Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-88-16

1988-02-01

Automatic Interface Generations From Grammar Specifications

Steve B. Cousins

This paper presents a method for automatically generating user interfaces to programs. All
possible legal strings of input to a moderately interactive program, taken together, specify the
input language of that program. A grammar for such a language is fundamentally knowledge
about the language, and that knowledge can be used to assist the program's user in
constructing legal program input. The set of words which can appear next in an input sentence,
the 'Next set', is defined and a technique for calculating it with a modified version of Prologs's
Definite Clause Grammar parser is given. One type of interface... Read complete abstract on
page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

6‘ Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Cousins, Steve B., "Automatic Interface Generations From Grammar Specifications” Report Number:
WUCS-88-16 (1988). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/773

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F773&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F773&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F773&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F773&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F773&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F773&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F773&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/773?utm_source=openscholarship.wustl.edu%2Fcse_research%2F773&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/773

Automatic Interface Generations From Grammar Specifications

Steve B. Cousins

Complete Abstract:

This paper presents a method for automatically generating user interfaces to programs. All possible legal
strings of input to a moderately interactive program, taken together, specify the input language of that
program. A grammar for such a language is fundamentally knowledge about the language, and that
knowledge can be used to assist the program’s user in constructing legal program input. The set of words
which can appear next in an input sentence, the 'Next set, is defined and a technique for calculating it
with a modified version of Prologs's Definite Clause Grammar parser is given. One type of interface this
method can generate is a menu-based front-end. The concept of menus is used very generally to include
any method that allows a user to make a choice from among several options. The main difficulty with this
technique is that menus may become very large (or may on occasion be infinite). This problem is
overcome by the introduction of 'pre-terminals'-- classes of language terminals defined by predicates.
When a preterminal is chosen from a menu, the user is prompted to type a value, which is then verified
against the predicate associated with the preterminal.

https://openscholarship.wustl.edu/cse_research/773?utm_source=openscholarship.wustl.edu%2Fcse_research%2F773&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/773?utm_source=openscholarship.wustl.edu%2Fcse_research%2F773&utm_medium=PDF&utm_campaign=PDFCoverPages

AUTOMATIC INTERFACE GENERATION FROM
GRAMMAR SPECIFICATIONS

Steve B. Cousins

WUCS-88-16

February 1988

Center for Intelligent Computer Systems
Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899

Presented at the User-Systemn Interface Conference, Austin, Texas.

This work was supported by the Center for Computer Aided Process Engineering and by the Center
for Intelligent Computer Systems.

Abstract

This paper presents a method for automatically generating user interfaces to pro-
grams. All possible legal strings of input to a moderately interactive program, taken
together, specify the input language of that program. A grammar for such a language
is fundamentally knowledge about the language, and that knowledge can be used to
assist the program’s user in constructing legal program input.

The set of words which can appear next in an input sentence, the ‘Next set’, is
defined and a technique for calculating it with a modified version of Prolog’s Definite
Clause Grammar parser is given. One type of interface this method can generate is
a menu-based front-end. The concept of menus is used very generally to include any
method that allows a user to make a choice from among several options.

The main difficulty with this techinque is that menus may become very large
(or may on occasion be infinite). This problem is overcome by the introduction of
‘pre-terminals’ — classes of language terminals defined by predicates. When a pre-
terminal is chosen from a menu, the user is prompted to type a value, which is then
verified against the predicate associated with the preterminal.

1 Introduction

This paper presents a method of automatically generating user interfaces to programs.
The key to the technique is the Next set,* the set of tokens that can come next at
some point in the process of constructing a command to a program. Using the Next
set, menu and command-line interfaces can be automatically generated.

Programs that are moderately interactive work best with this technique. The term
‘moderately interactive’ is used to distinguish the class of programs that are more
interactive than batch programs, but are not highly interactive (such as Computer-
Aided Design programs). For example, database management programs are moder-
ately interactive, since the user normally gives them a line of input at a time, and
then waits for a response.

A language for interfacing with a moderately interactive computer program may
be simple like a command language or complex like a subset of a natural language. In
either case, a grammar for this language captures in a concise way all of the sentences
in the language, and is fundamentally knowledge about that language. Compiler
writers are well aware of the value of a grammar in interpreting input to a computer.
This same information about the language can be used to assist the user in creating
valid sentences in the program’s input language.

