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ABSTRACT OF THE DISSERTATION

Three Problems in Operator Theory and Complex Analysis

by

Cheng Chu

Doctor of Philosophy in Mathematics,

Washington University in St. Louis, 2016.

Professor John McCarthy, Chair

This thesis concerns three distinct problems in operator theory and complex analysis.

In Chapter 2, we study the following problem: On the Hardy space H2, when is the

product of a Hankel operator and a Toeplitz operator compact? We give necessary and

sufficient conditions for when such a product HfTg is compact.

In Chapter 3, we discuss hyponormal Toeplitz operators. We show that for those

operators, there exists a lower bound for the area of the spectrum. This extends the

known estimate for the spectral area of Toeplitz operators with an analytic symbol. This

part is joint work with Dmitry Khavinson.

In Chapter 4, we study the Bohr radius Rn for the class of complex polynomials of

degree at most n. Bohr’s theorem showed that Rn → 1
3

as n → ∞. We are interested

in the rate of convergence and proved an asymptotic formula that was conjectured by R.

Fournier in 2008.
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1. Introduction

1.1 Hardy Spaces

The Hardy space plays a key role in real and complex analysis. Its early discoveries

were made in 1920s by such mathematicians as Hardy, Littlewood, Privalov, F. and M.

Riesz, Smirnov, and Szegő. In this dissertation, D will denote the open unit disk in the

complex plane, and ∂D will denote the boundary of D. We will focus on the Hardy spaces

on D.

For 0 < p <∞, the Hardy space Hp is the class of analytic functions f on D satisfying

sup
0<r<1

(
1

2π

∫ 2π

0

|f(reiθ)|pdθ
) 1

p

<∞.

The number on the left side of the above inequality is denoted by ||f ||p. It is a norm

when p ≥ 1.

If p =∞, H∞ is the space of bounded analytic functions on D with norm

||f ||∞ = sup
z∈D
|f(z)|.

Let Lp (0 < p ≤ ∞) denote the Lebesgue spaces of ∂D induced by the measure dθ
2π

.

For p ≥ 1, by a theorem of F. Riesz (see for example [1, p. 56] for details), we can

identify f(z) ∈ Hp with its boundary function f(eiθ). Then Hp can be viewed as a closed

subspace of Lp.

The Hardy space H2 is a Hilbert space with reproducing kernel

Kz(w) =
1

1− z̄w
,

1



because the formula

f(z) = 〈f,Kz〉

reproduces every function f ∈ H2. The orthogonal projection from L2 onto H2 is called

the Szegő projection and is denoted by P . All unspecified norms and inner products used

in this dissertation are those on L2.

1.2 Toeplitz Operators and Hankel Operators

Toeplitz operators and Hankel operators form two of the most significant classes of

concrete operators because of their importance both in pure and applied mathematics.

For ϕ ∈ L∞, the Toeplitz operator Tϕ with symbol ϕ is defined on H2 by

Tϕh = P (ϕh).

In algebra, a Toeplitz matrix is a matrix that is constant on each line parallel to the

main diagonal. Thus a Toeplitz matrix is determined by a sequence {ak}∞k=−∞ of complex

numbers, with the entry in row j, column k of the matrix equal to aj−k. The matrix of Tf

with respect to the orthonormal basis {zk}∞k=0 in H2 is the Toeplitz matrix corresponding

to the sequence {f̂(k)}∞k=−∞, the Fourier coefficients of f .

The Hankel operator Hϕ with symbol ϕ ∈  L∞ is the operator on H2 defined by

Hϕh = U(I − P )(ϕh), (1.2.1)

for h ∈ H2. Here U is the unitary operator on L2 defined by

Uf(z) = z̄f̃(z),

where f̃(z) = f(z̄). Clearly,

H∗f = Hf∗ ,

2



where f ∗(z) = f(z̄). Hankel operators are often defined in an alternative way (see for

example [2], [3]). It is easy to see that the two definitions are unitarily equivalent.

1.3 Function Theory on the Unit Circle

The problems discussed in this dissertation belong to the area of function theory on

the unit circle, which is a mixture of real and complex analysis, operator theory, harmonic

analysis and theory of Banach algebras.

The theory originated with the study of one-dimensional Hardy spaces, and a very rich

theory has been developed in the 20th century. We mention some significant highlights

of the theory. In 1962, Carleson proved the corona theorem that the unit disk is dense

in the maximal ideal space of H∞ [4]. Carleson’s original proof consists of a complicated

construction of a system of curves that has found important applications besides the

corona theorem. Another deep and well-known result is Fefferman’s duality theorem [5],

which identifies the real dual space of the real Banach space H1 as BMO, the space of

functions of bounded mean oscillation. The theorem emerged as the birth of real-variable

theory of Hardy spaces, which extends the classical Hardy space theory to Euclidean

spaces. The breakthrough results of Carleson and Fefferman inspired T. Wolff in 1979

to devise a new and elegant proof of the corona theorem which avoids the Carleson

construction.

