideoxynucleotides as terminators of DNA chain elongation, has proved to be more efficient and
accurate than any other method currently employed.

Another line of research on DNA sequencing, carried out by T. R. Gingeras [12], focuses on the
overlaps between the fragmentary sequences to put fragments together so that a detailed restriction
map may be avoided in the first place. This is accomplished by defining a region of DNA strand
of manageable size (say, 1-5 kb) and then obtaining sequence information from that region in an
arbitrary fashion. For instance, we can obtain a redundant set of fragmentary sequences, each 200~
300 basepairs long, by cutting the region by many different restriction enzymes. The sequences
are then searched for overlapping stretches and sequences combined until all data are accomodated
within a final continuous string. The use of this method is restricted to assist in constructing long
DNA sequences, or the results can be used for double-checking in combination with other methods.
The shortest common supersiring problem (SCS) is an abstract version of this method.

The object of SCS is to find the shortest possible string that contains every string in a given
set as substrings. SCS has been given some attention for its application to data compression. The
problem is shown to be NP-complete by Maier and Storer in [13]. In DNA sequencing applications,
a fragmentary sequence can be equivalently represented by reversing it. The reversible shortest
common supersiring problem (RSCS) was originally introduced by Turner as an intermediate problem
in the transformation from SCS to SCMS in the NP-completeness proof [7]. The object of the
problem is very similar to that of SCS, except that each substring can be contained in the final
superstring either in its original form or in the reversed form. The reversibility of RSCS makes it
more suitable as an abstract version of Gingeras’ method. Another use of RSCS algorithm is in DNA
mapping if the order of restriction fragments within clones are determined by additional experiments
on all the clones. But these addifional experiments are too expensive with existing experimental

DNA Restriction Mapping from Random-clone Data 5

techniques unless we find a superior approximation algorithm for RSCS, the performance of which
will compensate for the additional experiments.

2. Literature Review

In this section I am going to review some work on DNA sequencing and restriction mapping using
computer algorithms,

Historically proteins and ribonucleic acids {(RNA) got earlier attention for sequencing than DNA,
because of their relative simplicity. A protein is a sequence of amino acids of which 20 kinds are
known, and RNA is a sequence of purine and pyrimidine bases. The purine bases of RINA are the
same as those of DNA, adenine and guanine, but the pyrimidine bases are cytosine and uracil (U).
An algorithm for reconstructing protein and RNA sequences was suggested by Marvin B. Shapiro
in [14]. This algorithm requires two kinds of input: (1) the number of occurrences of each base or
each kind of amino acid, which also gives the overall length, and (2) the fragment data itself, that
is, a set of fragmentary sequences with each fragment not longer than eight, where the constraint
on the lengths are imposed by the data, not by the algorithm. Then the algorithm generates all the
sequences meeting the conditions imposed by the data. The validity of this algorithm is shown only
empirically, and its use is quite limited because it is hard to obtain the number of occurrences of
each base in advance.

Mark Stefik conceived DNA mapping as an Al problem, and developed a rule-based program GAJ
using techniques similar to those used in the DENDRAL program [15]. His approach is basically the
generate-and-test paradigm and uses the products of single and double digestion of DNA molecule
with several different restriction enzymes. Initially there are exponentially many hypotheses about
the possible sequences, and all the wrong answers are eliminated by examining the data, leaving a set
(possibly singleton) of valid sequences. The combinatorial explosion in the number of hypothetical
maps limits its use to very small DNA molecules. His real contribution to DNA mapping seems to
be his efforts to deal with incorrect data such as missing segments, insufficient distinguishing power
of fragments of similar sizes by the limited resolution of measurement, and extraneous fragments
which are actually clones.

William R. Pearson made a slight improvement over GA1 [16]. His initial hypotheses about the
possible maps are formed using the products of single digestion and the products of double digestion
are used only to eliminate the wrong answers. The running time of this method is much faster than
GAL, but is still exponential. Durand and Bregegere used backiracking to construct a map from one
end to the other by adding a fragment of single digestion in accordance with double digestion data
at each step [17]. The worst-case time complexity of this method is still exponential.

Maynard V. Olson presented a random-clone strategy for restriction mapping in his recent paper
[19], and applied the method to construct a set of local maps each of which shows the structure of
a segment of the global restriction. map of total nuclear DNA, from the yeast Saccharomyces, whose
size had been estimated to be 1.5 x 10% kb. The data collection involves picking a redundant set of
clones at random and measuring the sizes of the restriction fragments generated by a digestion of
a clone with gel electrophoresis. With extensive uses of pairwise comparisons between clones, the
clones with the longest overlap are added to each map unit if they do not conflict with the existing
structure of the map. Frequent backtracking is required because the correct pairing scheme at any
given step is not always the one with the most matches. The sizes of local maps are about 20~100
kb, and they are expected to serve as building blocks for the construction of a continuous global
map in the future.

There hasn’t been any serious work on the approximation algorithm for either SCS or SCMS,
except the analysis of a greedy algorithm for SCS given by Turner in [18]). He showed that the

6 G'wangsoo Rhee

algorithm using the greedy heuristic of pairwise overlap between strings produces solutions that are
always within a factor of two of optimum with respect to the overlap measure. He also described an
implementation of the algorithm with worst-case running time O(mlogn) for small alphabets and
O(mlogm) for large alphabets, where m is the sum of the lengths of all the strings in the set and
n is the number of strings.

3. SCS and RSCS &

This section provides formal definitions for the shortest common superstring problem (8C8) and
reversible shortest common superstring problem (RSCS). The basic definitions and notation for SCS
are taken from [18] and extended for RSCS.

Let 81 = a1---ap and s3 = by --- b, be strings over some finite alphabet . We say that s; is a
subsiring of sy if there is an integer i € [0, ¢ — p] such that a; = byyj for 1 < j < p. We also say in
this case that s; is a superstring of ;.