One advantage of automatically generating interfaces is that it relieves an appli-
cation programmer of the need to generate them. In the paradigm of this work, the
programmer specifies a grammar for the input language of a program, and an intelli-
gent interface is generated for the program automatically. Existing programs can be
‘retrofitted’ with this type of interface by writing grammars for their input languages.

Another advantage of having a single mechanism generate user interfaces is that
interface uniformity across programs is enforced. Each program automatically works
the same way as other programs designed using the same technique, which reduces
the need to retrain users. Apple Computer Company[1] has successfully persuaded
software developers to adhere to a single interface standard on its Macintosh computer
line, and has had great success in keeping that system easy to use.

A third important advantage of this work has to do with the reusability of program
modules. Since the input to an application program is well-defined, it is much easier
to use the application program as a back-end to other programs. Connectibility is
very important because there is a large base of established software currently in use.
Users of existing systems do not want to pay for or be involved in the redesign of
systems that already work for them. However, these same users would like integrated
systems which combine the functionality of the existing programs with modern user
interface technology.

The method of developing user interfaces proposed here advocates that the user
interface actually be a separate program which acts as a filter between the user and
the application program. A user interacts with the user interface program, which in
turn sends sentences reflecting the user’s intentions to the application program. The

*In this paper, the convention of capitalizing the 'N’ when referring to the set formally defined
in this work is used to keep the distinction between other uses of the phrase, e.g., “the next set to
be looked at”.

prototype interface generators are written in Prolog, using Prolog’s standard language
parsing formalism, Definite Clause Grammars (DCGs)[2]. These Prolog prototypes
construct sentences of a language, so that these sentences could be sent to application
programs using a communication module. This work does not address the issue of
inter-program communication directly.

A MENU INTERFACE EXAMPLE In this example, a menu interface to a
robot control program is presented, in order to make concrete the ideas being pre-
sented. A menu can be considered as a set of items from which one item is to be
selected. User interfaces containing menus have become popular because users of
menu-driven programs have their options enumerated in the menus. This example
will show how one such interface is generated from a description of a program’s input
language.

Counsider a simple program for controlling a robot, which can take as legal input
the commands:

Move the base <x> steps
Move the shoulder <x> steps
Move the elbow <x> steps
Move the wrist <x> steps
Open the hand

Close the hand

A menu interface generated by a system such as the one proposed in this paper
from a grammar for this language would begin by displaying a menu to the user and
waiting for a response. The initial menu would contain the items:

Move O0Open Close

For this example, assume the user wants to move the elbow motor 25 steps. The
user would choose the Move option from the first menu and the system would now
generate a second menu. Since the only word that can follow Move in this simple
language is the, the system makes this choice for the user and proceeds to calculate
what words can follow Move the in this language. The second menu the user will see
will contain the items:

base elbow wrist shoulder

The user can now indicate his intention to move the elbow by choosing the elbow
option from this menu. The system now determines that there is only one possible
continuation of the prefix Move the elbow: <x>. For now, assume that the system
‘knows’ that angle brackets around a letter indicate that it is a variable. The system
uses this knowledge to ask the user for a value to replace the <x> with. The user will
type ‘25’ in response to the system’s query.

Finally, the system again calculates that only steps can follow a prefix of Move
the elbow 25 in the robot program’s input language, so that word is appended to
the input sentence being constructed, giving as the final request:

2

AP

+——— TInterface "

Figure 1: User—Application Program Interaction

Move the elbow 25 steps

In the course of constructing the query, the user saw two menus and had to enter
one number. The only mistakes the user could have made were choosing the Wrong
menu item or typing the wrong number. With traditional interface technology, the
user would have had to make 23 keystrokes. Any error made in the course of the
keystrokes would have caused a traditional system to reject the user’s command.

2 Interface Architecture

This section proposes a new way of programming user interfaces. First, the functional
location of the user interface with respect to the rest of the application program is
discussed. Then, a problem with generating sentences from grammars, called the
preterminal problem, is introduced, and is shown to be a result of the system ar-
chitecture. Traditionally, user interfaces were built into applications programs in the
form of read and write statements. With the advent of software engineering and struc-
tured programming, the read and write statements were moved into separate modules,
but the design and coding of the interface was still a part of the application program
development. Recently, more and more libraries of interface utilities have become
available, such as form-generation packages and the user-interface toolkits.[3,4,5,6]
In the work discussed here, the user interface is removed even farther from the
application program. The input to the application program is specified fully by a
grammar, and the interface is conceived of as something which assists the user in
composing input to the application program. Figure 1 shows the relation between
the user and the application program. In this model, the output from the application
program is not interpreted, but is given to the user ‘raw’. (Alternatives to this are
possible, but are not a part of this work.) The system implemented in the course of
this work, called the Visual Interface Utility (VIU) takes a description of the input
language for an application program and produces an interface for that program. A
grammar G for the input language of the application program is taken as knowledge
about the input language and is used to generate the interface. VIU is the program
that translates the grammar G into the interface. Through a series of user inter-
actions, a proper sentence of L is constructed which reflects the intentions of the

user.