In this dissertation we prove three results in function theory on the unit circle that

are more or less related to Toeplitz operators. In Chapter 2, we investigate when the

product of a Hankel operator and a Toeplitz operator is compact. In Chapter 3, a new

estimate of the spectral area of certain Toeplitz operators is given. Chapter 4 concerns

3



a nonlinear extremal problem, and its solution relies on the relation between symmetric

Toeplitz matrices and analytic functions.

The three chapters to follow are taken from [6], [7], and [8], and are self-contained.
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2. Compact Product of Hankel and Toeplitz Operators

2.1 Introduction and Motivation

A linear operator T on a Hilbert spaceH is called compact if for any bounded sequence

{ak}∞k=1 in H, {T (ak)}∞k=1 has a convergent subsequence. We study a mixed compactness

problem of Toeplitz and Hankel operators in this chapter.

Let us first look at the compactness of Toeplitz and Hankel operators individually.

The only compact Toeplitz operator is the zero operator (see for example [3, p. 194]).

For the Hankel operator, we have the following theorem, usually referred to as Hartman’s

Criterion:

Theorem 2.1.1 Let f ∈ L∞. Then the Hankel operator Hf is compact if and only if

f ∈ H∞ + C.

Here C denotes the space of continuous functions on ∂D. H∞ + C is the linear span of

H∞ and C. It is a closed subalgebra of L∞ containing H∞ (see [9]).

The proof can be found in [2, p. 26] or [3, p. 198].

The problem of characterizing the compactness for the product of two Hankel op-

erators turns out to be much more difficult. Axler, Chang, Sarason [10], and Volberg

[11] gave necessary and sufficient conditions that the product of two Hankel operators is

compact. They proved the following result:

Theorem 2.1.2 Let f, g ∈ L∞. Hf̃Hg is compact if and only if

H∞[f̄ ] ∩H∞[g] ⊂ H∞ + C. (2.1.1)

5



Here H∞[f ] denotes the closed subalgebra of L∞ generated by H∞ and f .

They also gave a local version of the algebraic condition (2.1.1) using the notion of support

sets. We will define the support sets in Section 2.2.

Theorem 2.1.3 Let f, g ∈ L∞.

H∞[f̄ ] ∩H∞[g] ⊂ H∞ + C

if and only if for each support set S, either f̄ |S or g|S is in H∞|S.

Later, Zheng in [12] gave the following elementary condition that also characterizes

the compactness of Hf̃Hg.

Theorem 2.1.4 Let f, g ∈ L∞. Hf̃Hg is compact if and only if

lim
|z|→1−

||Hf̄kz|| · ||Hgkz|| = 0.

Here kz denotes the normalized reproducing kernel at z.

The relations between these three conditions in Theorem 2.1.2, 2.1.3 and 2.1.4 can be

found in Section 2.3 and 2.4. Inspired by the above theorems, we consider the product

of a Hankel operator and a Toeplitz operator in this chapter. The following theorem is

our main result:

Theorem 2.1.5 Let f, g ∈ L∞. The product K = HfTg of the Hankel operator Hf

and the Toeplitz operator Tg is compact if and only if for each support set S, one of the

following holds:

1. f |S ∈ H∞|S.

2. g|S ∈ H∞|S and (fg)|S ∈ H∞|S.

6



Analogously to Theorem 2.1.2, we also obtain the following algebraic version of Theorem

3.3.5:

Theorem 2.1.6 Let f, g ∈ L∞. H∞[f ] ∩ H∞[g, fg] ⊂ H∞ + C if and only if for each

support set S, one of the following holds:

1. f |S ∈ H∞|S.

2. g|S ∈ H∞|S and (fg)|S ∈ H∞|S.

Similarly, H∞[u, v] denotes the closed subalgebra of L∞ generated by functions u, v, and

H∞.

2.2 Preliminaries

We begin this section by establishing the relation between Toeplitz operators and

Hankel operators. Consider the multiplication operator Mf on L2 for f ∈ L∞, defined by

Mfh = fh. Mf can be expressed as an operator matrix with respect to the decomposition

L2 = H2 ⊕ (H2)⊥ as the following:

Mf =

 Tf Hf̃U

UHf UTf̃U


For f, g ∈ L∞, Mfg = MfMg, so multiplying the matrices and comparing the entries, we

get:

Proposition 2.2.1 Let f and g be in L∞. Then

1. Tfg = TfTg +Hf̃Hg.

2. Hfg = HfTg + Tf̃Hg.
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3. If g ∈ H∞, then HfTg = Tf̃Hg.

Let x, y ∈ L2. Define x⊗ y to be the following rank one operator on L2:

(x⊗ y)(f) = 〈f, y〉x.

Proposition 2.2.2 [13, p. 29] Let x, y ∈ L2 and let S, T be operators on L2. Then

1. (x⊗ y)∗ = y ⊗ x.

2. ||x⊗ y|| = ||x|| · ||y||.

3. S(x⊗ y)T = (Sx)⊗ (T ∗y).

For each z ∈ D, let kz denote the normalized reproducing kernel at z:

kz(w) =

√
1− |z|2

1− z̄w
,

and φz be the Möbius transform:

φz(w) =
z − w
1− z̄w

.