A set of strings is said to be substring free if no string in the set is a substring of any other. We
will generally limit our attention to substring free sets without loss of generality, because any set of
strings has a unique substring free subset which has the same solutions as the original set both in
5CS and in RSCS,

If s is a string, |s| denotes the number of symbols in s. If S is a set of strings, |S| denotes the
cardinality of S and || § || denotes 3 .o | = |.

3.1. SCS

An instance of SCS is a set of strings S = (s1,...,8,) over a finite alphabet ©. The object of the
problem is to find a minimum length string that is a superstring of every s; € 5. We let ¢*(5)
denote the length of a minimum length superstring.

When X consists of only one symbol, SCS has a trivial solution, the longest string from the given
seb. There is also a linear time and space algorithm to find the solution for a set of strings of length
less than or equal to two [20]. In all the other cases, SCS remains NP-complete.

We have presented the problem in the conventional way, with the object being to minimize the
solution length. It is useful to consider an alternative viewpoint as well. One can view the object
of the problem as being to find an ordering of the strings that maximizes the amount of overlap
between consecutive strings. To male this precise we need a few definitions.

Let s3 = ay - - ap and s3 = by - - - b, be strings. We define
P(s1,82) =max {k > 0| ap_p4s = b;,1 <1<k}

I 1(s1,52) = k then s; o 55 is defined to be the string ay ---apbpyy - -- b,. We note that if 51,59, 53
are strings, none of which is a substring of another, then s; o (55 0 53) = (81 0 33) 0 s3; that is, the
overlapping operation is associative for substring free sets. Consequently, in this case we may write
51083 0.0 8, with no ambiguity.

Let 7 be a permutation on {1,...,n}. We will usually write =; for (7). We define

-1
¢T(31: ey 37‘1) - .?=1 '(/J(Sw,-, 37&’,‘.;.1)
and Px(s1,...,80) =| Sey 0 08x, |

DNA Restriction Mapping from Random-clone Data 7

Note that for any instance S = (sy,...,s,) of SCS,

¢x(5) =[S || =¥ (5).

In particular, we define
¢*(S)=|| 8 || —=¢*(S) where P*(S) = max, P (S).

Hence, we can view the object of the SCS problem as being to find a mapping 7 that maximizes).

Let A be an algorithm for SCS which given a set of strings S = {$1,...,5.} produces a mapping
T =74(5). We define 44(S) = ¥x(5) and ¢4(5) = ¢.(5).

As 5CS is NP-complete, we are interested in approximation algorithms. One particularly simple
algorithm, called the greedy algorithm, can be stated as follows. Given a non-empty set of strings
S, repeat the following step until S contains just one string.

Select a pair of strings 31,5y € S that maximizes (51, 82). Remove s, and sy from §,
replacing them with s; o s5.

We refer to this algorithm as SGREEDY. It has been shown [18] that in the worst case, the sum of
overlaps between consecutive strings is at least as large as half the sum of overlaps in the optimal
solution (¥*(5) < 2¢serErny(S)). The performance measure used here is the overlap measure. The
worst-case performance by the conventional length measure of the greedy algorithm is not known
except that it has been shown not to be better than a factor of two, twice the shortest length.

3.2. RSCS

Let 5 = a4 - - - a, be a string over some finite alphabet 3. Then rev(s) is defined to be the reverse of s,
that is, a, - -+ a;. An instance of RSCS is same as that of SCS, a set of strings 5 = {51,...,5,} over
a finite alphabet Z. The object in this case is to find a minimum length string that is a superstring
either of s or of rev(s) for all s € . We need some additional definitions for the discussion of RSCS.

Suppose a set of strings S = {s1,..., 8, } for which {s1,...,8,,7ev(s1),... yrev(s,)} is substring-
free, is given as an instance of RSCS. Let o : {1,...,n} — {1, ...,kn} be a mapping with
restriction o(4) = 4 or —1 for every integer . With a permutation = on {1,. .. ,n}, we can define

Per(S) = z;:ll gb(s”‘.,s”‘.“) where om; = o(n(i)) and s_; = rev(s;).

Then the objective of RSCS can be viewed as being to find a composite mapping o that maximizes
YPor(S) and let’s call the maximum value 4 (S).

Let A be an algorithm for RSCS which given a set of strings § = {s1,...,s,} produces a
composite mapping o7 = om4(S). We define Y4(S) = ¥ox(S5).

RSCS was shown to be NP-complete in [7]. A greedy strategy very similar to SGREEDY can also
be applied to RSCS. For a pair of strings s1 and s;, we define (51, 52) to be max {4(z,y) |z = 5
OT $.1,Y = 3 OF 5_3}, and ;333 is defined to be one of s; 0 53,81 0 8_3,5-1 059,51 0 5_p which
gives the maximum overlap @b"(sl, sz). Ties are broken arbitrarily. Then the greedy algorithm for
RSCS can be stated as follows. Given a non-empty set of strings S, repeat the following step until
S contains just one string.

8 Gwangsoo Rhee

Select a pair of strings $1, 5, € S that maximizes 'gb“(s;,sz). Remove s; and s, from S,
replacing them with s,35s5.

We refer to this algorithm as RGREEDY. We are going to show that RGREEDY also has the same
worst-case perforrna,}lce by the overlap measure, a factor of two, as SGREEDY. In other words, the
performance ratio, %*(S)}/¥rarerpy(S), is less than or equal to two for a given set S of strings.

Consider the following set of strings
S = {a{be)*b, c(bc)*, (be)* bd}

for which the optimal solution a(be)*+1bd gives the total overlap 3* (S) = 4k and 2 RGREEDY
solution a(br:)"‘bdc(bc)‘yc gives ﬁRGREEDxf(S) = 2k + 1. As k becomes large, the performance ratio
approaches two. This example, together with Theorem 3.1 below, tells us that the worst-case
performance of RGREEDY by the overlap measure is strictly a factor of two.