Two implementations of this architecture have been developed in the course of
this work, one in LISP and the other in Prolog. In the LISP implementation, VIU
was instantiated by a LISP function which interacted with the user through calls
to a menu predicate, had its grammar passed as a parameter, and returned a list
representing a sentence of L as its function value. In the Prolog implementation, the
DCG parser (implicitly defined when the grammar was loaded) was called by a driver
which interacted with the user and returned a sentence of L.

HANDLING PRETERMINALS In the simple example of the first section, the
language contained the symbol <x> and the program was assumed to have the knowl-
edge that that symbol denotes a variable. This symbol which represents a variable
is actually a preterminal. We now consider preterminals in detail, and define the
problem that they cause in generating sentences, called “the preterminal problem”.
A solution to the preterminal problem is derived here by defining a new grammar
type. We begin with some definitions.

Definition 1 A preterminal is @ non-terminal which can only be replaced in a deriva-
tion by values which are constrained by a predicate, and which are neither terminals
nor non-terminals.

An exarple of a preterminal is the class of integers. While it is possible to write
a grammar which recognizes and generates integers, doing so in the context of VIU
is not desirable for a couple of reasons. First of all, users of VIU deal with logical
atoms such as 25, not with sub-atomic parts such as 2 and 5. But more importantly,
it may not always be possible or convenient to write a sub-grammar for the class a
preterminal represents.

Definition 2 The preterminal problem is that in many languages there are pretermi-
nal categories which are not easily or conveniently described with ¢ traditional gram-
mar.

A high-level solution to this problem is to define a new type of grammar which
includes preterminals.

Definition 3 A preterminal grammar (PTG) G is a siz-tuple:
G =<T,N,P,PP,S,R>

where T, N, and P are disjoint, S € N, and R is a set of rules N — (T + N + P)*.
PP is a set of preterminal predicates associated with preterminals:

PP:P—={f:a—2}

Preterminal grammars can produce two levels of languages, with and without
preterminals.

Definition 4 A pre-language PL(G) for a PTG G is
PLG)={a:S=3"aha=a...0n A(Vi)(1 i< n— (s €T Vo € P))}

Definition 5 A Language L(G) for a PTG G has all of the preterminals replaced by
terminals satisfying their preterminal predicates:

LG)={aia e PL(G)A(Vi:1<i<n:; €TV (3p:pe P: PP(p)(a;)))}

Thompson[7] discusses a similar problem in his dissertation on NLMenus. His
problem, which he calls the ‘value recognition’ problem, refers to “recognizing database
values when they appear in queries or commands.” The preterminal problem is more
general, because it deals with specifying values from classes, even when they have
never been seen before. Thompson solves his problem in NLMenus with ‘“interaction
experts.” The solution that will be proposed here is similar, but will use predicates
which can interact, but may also perform simpler computations when appropriate.

The preterminal problem needs to be solved in order for VIU to be generally
useful. At a high abstraction level, the solution is to recognize preterminals as a
unique part of the grammar and have the implementation handle them in some way.
For example, the implementation might display a special input window and ask the
user for the value of the terminal at that point using the name of the preterminal as
a prompt. One solution for the Prolog implementation is given in section 3.

3 The Next Set

This section defines the Next set, and describes one way of calculating it. The reader
is assumed to have some knowledge of Prolog, or is advised to refer to a standard
language reference (such as [8]). Simply stated, the Next set is the set of words that
can come after a given prefix of a sentence. When considered this way, it is clear
that such a set is useful to calculate in order to know what possibilities are legal
at any given point in the construction of a sentence. Obtaining this knowledge is a
very important step toward the goal of helping someone to construct a legal sentence,
which must be the most important goal for an intelligent interface to a language-based
system.

To build a menu interface to a language, it is necessary to know what words are
permitted next at any point in a sentence. This set of ‘next words’ is called the Next
set. A menu interface could simply display the Next set at each point in a parse and
allow the user to choose one member of the set.