We have the following identities:

Lemma 2.2.1 For z ∈ D,

1. TφzTφ̄z = 1− kz ⊗ kz.

2. T ∗
φ̃z
Tφ̃z = 1− kz̄ ⊗ kz̄.

3. Hφ̄z = −kz̄ ⊗ kz.

8



These identities can be found in [12, p. 480] and [14, Lemma 5].

The next lemma in [15] and [14] gives a relation between Hf and H∗f .

Lemma 2.2.2 Let f ∈ L∞, g ∈ H2. Then H∗fg
∗ = (Hfg)∗ and thus ||H∗fg∗|| = ||Hfg||.

In particular, ||H∗fkz̄|| = ||Hfkz||.

Proof Notice that for all g ∈ L2, (Ug)∗ = Ug∗ and Pg∗ = (Pg)∗. Thus

H∗fg
∗ = Hf∗g

∗ = PU(f ∗g∗) = P (Ufg)∗ = (PUfg)∗ = (Hfg)∗

Since ||h|| = ||h∗|| for all h ∈ L2, we get ||H∗fg∗|| = ||Hfg||.

To state the local conditions, we need some notation for the maximal ideal space.

For a uniform algebra B, let M(B) denote the maximal ideal space of B, the space

of nonzero multiplicative linear functionals of B. Given the weak-star topology of B∗,

which is called the Gelfand topology, M(B) is a compact Hausdorff space. Identify every

element in B with its Gelfand transform, we view B as a uniformly closed algebra of

continuous functions on M(B). See [1, Chapter V] for further discussions of uniform

algebra.

The space H∞ is a uniform algebra with pointwise multiplication and the supremum

norm || · ||∞. For each ζ ∈ D, there exists mζ ∈ M(H∞) such that mζ(z) = ζ, where

z denotes the coordinate function. It is well known that ζ → mζ is a homeomorphic

embedding from D into M(H∞) (see for example [1, p. 183] for details), thus we identify

D as a subset of M(H∞). By Carleson’s Corona Theorem [4], D is dense in M(H∞).

Moreover, M(H∞ + C) = M(H∞)\D (see [9]).

For any m in M(H∞), there exists a representing measure µm on M(H∞) such that

m(f) =
∫
M(H∞)

fdµm, for all f ∈ H∞ (see [1, p. 193]). A subset S of M(H∞) is called a

9



support set if it is the support of a representing measure for a functional in the “corona”

M(H∞ + C).

2.3 Proof of Theorem 2.1.6

In this section we prove Theorem 2.1.6. The proof we present here is analogous to

the proof of [16, Lemma 1.1].

The proof is based on the following two lemmas:

Lemma 2.3.1 [16, Lemma 1.3] Let Aα be a family of Douglas algebras, the closed

subalgebras of L∞ containing H∞. Then

M(∩Aα) = ∪M(Aα).

Lemma 2.3.2 [16, Lemma 1.5] Let m ∈ M(H∞ + C) and let S be the support set of

m. Then m ∈M(H∞[f ]) if and only if f |S ∈ H∞|S.

Proof of Theorem 2.1.6. Let

A = H∞[f ] ∩H∞[g, fg].

By Lemma 2.3.1,

M(A) = M(H∞[f ]) ∪M(H∞[g, fg]).

Suppose

H∞[f ] ∩H∞[g, fg] ⊂ H∞ + C.

Then A ⊂ H∞ + C, and M(H∞ + C) ⊂M(A). Lemma 2.3.2 gives that either condition

(1) or condition (2) holds.

Conversely, let S be the support set for m ∈ M(H∞ + C) and suppose one of the

Conditions (1) and (2) holds for m. Then by Lemma 2.3.2, either m ∈ M(H∞[f ]) or

10



m ∈ M(H∞[g, fg]). Thus, M(H∞ + C) ⊂ M(A). By the Chang-Marshall Theorem

[17, 18], for two Douglas algebras U and V , M(U) = M(V ) if and only if U = V . As a

consequence A ⊂ H∞ + C. �

2.4 Compact Operators and Local Condition

In this section, we present the main tools in the proof of Theorem 3.3.5.

The following lemma in [14, Lemma 9] gives a nice property of compact operators.

Lemma 2.4.1 If K : H2 → H2 is a compact operator, then

lim
|z|→1−

||K − Tφ̃zKTφ̄z || = 0. (2.4.1)

Remark 2.4.1 By the Corona Theorem, (2.4.1) can be restated as the following:

For each m ∈M(H∞ + C), there is a net z → m such that

lim
z→m
||K − Tφ̃zKTφ̄z || = 0.

In [19], Guo and Zheng used the distribution function inequality to prove the following

theorem, which can be viewed as a partial converse of Lemma 2.4.1.

Theorem 2.4.1 Let T be a finite sum of finite products of Toeplitz operators. Then T

is a compact perturbation of a Toeplitz operator if and only if

lim
|z|→1−

||T − T ∗φzTTφz || = 0.