Lemma 3.1. Let w,z,y, and z be strings. If ¢¥(w,y) = max{y{w,y), ¥(w,), ¥(z, y), ¥(z, 2)} then
Plw,y) + 9¥(z, 2) > (w, 2) + ¢¥(z,v).

The proof of this lemma appearsin [7], and the lemma was used to prove 4* (S) < 2¢serEEDY (S)
for SCS.

TureoREM 3.1. Let § be any set of sirings. 1,&”*(5) < 2¢“RGREEDY(S)-

proof. Let s;,5; be the first pair of strings chosen from $ by RGREEDY, and let S’ be the new
set obtained by replacing s;,s; with s;5s;. We show that ¢*(S) < 2¢(s;,s;)-+9*(S"). This, in turn,
Implies the theorem.

We define some notation for representing paired strings. Let Sey = {$1,82,32}. Then a pair
(81, s2) denotes a consecutive pairin the solution string, where the tail part of s; is overlapped by the
head part of ;. Note that {s1,s;3) is equivalent to ($_2,8-1). We say that, for a given set of strings
5, a consecutive pair (x,y) with z,y € S is permissible in the intermediate set S’, in which some
strings in .S were already combined to yield new strings, if the strings and y can be consecutively
paired without destroying the new combined strings in §’. For S.g, the set of permissible pairs in
Segis {{z,y) |@ = s or s_;, and y = s; or s_;, and i # §}. Let Sty = {(s1,5-3), s2}. Then the set
of permissible pairs in 5.4 becomes {{s_1, 55}, (s_1, 5_2), (52,53), (5_2, 83).

Let X be an optimal RSCS solution for S and let w,y be the strings such that w = s; or s_;,
Y =s; oF 5_;, woy = §;3s;. By the definition of the greedy algorithm, v(w,y) > max{¥(s,?) | s,
are a consecuiive pairin X}, At most three consecutive pairs in X are not permissible in §’. If at
most two are not permissible, then clearly ¥*(S) < 29(s;, ;) + 9*(S”) as desired.

If three consecutive pairs become impermissible then one must have the form {w,) (equivalently,
(rev(z),rev(w))) with z # y (but possibly z = rev(y)), another the form {z,y) (equivalently,
(rev(y), rev(z))) with z # w (but possibly z = rev(w)) and the third one, any pair lying on X
between y and w, say p. This means that the pair {z, z) can be consecutively paired in an optimal
RSCS solution for §’. Clearly,

$*(S) 2 4 (S) + H(=,) — p{p) — Blz, y) ~ P(w, z).
Then

$* (") + 29w, y) P (S) + ($(w,v) + (2, 2) — ¥(z,y) — P(w,2))
,{Ib*

2
> P*(S) by Lemma 3.1,

which completes the proof. 1

DNA Restriction Mapping from Random-clone Data 9

4. SCMS

A bagb = (ay,...,an) is an unordered collection of symbols from some alphabet T in which the same
symbol can appear more than once. If s = a; - - - a, is a string, then (s} denotes the bag {a:,...,as).
Then a bag (s) can be said to represent the set of strings obtained by permuting all the symbols in
s. For example, the bag {(abc) represents the strings abe, ach, bac, bea, cab, and cba.

We say that a bag b maiches a string s if s contains a substring s’ such that ('Y = b We also say
that s matches b or that s is a maiching string of b. For example, the string debcab{ is a matching
string of the bag (a,b, b, ¢}.

An instance of SCMS is a set of bags B = {b1,...,b,} over a finite alphabet ©. The ob-
ject of the problem is to find a minimum length string that matches every bag in B. For ex-
ample, the string bfgiakhfdegiach is 2 minimum length solution for the SCMS instance B =
{(aceghi}, (abfgik), (adfhki), (defghi), (afghik)}.

A partially ordered bag (pob) is an ordered sequence of bags. We generally write a pob as a
sequence of strings separated by [. A pob by | .- | b, is interpreted as representing the collection of
strings

{51---3,.,i(s,-)mb.;,lﬁign}u{sn---s;[(31-) =b;,1<i<n},

where each string s; --- 5, is said to be a matching siring of the pob bi|--]bn. For example ab |
cd | e, the pob produced by the combination of two bags abed and cde, represents the set of strings
{abede, abdce, bacde, badce, ecdab, edcab, ecdba, edcbal.

As SCMS has been shown to be NP-complete, we need efficient approximation algorithms for
SCMS to avoid excessive computational complexity. The basic structure of our approximate ap-
proach is the greedy heuristic which can be outlined as follows:

Repeatedly combine two bags with the strongest evidence of consecutiveness either until
all the bags are combined into a single pob or until bag-pairs with evidence of consecu-
tiveness above a chosen threshold are exhausted.

The second terminating condition in the above algorithm is not necessary for SCMS algorithms, but
is useful in DNA mapping applications,

A variety of different greedy algorithms can be proposed, depending on how we evaluate the
evidence of consecutiveness and also on the strategies for refining and/or restructuring the pob to
improve the solution. We have implemented more than ten different greedy algorithms and we
present three of them in this report.

4.1. Greedy Algorithm for SCMS using Overlap between Pobs

Let § = {by,...,b,} be an instance of SCMS. Then a greedy algorithm can be stated as follows.
Repeat the following step until § contains a single pob.

Select a pair of pobs p3, p2 € S that have a maximum overlap and combine them yielding
a new pob pz. Remove g, and p; from 5 and add pa.

10 Gwangsco Rhee

We refer to this algorithmn as MGREEDY-P and Figure 2 illustrates an example of MGREEDY-P
application.

