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Research Objectives

The Advanced Communications Systems Project is concerned with new comn-
munication technologies that can support a wide range of different commmunication
applications in the context of of large public networks. Communication networks
in common use today have been tailored to specific applications and while they
perform their assigned functions well, they are difficult to adapt to new uses. There
currently are no general purpose networks, rather there are telephone networks,
low-speed data networks and cable television networks. As new communication
applications proliferate, it becomes clear that in the long term, a more flexible
communication infrastructure will be needed. The Integrated Services Digital Net-
work concept provides a first step in that direction. We are concerned with the
next generation of systems that will ultimately succeed ISDN.

The main focus of the effort in the ACS project is a particular switching tech-
nology we call broadcast packet switching. The key attributes of this technology
are (1) the ability to support connections of any data rate from a few bits per sec-
ond to over 100 Mb/s, (2) the ability to support flexible multi-point connections
suitable for entertainment video, AN interconnection and voice/video teleconfer-
encing, (3) the ability to efficiently support bursty information sources, (4) the
ability to upgrade network performance incrementally as technology improves and
(5) the separation of information transport functions from application-dependent
functions so as to provide maximum flexibility for future services.
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1. Summary of Progress

The research program of the ACS project can be divided into four major areas:
(1) switching system architecture and performance, (2) connection management,
(3) network control problems, such as routing and buffer/bandwidth management
and (4) design of communications applications in the context of broadcast packet
networks. In the area of switching system architecture, we have continued work
on design and implementation of a prototype switching system. In support of this
prototyping effort we have also been developing tools to aid in the design of the
custom integrated circuits to be used in the prototype. We have also been explor-
ing architectures that support link speeds of a few Gb/s and have been studied
the performance of a wide class of different packet switching fabrics. We have
made substantial progress on connection management, including the design and
implementation of preliminary software, and we are continuing to make steady
progress in the area of network control. Our work on application design is cur-
rently limited to an initial study of the issues associated with packetized video,
focussing especially on the effect of packet transport on the design of video coding
methods. We have also begun work on a framework for internetworking of diverse
communication subnets.

We have been active in publishing our results on broadcast packet switching.
Papers have been presented at several conferences and revised versions have ap-
peared or are scheduled to appear in leading journals; several theses have been
completed or will be shortly; one patent has been awarded and an application for
a patent on a hardware implementation of a buffer management system has re-
cently been filed. (See Figures 1.1,1.2 for details.) Our work has generated a great
deal of interest throughout the world, and appears to be having an influence on the
research programs at several major industrial laboratories. We find this impact
of our work particularly gratifying and expect to see it continue as our research
program develops.

The following subsections summarize the progress we have made in several
specific areas during the past year and outline our plans for the coming year.
More detailed accounts of each of these topics appear in later sections.

1
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Published Papers

“Fluid Flow Loading Analysis of Packet Switching Networks,” by Jonathan Turner.
Proceedings of the International Teletraffic Congress, June 1988. Also, submitted
to Computer Networks and ISDN Systems.

“Distributed Protocols for Access Arbitration in Tree Structured Commaunication
Channels,” by Riccardo Melen and Jonathan Turner. Proceedings of ICC 88, June
1988. Also, submitted to IEEE Transactions on Communicaiions.

“Design of a Broadcast Packet Switching Network,” by Jonathan S. Turner, to
appear in IEEFE Transactions on Communications, June 1988.

“Broadcast Packet Switching Network,” by Jonathan S. Turner, U.S. Patent
#4,724,907, March 1988.

“Performance of a Broadcast Packet Switch,” by Richard Bubenik and Jonathan

Turner. Proceedings of ICC 87, pp. 1118-1122, 6/87. Also, to appear in IEEFE
Transactions on Communications.

“The Challenge of Multipoint Communication,” by Jonathan S. Turner, Proceed-
ings of the ITC Seminar on Traffic Engineering for ISDN Design and Planning,
5/81.

Invited Lectures
Digital Equipment Corporation, Littleton, MA (3/88)

Telenet Inc., Reston, VA (8/87)
Southwestern Bell Telephone, St. Louis, MO (8/87)

Tutorial on “Integrated Networks for Diverse Applications,” at Globecom 88 and UCLA
Extension Short Course (2/88).

Program committee for Computer Networking Syrnposium, April 1988. Guest editor for
special issue of IEEE Journal on Selected Areas in Communications on broadband packet
comimunications

Filed patent application on buffer management system for multipoint packet networks
(3/88).
Figure 1.1: Publications and Related Activities
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“A Circuit Generator for Synchronous Streams Processors,” by George Robbert, Wash-
ington University Computer Science Department, MS thesis, expected completion May

1988.

“Improved Search Algorithms for Video Codecs,” by Shabbir Khakoo, Washington Uni-
versity Electrical Engineering Department, MS thesis, expected completion June 1988.

“Congestion Control in Fast Packet Networks,” by Shahid Akhtar, Washington Univer-
sity Electrical Engineering Department, MS thesis, November 1987.

“Worst-case Performance of Rayward-Smith’s Steiner Tree Heuristic,” by Makoto Imase
and Bernard Waxman, WU CS-88-13.

“Towards a Framework for High Speed Communication in a Heterogeneous Networking
Environment,” by Guru Parulkar and Jonathan Turner, WUCS-88-7.

“Buffer Management System,” by Jonathan Turner, WUCS-88-6.
“Design of a visI Packet Switch Element,” by James Sterbenz, WUCS-88-5.
“Probable Performance of Steiner Tree Algorithms,” by Bernard Waxman, WUCS-88-4.

“Nonblocking Multirate Networks,” by Riccardo Melen and Jonathan Turner, WUCS-
88-2.

“Distributed Protocols for Access Arbitration in Tree Structured Communication Chan-
nels,” by Riccardo Melen and Jonathan Turner, WUCS-87-17.

“Fluid Flow Loading Analysis of Packet Switching Networks,” by Jonathan Turner,
WUCS-87-16.

Figure 1.2: Theses and Technical Reports

Switch Architecture and Hardware Design

The most novel aspect of our research program is its focus on networks supporting
flexible multipoint communication. Any switching system supporting multipoint
comrunication must be able to connect any subset of its incoming channels to
any subset of its outgoing channels. This is in contrast to point-to-point switching
systems which need only connect input-output pairs.

Recently we have been considering some variants on the architectures that we
have been focussing on up to now. One variant we’ve been considering are archi-
tectures in which, within a single switching fabric, packets belonging to a given
virtual connection are constrained to follow the same path through the system.
This approach has the advantage that packets belonging to a given virtual con-
nection are guaranteed to reach the destination in the proper order. On the other
hand, it has the drawback that the load cannot be distributed as evenly within
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the switching system and the connection establishment process is somewhat more
complicated. However, since several research groups have been exploring systems
of this sort (and are constructing prototypes), it is important to understand these
systems better. In addition, these systems turn out to generalize classical cir-
cuit switching systems in a natural way, leading to some interesting questions in
performance analysis, which are discussed further below.

The other architectural variant we’ve considered is the design of switching
systems that incorporate very wide data paths using a bit-sliced approach rather
than the word-serial approach we have been using up to now. The bit-sliced
architecture, while requiring more complicated control, allows more economical
implementation of very large switches, and equally important allows much wider
data paths than are feasible with the word-serial architectures, and hence supports
higher link speeds. We have quantified the complexity advantages of bit-sliced
structures, developed practical solutions to the control problems, and developed a
fairly detailed paper design of a system that can support up to 65 thousand fiber
optic links operating at speeds of 1.6 Gb/s using current CMOS technology with
100 Mb/s clock speeds and 32 bit wide data paths. It appears likely that with near
term technology improvements, this approach can be extended to handle speeds
up to about 10 Gb/s.

Work on a laboratory prototype of our switching system has been progressing
well. Four integrated circuits implementing the packet switch element and broad-
cast translation circuits have recently been received back from fabrication and are
being tested now. The one chip that has been completely tested is functionally
correct, but the yield and speed of the chips received was disappointingly low. We
have not yet determined the reasons for the poor performance; we expect to have
a better understanding of this problem when the other chips have been tested.

At the same time, we are proceeding with design of several other chips. We
have nearly completed a second version of the packet switch element design. This
design incorporates eight bit wide data paths instead of four and we have made
some architectural modifications in order to achieve higher clock speeds. We have
also completed and fully sirnulated the design of a general purpose packet buffer,
which will be used within the packet processor circuit. It also incorporates eight
bit data paths and its layout has been accomplished with a circuit generation
program written for that purpose. The use of a circuit generator allows us to
quickly layout different versions of the packet buffer that vary in size, data path
width, etc. Both of these chips (the new packet switch element and the packet
buffer) will be submitted for fabrication before the end of May.