Remark 2.4.2 Theorem 2.4.1 cannot be applied directly to HfTg, since HfTg might not

be a finite sum of finite products of Toeplitz operators. However, by Proposition 2.2.1,

(HfTg)
∗(HfTg) = TḡH

∗
fHfTg = Tḡ(Tf̄f − Tf̄Tf )Tg,

thus (HfTg)
∗(HfTg) is a finite sum of finite products of Toeplitz operators.

11



Remark 2.4.3 The symbol map σ that sends every Toepltiz operator Tφ to its symbol

φ was introduced in [20] and can be defined on the Toeplitz algebra, the closed algebra

generated by Toeplitz operators. Barŕıa and Halmos in [21] showed that σ can be extended

to a ∗-homomorphism on the Hankel algebra, the closed algebra generated by Toeplitz

and Hankel operators. And they also showed that the symbols of compact operators and

Hankel operators are zero. Notice that (HfTg)
∗(HfTg) has symbol zero, so it is a compact

perturbation of a Toeplitz operator if and only if it is compact.

By Theorem 2.4.1 and above remarks, we have

Corollary 2.4.1 K = HfTg is compact if and only if

lim
|z|→1−

||K∗K − T ∗φzK
∗KTφz || = 0.

The next lemma, stated below, from [16, Lemma 2.5, 2.6] which interprets the local

condition in an elementary way, will be used several times later.

Lemma 2.4.2 Let f ∈ L∞, m ∈ M(H∞ + C), and let S be the support set of m. Then

the following are equivalent:

1. f |S ∈ H∞|S.

2. lim
z→m
||Hfkz|| = 0.

3. lim
z→m
||Hfkz|| = 0.

We also need the following technical lemma:

Lemma 2.4.3 [14, Lemma 17,18] Let f, g ∈ L∞, m ∈M(H∞ + C).

1. If

lim
z→m
||Hfkz|| = 0,

12



then

lim
z→m
||HfTgkz|| = 0.

2. If

lim
z→m
||H∗fkz̄|| = 0,

then

lim
z→m
||H∗fTgkz̄|| = 0.

2.5 Proof of the Main Theorem

In this section, we prove Theorem 3.3.5. First we set up the following two identities:

Lemma 2.5.1 [14, Lemma 6] Let f, g ∈ L∞ and z ∈ D. Then

Tφ̃zHfTgTφ̄z = HfTg − (HfTgkz)⊗ kz + (Hfkz)⊗ (TφzH
∗
fkz̄).

Lemma 2.5.2 Let f, g ∈ L∞, z ∈ D and K = HfTg. Then

KTφz = Tφ̃zK − (Hfkz)⊗ (H∗gkz̄).

Proof Since φz ∈ H∞, by Proposition 2.2.1,

TgTφz = TφzTg +Hφ̃z
Hg,

and

Tφ̃zHg = HgTφz .

Thus,

KTφz = HfTgTφz = HfTφzTg +HfHφ̃z
Hg

= Tφ̃zHfTg +HfHφ̃z
Hg

= Tφ̃zK − (Hfkz)⊗ (H∗gkz̄).

13



The last equality follows from Lemma 2.2.1(3).

Now we are ready to prove Theorem 3.3.5.

Proof of Theorem 3.3.5. Necessity: Suppose K is compact. By Lemma 2.4.1, we have:

lim
|z|→1−

||HfTg − Tφ̃zHfTgTφ̄z || = 0.

By Lemma 2.5.1, we have

||HfTg − Tφ̃zHfTgTφ̄z || = ||(HfTgkz)⊗ kz − (Hfkz)⊗ (TφzH
∗
gkz̄)||.

Since kz → 0 weakly as |z| → 1 and HfTg is compact,

||HfTgkz|| → 0. (2.5.1)

So

lim
|z|→1−

||(Hfkz)⊗ (TφzH
∗
gkz̄)|| = 0.

Since

||(Hfkz)⊗ (H∗gkz̄)|| = ||((Hfkz)⊗ (TφzH
∗
gkz̄))Tφz ||

≤||(Hfkz)⊗ (TφzH
∗
gkz̄)|| · ||Tφz || ≤ ||(Hfkz)⊗ (TφzH

∗
gkz̄)||,

we get

lim
|z|→1−

||(Hfkz)⊗ (H∗gkz̄)|| = 0.

By Lemma 2.2.2,

lim
|z|→1−

||Hfkz|| · ||Hgkz|| = 0.

Let m ∈M(H∞ +C) and let S be the support set of m. By the Corona Theorem, there

is a net z converging to m, and

lim
z→m
||Hfkz|| · ||Hgkz|| = 0.

14



Thus, either

lim
z→m
||Hfkz|| = 0

or

lim
z→m
||Hgkz|| = 0. (2.5.2)

By Lemma 2.4.2, we have f |S ∈ H∞|S or g|S ∈ H∞|S. In the second case,we have

lim
z→m
||Hfgkz|| = lim

z→m
||HfTgkz + Tf̃Hgkz||

≤ lim
z→m
||HfTgkz||+ ||Tf̃ || · lim

z→m
||Hgkz|| = 0.

The first equality comes from Proposition 2.2.1 and the last equality follows from (2.5.1)

and (2.5.2).