The greedy heuristic used in MGREEDY-P is based on the size of overlap between pairs of pobs.
The description of MGREEDY-P is very similar to those of SGREEDY and RGREEDY, respectively
for SCS and RSCS. But, its implementation is more complex.

Let’s compare SGREEDY and MGREEDY-P. Both algorithms requires a repeated selection of
a pair of elements (strings in SCS and pobs in SCMS) that have a maximum overlap. In SGREEDY,
an algorithm with at worst O(£2)-time for finding the size of overlap between a pair of strings is quife
straightforward, where £ is the length of the shorter string. Furthermore, once the sizes of overlap
are determined, they remains effective and useful throughout the eatire execution of the algorithm
as long as we trace each original string.

If the bags are pre-sorted, then the size of overlap between bags can be easily found in a linear
time of the size of the smaller bag. But, this overlap becomes invalid as soon as one of the bags is
merged into a pob. Consider the bags b = (aacce), b2 = (bbeec), bs = (abec). Let oy be the
overlap between b; and b;, then 013 = 013 = 093 = 3. Suppose that MGREEDY-P combined by and
by to yield aa | cce | bb, call this by. Then ozq = 1 and we can see that the overlaps 013 and og3 are
not valid any more even though the bags b, and b, are at the sides of the new pob bs. Therefore
we can say that every time a new pob is constructed we have to recompute the overlaps between
this new pob and the remaining pobs. What is worse, a brute-force algorithm for finding the size

cefgmy cefgjy abejkx abdkxz
\'/ @
m | cefgy | j befgjk ej | abkx | dz
\’/

befmxy m|ecy|elg|j|bk

N

bx |m|cy|f|eg|]]|Dbk

bx|m|cy|flgle|j|bk]|ax]|dz

Figure 2: An example of MGREEDY-P application

DNA Restriction Mapping from Random-clone Data 11

of overlap between pobs can be as complex as O(£2%) in its running time, where £ is the size of the
smaller pob.

There are four different ways in which two pobs can be overlapped. Let p =5y | - | b, be a
pob. Then revp(p) is a reversed pob, that is, b,|- - [b;. Let p; = ablcde|fg and pp; = aefg|cc|bfg
be pobs. Then we can think of the following overlap

p1: ablcde|fg
Pa: e fgal cc] big

In the above overlap, the pob p; precedes the pob p; and the order of bags in each pob is not
reversed. We define w(p1,p2) to be such an overlap. Hence w(p1,p2) = elfg. Now we can define the
four possible overlaps between two pobs.

wz(Pth) = W(P11p2)a

wa(p1,p2) = wps, revp(p2)),
w3(p1,p2) = w(revp(py), p2),
wa(p1,p2) = w(revp(p1), revp(py)).

In the above example, wi(p1,p2) = elfg, wa(p1,p2) = £, wa(ps,p2) = a, walp,p2) = b.

Before describing the algorithm to compute w, we introduce a few notations. Let B be a bag
over some alphabet Z. Then Occp(z) is defined to be the number of occurrences of the symbol =
in the bag B, and size(B) is defined to be 2sep Occp(z). Let P =bdy | --- | b, be a pob, then
size(P) = 37, c; ¢, size(b;). Let A and B be bags. Then A = B if and only if Ve € Z(Oecq(n) =
Ocep(z)). And A T B if and only if 4 # B and Yz € D(Ocex(z) < Ocep(z)). AC B if and only
if A=DBor AC B. A— B is defined by Vz € £(Occa—p(z) = max(0,Ocea(z) — Occp(z))), and
A+ B by Yz € Z(Occatrn(z) = Oceq(n) + Ocep(z)). A string s is said to be a prefiz of the pob
P if s is a prefix of a matching string of P. Again a pob @ is said to be a prefiz of the pob P if a
matching string of () is a prefix of P.

Figure 3 describes an O(£2)-time algorithm MAXMATCH to compute w, where £ is again the
size of the smaller pob.

THEOREM 4.1. The algorithm MAXMATCH correctly computes w.

proof. The function PREMATCH(S = sy |8y, T = ts|---[t,) is to check that the pob S is a
prefix of the pob 7', and to return the bag of extra symbols in s, which is the first bag such that
s1|-++|sp is not a prefix of T. The returned bag will be NULL when S is a prefix of 7. More
formally, PREMATCH is a quite straightforward implementation of the function p defined by

BS,T) = (s1+ -+) = (b1 4+ +1,),
where 51 + -+ 4+ 85 s a prefix of T
51+ + 85; is not a prefix of T,
t1 4 -+, 15 a prefix of sz + - -+ 4 5,
ty .-+, is not a prefix of s + - - -+ 5.

Let S = s1|-++|sm, T = t1}-- - [ta, w(S,T) = sileag1| - |om, w' = MAXMATCH(S,T) =
splseq1|- - [sm with s, C s, and s} C s,. It is clear from the definitions of w and u that ju'| <
|w(S,T")|. Hence we have only to show w(S,T) C w'.

12 Gwangsoo Rhee

When j, the for loop control variable of MAXMATCH, is less than a, PREMATCH may not
return NULL, and the iteration continues until 7 = a. We claim that u = t(salsas1] - |sm, T)C
Sq — §, as long as s}, C s,. In other words, the new bag 8; = s; — u is still a superset of s/,.