We have also completed an initial version of a more ambitious circuit gener-
ation program that can be used to quickly layout a large class of similar circuits
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required within the packet processor, broadcast translation circuit and other com-
mon subsystems. This program allows the user to specify a component of a system
in a functional notation similar to a conventional programming language. It then
translates this specification into a circuit satisfying the specification. This program
has been written by George Robbert as part of his masters thesis research [77] and
is now being applied to layout several of the major components within the packet
Processor.

Performance of Packet Switching Fabrics

During the past year we have sought to extend our understanding of the perfor-
mance of packet switching fabrics in general, with of course a special focus on the
broadcast packet switch. Where our previous efforts have centered on simulation,
our recent work has been primarily analytical. One important result has been the
development of a systematic method for analyzing the effects of different traffic
patterns on the loading of internal links within a packet switching fabric [94]. This
method allows us to make statements about the worst-case loading of a variety
of different switch fabrics and has led to several new results quantifying the effect
of distribution stages on switch fabric performance. One result shows that a %
stage routing network requires an additional & — 1 distribution stages in order to
avoid overloading of internal links. Another shows that just two distribution stages
dramatically improve the worst-case performance of copy networks. Other results
concern the effect of the number of ports per node on worst-case loading. Of spe-
cial interest is the observation that the worst-case performance of copy networks
deteriorates as the number of ports per node increases.

More recently we have generalized the classical theory of non-blocking networks
to networks in which internal links can multiplex multiple connections, with each
connection consuming an arbitrary fraction of the link’s capacity (subject of course
to the constraint that the sum of the connection loads is no more than the link’s
capacity) [60]. This is relevant to the design of large switching systems constructed
from multiple switch modules. It is also important for switch fabrics which route
all packets of a given connection along the same path, such as the systems under
development at CSELT and Bell Telephone Manufacturing. Our results include an
analysis of the amount of expansion required to make Clos, Cantor and Benes net-
works strictly non-blocking and rearrangeably non-blocking. We have also devised
two novel rearrangeably nonblocking multicast networks within this context that
are of considerable interest.

Our general approach has important theoretical implications as it greatly ex-
tends the classical theory and opens up a new avenue of investigation. It is also of
considerable practical importance for certain classes of switching systems. One of
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our next steps will be to consider analyses of blocking probability for networks of
this type.

We have also done some simulation studies quantifying the likelihood of packets
getting out of sequence when passing through a broadcast packet switch fabric. The
results from these and planned further studies will be used to help in the design
of mechanisms to recover proper sequencing.

Connection Management

Connection management refers to the collection of algorithms used to create and
maintain muliipoint connections in a broadcast packet network. A multipoint
connection 1s intended to be a flexible mechanism that can support a wide variety
of different applications. In our last progress report, we described our approach for
specifying general multipoint connections as well as an architecture for a connection
management software system.

In the past year, we have developed an initial set of protocols based on that
architecture and have implemented them in the form of a software simulation that
allows us to configure an arbitrary network, then set up and modify multipoint con-
nections in that network. Our implementation of multipoint connections includes
a general transaction mechanism for sequencing concurrent changes to a connec-
tion. The software was implemented first on a vAX 11/750 and has since been
ported to a Sun workstation environment; in this new context, we are developing a
graphical user interface to allow simpler specification of network configurations as
well as better observation and control of connections in progress. We expect this
graphical interface to form the basis of some graphical network management tools
that we hope to develop in the coming year. The simulation has proved very useful
in testing out our ideas on multipoint connection management protocols. Based
on experience obtained to date, we are now refining these protocols to make them
simpler and more consistent at both the network access level and the internal net-
work level. In the coming year, we will implement these refinements and add the
lower level software required to control the protoype system under development.

Multipoint Routing

The objective of the routing problem is to determine a set of network resources (pri-
marily trunk bandwidth) sufficient to support communication among a specified
set of users. Networks supporting multipoint communication channels of arbitrary
bandwidth raise a variety of new issues for routing algorithms. We have primarily
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studied the formulation of the routing problem in which we seek to identify a short-
est subtree within the network that contains the endpoints to be joined by a given
connection and has sufficient bandwidth for the connection [98]. This formulation
leads to a Steiner tree problem, which is known to be Np-complete.

We have experimentally evaluated several approximation algorithms for the
Steiner tree problem. In the previous report, we described results for the so-called
minimum-spanning iree heuristic (MST) and a dynamic greedy algorithm. In the
last year, we have also evaluated an algorithm proposed by Rayward-Smith; we
have recently completed an analysis of this algorithm’s worst-case performance and
shown that it is no better than that of MST [42]. On the other hand, our analy-
sis has suggested a variation on Rayward-Smith that we expect may have better
worst-case performance; also, its average case performance (based on exerimental
evaluation) is somewhat better than MST, although both are very good. We have
also evaluated a weighted version of the greedy algorithm for the dynamic version
of the routing problem and have found that for appropriate choice of the weights,
this algorithm gives better average performance than the simple greedy algorithm;
more significantly, the weighted algorithm is less subject to pathological behavior
than the simple one.

QOur research plans include continued evaluation of these algorithms and oth-
ers. We have begun to study the average case performance of these algorithms
analytically, in order to obtain greater insight into the factors limiting their per-
formance [99].

Buffer and Bandwidth Management

A principal advantage of packet switched networks is their ability to dynamically
allocate bandwidth to the users who need it at a particular instant. Since networks
are subject to rapid statistical variations in demand, care must be taken to ensure
acceptable performance under conditions of peak loading. In conventional packet
networks, feedback-oriented congestion control mechanisms are used to detect local
overloads and control their impact by slowing down the rate at which traffic enters
the network. These techniques are impractical in very high speed networks which
instead must rely on buffer and bandwidth management techniques that seek to
prevent potentially damaging overloads from occurring in the first place.

A prerequisite to the development of effective buffer and bandwidth manage-
ment methods is an understanding of the impact that bursty sources have on
queueing in the network. We have developed a model that allows us to more accu-
rately predict the effect of a collection of bursty sources on a finite queue [2]. Using
this model, we can numerically determine the probability of packet loss when a col-
lection of bursty sources shares a finite queue. These results are used to associate
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an effective bandwidih for a given traffic source. The effective bandwidth is used in
an operational network context for making routing and bandwidth allocation deci-
sions. We have found that for sources with peak and average bandwidths of more
than a few percent of link bandwidth, the effective bandwidth is quite sensitive
to how bursty the connection is, but for lower values, it is fairly insensitive. One
implication of these studies is that to achieve effective bandwidths substantially
lower than peak for bursty, high speed sources we must either increase link speeds,
buffer sizes or both.

For point-to-point connections, the network can monitor bandwidth use at the
access point using what we call a traffic valve to prevent users from sending traffic
at a higher rate than allowed for their connection. For multipoint connections with
several transmitters, additional complications arise, since the control of entering
traffic provided by the traffic valves at the edge of the network allows excess traffic
on internal links of multipoint connections. We have designed a mechanism to
control this kind of overload, which in effect allocates link buffer space in direct
proportion to bandwidth allocations, and discards packets belonging to connections
that exceed their share. This mechanism (which is the subject of a recent patent
application [95]), in combination with others we have developed, allows a general
solution to the problem of multipoint congestion control.

We have also considered a different approach to multipoint congestion control,
in which the network actively controls the number of simultaneous transmitters in
a multipoint connection, rather than limiting itself to the protection of its internal
resources [59]. This kind of access arbitration could be more attractive to users,
as 1t regulates the flow of traffic on a channel in a more consistent fashion. We
have developed two general approaches to access arbitration, and several specific
algorithrns.

Packet Video

Packetized transport of video signals raises a variety of important issues that we
are beginning to explore. One major effect of packet transport on video coding is
to eliminate the constraint of a constant bandwidth channel that currently drives
most work in video coding. A variety of techniques including transform coding,
motion compensation, differential coding and adaptive quantization are currently
used to reduce the required bandwidth for video signals. Existing systems use
buffering and variable rate coding, with the objective of achieving minimum image
distortion for a given, fixed channel bandwidth. In the context of packet transport,
we can exchange the objective function we seek to optimize with the constraint.
That is, we code to achieve minimum bandwidth subject to a given constraint
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on distortion. This approach allows the bandwidth to vary across a wide range,
achieving low average bandwidths and high picture quality.