Therefore, Lemma 2.4.2 implies (fg)|S ∈ H∞|S.

Sufficiency: By Corollary 2.4.1, we need to show: for any m ∈M(H∞ + C),

lim
z→m
||K∗K − T ∗φzK

∗KTφz || = 0. (2.5.3)

Let Fz = −(Hfkz)⊗ (H∗gkz̄). Lemma 2.5.2 gives

KTφz = Tφ̃zK + Fz.

Then

T ∗φzK
∗KTφz = (KTφz)

∗(KTφz) = K∗T ∗
φ̃z
Tφ̃zK + (K∗T ∗

φ̃z
)Fz + F ∗z (Tφ̃zK) + F ∗z Fz

= K∗K + (K∗kz̄)⊗ (K∗kz̄) + (K∗T ∗
φ̃z

)Fz + F ∗z (Tφ̃zK) + F ∗z Fz. (2.5.4)

The last equality comes from Lemma 2.2.1 (2).

Let S be the support set of m. If Condition (1) holds, i.e., f |S ∈ H∞|S, Lemma 2.4.2

and Lemma 2.2.2 give

lim
z→m
||Hfkz|| = 0,
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and

lim
z→m
||H∗fkz̄|| = 0.

So

lim
z→m
||Fz|| = 0, (2.5.5)

and

lim
z→m
||K∗kz̄|| = lim

z→m
||T ∗gH∗fkz̄|| = 0.

Since ||K|| <∞ and sup
z∈D
||Fz|| <∞, (2.5.4) implies (2.5.3).

If Condition (2) holds, i.e., g|S ∈ H∞|S and (fg)|S ∈ H∞|S, by Lemma 2.4.2,

lim
z→m
||Hgkz|| = 0,

and

lim
z→m
||Hfgkz|| = 0. (2.5.6)

So (2.5.5) also holds. By Proposition 2.2.1,

(HfTg)
∗kz̄ = H∗fgkz̄ − (Tf̃Hg)

∗kz̄ = H∗fgkz̄ −H∗gTf∗kz̄.

Using (2.5.5) and Lemma 2.4.3, we get

lim
z→m
||K∗kz̄|| = 0.

Thus, (2.5.3) holds and HfTg is compact. �

Notice that (TfHg)
∗ = Hg∗Tf̄ . Combining Theorem 3.3.5 and Theorem 2.1.6, we get

the following characterization of the compactness of the product TfHg:

Corollary 2.5.1 Let f, g ∈ L∞. The following are equivalent:

1. TfHg is compact.

16



2. H∞[g∗] ∩H∞[f̄ , f̄g∗] ⊂ H∞ + C.

3. For each support set S, one of the following holds:

(a) g∗|S ∈ H∞|S.

(b) f̄ |S ∈ H∞|S and (f̄ g∗)|S ∈ H∞|S.

17



3. Spectral Area Estimate of Hyponormal Toeplitz Operators

3.1 Preliminaries and Definitions

In this chapter, we will focus on the spectrum of hyponormal Toeplitz operators.

The spectrum of a linear operator T , denoted as sp(T ), is the set of complex numbers

λ such that T − λI is not invertible; here I denotes the identity operator. The following

results about the spectrum of Toeplitz operators are well-known (see for instance [20,

Chapter 7]).

Theorem 3.1.1 If ϕ ∈ L∞ and Tφ is a Toeplitz operator on H2. Then

1. If ϕ is real-valued, sp(Tϕ) = [essinfϕ, esssupϕ].

Here essinfϕ and esssupϕ are the essential infimum and essential supremum of ϕ

respectively.

2. If ϕ is analytic, sp(Tϕ) = ϕ(D).

3. If ϕ is continuous, sp(Tϕ) = Ran(ϕ) ∪ {λ ∈ C|it(ϕ, λ) 6= 0}.

Here Ran(ϕ) is the range of ϕ and it(ϕ, λ) is the winding number of the curve

determined by ϕ with respect to λ.

In the general case, Harold Widom [22] proved the following theorem for arbitrary

symbols.

Theorem 3.1.2 Every Toeplitz operator has a connected spectrum.
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Let [T ∗, T ] denote the operator T ∗T − TT ∗, called the self-commutator of T . An

operator T is called hyponormal if [T ∗, T ] is positive. Hyponormal operators satisfy the

celebrated Putnam inequality [23]

Theorem 3.1.3 If T is a hyponormal operator, then

‖[T ∗, T ]‖ ≤ Area(sp(T ))

π
.

This result turned out to be very useful for many problems in operator theory and in

function theory.

3.2 Motivations

First we notice that Toeplitz operators with an analytic symbol are hyponormal.

Proposition 3.2.1 Suppose f ∈ H∞. Then Tf is hyponormal.

Proof For every p ∈ H2,

〈[T ∗f , Tf ]p, p〉 = 〈Tfp, Tfp〉 − 〈T ∗f p, T ∗f p〉

= ||fp||2 − ||Tf̄p||2

= ||f̄p||2 − ||Tf̄p||2 ≥ 0

Thus [T ∗f , Tf ] is a positive operator.