Suppose v = p(sal [y, T) is not NULL, then u = (8 + -+~ + 85) — (1 + --- +) for
some @Y. [ty + -+t > |sh +sap 4+ sz| and hence 23]+ {t, 3 s.1s041] - -+ |5z, otherwise
ta+ oty 8o+~ + sy and 4y]- - [t, becomes a prefix of s,|-- - |s,. Therefore u = (sg 4+ -+
$e) = (t1+ -+ 2y) = (85 — 85} + (5], + Say1 +robsg) =t 4+ ty) & ss — 5, where the last
inequality comes from the fact that s} [saq1] - - |5 is a prefix of ¢1]-- [ty

Thus the bag s; in the while loop of MAXMATCH becomes smaller, but remains a superset of
sy, until it becomes /. O

Let p1,p2 be pobs. Then we define w*(p;,p2) to be wi(p1,p2) such that size(w;(p;,ps)) >
size(w;j(p1,p2)) for all j between 1 and 4. When p; and p, are bags, w*(p1,p2) is uniquely defined
since Vi(w;(p1, p2) = w(p1,p2). When p1 and/or p; are not bags, there can be ties about the overlap
size among two or more ways of overlapping, We assume the ties are arbitrarily broken in computing
w*. Now we define p; ® p; to be the new pob that results from the combination of P1, P2 such that
a maximum overlap w*(p;,ps) is obtained. In the above example,

W (p1,p2) = wi(p1,pz) = e | fg
and P1®pz=ab|cd|e|fg|a|cc|bfg.

With the algorithm MAXMATCH and the above definitions, MGREEDY-P can be implemented
to have a running time O(n?2) where n is the number of bags and £ is the size of the largest bag in
the input.

4.2. Greedy Algorithms for SCMS using Weighted Overlap between Bags

When a bag is by itself, it can take any sequence consistent with the bag. But, once it is combined
into a pob, then the possible sequences are constrained by the structure of the pob. Consider the
following example,

From the orginal string abcdefagehij, the following four bags are obtained: 5, = (abedef),
by = (cdefag), by = (fagehi), and by = {ehij). Then MGREEDY-P will combine the first two bags
into b [acdef | g, and then b3 will be added to get b | cd | aef | g | hi. When it comes to bs, whose
overlap with bz was originally ehi, it can use only hi as overlap, because the overlap e is hidden by
the pob structure. This could be worse if we had more bags after by and if some of the overlap hi
are also hidden in another pob, preventing hi in b3 and hi in b from overlapping.

MGREEDY-P might have a good performance in obtaining shorter matching string, but it might
also fail to recognize the consecutive bags in the original string. Hence we propose another greedy
algorithm based on the original overlaps between bags, not the overlaps between intermediate pobs.
Further improvements in performance were observed with the weighted overlaps (= overlap size /
sum of two bag sizes). This heuristic gives the algorithm MGREEDY-B described below.

Let § = {b;,...,b,} be an instance of SCMS.

step 1. (Preprocessing) Compute P = {p | p = {bsybj,ci5) and 1 < { < 7 < noand ¢ =
size(w(bs, b;))/(size(b;) + size(b;)) > c}, where ¢ is a user-supplied threshold value.

step 2. Repeat the following step until P is empty.

DNA Restriction Mapping from Random-clone Data

function PREMATCH (pob S =5 |-+« |5y, pob T =t |- |)

/* PREMATCH(S, T) returns u(5,T), which is the set of extra */

/* symbols in 5§ preventing S from being a prefix of T'. *f
if (m = 0) then return NULL fi :
if (s1 = 1) then return PREMATCH(53 | -+ | $m, 2 | --- | £n)
else if (s; C¢1) then return PREMATCH(sz | -+ | sm, t1 — 51 | 2 |
else if (s; J%,) then return PREMATCH(sy — 41 |52 |+ | 8m, 2 |
else return s; — #;
fiifi

end PREMATCH

procedure MAXMATCH (pob S =81 |-+ | s, pob T'=4#; |--- [tn)
/* MAXMATCH(S, T) prints w(S,T), which is the maximum overlap * /
/* between the pobs S and T */

nt i,k

bag Uu;

find the smallest integer & such that size(sy | - | sm) < size(T);

forj=ktom

= PREMATCH(s; |-+ | sm, t1 |-+ [tn);

while(u is not NULL)
if (u (£ ;) then exit while;
8§ = 55 — U,

uv=PREMATCH(s; |- | sm, 21| --- 1 tn);
endwhile
if (uis NULL) then print “s; | -+ | s,,,”; stop; fi
endfor
print “NULL"

end MAXMATCH

Figure 3: The algorithm to compute the overlap between two pobs

"‘ftn)
"'|tn)

13

14 Gwangsoo Rhee

Remove p = (b;,, b, ¢1,4,) that has a maximum c;,;,. If neither b;, mor b;, is in the
middle of an existing pob, and if they are not in the same pob, then replace the two
pobs containing those two bags by the new pob obtained by combining them.

When 7 is the number of bags and £ is the average size of bags, MGREEDY-P has the running
time O(n2£2) and needs the space O(n?) to store the table of overlaps between pairs of pohs. But,
MGREEDY-B doesn’t need to store such a large table and has the running time O(n?£+né?), where
the first term is for the preprocessing — O(¢) to find the overlap between a pair of bags — and the
second term is for the main algorithm, which calls MAXMATCH at most 1 — 1 times.

4.3. Greedy Algorithms for SCMS using Weighted Overlap between Bags
and Subset-Consecutiveness Constraint

Greedy algorithms tend to emphasize local optimizations, which sometimes becomes an obstacle in
achieving the global optimum. MGREEDY-B is more localized than MGREEDY-P, for MGREEDY-
B uses only two bags to evaluate its heuristic while MGREEDY-P uses two pobs each of which may
involve more than one bag. We tried adding some context constraints to MGREEDY-B to enhance
the evidence of consecutiveness to overcome its locality. The most successful addition so far is
the subset-consecutiveness constraint, which requires the bag in the middle to be a subset of the
union of the surrounding bags in every three consecutive bags. The algorithm thus obtained, called
MGREEDY-BS, is basically the same as MGREEDY-E, but combining two pobs is dene by the
function SUBSET-CONSECUTIVENESS-CHECK described in Figure 4.