Definition 6 A Next set N for grammar G and prefiz 11 is defined by
Next(G,Il)={a € (T'+ P):llaf € PL(G)}

for some B € (T + P)*.

s --> dog_name, dog_action.
s =--> boy_name, boy_action.
boy_name -~> [john].
dog._name --> [rover].
boy_action --> [yells].
boy_action --> action.
dog_action --> [barks].
dog_action --> action.
action --> [runs].

action --> [hides].

Figure 2: A simple grammar

Initially, the Next set is the set of words which may occur as the first word of any
sentence in PL(G), Next(G,e). When one of these is chosen to be the first word of
the sentence, the Next set for that one-word prefix is the set of second words in the
set of sentences beginning with the chosen first word. In general, after a valid prefix
of n words has been chosen, the set of all (n + 1)st words that, when appended to the
first n words forms a prefix of a valid sentence, is called the Next set for that prefix.
The Next set can then be used, e.g., by placing it in a menu.

Consider the simple example in figure 2. This grammar describes a language
containing 6 sentences:

john yells john runs john hides
rover barks rover runs rover hides

The initial Next set for this language (the Next set for the empty prefix) is {john,
rover}. For one of these prefixes, ‘john’, the corresponding Next set is {yells, runs,
hides}. This example is so simple because it has no preterminals.

Many different parsing algorithms can be modified to calculate the Next set.
Tomita[9] points out that what is needed is a left-to-right on-line parser. In the
course of this work, two parsing algorithms have been modified to calculate the Next
set: Earley’s algorithm and the Prolog implementation of Definite Clause Grammars.
The Prolog implementation is discussed in the next section. A novel discovery made
in the course of this work is the relative ease with which the Next set can be cal-
culated in Prolog. The heart of the Prolog implementation of VIU lies in adding a
single line to the normal Definite Clause Grammar translation mechanism. The rest
of this section discusses the results of this work.

BASIC MODIFICATIONS TO DCGs The Definite Clause Grammar mech-
anism of Prolog is a translator from a grammar syntax to Prolog predicates. The
parser that results after the translation uses Prolog’s backtracking mechanism thus
making it similar to an Augmented Transition Network parser[10]. The Next set is
calculated in this mechanism by analyzing the cases in which the parser fails on the
input and must backtrack.

DCGs handle terminals by translating them into calls to a special predicate called
c (‘connects’). The c predicate is ultimately called each time a word from the input
sentence is considered. By carefully redefining the c operator it is possible to calculate
the Next sets. The connects operator, c, is defined by the DCG-to-Prolog translator
simply as:

c([Wls],w,s).

This definition reads: ‘if the head of the first argument matches the second argument,
succeed, and return the tail of the first argument as the third argument.’ If the match
fails, the predicate fails. In the context of parsing a sentence, the first argument is the
input sentence and the first word of this sentence is being compared with a terminal
symbol.

Based on Prolog’s backtracking, we can redefine ¢ to incrementally calculate the
Next set. Normally, ¢ either succeeds or fails based on whether or not the terminal
symbol W is the head of the incoming list. This decision to succeed or to fail is based
on the assumption that the entire input sentence is passed as the first argument.
If the first argument is only a prefix of a sentence however, in parsing that string
Prolog will at some point fail because legal words in the language are attempted to
be matched against empty input. Whenever this happens, W is a word that should
be a member of the Next set, because if the input were not empty, but contained
W, there would be at least one place in the grammar that would accept W, namely,
the current place. W should be added to the Next set, but c should fail the test so
that other words in the set ‘farther down the grammar’ (since we are depending on
Prolog’s particular parsing mechanism for DCG’s) can be found.

Assuming the predicate save(W) saves W by adding it to the Next set which is
being incrementally calculated, the new definition of the ¢ operator is as follows:

c(ll,w,[1) :- save(W),fail.
c([w|s],w,s).

Notice that the second line of the definition is just the original definition of ¢, and
that the first line never succeeds. The new line of the definition is only active when
its head matches, which is in exactly those cases described above.

The definition of save can be a simple assert, since facts asserted are not retracted
during backtracking. Save is defined as:

save(W) :- assert(next(W)).