This result enables us to apply Putnam’s inequality to Tf where f is analytic. The

lower bounds of the area of sp(Tf ) were obtained in [24] (see [25], [26] [27] and [28] for

generalizations to uniform algebras and further discussions). Together with Putnam’s

inequality such lower bounds were used to prove the isoperimetric inequality (see [29],

[30] and the references there). Recently, there has been revived interest in the topic in
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the context of analytic Topelitz operators on the Bergman space (cf. [31], [32] and [33]).

Together with Putnam’s inequality, the latter lower bounds have provided an alternative

proof of the celebrated St. Venant’s inequality for torsional rigidity.

The main purpose of this chapter is to show that for a rather large class of Toeplitz

operators on H2, hyponormal operators with a harmonic symbol, there is still a lower

bound for the area of the spectrum, similar to the lower bound obtained in [24] in the

context of uniform algebras.

We shall use the following characterization of the hyponormal Toeplitz operators given

by Cowen in [34]

Theorem 3.2.1 Let ϕ ∈ L∞, where ϕ = f+ḡ for f and g in H2. Then Tϕ is hyponormal

if and only if

g = c+ Th̄f,

for some constant c and h ∈ H∞ with ‖h‖∞ ≤ 1.

3.3 Main Results

In this section, we obtain a lower bound for the area of the spectrum for hyponormal

Toeplitz operators by estimating the self-commutators.

Theorem 3.3.1 Suppose ϕ ∈ L∞ and

ϕ = f + Th̄f,

for f, h ∈ H∞, ‖h‖∞ ≤ 1 and h(0) = 0. Then

‖[T ∗ϕ, Tϕ]‖ ≥
∫
|f − f(0)|2 dθ

2π
= ||P (ϕ)− ϕ(0)||2.
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Proof Let

g = Th̄f. (3.3.1)

For every p in H2,

〈[T ∗ϕ, Tϕ]p, p〉 = 〈Tϕp, Tϕp〉 − 〈T ∗ϕp, T ∗ϕp〉

= 〈fp+ P (ḡp), fp+ P (ḡp)〉 − 〈gp+ P (f̄p), gp+ P (f̄p)〉

= ||fp||2 − ||P (f̄p)||2 − ||gp||2 + ||P (ḡp)||2

= ||f̄p||2 − ||P (f̄p)||2 − ||ḡp||2 + ||P (ḡp)||2

= ||Hf̄p||2 − ||Hḡp||2.

The third equality holds because

〈fp, P (ḡp)〉 = 〈fp, ḡp〉 = 〈gp, f̄p〉 = 〈gp, P (f̄p)〉.

By the computation in [34, p. 4], (3.3.1) implies

Hḡ = Tk̄Hf̄ ,

where k(z) = h(z̄). Thus

〈[T ∗ϕ, Tϕ]p, p〉 = ||Hf̄p||2 − ||Tk̄Hf̄p||2, (3.3.2)

for k ∈ H∞, ‖k‖∞ ≤ 1 and k(0) = 0.

First, we assume k is a Blaschke product vanishing at 0. Then

|k| = 1 on ∂D.

Let u = Hf̄p ∈ H2. By (3.3.2) we have

〈[T ∗ϕ, Tϕ]p, p〉 = ||u||2 − ||Tk̄u||2 = ||u||2 − ||k̄u||2 + ||Hk̄u||2 = ||Hk̄u||2. (3.3.3)
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Then

||Hk̄u|| = ||(I − P )(k̄u)|| = ||kū− P (k̄u)||

≥ sup
m∈H2

m(0)=0

|〈kū− P (k̄u),m〉|
||m||

= sup
m∈H2

m(0)=0

1

||m||

∣∣∣∣∫ kūm̄
dθ

2π

∣∣∣∣.
The last equality holds because m(0) = 0 implies that m̄ is orthogonal to H2. Since

k(0) = 0, taking m = k, we find

||Hk̄u|| ≥
∣∣∣∣∫ ū

dθ

2π

∣∣∣∣ = |u(0)|. (3.3.4)

Next, suppose k is a convex linear combination of Blaschke products vanishing at 0,

i.e.

k = α1B1 + α2B2 + ...+ αlBl,

where Bj’s are Blaschke products with Bj(0) = 0, αj ∈ [0, 1] and
l∑

j=1

αj = 1.

By (4.1.2) and (3.3.4), for each j

||u||2 − ||TB̄ju||
2 = ||HB̄ju||

2 ≥ |u(0)|2

=⇒||TB̄ju|| ≤
√
||u||2 − |u(0)|2 = ||u− u(0)||.

Then

||u||2 − ||Tk̄u||2 = ||u||2 − ||α1TB̄1
u+ α2TB̄2

u+ ...+ αlTB̄lu||
2 (3.3.5)

≥ ||u||2 −
(
α1||TB̄1

u||+ α2||TB̄2
u||+ ...+ αl||TB̄lu||

)2

≥ ||u||2 − ||u− u(0)||2 = |u(0)|2.