Suppose the pob 5 is a combination of the original bags s, ..., sm and the pob T is that of
t1,...,%:. When we combine S and T, we require that each consecutive triple of bags in the list
$1,...8m,1,...,t, meet the subset-consecutiveness constraint. If it meets the constraint, then we
combine S, T in the listed order; but if it fails, then we try switching a pair of consecutive bags in
the list s, _1, 85, %1,%2. The reason for this switching is based on the observations that most of the
bags out of sequence in previous greedy algorithm simulations came from the neighborhood, and
hence this switching helps o correct a wrong sequence to some extent.

The running time and storage requirement of MGREEDY-BS are same as those of MGREEDY-B.

4.4, Discussions on the Test Results from Simulation

Three algorithms MGREEDY-P, MGREEDY-B, MGREEDY-BS were implemented in C.

The criteria to evaluate the programs at this point is how much of the original bag sequence is
recovered by each program, even though the ultimate goal is to recover the criginal symbol sequence.
To make this clear, let's consider the example illustrated in Figure 5. In the example there are 10
bags numbered O through 9 from a string, and their original sequence is 0123456789. To recover
this sequence, 9 right decisions (about selecting two bags to be combined) must be made. The
steps 1 through 5 in the example reflect right decisions, but the steps 6 through 8 wrong decisions.
The number of wrong decisions is the same as the number of consecutive pairs of bags in the final
sequence which are not consecutive in the original sequence (35, 40, 07 in the example). Note that
the decision to combine the bags 4 and 5 was right even though they appeared in a reverse order by
subsequent wrong decisions. We define N,4 and Ny, 4 to be the number of right decisions and wrong
decisions, respectively. In the remainder of this subsection, the performance of a program means the
ratio Nya/Nyg.

DNA Restriction Mapping from Random-clone Data

function SUBSET-CONSECUTIVENESS-CHECK (pob §, pob e

/* S is a combination of the original bags sy, ..., 8m. */
/* T is a combination of the original bags ¢;,...,t,. */
/* We assume m, n > 2, avoiding the description of trivial cases. */
/* SUBSET-CONSECUTIVE(hy, ..., by) returns YES */
/* only if V{1 < 4 < k)(b; < b;—1 + biy1). */
/* We are going to combine S, T to get 81,...,8m,%1,- .., b */

if SUBSET-CONSECUTIVE($m—1,5m,%1,%2) then combine S, T
else if SUBSET-CONSECUTIVE(sm—3, Sm—2, $m, ém—1,%1, ta)
/¥ $m—1,5m switched */
then combine S, T" using the bag order in params
else if SUBSET-CONSECUTIVE(smw1, $m,t2,t1,%3,t4)
/¥ 1,15 switched */
then combine S, T using the bag order in params
else if SUBSET-CONSECUTIVE(8m—-2, 8m—1,%1, Sm, %2, ta)
/* 8m,t1 switched */
then combine 5, T using the bag order in params
fi
end SUBSET-CONSECUTIVENESS-CHECK

Figure 4: The algorithm to combine two pobs with subset-consecutiveness checking

Original bag sequence = 0123456789

step 0. {0,1,2,3,4,5,6,7, 8,9}
step 1. {0,12,3,4,5,6, 7,8, 9}
step 2. {0, 123,4,5,86,7, 8, 9}
step 3. {0, 123, 45,6, 7, 8, 9}
step 4. {0, 123, 45, 5, 78, 9}

step 5. {0, 123, 45, 6, 789}

step 6. {0, 12354, 6, 789}

step 7. {123540, 6, 789}

step 8. {123540789, 6}

Figure 5: An example of recovering bag sequences where Nyg = 3 and Nyg = 5

16 Gwangsoo Rhee

L (length of original string) = 460
k (number of symbols) = 60
m (maximum bag size) =25
n (number of bags) = 100

| bag size [number of bags | accumulated |

25 12 12
24 9 21
23 13 34
22 12 48
21 14 60
20 5 65
19 10 75
18 11 36
17 6 92
16 3 95
15 2 97
14 1 a8
9 1 99
8 1 100
sum of all bag sizes = 2072
average bag size = 20.72
standard deviation = 3.284
overlap factor = 4.50 (= sum of bag sizes /L)

Table 1: The statistics for an example of set of bags

For the purpose of testing these programs, we wrote a program to generate a set of bags randomly.
The parameters required by this bag-generator are L: the length of original string, k: the alphabet
size, m: the maximum bag size, and n: the number of bags. The bag size follows a geometric
distribution, but all the bags whose size is less than 5 or greater than m are eliminated. The bags
which are subbags of other bags are also eliminated (The bag A4 is said to be a subbag of the bag
B if A < B, and the relation “<” was defined in the subsection 4.1). Note that n is the number of
bags which survived such elimination processes. A typical set of statistics for the set of generated
bags is shown in the Table 1.

The performance of the programs was expected to be different for the data generated with
different parameters, and we attempted to identify the region of parameter values for each program
in which the program performs well. But, we have found the performance of these programs are
unstable. For example, the performance of MGREEDY-P was 2/91 and 12/81 for two sets of data
generated by the same parameter values. This difference can be explained partly by variation of data
even though their statistics are similar. But, a more serious reason is the lack of good strategy to
break ties. Suppose we have the following three consecutive bags with the original sequence by, bs, b3
from the original string abcedfgha, where & = (abcdefg), by = (bedefgh), by = (cdefgha).
Then w(b;,bs) = w(by, bs) = w(ba,bs) = 6, and we have 2/3 and 1/3 as a chance of getting the

DNA Restriction Mapping from Random-clone Data 17

right sequence for MGREEDY-P and MGREEDY-B, respectively. This kind of situation may seem
improbable, but it is very likely if the bags 5; and bz have larger sizes than b5. Thus we concluded
that such a region identification wouldn't be reliable without very extensive tests involving large sets
of data, a questionable investment at this point. Instead we decided to compare the results from
the programs to evaluate the performances of those heuristics, and the effects of alphabet sizes and
deviations of bag sizes.