Packetized transport also raises the issue of picture quality in the presence of
packet loss. Common video coding methods rely heavily on state information that
can become inconsistent when data is lost. The impact of lost packets can be
reduced by interpolation schemes, in which a given block of information is split
across multiple packets, allowing partial recovery of lost information. We expect
that the use of such methods in combination with low rate transmission of complete
state information can maintain high picture quality in the face of substantial packet
loss rates and we are studying such methods to assess their potential.

Historically, video coding methods have been used primarily to produce mod-
erate quality video for conference applications. With high speed packet networks
it may also be advantageous to apply video coding methods to very high resolu-
tion signals; the objective becomes not bandwidth reduction but higher resolution.
In the last year, we have studied hybrid coding algorithms employing transform
coding, motion compensation and adaptive quantization. We bave discovered that
the commonly used search algorithms for motion compensation perform poorly in
the presence of moderate to high motion. While they work adequately in video
conferencing situations (which typically involve very little motion), they do poorly
in more general contexts. We have developed a new class of signature-based search
algorithms, which compute a concise signature for each position in the search space
and match the current sub-block against each signature. We have evaluated one
set of algorithms in this class and have found it increases the effective compression
by a factor of three or four during rapid motion [50].

High Speed Internetworking

In our earlier work, we have concentrated on high speed networking in the con-
text of a homogeneous environment. This is also typical of the approach taken
by other groups working on high speed communication systems, but is in some
ways unrealistic as it fails to explicitly take into account the diversity of existing
and future networks, and the resulting need for inter-operation among separately
administered and/or technologically dissimilar networks. In the last six months we
have begun work on a framework for allowing diverse networks to inter-operate,
while supporting both very high speed applications and multipoint communica-
tion [67). This framework follows the general approach to interworking adopted
in the ARPA internet protocols, but extends it in several respects. First it adds a
connection-oriented transport service at the internet level, that can support ap-
plications with demanding performance requirements. Second it includes a more
general addressing scheme, to allow interworking among diverse subnets. Third,



10 ACS Progress Report (7/1/87 ~ 6/30/88)

it provides a framework for parametric description of subnet capabilities and con-
nection requirements, allowing the routing of connections through subnets with
appropriate capabilities in an application-independent fashion.

A connection-oriented transport service is important for several reasons. Per-
haps the most obvious is performance. Connection-oriented systems separate the
more complex control operations from data transfer, allowing simple and fast hard-
ware implementations of the data transfer. Connection-oriented networks are also
attractive because they allow the network to make explicit resource allocation de-
cisions when connections are established, and this in turn makes it possible to
offer far more predictable performance than in connectionless networks. Finally,
connection-oriented networks offer more generally useful methods of multipoint
communication than are possible in truly connectionless networks.

In our work we envision ineroperation among a much wider class of networks
than envisioned by the current internet model. In particular, we would like to
support inter-operation between high speed packet networks, the current ARPA in-
ternet, X.25 networks and the public telephone network. Addressing is a key issue
in allowing this level of diversity. We have proposed an addressing scheme that
would accommodate such diversity without requiring that the individual subnet-
works abandon their native addressing mechanisms.

Given the variety of capabilities of the subnetworks included in an extended
internet, we feel it is essential that the internet protocol include mechanisms for
describing the capabilities of subnetworks, so that routing decisions can be guided
by this information. For example, when selecting a route for a connection requiring
a bandwidth of 1 Mb/s it is essential that the route not traverse subnetworks in-
capable of supporting that bandwidth. Similarly connections requiring low packet
loss rates should not be routed through subnets that lose packets frequently.

Administrivia

In the past year, our research team has grown by about 20%. Perhaps the most
important addition has been that of a new faculty member, Guru Parulkar who
joined the Computer Science Department in September 1987, after completing his
PhD at the University of Delaware. Dr. Parulkar’s thesis research focussed on the
design and analysis of highly reliable local area networks based on flooding proto-
cols. We expect him to be an important collaborator for the ACS project. We now
have three faculty members involved in the project, one full-time staff person, one
visiting research associate and ten graduate students. Additional faculty are being
recruited for next fall in both the Computer Science and Electrical Engineering
departments.
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Our funding picture is fairly healthy. In addition to the support we receive from
the National Science Foundation, we have funding from four industrial sponsors,
the newest being Bell Northern Research. Currently, our funding is evenly divided
between NSF and the industrial sponsors. In addition to the direct grant support,
NSF provides access to MOSIS, their silicon fabrication service which we are
using heavily in our prototyping effort. In the last year we have benefitted from
a change in the policy of the Washington University School of Engineering and
Applied Science; the school now pays the tuition of graduate students on research
assistantships rather than requiring the research grant to pay that portion. This
change has allowed us to increase our graduate student stipends which have been
low with respect to other schools with which we compete. We have also used
some of the funds made available by this change to improve our base of computing
equipment. While the project’s funding situation is in fairly good shape at the
moment, we anticipate that additional funding will be required if we are to achieve
all our major goals. Our current NSF grant runs through June 1989. We are now
starting to think about a new research proposal for submission this fall that would
allow us to continue our work beyond that point.

As mentioned above, the project supports three professors, Jonathan S. Turner,
Guru Parulkar and Mark Franklin (part-time) as well as nine graduate research
assistants (see Figure 1.3). We have one additional student {Akira Arutaki} who
is supported by NEC. Shahid Akhtar graduated with an MS degree last fall and
is now working at Bell Northern Research. Mark Hunter, Shabbir Khakoo and
George Robbert will all be graduating with MS degrees this spring. Shabbir is
leaving to work for AT&T Bell Labs and George will be going to work in the
communications division at Hewlett-Packard. All four of these students have made
strong contributions to the project. We have several students who have joined the
project in the past year. Neil Barrett and Einir Valdimarsson began last summer
and have been working primarily on design of integrated circuits for the prototype
switching system we are constructing. Tony Mazraani joined the project in January
and has been concentrating initially on work in the same area. We also have one
undergraduate student, Scott Johnson who started last fall and has been working
on design of a graphical interface for the connection management software system.
We are planning to take on three new graduate students for the coming year, to
replace those who are graduating.

Riccardo Melen, who visited us for one year from CSELT, the Italian national
telecommmunications laboratory, returned home at the end of December. His year
here was a very productive one; he co-authored two papers with Dr. Turner {59,60]
and co-invented a novel multipoint switching fabric. In March, Dr. Makoto Imase
of NT'T joined us for a one year visit. He has begun working with Buddy Waxman
on the multipoint routing problem and their collaboration has already resulted in
the solution of an important open problem in this area; a paper describing this work
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Name Degree (exp. graduation date} Research Area

Akira Arutaki DSc (5/90) switching architectures

Neil Barrett MS (5/89) communication circuit design
Victor Griswold DSc (1/90) connection management
Mark Hunter MS (5/88) connection management
Shabbir Khakoo MS (5/88) packet video

Tony Mazraani MS (12/89) communication circuit design
George Robbert MS (5/88) CAD tools

James Sterbenz DSc (1/90) communication circuit design
Bernard Waxman DSc (1/89) multipoint routing

Einir Valdimarsson MS (5/89) communication circuit design

Figure 1.3: Current Graduate Students

will be submitted for publication in the near future. We also have one professional
staff engineer, Pierre Costa who joined the project last spring and is responsible
for overall coordination of the hardware prototyping effort.

For administrative purposes, the ACS project operates within the Computer
and Communications Research Center directed by Professor Mark Franklin. The
Center has a central office suite housing professors Franklin and Turner, one tech-
nical staff person, plus seven graduate students, on the third floor of Bryan Hall,
across from our main laboratory facility. This laboratory houses most of our com-
puters, and a cluster of terminals and workstations for graduate student use and
also serves as an informal meeting room. Last summer, we acquired additional
office and laboratory space on the fifth floor of Bryan. Eight students and two
additional staff members are located in this area. While we are in reasonably good
shape with respect to space at the moment, there is little room for expansion and
there is likely to be some crowding in the coming year. On the other hand, the
Engineering School will break ground this summer for a new research building of
approximately 50,000 square feet that will provide substantial new space for Elec-
trical Engineering and Computer Science. This is part of the school’s commitment
to expand the EE and CS faculties by about 50% over the next several years, with
corresponding growth in graduate enrollment, particularly at the doctoral level.

The Center’s base of equipment includes a vaX 750, a MicroVax II/GPX and
a Sun workstation environment including a 3/280 file server, a 3/150 which will
interface to our prototype switching system, and six 3/50 diskless workstations. A
Sun 3/60 color workstation has also been ordered. The Suns have been acquired
over the last year and support a variety of activities, including software develop-
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ment, VLSI design, simulation, general-purpose computing and word processing.
The MicroVax is used primarily to support VLSI design work. The Center has also
recently taken delivery of a 64 processor NCUBE parallel computer, which Professor
Franklin will be using to support his research in the area of design automation.
We also anticipate its possible use in our project. In addition we have about fifteen
conventional terminals, a PC/AT, another VLSI design station, several printers, and
assorted lab equipment including a Tektronix logic analyzer and IC tester.