In general, for k in the closed unit ball of H∞, vanishing at 0, by Carathéodory’s

Theorem(cf. [1, p. 6]), there exists a sequence {Bn} of finite Blaschke products such that

Bn −→ k pointwise on D.
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Since Bn’s are bounded by 1 in H2, passing to a subsequence we may assume

Bn −→ k weakly in H2.

Then by [35, Theorem 3.13], there is a sequence {kn} of convex linear combinations of

Blaschke products such that

kn −→ k in H2.

Since k(0) = 0, we can let those kn’s be convex linear combinations of Blaschke products

vanishing at 0.

Then

||Tk̄nu− Tk̄u|| = ||P (k̄nu− k̄u)|| ≤ ||kn − k|| · ||u|| → 0.

Since (3.3.5) holds for every kn, we have

〈[T ∗ϕ, Tϕ]p, p〉 = ||u||2 − ||Tk̄u||2 = lim
n→∞

(||u||2 − ||Tk̄nu||
2)

≥ |u(0)|2 = |(Hf̄p)(0)|2.

By the definition of Hankel operator (1.2.1),

|(Hf̄p)(0)| = |〈pf̄ , z̄〉| =
∣∣∣∣∫ f̄ zp

dθ

2π

∣∣∣∣ .
From the standard duality argument (cf. [1, Chapter IV]), we have

sup
||p||=1
p∈H2

∣∣∣∣∫ f̄ zp
dθ

2π

∣∣∣∣ = sup

{ ∣∣∣∣∫ f̄p
dθ

2π

∣∣∣∣ : p ∈ H2, ||p|| = 1, p(0) = 0

}

= dist(f̄ , H2) = ||f − f(0)||.

Hence

||[T ∗ϕ, Tϕ]|| = sup
||p||=1
p∈H2

|〈[T ∗ϕ, Tϕ]p, p〉| ≥ ||f − f(0)||2.

23



Remark 3.3.1 For arbitrary h in the closed unit ball of H∞, it follows directly from

(3.3.2) that Tϕ is normal if and only if h is a unimodular constant. So we made the

assumption that h(0) = 0 to avoid these trivial cases. Of course, Theorem 3.3.1 implies

right away that Tϕ is normal if and only if f = f(0), i.e., when ϕ is a constant, but under

more restrictive hypothesis that h(0) = 0.

Applying Theorem 3.1.3 and 3.2.1, we have

Corollary 3.3.1 Suppose ϕ ∈ L∞ and

ϕ = f + Th̄f,

for f, h ∈ H∞, ‖h‖∞ ≤ 1 and h(0) = 0. Then

Area(sp(Tϕ)) ≥ π||P (ϕ)− ϕ(0)||2.

Remark 3.3.2 Thus, the lower bound for the spectral area of a general hyponormal

Toeplitz operator Tϕ still reduces to the H2 norm of the analytic part of ϕ. For ana-

lytic symbols this is encoded in [24, Theorem 2] in the context of Banach algebras. In

other words, allowing more general symbols does not reduce the area of the spectrum.
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4. Asymptotic Bohr Radius for the Polynomials

4.1 Introduction

The Bohr radius R for H∞ is defined as

R = sup{r ∈ (0, 1) :
∞∑
k=0

|ak|rk ≤ ||f ||∞, for all f(z) =
∞∑
k=0

akz
k ∈ H∞}.

Bohr’s famous power series theorem [36] shows that R = 1
3
. Actually, Bohr first considered

this problem and proved R ≥ 1
6
. Later M. Riesz, I. Schur, and F. Wiener solved the

problem independently.

Let Pn denote the subspace of H∞ consisting of all the complex polynomials of degree

at most n. In 2005, Guadarrama [37] considered the Bohr type radius for the class Pn

defined by

Rn = sup{r ∈ (0, 1) :
n∑
k=0

|ak|rk ≤ ||p||∞, for all p(z) =
n∑
k=0

akz
k ∈ Pn}, (4.1.1)

and gave the estimate

C1

3n/2
< Rn −

1

3
< C2

log n

n
,

for some positive constants C1 and C2. Later in 2008, Fournier obtained an explicit

formula for Rn by using the notion of bounded preserving functions. He proved the

following theorem [38]
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Theorem 4.1.1 For each n ≥ 1, let Tn(r) be the following (n+ 1)× (n+ 1) symmetric

Toeplitz matrix 

1 r −r2 r3 · · · (−1)n−1rn

r 1 r −r2 · · · (−1)n−2rn−1

−r2 r 1 r

r3 −r2 r 1
. . .

...

...
. . . . . . . . .

(−1)n−1rn · · · r 1



. (4.1.2)

Then Rn is equal to the smallest root in (0, 1) of the equation

detTn(r) = 0.

Based on numerical evidence, he conjectured that

Rn =
1

3
+

π2

3n2
+

3π4

4n4
+ ...

The purpose of this chapter is to provide a positive answer. We shall prove

Theorem 4.1.2 Let Rn be as in (4.1.1), then

Rn =
1

3
+

π2

3n2
+ o(

1

n2
), as n→∞.

4.2 Main Theorem

In this section, we prove Theorem 4.1.2. The methods we use are similar to those in

[39, Chapter 5].