If the relation next is empty before attempting to parse a sentence with a DCG (ie.
next (X) would fail), next will contain all of the words in the Next set when the parse
has completed (and failed). A simple recursive program implements the interface
described above. The predicate menu(L,W) is assumed to take a list of words to
be in the menu L and return the word chosen, W. The predicate get_sent(Sent)
returns a sentence in some grammar through Sent. We assume the grammar starts
with the non-terminal s. Recall that in trying to prove s, the DCG mechanism
will automatically make calls to ¢ as terminal symbols are reached. The program in
figure 3 implements get.sent.

get_sent(Sent) :- get_sent([],Sent).
get_sent (Prefix,Prefix) :-
no_nexts,
s(Prefix, []).
get_sent (Prefix,Sent) :-
setof (X,next (X) ,Menu),
menu (Menu,Word) ,
append (Prefix, [Word] ,NewPrefix),
get_sent (NewPrefix,Sent).

no_nexts :- retract(next(X)),fail.
no_nexts.

Figure 3: Prolog program ‘get_sent’

A PROLOG SOLUTION TO THE PRETERMINAL PROBLEM The
preterminal problem occurs when the grammar refers to a class of terminals that
cannot be conveniently be described in the grammar. DCGs and PTGs have been
defined, and are combined to solve the preterminal problem in Prolog.

Definition 7 A Preterminal Definite Clause Grammar (PTDCG) G is a seven-tuple
G=<T,N,P,PP,5,R, A >

where T, N, P, PP, S, and R are defined as in PTGs and A is a set of Prolog predicates
(actions) as defined in DCGs.

Clearly, what PTGs contribute to PTDCGs are preterminals and preterminal
predicates. DCG notation already has a distinction between non-terminals and ter-
minals. To distinguish preterminals in Prolog, the names of all preterminals are stored
in the relation preterminal. Preterminal predicates are implemented by associating
a Prolog predicate with each preterminal. Before completing the explanation of the
solution to the preterminal problem in Prolog, the mechanism that the DCG parser
uses to solve the preterminal problem is examined.

A form of the preterminal problem occurs in Prolog’s definite clause grammars
even when they are not augmented to calculate the Next set. This is because there
is no lexical analyzer generator working along with DCGs. Prolog has a solution for
the problem, which is to allow DCGs to operate on lists of objects instead of lists
of characters, thereby taking advantage of Prolog’s built-in lexical analyzer which
separates the input stream into objects. Statements like the following are a common
occurrence in DCG grammars:

number --> [X], {number(X)?}.

The above statement would be translated into Prolog, just as any other DCG rule
would be, but number is effectively a preterminal because it matches a whole class
of terminals: the set of objects which satisfy the number predicate. Note that the
number predicate is just the preterminal predicate for the number preterminal.

Definite clause grammars provide a method of specifying preterminals, but the
method causes a problem with the new definition of the ¢ predicate used to calculate
the Next set. The problem is that the variable X is inserted into the Next set. Since
it does not make sense to have a variable in the set of next legal words, some solution
to this problem must be found. The straightforward way to keep the variables out of
the Next set is to put a guard on the rule which adds things to the Next set. The
following rule replaces the first definition of ¢ given above:

c(ll,W,[1) :- not(var(W)), save(W), fail.

Unfortunately, this definition merely prevents the preterminals from adding any-
thing at all to the Next set. The solution to this problem is to add the preterminals to
the Next set manually, and the technique for doing this is the same as the technique
that was used to add the additional rule to the definition of c. When the preterminal
is ‘called’ with an empty input string, the preterminal should be added to the Next
set. Taking the example of the number preterminal, the following rule is added to the
original one:

number([],_) :- save(’number*’), fail.

The asterisk is appended to the name of the preterminal in this case, so that preter-
minals in the Next set are distinguishable from terminals, Finally, a third statement
is added so that routines using the Next set will be able to distinguish terminals from
preterminals. The final preterminal declaration for the number predicate is:

number --> [X], {number(X)}.
number([],_) :- save(’number%’), fail.
preterminal (’number*’).

Adding the lines similar to the ones above for each preterminal solves the preter-
minal problem in the Prolog implementation. If VIU gets beyond the prototype stage,
some ‘syntactic sugar’ should probably be added to hide the implementation of this
solution. The critical information about a preterminal is its name, its Next set name,
and its assoclated predicate. A statement such as:

preterminal (number, ’number*’ ,number) .

might be translated into the above three statements when the grammar is loaded into
Prolog, just as DCGs are translated into Prolog representations.

4 Automatic Menu Generation

Once the Next set can be calculated, the most straightforward thing to do is to
generate a menu interface, as has been indicated in previous examples. A generalized

9

menu predicate can be instantiated for a whole range of display hardware and menu
systems. A general menu predicate is viewed as a module or subsystem that interacts
with the user.