We have been generally successful in expanding the Center’s space and facilities
to meet our needs. As we are not planning substantial additional growth in the
immediate future, we feel reasonably comfortable with the current situation. On
the other hand, space shortages may develop in the next year as the Computer
Science and Electrical Engineering departments continue to expand their faculties.
While the construction of the new building should provide ample space in the
longer term, there will be an intermediate period of Imited space that will have
to managed carefully.
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2. Switch Architecture Studies

Faculty Jonathan Turner
Research Associate Riccardo Melen

The architecture of high speed packet switching fabrics is of course central to
the work of this project. While we are concentrating our efforts on a particu-
lar design [89], we continue to evaluate alternatives, in order to identify possible
improvements. Recently, we have studied architectures that can support higher
speed operation (link speeds of a few Gb/s) and be economically implemented
even in fairly large configurations (thousands of links). These architectures dif-
fer from earlier ones in two respects. First they use a bit-sliced organization to
allow much wider data paths and second, they constrain packets in a given con-
nection to follow a single path. At the same time, they can fully support the same
connection-oriented packet switching paradigm, including multipoint connections.

Packet switching fabrics employing parallel data paths can be organized in
a couple different ways. One possibility is the so-called word-serial approach, in
which all the bits in a given data path pass through the same physical components.
Another is the bit-sliced approach, in which the components making up the switch
fabric are “sliced” so that each bit of the data path passes through a different
set of components. An example illustrating these two approaches is shown in
Figure 2.1. In the figure on the left, each circle corresponds to a single integrated
circuit, as do the rectangles on the right. Notice that each of these structures
implements a 16 port switching fabric with 8 bit wide data paths and that the
integrated circuits in both cases require 32 signal leads. However, the word-serial
structure requires 32 chips while the bit-sliced structure requires just eight. For
large systems, this advantage of bit-sliced structures becomes even more dramatic.
Figure 2.2 plots the chip count per port for Benes networks with several choices
of the data path width. N is the number of ports the switch fabric has, m is the
data path width, ws stands for word-serial and bs for bit-sliced. Notice that for the
bit-sliced organization, we can achieve data path widths of 32 at a cost of about
five chips per port for switches with between 2,048 and 32,768 ports.

15
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Figure 2.2: Complexity of Word-Serial and Bit-Sliced Benes Networks

Of course, on the other side, the word-serial organization is somewhat simpler
to control. In the bit-sliced organization, each slice must make the same control
decisions for the packets it receives. This can be done either by replicating the
control information and sending it to each slice, or by having one slice decode the
control information, make the appropriate decisions and communicate the results
to the other slices. We examine the latter alternative and describe a practical
design of a packet switching element that implements it.

The proposed switch element can be used to implement a buffered binary rout-
ing network with hardware flow control between adjacent switch elements to pre-
vent internal buffers from overflowing [89]. Two different chip types are used; one
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for control and one for data. Packets are formatied with all of the control infor-
mation in a single slice to facilitate access by the control chips. Figure 2.3 shows
the organization of a chip implementing the data slice. It has % data inputs and &
outputs, where typically k£ might be 16 or 32. The chip contains one /nput Circuit
(1c) for each input. Each IC contains several buffers, each able to store a complete
bit slice of a packet. The buffers can be implemented as shift registers; control is
provided through a set of latches which enable/disable shifting and select which of
the several shift registers to use for output. The latches are loaded through a shift
register connected to an external pin, which is driven by the chip implementing
the control slice. In addition to the 1Cs, the data slice contains a k X k crossbar
switch matrix, which controls the transmission of data to the appropriate output.
The control information for the crossbar also comes from the control slice. Note
that the control is output driven, allowing a given input to be connected to several
outputs.

The control slice is shown in Figure 2.4. This chip does not include any data
storage; it merely monitors the bit slice containing the control information, makes
the appropriate decisions and transmits these decisions to each of the data slices.
The chip has an Input Control Circuit (icC) for each of the k inputs. It also
has a set of k downstream grants and k upstream granis. A downstiream grant
is asserted by one of a switch element’s downstream neighbors if the neighbor is
able to receive another packet. Similarly, the switch element asserts its upstream
grant for each input that is able to receive another packet. The bit slice containing
control information enters the chip on the upstream data leads. Each ICC shifts
in the control information, latches it and decodes it. It is then stored in one of
several control registers corresponding to the data buffers in which the packet data
1s stored. During a given operation cycle, each ICC requests access to one or more
outputs. These requests are forwarded to an arbitration circuit that consists of a
k x k array of arbitration elements (AE). Each 1¢C’s request is either granted or
denied by the arbitration element; the results of these decisions are then forwarded
to the data slices. The sorting network between the ICCs and the arbitration circuit
sorts the requests in priority order; priority is based primarily on the number of
outputs required by a given ICC.

We can estimate the complexity of the control slice as follows; let z; be the
complexity of an 1CC, let z, be the complexity of a single sorting element in the
sorting network and let 23 be the complexity of an arbitration element. Then the
complexity of the control slice is approximately

kzy + (k/4)(log, k)(1 + log, k) + k*z3

If we estimate z, at 1,000 transistors, z5 at 100 transistors and z3 at 100 transistors
we find that a 16 port control slice requires approximately 50,000 transistors and
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a 32 port control slice, approximately 160,000 transistors, making it clearly within
reach of current cMOS technology. The complexity of the data slice is determined
largely by the output crossbar complexity and the memory requirements, which
in turn depend on the packet length and the degree of parallelism, since systems
constructed from many parallel bit slices need store fewer bits per slice. If we
let L denote the packet length, m the amount of parallelism, b the number of
buffers provided in each iC, z, the number of transistors per bit of memory and
xp the number of transistors per output crosspoint, then the data slice complexity
is approximately
ELbfm + k*z,

If we let L = 4096, m = 32, b = 3 and estimate z, and z; at about ten transistors,
we require about 64,000 transistors for a 16 port data slice and about 133,000
transistors for a 32 port data slice.

Based on this design we have estimated that a packet switching system com-
prising a Benes network with 32 bit wide data paths and supporting 4096 fiber
optic data links would require about twelve standard equipment cabinets. Another
four cabinets would be required for the link interfaces and packet processors. If
such a system was operated with a clock rate of 100 Mb/s (an achievable rate even
with CMOS), its internal data paths would operate at an effective rate of 3.2 Gb/s,
which is sufficient to support external link speeds of 1.6 Gb/s. This represents
an order of magnitude improvement over the speeds being achieved by current re-
search efforts. While there are limits to how far such techniques can go, it appears
likely that almost another order of magnitude is possible, through a combination
of higher clock rates and greater parallelism.
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Faculty Jonathan Turner
Research Associate Riccardo Melen

The evaluation of any switching system architecture is determined in large part
by performance issues. We have addressed performance issues in several different
ways. Previous reports have described extensive simulation studies examining sev-
eral aspects of the performance of the proposed Broadcast Packet Switch fabric.
In this report, we examine two broader performance issues. First, we consider a
general method of evaluating the loading characteristics of packet switching fabrics
that dynamically distribute their load across all available paths. As we shall see,
such fabrics can be made robust in the face of arbitrary traffic patterns with min-
imum complexity. We refer to the analysis method as fluid flow loading analysis,
and using it, we derive several fundamental results for both point-to-point and
multipoint packet switching fabrics. In section 3.2, we consider a class of fabrics
in which all packets belonging to a particular connection are constraired to follow
the same path. The prime motivation for making such a constraint is to eliminate
the possibility of packet mis-ordering. As we shall see, this consideration leads to
a natural generalization of the classical theory of non-blocking networks; in this
report we define that generalization, outline the important problems and present
several fundamental theorems. We close this chapter with a brief description of
simulation results which quantify the potential for packet misordering in the pro-
posed broadcast packet switch design. These results are intended to to be used
to help design a mechanism to resequence misordered packets on a switch module
basis.

3.1. Fluid Flow Loading Analysis

In this section we introduce a systematic method of analyzing the effects of a
given trafiic configuration on packet switching fabrics that dynamically distribute

21
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load across all available paths, and apply it to the apalysis of several proposed
architectures. Our method allows us to prove theorems characterizing the worst-
case loading for various switching fabrics. The section gives several such theorems,
both as illustrations of our method and for their inherent interest. Proofs are
omitted for brevity; readers are referred to [94] for further details.