Proof of Theorem 4.1.2. Fix r ∈ (0, 1), we consider the eigenvalues of Tn(r),

the symmetric Toeplitz matrix (4.1.2). Let ∆n(λ) = det(Tn(r) − λI), the characteristic

polynomial of Tn(r).
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For n ≥ 2, multiplying the second row of ∆n(λ) by r, adding it to the first row and

performing a similar operation with the columns, we have

∆n(λ) = det



1− λ+ (3− λ)r2 (2− λ)r 0 · · · 0

(2− λ)r 1− λ r −r2 · · · (−1)n−2rn−1

0 r 1− λ r

−r2 r 1− λ . . .
...

...
. . . . . . . . .

0 · · · r 1− λ



= [(3− λ)r2 + 1− λ]∆n−1(λ)− (2− λ)2∆n−2(λ). (4.2.1)

If we set ∆−1(λ) = 1, then the recurrence relation (4.2.1) holds for all n ≥ 1.

Consider the function associated with these Toeplitz matrices Tn(r)

f(x) = 1 +
∑
|n|>0

(−1)n−1rneinx =
3r2 + 4r cosx+ 1

r2 + 2r cosx+ 1
. (4.2.2)

Suppose

λ = f(x), x ∈ [0, π].

Then the second order recurrence relation (4.2.1) becomes

∆n(λ) = [−2(2− λ)r cosx]∆n−1(λ)− (2− λ)2r2∆n−2(λ).

Its characteristic equation has the roots (λ− 2)re±ix. Adding the initial conditions

∆−1(λ) = 1, ∆0(λ) = 1− λ,

we have

∆n(λ) =
[(λ− 2)r]n+1

1− r2

(
sin(n+ 2)x

sinx
+ 2r

sin(n+ 1)x

sinx
+ r2 sinnx

sinx

)
.
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Denote

pn(x) =
sin(n+ 2)x

sinx
+ 2r

sin(n+ 1)x

sinx
+ r2 sinnx

sinx
.

Then it is easy to verify that pn is a polynomial of degree n+ 1 in cosx. Let

t(n)
ν =

νπ

n+ 2
, ν = 1, 2, · · · , n+ 1.

Direct computation shows that

pn(t(n)
ν ) = (−1)ν+12r(1 + r cos ν),

thus

sgn pn(t(n)
ν ) = (−1)ν+1.

Also

lim
x→π−

pn(x) = 2(−1)n+1(1− r)2.

So pn has exactly n+ 1 distinct zeros {x(n)
ν |ν = 1, 2, · · · , n+ 1} on [0, π], such that

0 < t
(n)
1 < x

(n)
1 < t

(n)
2 < x

(n)
2 < · · · < t

(n)
n+1 < x

(n)
n+1 < π. (4.2.3)

That means for each n,

λ(n)
ν = f(x(n)

ν ), ν = 1, 2, · · · , n+ 1.

are all the eigenvalues of Tn(r). Since f is decreasing on [0, π], λ
(n)
n+1 = f(x

(n)
n+1) is the

smallest eigenvalue of Tn(r).

Next, we will find an asymptotic expression for x
(n)
n+1. Notice that

lim
n→∞

(−1)n+1
pn(π − z

n+2
)

n+ 2
= (1− r)2 sin z

z
, (4.2.4)

where (4.2.4) holds uniformly for |z| < 2π. Let

x
(n)
n+1 =

(n+ 1)π + εn
n+ 2

,
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then εn ∈ (0, π) by relation (4.2.3). Thus

0 = lim
n→∞

(−1)n+1pn(x
(n)
n+1)

n+ 2

= lim
n→∞

(−1)n+1
pn(π − π−εn

n+2
)

n+ 2

= lim
n→∞

(1− r)2 sin(π − εn)

π − εn
.

Hence the accumulation points of {εn} are either 0 or π. Let

y(n) =
t
(n)
n+1 + π

2
= π −

π
2

n+ 2
.

Using (4.2.4) again, we have

lim
n→∞

(−1)n+1pn(y(n))

n+ 2

= lim
n→∞

(−1)n+1
pn(π −

π
2

n+2
)

n+ 2

= lim
n→∞

(1− r)2 sin(π
2
)

π
2

> 0.

When n is sufficiently large,

sgn pn(y(n)) = (−1)n+1 = sgn pn(π−),

which implies x
(n)
n+1 ∈ (t

(n)
n+1, y

(n)). Consequently, εn → 0 as n→∞, and then

x
(n)
n+1 = π − π

n
+ o(

1

n
), asn→∞. (4.2.5)

Now we are ready to find the asymptotic expression for Rn. Notice that r = Rn is

the root in (0, 1) of the equation

λ
(n)
n+1 = f(x

(n)
n+1) = 0.

By (4.2.2), that means

3R2
n + 4Rn cosx

(n)
n+1 + 1 = 0.
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Thus

Rn =
1

3
(−2 cosx

(n)
n+1 −

√
4 cos2 x

(n)
n+1 − 3).

Using (4.2.5), we have

Rn =
1

3
+

π2

3n2
+ o(

1

n2
).

�
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