Given the set of next legal words, the task of the menu-generating subsystem is to
collect the set and pass it on to a menu predicate. There are two problems in doing
this. The lesser of the two problems is one of dealing with the error conditions of the
menu predicate. For example, the user may request to abort from the entire program
(which may or may not be a standard choice on every menu, depending on the menu
system used) by signaling that in some way while he is faced with a menu. The more
important problem is the pre-terminal problem, which was introduced in section 2.

The idea behind a general menu predicate is that the essence of a menu is a list
of items and a choice among the members of that list. Whether a mouse is used
to point at the item of choice, or whether the name of the chosen item must be
completely typed in is a measure of menu convenience, not of ‘menu-ness’. Therefore,
the important features of the menu are encapsulated in the function

menu : Next — (uz)(z € Next)
where (i) reads ‘an x’. In the notation of Prolog, this is written as:
menu(+Set ,~Choice)

The best menu system is one which the user already knows how to operate. In the
prolog implementation of VIU on the Sun Workstations, the best menus are those used
by the operating system, which are part of the SunView window system. The SunView
window system has been integrated with Quintus Prolog through a product called
ProWindows.[11] Using this system, a menu predicate has been defined in the manner
of the general menu predicate above. This system will also allow experimentation with
more general graphical interfaces, such as allowing integer pre-terminals to be entered
with a slider instead of with the keyboard.

5 Conclusions

Automatic interface generation from grammars describing the input languages of
programs provides a convenient way of separating the user interface of a program
from its functionality. The application designer specifies a grammar for the input
language of his program and a menu or command-line interface can be generated
automatically.

The concept of a Next set, the set of words that can follow a prefix of a sentence
in order that the new prefix is still a valid prefix in the language, was defined. One
method of calculating the Next set using Prolog was presented, and the value of the
Next set in automatically generating interfaces was shown.

Parsing programs use lexical analyzers or very specialized grammars to handle
preterminals. The range of values a preterminal can take is not necessarily finite,
however, and so the preterminal itself and not its values must be put into the Next
set. This, in turn, requires special handling of Next set values.

10

Not every program is well-suited for a menu or command line interface. Database
applications seem particularly well suited to these types of interfaces, while highly
interactive or graphics-oriented programs do not. Work remains in the area of auto-
matically generating more complex interfaces to prograns.

References

(1] Inside Macintosh. Apple Computer Company, Cupertino, CA, 1985.

[2] Fernando C. N. Pereira and David H. D. Warren. Definite clause grammars for
language analysis—a survey of the formalism and a comparison with augmented
transition networks. In Barbara J. Grosz, Karen Sparck Jones, and Bonnie Lynn
Webber, editors, Readings in Natural Language Processing, pages 101-124, Mor-
gan Kaufmann Publishers, Inc., 1986.

[3] Luca Cardelli. Building User Interfaces by Direct Manipulation. Technica] Re-
port 22, Systems Research Center, Digital Equipment Corporation, 130 Lytton
Avenue, Palo Alto, CA 94301, October 1987.

[4] G. Pfaff, editor. User Interface Management Systems. Springer-Verlag, New
York, 1985,

[5] Robin Faichney and David Barnes. The interconnection of highly interactive
software modules. In Tools of a Profession—10th International Conference on
Software Engineering, September 1987. Submitted to the conference.

[6] Mark Green. A survey of three dialogue models. ACM Transactions on Graphics,
5(3):244-275, July 1986.

[7] Craig Warren Thompson. Using Menu-based Natural Language Understanding
to Avoid Problems Associated with Traditional Natural Language Interfaces to
Databases. PhD thesis, The University of Texas at Austin, 1984.

(8] W.F. Clocksin and C. S. Mellish. Programming in Prolog. Springer- Verlag, New
York, 1981.

[9] Masaru Tomita. An Efficient Context-free Parsing Algorithm for Natural Lan-
guages and Its Applications. Technical Report CMU-CS-85-134, Carnegie-Mellon
University, May 1985.

[10] W. A. Woods. Transition network grammars for natural language analysis. Com-
munications of the ACM, 3(10):591-606, 1970.

[11] ProWINDOWS 1.08 Reference Manual. Quintus Computer Systems, Mountain
View, CA, October 1987.

11

	Automatic Interface Generations From Grammar Specifications
	Recommended Citation
	Automatic Interface Generations From Grammar Specifications

	tmp.1460750766.pdf.6MTy8