We note that the method is fairly easy to apply and leads to useful insights that
can guide the switching system architect to better designs. It is not a complete
characterization, as it ignores queueing and contention, but when used in conjunc-
tion with queueing and simulation models based on uniform random traffic, it can
provide the designer and performance analyst with a more complete understanding
of system performance.

Networks for Point-to-Point Communication

We define a packet switching network (or simply network) as a directed graph
@ = (N, L) consisting of a set of nodes NV and a set of directed arcs or links L. In
addition, G contains a set of distinguished input nodes I and a set of distinguished
output nodes O. Input and output nodes are also referred to as ports. Each input
port has a single outgoing link and no incoming links, while each output port
contains a single incoming link and no outgoing links.

We limit ourselves to networks in which the number of input nodes equals the
number of output nodes. When we refer to an n port network, we mean a network
with n input nodes and n output nodes, numbered from 0 to n — 1. We also limit
ourselves to networks, which can be divided into a sequence of stages. We say
that input ports are in stage 0 and for z > 0, a node v is in stage ¢ if for all links
(u,v), u is in stage ¢ — 1. A link (u,v) is said to be in stage 7 if u is in stage <. In
the networks we consider, all output ports are in a separate stage by themselves.
When we refer to a k stage network, we mean that there are k stages containing
internal nodes; that is, we neglect the input and output stages.

When describing particular networks, we will find it convenient to use a compo-
sition operation. We denote a composition of two networks X; and X; by Xy @ X,
where % is a positive integer. The composition operation yields a new network con-
sisting of one or more copies of X; connected to one or more copies of X;, with 2
links joining each pair of subnetworks. More precisely, if X; is an n; port network
and X; i1s an ny port network then X; &) X; is formed by taking ny /A copies of X3
numbered from 0 to (ny/h) — 1 followed by n;/h copies of X,, numbered from 0 to
(ny/h)—1. Then,for 1 <7< ny, 1 < 7 < ng, we join X;(2) to Xo(7) using A links;
these links connect output port (ny/h)m + j of X1(f) to input port (ne/h)m+1¢ of
X2(7), where 0 < m < h. Finally, we eliminate the former input and output nodes
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Figure 3.1: Composition Operation

that are now internal and renumber the input and output nodes of the network as
follows; if  was input port i of X;(4), it becomes input jn; 41 in the new network;
similarly if v was output port ¢ of X5(7), it becomes output jn, +¢. We also allow
composition of more than two networks; the composition X; ® X3() X3 is obtained
by letting ¥; = X; & X; and Y; = Xo()X5, then identifying the copies of X, in ¥
and Y;. This requires of course that the number of copies of X, generated by the
two initial compositions be the same. Note this is not the same as (X3 ®AX2)DXa.
Finally, we use the symbol o in place of @) when appropriate. The composition
operation is illustrated in Figure 3.1.

A connection through a network is defined as a triple (z,y,p) where z € I,
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<

Figure 3.2: Recursive Construction of Delta Network

y € Oand 0 < p < 1. A connection induces a load on the various links that
lie on paths joining the comnection’s input and output ports. The load induced
by a connection (z,y,p) on the link leaving = is defined to be p. The magnitude
of the induced loads on the internal links depends on the types of the nodes and
the topology of the network. In this section, we will consider only a single node
type. If @ is the sum of the loads induced by a connection (z,y, p) on the input
links of a node u, and u has ¢ output links that lie on paths from z to y, then the
load induced by the connection on each of these output links is a/¢ and the load
induced on all other output links is 0.

A configuration is defined as a set of connections. The load induced by a
configuration on a link £ is simply the sum of the loads induced by the individual
connections and is denoted Af(C). A configuration C = {e; ... ¢} is a-bounded if
for all input and output links £, A,(C) < a. We say that a configuration is legal
if it is 1-bounded and that a network is robust if for every legal configuration C,
Ae(C) <1 for all links £.

Delta networks form a well-known class of useful switching networks {21,22,23,
29]). We can define these recursively using the composition operation. Let D; be a
network with two input ports and two output ports connected to a single internal
node. We then define D; = D 0o D;_; for all © > 2. We refer to Dy as a &k stage
delta network; note that D has n = 2F ports. An example of a 4 stage delta
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network is given in Figure 3.2.

Delta networks have been widely studied and have many interesting properties.
Most useful is the self-routing property that allows paths from inputs to outputs to
be easily determined. A related property is that there is a single path connecting
any input node to any output node. For the purposes of our loading analysis, this
means that a connection (z,y, p) induces a load of p on all links that lie on that
path and a load of 0 on all other links. To illustrate our method of loading analysis,
we start with a simple theorem which characterizes the worst-case loading for a
delta network.

THEOREM 3.1.1. Let C = {c1,...,¢,} be an a-bounded configuration for Dy.
Then A(C) < an/n for all links £,

The bound in Theorem 3.1.1 can be achieved; that is, there exist worst-case
patterns that induce a load approaching +/n on some of the internal links. We note
that delta networks are readily generalized to networks in which each internal node
has m input ports and m output ports. The worst-case loading in such networks
is the same as for networks constructed from two port nodes.

The bound in Theorem 3.1.1 and the fact that there are traffic patterns that
achieve the bound, lead to the conclusion that the binary (and m-ary) delta net-
works can perform poorly in the worst-case. This has been observed previously
and various approaches have been proposed to remedy the situation. We review
two such approaches here. The first is to add one or more stages of distribution
nodes at the front of a delta network.

We denote a delta network with k routing stages and d distribution stages as
Dy 4, which we define by Dy g = Dy o Dy_40 Dy This is illustrated in Figure 3.3.
If we consider the load induced by a connection (z,y,p) on the links in such a
network, we note that for any node u in the first d stages that lies on a path from
z to y, both of u’s output links lie on paths from z to y, hence the incoming load
from the connection is distributed across u’s output links. In contrast, any node v
in the last & stages is on at most one path from z to y. We refer to the nodes in
the first d stages as distribution nodes and the nodes in the last k& stages as routing
nodes.

THEOREM 3.1.2. Let C = {c1,...,¢} be an a-bounded configuration for Dy 4.
Then A(C) < an2-[B+D/21 for oll links .

The bound in Theorem 3.1.2 is the best possible; that is, there exist traffic pat-
terns approaching the given bound. Theorem 3.1.2 tells us that every time we add
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Figure 3.3: Construction of Delta Network with Distribution Stages

two distribution stages, we reduce the worst-case load by a factor of 2. To achieve
a robust network, we require d = £ — 1. Also note that with respect to worst-case
loading, it never makes sense to have k& + d an even number, since a network with
one fewer distribution stage has the same worst-case loading characteristics. We
note that this result can be readily generalized to networks with nodes having m
input and output ports. The bound in the statement of the theorem becomes
nm~F+d/2] (with k = log_ n).

In [55], Lea proposes a variant of the delta network that we refer to as the alter-
nate routing network. We can define this network recursively using the composition
operation. The base network is denoted by 4; and consists of four input ports and
four output ports connected to a single internal node. For i > 1, A; = A; @A;_1.
An example of an alternate routing network is given in Figure 3.4. Note that an
alternate routing network with % stages has n = 2! ports. Given any connection
(z,y,p), if u is in the first k£ — 1 stages and lies on some path from z to y, then
two of u’s output links lie on paths from z to y. Consequently, whatever load is
induced on the input links of u will be shared by two of u’s output links. The fol-
lowing theorem characterizes the worst-case loading of an alternate routing fabric.
We note that essentially the same result is stated (in somewhat different terms)
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Figure 3.4: Construction of Alternate Routing Network
in [35].

THEOREM 3.1.3. Let C = {¢1,...,¢} be an a-bounded configuration for Ay.
Then M(C) < an'’? for all links £.

Loading in Copy Networks

The broadcast packet switch of [89] is one of several proposed systems for multi-
point communication. In this section we study the worst-case loading of the copy
network, which gives that system the ability to handle multipoint communication.
We also consider several variants.

When dealing with copy networks, we must modify our definition of connection.
In the current context, we define a connection to be an an ordered triple (z, F, p),
where z is the input port of the copy network where packets belonging to the
connection enter, F' is the fanout of the connection and p is the load induced by
the connection at the input port z. The fanout of the connection is the number
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of copies that must be produced by the copy network for each input packet. We
say that a traffic configuration C is a-bounded if Af{C) < « for all input ports £
and 2., F PIEC pF < an, where n is the number of mput and output ports. A legal
configuration is one that is 1-bounded.