The parameter set we used in the test was {{k,m,L,n) | k = 40,50,60,80,100 and {m, L) =
(15,300}, (20,380}, (25,460) and n = 100}. The relationship between m and I keeps the overlap
factor constant (between 3.8 and 4.6). Three different data sets are generated for each case, yielding
45 different data sets for each of three algorithms.

Table 2 summarizes the results from the simulation. We make some observations and notes
regarding this table:

¢ The performance of MGREEDY-B is better than that of MGREEDY-P and this is not be-
cause we use the overlap between bags, but because we use the weighted overlap. In fact the
performance wasn't better than that of MGREEDY-P when we used the unweighted overlap
between bags in MGREEDY-B.

® The performance of MGREEDY-BS shows how powerful the subset-consecutiveness test is.
Each data set contains 100 bags and it requires 99 right decisions to recover the original
sequence. Therefore those 45 test cases require 4455 (= 99 x 45) right decisions to recover all
the original sequences. MGREEDY-B made 42 wrong decisions, 4395 right decisions, and gave
up 18 (= 4455 — 42 — 4395) decisions, while MGREEDY-BS made 6 wrong decisions, 4408
right decisions, and gave up 41 decisions. In other words, MGREEDY-BS corrected 13 (=
4408 - 4395) decisions and discarded 23 (= 41 -18) decisions out of 42 wrong decisions made
by MGREEDY-B.

» The performance of the programs in the cases with larger alphabet sizes is generally better.
"This is to be expected because larger alphabet sizes reduces the probability of chance matching.

» The average standard deviations of bag sizes for n = 15, 20, 25 was 2.0, 3.24, and 3.62, respec-
tively. With smaller deviations the programs give better results, because with large deviation
there are more small bags having smaller true overlap than the false overlap between larger
bags.

e The performance of MGREEDY-BS doesn’t seem to be affected by alphabet sizes and devia-
tions of bag sizes, but this is because these parameters were in good range for MGREEDY-BS.

5. Closing Remarks

The primary goal of this work is to develop an efficient approximation algorithm with good experi-
mental performance to recover the true fragment sequences of DNA from random-clone data. The
programs described in section 4 showed good performance in recovering the bag (or clone) sequence,
but didn’t do well in recovering the complete symbol (or fragment) sequence.

The heuristics in the greedy class of approximation algorithms have a focus on determining
consecutive clones. In order to get a good solution, we have to rearrange the fragments within each
clone carefully. Therefore we need an efficient algorithm to get the shortest possible configuration
for a group of consecutive clones by rearranging their fragments. Once this step is successful, the
algorithm can be used to improve the results of the greedy heuristic because a wrongly matched

18 Gwangsoo Rhee

alphabet | maximum Nypa/Neg
size bag size MGREEDY-P | MGREEDY-B || MGREEDY-BS
40 15 2/92 | 2/89 | 5/83 || 1/97 [0/99] 0/99 [0/98 | 0789 | 0/99
20 6/87 | 12/81 | 2/91 || 0/98 |"2/96 | 3/94 | 0/87 | 0/97 | 0/94
25 9/82 | 5/88 | 4/87 | 2/97 | 2/97 [0/99 |[0/99 | 0/99 | 0/99
50 15 1/92 | 0/97 [1/89] 0/99 | 1/98 [0/99 [[6799 | 0/99 | 0/98
20 3/89 | 1/93 | 6/84 | 3/94 | 3/95 | 2/96 [0/99 | 0797 | 0/96
25 3/89 | 6/87 | 4/90 | 2/97 | '3/95 | 0/99 || 0/98] 2/96 [0/98
60 15 1/90 | 2/94 | 2/92 [2/97 [0/99 [2/97 [[0/99 | 0/97 | 1/98
20 2/89 | 4/89 | 5/85 || 1/98 | 2/95 | 0/99 || 0/99 | 0/98 | 2/94
25 5/87 | 6/88 | 1/92 [0/99 [0/99 | 1/98 || 0/98 | G/89 | 0/98
80 15 2/90 | 1/94 | 0/92 [0/99 [0/99 [0/99 [l 1/98 | 0/59 | 0/99
20 0/94 | 0/93]0/92 | 0/987} 0/97 [0/99 || 0/99 | 0/97 | 0/96
25 2/98 | 2/91] 4/87 || 0/99 | 2/97 | 2/97 || 0/98 | 0/99 | 0/59
100 15 1/90 | 2/92 [0/93 || 2/97 [0/99 [0/99 1 0/99 | /39 | 0/99
20 1/93 | 1/89] 1/94 || 0/98 | 2/95 | 0799 [0/99 | 0/97 | 6/95
25 1/96 | 2/92 | 4/89 |[0/99 | 0799 | 2797 | 0/97 | 0/99 | 0799

Table 2 — (a). Performance of greedy algorithms for SCMS

alphabet size
algorithm 40 | 50 | 60 | 80] 100 total
MGREEDY-P || 47/780 | 25/810 | 28/806 | 12/826 | 13/828 | 125/4050
MGREEDY-B || 10/876 | 14/872 | 8/881 | 4/884 | 6/882 | 42/4395
MGREEDY-BS || 0/881 | 2/880 | 3/880 | 1/884 | 0/883 | 6/4408

Table 2 — (b). Summary of the dependence of performance on alphabet size

maximum bag size
algorithm 15 | 20 | 25 total
MGREEDY-P_ | 22/1369 | 44/1343 | 59/1338 | 125/4050
MGREEDY-B 8/1476 | 18/1451 | 16/1468 | 42/4395
MGREEDY-BS || 2/1479 | 2/1454 | 2/1475 | 674408

Table 2 — (c). Summary of the dependence of performance on maximum bag size

Table 2: Performance of greedy algorithms for SCMS and their summaries

DNA Restriction Mapping from Random-clone Data 18

clone with evidence of consecutiveness that is locally good is likely to fail to contribute to the global
overlap.