Reference [89], describes a copy network that is topologically identical to a
delta network. However, the nodes of a copy network replicate received packets
under certain conditions. Specifically, a node may replicate a packet if the number
of output ports reachable from that node is less than 2F, where F is the fanout of
the connection the packet belongs to. Packets that are not replicated are routed
to an arbitrarily selected output. Hence, if @ is the load induced on the input links
of a node u by a connection (=, F, p), then the load induced on each of «’s output
links is o, if the number of output ports that can be reached from u is < 2F and
a/2 otherwise.

Given these definitions, we find that for a connection ¢ = (z, F, p) and a link £
in stage ¢,

0 if there is no path from input = to link £
Ae(e) = < p2t if there is a path and 0 <1 < k — [log, F|
p2~{F—Mee2 1) if there is a path and ¢ > k — [log, F]

Our first theorem, which was first proved in [10] shows that the worst-case loading
in a copy network is bounded.

THEOREM 3.1.4. Let C = (e1,...,¢;) be any a-bounded configuration for an n-
port copy network. Then, A(C) < 3a for all links L.

There exist legal traffic patterns approaching the bound in Theorem 3.1.4. Copy
networks can also be constructed using nodes with m > 2 input and output ports.
In such networks, a node replicates a packet m times if the number of reachable
output ports is less than mF. Surprisingly, the worst-case performance of such a
copy network 1s worse than for a copy network constructed from binary nodes.

THEOREM 3.1.5. Let C = (¢1,...,c1) be an a-bounded configuration for an n-port
copy network constructed from m-port nodes. Then X(C) < a(m+1), for all links
L.

The proof of this is very similar to that of Theorem 3.1.4. Again, the bound
is the best possible; there exist legal traffic configurations that induce loads ap-
proaching m + 1 on some internal links.



3. Performance Studies 29

As with routing networks, we can improve the worst-case performance of a copy
network by adding distribution stages. The topology of such a network is identical
to a routing network with added distribution stages. The effect on the worst-case
loading is captured by the following theorem.

THEOREM 3.1.8. Let C = (¢1,...,¢,) be an a-bounded configuration for a copy
network with k copy stages and d distribution stages. Then 2(C)} < a1+ 2179,
for all links £ in stages 0 to k +d — 1; A\ < 2« for all links £ in stage k + d.

Theorem 3.1.6 shows that the worst-case loading in a copy network can be
brought very close to « in all but the last stage links, by adding a few distri-
bution stages. We note that Theorem 3.1.6 can be generalized to copy networks
constructed with m-ary nodes. In this case the bound on the worst-case loadlng
becomes (1 + mi~?) for all but the last stage and m for the last stage.

3.2. Nonblocking Multirate Networks

In this section we introduce a generalization of the classical theory of nonblocking
switching networks to model communications systems designed to carry connec-
tions with a multiplicity of data rates (details can be found in [60]). This theory
can be used to model packet switching fabrics in which all packets in a given
connection are constrained to follow the same path. The theory of nonblocking
networks was motivated by the problem of designing telephone switching systems
capable of connecting any pair of idle terminals, under arbitrary traffic conditions.
From the start, it was recognized that crossbar switches with N terminals and N?
crosspoints could achieve nonblocking behavior, only at a prohibitive cost in large
systems. In 1953, Charles Clos [16] published a seminal paper giving constructions
for a class of nonblocking networks with far fewer crosspoints, providing much of
the initial impetus for the theory that has since been developed by Benes [6,7],
Pippenger [70] and many others [3,12,27,51,57,58,66).

We start with some definitions. A connection in a network is a triple (z, y, w)
wherez € I, y € O and 0 < w < 1. We refer to w as the weight of the connection
and it represents the bandwidth required by the connection. A route is a path
joining an input node to an output node, with intermediate nodes in V — (7 U O),
together with a weight. A route r realizes a connection (z,y,w), if ¢ and y are the
input and output nodes joined by r and the weight of r equals w.

A set of connections is said to be compatible if for all nodes z € T U O, the
sum of the weights of all connections involving z is < 1. A state of a network &
is a set of routes. The weight on an edge in a particular configuration is just the
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sum of the weights of all routes including that edge. A state is legal if for all edges
(u,v) € E, the weight on (u,v) is < 1. A set of connections is said to be realizable
if there is a legal state that realizes that set of connections. If we are attempting
to add a connection (z,y,w) to an existing state, we say that a node u is accessible
from z if there is path from z to u, all of whose edges have a weight of no more

than 1 — w.

A network is said to be rearrangeably nonblocking (or simply rearrangeable) if
every set of compatible connections is realizable. A network is strictly nonblocking
if for every legal state R, realizing a set of connections C, and every connection
¢ compatible with C, there exists a route r that realizes ¢ and such that KU
{r} is a legal state. For strictly nonblocking networks, one can choose routes
arbitrarily and always be guaranteed that any new connections can be satisfied
without rearrangements. We say that a network is wide-sense nonblocking if there
exists a routing algorithm, for which the network never blocks; that is, if we use
the routing algorithm to select routes for each new connection request, it is always
possible to realize a new connection by adding a route to the current configuration.

Sometimes, improved performance can be obtained by placing constraints on
the traffic imposed on a network. We will consider two such constraints. First,
we restrict the weights of connections to the the interval [b, B]. We also limit the
sum of the weights of connections involving a node z in 7 U O to 8. Note that
0<b< B<f<1. Wesay a network is strictly nonblocking for particular values
of b, B and B if for all sets of connections for which the connection weights are in
[b, B} and the total port weight is 8, the network cannot block. The definitions
of rearrangeably nonblocking and wide-sense nonblocking networks are extended
similarly. The practical effect of a restriction on # is to require that a network’s
internal data paths operate at a higher speed that the external transmission facili-
ties connecting switching systems, a common technique in the design of high speed
systems. The reciprocal of 8 is commonly referred to as the speed advaniage for a
system.

Two particular choices of parameters are of special interest. We refer to the
traffic condition characterized by B = 8, b = 0 as unrestricted packet switching
(ups), and the condition B = b = # = 1 as pure circuit switching (cs). Since
the CS case is a special case of the multirate case, we can expect solutions to the
general problem to be at least as costly as the CS case and that theorems for the
general case should include known results for the CS case.

Strictly Nonblocking Networks

A three stage Clos [16] network with N input and output ports is denoted by
CN,k,m, where k and m are parameters, and is defined as: Cnkm = Xgm© Xnyk,n/k0©
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X, where X, ; denotes an r X s crossbar. The standard reasoning to determine

the nonblocking condition (see [16]) can be extended in a straightforward manner,
yielding the following theorem.

THEOREM 3.2.1. The Clos network Cy . is strictly nonblocking if

m > 2 maXx [5k-—wJ
bLws B s(w)

where $(w) = max {1 — w, b}.

Using Theorem 3.2.1, we can construct a wide-sense nonblocking network for
unrestricted traffic by placing two Clos networks in parallel and segregating con-
nections in the two networks based on weight. In particular if welet m = 4k—1, the
network X 0 Cnx,m0Xa, is wide-sense nonblocking if all connections with weight
< 1/2 are routed through one of the Clos subnetworks and all the connections with
weight > 1/2 are routed through the other.

A k-ary Benes network [6], built from % x k switching elements (where log;, N
is an integer) can be defined recursively as follows: Bz = Xep and By =
X :0 Bk p0 Xk A k-ary Cantor network of multiplicity m is defined as Ky k,m =
Xim © Byg o Xpn1. The next theorem captures the condition on m required to
make the Cantor network strictly nonblocking.

THEOREM 3.2.2. The Cantor network K m ts strictly nonblocking if

8 k-1
>0 o
m_2s(B) 7 log, N

COROLLARY 3.2.1. The Benes network By is strictly nonblocking if
2 k-1 -

L
p< s(B) & logy, N

When we apply the theorem to the CS$ case for £ = 2, we find that the condition
on m reduces to m > log, N as is well known. For the UPS case with k£ = 2, we
have m > 2(8/(1 — B8)) log, N; that is, we again need a speed advantage of two to
match the value of m needed in the CS case.

We can construct wide-sense nonblocking networks for f = 1 by increasing m.
We divide the connections into two subsets, with all connections of weight < 1/2
segregated from those with weight > 1/2. Applying Theorem 3.2.2 we find that
m > 4((k — 1)/k) log;, N is sufficient to carry each portion of the traffic, giving a
total of 8((k — 1)/%) log;, N subnetworks.
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Rearrangeably Nonblocking Networks

The Benes network is rearrangeable in the CS case [6] and efficient algorithms
exist to reconfigure it [57,66]. The next theorem gives conditions under which it is
rearrangeable in the multirate case as well.

THEOREM 3.2.3. By is rearrangeable when

g < 1+ 2818 g (MR

As an example, if N = 2%, k = 16 and B = B8, it suffices to have § < 0.26.
The proof of Theorem 3.2.3 is fairly straightforward {see {60]). A more detailed
analysis yields the following theorem.

THEOREM 3.2.4. By s rearrangeable when
B < [max {2,A —In[8/BJ}]™
where A = 2+ Inlog,(N/k).

So, for example if N = 26, k = 16 B = #, we can have § = 0.32. The {ollowing
theorem gives conditions under which the Cantor network is rearrangeable.

THEOREM 3.2.5. Let € > 0 and |f/B]| £ log,(N/k). Knym ts rearrangeable if
m 2 [(1+€)(A —In[B/B])] +2(2 + logy A + log,(B/c))
where A = 2 + Inlog,(N/k) and c =1 — SA/(1 + ¢)(A —In|B/B]).

We can also provide conditions for rearrangeability fo networks that “expand”
at each level of recursion. Let Cf, = X and for N = k', 1 > 1, let O, =
Xiym © Oyt Ny © Xmee

THEOREM 3.2.6. C%; ., is rearrangeabdle if

m—1B1~-1/+]""
B1-1/v

B < |1/¥+

where v = m/k and ¢ = log, (N/k).
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Remarks

In recent years, there has been a growing interest in switching systems capable of
carrying general multirate traffic, in order to support a wide range of applications
including voice, data and video. Several research teams have constructed high
speed switching systems of moderate size [18,39,89,101], but little consideration
has yet been given to the problem of constructing very large switching systems
using such modules as building blocks. The theory we have developed here is a
first step to understanding the blocking behavior of such systems.

We have introduced what we feel is an important research topic and have given
some fundamental results. There are several directions in which this work may be
extended. While we have good constructions for strictly nonblocking networks, we
expect that our results for rearrangeably nonblocking networks can be improved.
In particular, we suspect that the Benes network can be operated in a rearrange-
able fashion with just a constant speed advantage. Another interesting fopic is
nonblocking networks for multipoint connections. While this has been considered
for space-division networks [3,27,51,75], it has not been previously studied for net-
works supporting multirate traffic. We have recently devised two novel switching
structures that are rearrangeably nonblocking for multipoint connections. These
will be described in a later report. Another area to consider is determination of
blocking probability for multirate networks. We expect this to be highly dependent
on the particular choice of routing algorithm.

3.3. Packet Misordering

This section presents some initial simulation results which attempt to assess the
likelihood that packets passing through a broadcast packet switch become mis-
ordered. The results presented here are for a configuration consisting of a copy
network, distribution network and routing network, all with 64 input and output
ports and all comprising binary switch elements with two bufler slots per input.

Our results are summarized in the two plots shown in Figure 3.5. The plot
on the left gives the distribution of the delay incurred by packets passing through
a switch fabric. Note that for an offered load of p = 0.4 (the maximum allowed
under normal operating conditions) the vast majority of the packets pass through
the switch fabric in under ten packet times and at this loading level, only about
one packet in 10° is delayed as much as 20 packet times. Since the switch fabric has
a 2:1 speed advantage over the external links, packets that arrive 10 packet times
apart on an external link are very unlikely to get misordered by the switch fabric.
This in turn suggests that resequencing packets on the output side of the switch
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Figure 3.5: Distribution of Delay and Misordering Probabilities

fabric may be viable using only a small resequencing buffer. In particular, one
could time-stamp packets on receipt from a link, then order them by time-stamp
in the transmit buffer. If in addition, one never transmits a packet that isn’t at
least say 10 packet times old, the likelihood of misordering can be reduced to a
very small level. While the logic to put packets in time-stamp order adds some
complexity to the output buffer, the incremental cost is fairly small.

The plot on the right examines, the likelihood of packets being misordered more
closely. In the simulations on which these results are based, all packets cntering
the copy network on input port 0 were treated as belonging to a point-to-point
connection going to output port 0 of the routing network. The plot shows the
fraction of all pairs of packets entering the copy network with a separation of z
packet times that were misordered. So for example, for p = 0.4, about 1% of
the pairs arriving six time units apart were misordered. If one extrapolates from
these curves, one finds that less than one pair of packets in 10° that arrive with a
separation of 20 packet times are misordered.
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A prototype of a BPN switch module is being designed. The purpose of this
prototyping effort is to provide a convincing demonstration of feasibility, allow
detailed examination of implementation issues and provide a testbed for future
experimental efforts at higher levels.

During the past year, we have designed several integrated circuits in order
to obtain a detailed understanding of implementation issues and to deepen our
experience with the design process. The first chips we designed had four bit wide
internal data paths and implement the packet switch element (PSE) and broadcast
translation circuit (BTC). A photograph on one of the chips used in the PSEappears
as Figure 4.1. It contains the main data path for one of the two input circuits
of the PSE, including a long shift register in which the packet is buffered. The
four bit chips have been fabricated and are being tested now. Testing has been
completed on one of the two BTC chips and while the tests have verified the logical
correctness of the design, the yield was disappointing. Of 18 chips, only one
functioned properly. At this point the reasons for the low yeild are unclear; we
should have a clearer picture when the remaining chips have been tested. We
are now designing a set of integrated circuits with eight bit wide data paths to be
used in our prototype system. These circuits incorporate a number of fundamental
improvements based on our experience with the trial chips and related performance
studies. We expect to operate the new chips at a clock speeds of 40 to 50 Mb/s,
giving data rates on the internal data paths between 300 and 400 Mb/s. Using

35
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Figure 4.1: Main Data Path for Packet Switch Element
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Figure 4.2: Prototype Switch Module

these chips, we plan to construct a prototype switching system supporting links
speeds of up to 150 Mb/s.

The overall structure of the prototype packet switch is shown in Figure 4.2. The
Connection Processor (CP), shown at the top of the figure, is a general purpose
computer that provides overall control of the system, including connection estab-
lishment. The heart of the system is an eight port Switch Fabric (SF) comprising
a Copy Network (CN), a set of Broadcast Translation Circuits (BTC) and a Rout-
ing Network (RN). A set of Packet Processors (PP) provide the interface between
the SF and the high speed Fiber Optic Links (FOL) that are used to interconnect
different switches. The CP communicates with the rest of the system through the
CP Interface (CPI). The system is operated in a highly synchronous fashion, with
global timing provided by the single timing circuit shown at the top of the figure.

Custom integrated circuits are being designed for the switch elements, BTCs
and Packet Processors (PP). The BTC and switch element designs will require one
chip apiece, the PP design will require two or three chips. A total of approximately
50 custom chips are required to implement the prototype switch module. At this
time, trial designs have been completed for the BTCs and switch elements. These
are being fabricated currently and will be tested on return. We are currently
revising these designs, in part to meet the speed objectives for the prototype, and
at the same time are developing detailed designs for the PP. Design of the CP
interface and timing circuitry is also underway. The remainder of this chapter
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describes the format of the packets used within the prototype and gives a top level
description of the design of the various components.

4.1. Packet Formats

This section describes the formats of packets used in the switch. There are two
primary packet formats: external and internal. Packets are carried in external
format on the fiber optic links connecting switches, and in internal format within
each switch. The PP translates between these two formats. Note that higher level
processes may define additional packet formats; this section details only those fields
that are of direct concern to the prototype hardware.

External Packet Format.

Each external packet is organized as a sequence of 8 bit wide words. Each packet
contains exactly 76 words, the first 3 of which constitute the packet header. The
last word of the packet is used for a frame checksum. When transmitted on the
external transmission links, external packets are separated by a SYNC pattern that
allows the receiver to identify packet boundaries. The meanings of the external
fields are given below.

e Packet Type (PTYP). Identifies one of several types of packets, including
ordinary data packet (1), test packets (2} and control packets (4).

o Esternal Logical Channel Number (ELON). Logical channel numbers are used
to identify which connection a packet belongs to. For the prototype, only
256 distinct logical channels are recognized.

¢ Information (1). Normally contains user information. In the case of control
packets, may contain additional control information. Individual words are
denoted 1[0, 1[1],1[2],. .. with 1[0] being the first word of the I field.

o Frame Check (FC). The frame check is used to detect errors in the packet.
A simple check sum over the first 75 bytes of the packets is used.
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Internal Packet Format

FEach internal packet is organized as a sequence of nine bit wide words, including
an odd parity bit. Each packet contalns exactly 80 words, the first five of which
constitute the packet header. The structure of the packet is shown in Figure 4.3.
The meanings of the fields are given below.

¢ Routing Control (RC). This field determines how the packet is processed by
the switch elements. The possible interpretations are listed below.