The other problem with algorithms from the greedy class is their lack of ability to deal with subset
clones. Before we apply such algorithms, we have to eliminate all the clones which are a subset of
other clones. We can add these subset clones after the greedy process is complete, providing some
refinement of the map. Alternatively, we can add subset clones whenever the intermediate map is
ready to take them without causing representational ambiguity about the locations of these subset
clones. The former approach is simpler, but the latter approach will provide some capability of error
detection as the clone sequencing proceeds.

‘The next step in our research is to determine the performance of the algorithm by worst-case and
probabilistic analyses. Probable performance will be confirmed experimentally by simulation. This
performance analysis is important in two respects. First, it gives a reliability measure of the solution
map as it is obtained from the approximation algorithm. Otherwise, we will have no knowledge of
the accuracy of the solution map, since the true restriction map is not available for comparison.
Second, we can determine regions for parameters, such as redundancy factors and average number
of fragments within a clone, which guarantee good algorithm performance. This information can be
used to optimize the data acquisition process.

The last and most important step of this work is to apply the algorithms to real DNA random-
clone data to obtain a nearly error-free estimate of the true DNA restriction map. We have two
problems that appear at this step. First, the identification of equal-length fragments from different
clones must be able to proceed in spite of errors in the measurement of clone length. This will
require that the sources of errors be identified and an appropriate error model established. Second,
we cannot exclude the possibility of incorrect data such as missing fragments or extraneous fragments
which actually appear in clones. Thus, a successful algorithm will have to detect incorrect data with
good reliability.

References

[1] F. Sanger and A. R. Coulson. “A Rapid Method for Determining Sequences in DNA by Primed
Synthesis with DNA Polymerase.” Journal of Molecular Biology, 94: 441-448, 1975,

[2] Allan M. Maxam and Walter Gilbert. “A new method for sequencing DNA.” Proc. Nail. Acad.
Sci. USA, 74(2): 560-564, February 1977.

[3] F. Sanger, S. Nicklen, and A. R. Coulson. “DNA sequencing with chain-terminating inhibitors.”
Proc. Natl Acad. Sei. USA, 74(12): 5463~5467, December 1977.

[4] Kathleen Danna and Daniel Nathans. “Specific Cleavage of Simian Virus 40 DNA by Restric-
tion Endonuclease of Hemophilus Influenzae.” Proc. Natl. Acad. Sci. USA, 68(12): 29132917,
December 1971.

[5] Jonathan S. Turner. “The DNA mapping problem.” Unpublished notes, 1985.

[6] Lawrence T. Kou. “Polynomial Complete Consecutive Information Retrieval Problems.” SIAM
J. Computing, 6(1): 6775, March 1977.

[7] Jonathan S. Turner. “The Complexity of the Shortest Common Mathching Problem.” Wash-
ington University Technical Report WUCS-86-9, Department of Computer Science, April 1986.

[8] J. P. Bouche, J. P. Gelugne, J. Louarn, and J. M. Louarn. “Physical Map of a 470 x 10° Base-
pair Region Flanking the Terminus of DNA Replication in the Escherichia coli K12 Genome.”
Journal of Molecular Biology, 154: 21-32, 1982,

20 Gwangsco Rhee

[8] W. Bender, P. Spierer, and D. S. Hogness. “Chromosomal Walking and Jumping to Isolate DNA
from the Ace and rosy Loci and the Bithorax Complex in Drosephila Melanogaster.” Journal
of Molecular Biology, 168: 17-33, 1983.

[10] M. Steinmetz, D. Stephan, and K. F. Lindahl. “Gene Organization and Recombinational
Hotspots in the Murine Major Histocompatibility Complex.” Cell 44: 895-504, 1986.

[11] F. Sanger, et al. “Nucleotide sequence of bacteriophage ® X174 DNA.” Nature, 265:687-695,
February 1977,

[12] T. R. Gingeras, J. P. Milazzo, D. Sciaky and R. J. Roberts. “Clompnter programs for the
assemnbly of DNA sequences.” Nucleic Acids Research, 7(2): 529-545, 1979.

[13] David Maier and James A. Storer. “A Note on the Complexity of the Superstring Problem.”
Princeton University Technical Report 238, Department of Electrical Engineering and Computer
Science, October 1977,

(14] Marvin B. Shapiro. “An algorithm for Reconstructing Protein and RNA sequences.” Journal of
ACM, 14{4): T720-731, October 1967.

[15] Mark Stefik. “Inferring DNA Structures from Segmentation Data.” Artificial Intelligence, 11:
85-114, 1978,

(16] William R.. Pearson. “Automatic construction of restriction site maps.” Nucleic Acids Reseqrch,
10(1): 217-227, 1982.

[17] R. Durand and F. Bregegere. “An efficient program to construct restriction maps from experi-
mental data with realistic error levels.” Nucleic Acids Research, 12(1): 703~716, 1984.

(18] Jonathan S. Turner. “Approximation Algorithms for the Shortest Common Superstring Prob-
lem.” Washingion University Technical Report WU CS-86-16, Department of Computer Science,
July 1986,

[19] Maynard V. Olson, et al. “Random-clone strategy for genomic restriction mapping in yeast.”
Proc. Nail. Acad. Sci. USA, 83: 7826-7830, October 1986.

[20] John Gallant, David Maier, and James A. Storer. “On Finding Minimal length Superstrings.”
Journal of Compuier and System Sciences, 20: 50-58, 1980.

	DNA Restriction Mapping from Random-Clone Data
	Recommended Citation
	DNA Restriction Mapping from Random-Clone Data

	tmp.1460750766.pdf.bduY_