0
1
2

Empty Packet Slot
Point-to-Point Data Packet
Broadcast Packet

4 Specific-Path Packet

¢ Operation (OP) This field specifies which of several control operations is to
be performed for this packet. The possible values of the field and the corre-
sponding functions are listed below.

0
1

=k

Vanilla Packet. No control functions.

Read LCXT Block. Directs PP to read a block of 16 entries from the
Logical Channel Translation Table. I[0] specifies which block to read.
The data is copied into I[1]-1[64] and the packet is returned to the CP.

Write LOXT Block. Directs PP to write a block of 16 entries to the Logical
Channel Translation Table. 1[0] specifies the block to write. The data io
be written is in I[1]-1[64].

Read PP Parameter Block. Read the contents of the PP parameter block
into I[1]-1[64] of the packet and return the packet to the CP.

Write PP Parameter Block. Write the contents of I[1]-1[64] into the PP
parameter block.

Switch Test Packet. When recelved by a PP is returned to the SF with
a new routing field. The new routing field is obtained by rotating the
entire contents of the packet by five words.

Read BTT Block. Directs BTC to read and return a block of 16 entries
from the Broadcast Translation Table (BTT). 1[0] field specifies which
block to read. The data is copied into If1]-1[64] and the packet returned
to the CPp.

Write BTT Block. Directs BTC to write information into a block of 16
entries of the BTT. 1[0] field specifies which block to write. The data to
be written is in 1[1]}-1[64].
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8 BTT Single Eniry Update. Directs all BTCs in a given group to update

A

an entry in their BTTs. BCN gives the broadcast channel number of the
connection, I[0] is the new fanout, I[1] is the block of Broadcast Copy
Indices that are to be updated (16 BCIs to a block) and 1[2]-1[65} contains
the block of 16 entries. Each BTC calculates its broadcast copy index,
4, for the conmection and if |j/16] equals the block number in 11}, it
copies I[4(7 mod 16)]-1[(; mod 16) + 3] to BTT[BON].

Read BCIT Block. Directs the BTC to read the contents of one block of 64
BCIT entries into I[1]-1[64] and return the packet to the cP. 1[0} specifies
the block to read.

Write BCIT Block. Directs the BTC to write the information in words
1[1}-1[64] into one block of the BCIT. 1[0] specifies the block to write.

C-FF Reserved.

e Destination (DST). The interpretation of these three words depend on the
value of RC.

— Fanout (FAN). If RC = Broadcast Packet, the second word of the packet

is taken to be the fanout, that is the number of switch fabric output
ports that require copies of the packet.

Broadcast Channel Number (BCN). If RC = Broadcast Packet, the third
and fourth words of the packet are taken to be the broadcast channel
number. All packets within a particular multi-point channel have the
same broadcast channel number. Only 256 distinct BCNs are recognized.

Link Number (LN). If RC = Point-to-Point Packet, the second word of
the packet is taken to be the number of the outgoing link to which the
packet should be delivered.

Internal Logical Channel Number (ILCN). If RC = Point-to-Point Packet,
the third and fourth words of the packet are taken to be the internal
logical channel number. This will become the external logical channel
number when the packet exits the switch module.

Specific Path Specification. If RC = Specific-Path Packet, the three
words of the DST field specify output ports for each of the three net-
works. The packet will be routed through each of these.

o Source (SRC). The number of the most recent PP through which the packet
has passed. For vanilla packets, this will be the number of the link on which
the packet entered the switch. For test packets it will be changed as the
packet passes through different pps.
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Figure 4.4: Local and Global Timing Relationships
4.2. Timing

The system is operated in a highly synchronous fashion. All packets are the same
length and pass through the switch fabric in synchrony with one another. There
is a global packet cycle that determines the timing of all events within the system.
Incoming packets are received by the packet processors and synchronized to this
packet cycle. Each cycle is referred to as an epoch. The length of an epoch is 84
clock times or 1.68 us. This allows time for one packet to be processed and leaves
a guard time of four clock periods between packets.

The global timing generator provides the base 50 MHz clock that drives the
system plus a set of signals that define various instants within the global time
reference. The notation gt is used to denote clock cycle 2 in the global time
reference. By definition, gt0 is the time at which packets start to enter the leftmost
stage of the copy network. The nodes of the switch fabric delay packets passing
through them for exactly 32 clock times and the BTC delays packets for exactly
64 clock times. Consequently, packets pass from the leftmost stage of the copy
network to the next stage at gt32 and so forth.

Every component in the system has a local time reference which is typically
synchronized to the point in the global time reference at which that component
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Figure 4.5: External Interface for Packet Switch Element Chip

can start to receive a packet on one of its input links. The notation t0 denotes
the starting point of the epoch for a particular component’s local time reference.
Each of these local time references is synchronized to the global time reference as
shown in Figure 4.4.

4.3. Packet Switch Element

The Packet Switch Element chip (PSE) is the 2 x 2 VLSI switch element used in the
binary routing, copy and distribution networks. The PSE directs packets to one or
both outputs based on packet type (point-to-point, broadcast, or specific-path),
switch operation mode (routing, copy, or distribution), and the contents of the
LN/FAN field.

The prototype version of the PSE differs from the initial trial chip in several im-
portant respects. The objective of these changes has been to eliminate constraints
on the speed of operation of the PSE. The design outlined below is expected to
run at clock speeds of 50 Mb/s, as opposed to 10 Mb/s for the trial chip. This
improvement is due largely to changes in some basic design decisions. The most
important change is to modify the way in which grant propagation is handled.
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In the system as described in [89], grants are propagated from the output of the
routing network back through the inputs to the copy network before packets can
flow forward. This design makes best use of the nodes’ internal buffers but places
tight constraints on the number of clock cycles a node can delay a packet. In
the new design a node makes decisions on its upstream grants independent of the
status of the downstream grants. This change greatly relaxes the constraint on the
number of clock cycles a node can delay a packet, which in turn makes it possible
to increase the speed of the clock. Because this change reduces the effectiveness
of node buffers, we have also decided to switch from a design with a single buffer
per input to one with two buffers per input.

External Interface

The external leads of the switch element are shown in Figure 4.5 and described
briefly below.

s Upstream data leads (udA,udB). Incoming data from upstream neighbors.
Nine bits wide, including parity.

o Upsiream grants (ugh,ugB). Grant signals to upstream neighbors. When
asserted, grants permission to transmit packet on corresponding data leads
during subsequent epoch.

e Downstream data leads (dd0,dd1). Outgoing data to downstream neighbors.
Nine bits wide, including parity.

e Downstream grants (dg0,dgl). Grant signals from downstream neighbors.
When asserted, grants permission to transmit packet on corresponding data
leads during subsequent epoch.

o Stage number (sn). Three bit stage number. Each network has up to eight
stages (columns), numbered from 0, with stage 0 being the last (rightmost)
stage in a network.

e Operating mode (om). Two bit code identifying which of three possible oper-
ating modes the switch element implements. 1 for route, 2 for distribute, 3
for copy.

e Reset (res). Initialize all internal control registers; this causes any packets
in the node to be discarded.

o Soft Reset (sr). Clear the error flag.
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e Error (err). Report parity violation or other error.
e Clock (phil,phi2). Two-phase, non-overlapping clock.

o Start of Packet Cycle (t0). Goes high when first word of packet is present
on ud leads.

e Test Shift (ts). Shift lead for controlling shifting of test data.
o Test In (t1). Input lead for test data.

o Test Out (to). Output lead for test data.

¢ Power (pvr).

e Ground (gnd).

Global Operation

A single PSE circuit is used to implement the routing, copy and distribution net-
- works. Packets are handled based on the information in the packet headers and
either forwarded to the appropriate output (or outputs) or held until the required
output(s) is available. The grant signals are used by nodes to control the arrival of
packets from their upstream neighbors. In general, a node asserts a grant, allowing
a new packet to arrive if it has an available buffer in which to store the packet.
Each node can store up to four complete packets in its internal buffers.

PSE routing decisions are based on the operation mode and RC field, as specified
below.

e For om =route; use bit sn of the LN field to select an output port, where sn
is the stage number.

e For om =copy; if RC is broadcast, and FAN exceeds 25", where sn is the stage
number, send copies of packets to both output ports. If RC is specific-path,
use bit sn of LN field to select an output port. Otherwise, distribute.

¢ For om =distribute; if RC is specific-path, use bit sn of LN field to select an
output port. Otherwise, distribute.

When arbitrary routing choices can be made, the following policies are used to
make decisions:

e Ties among input ports for a given output port are arbitrarily broken based
on the last input port favored, to avoid individual starvation.
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Figure 4.6: Block Diagram of Packet Switch Element Chip

e Packets that can proceed to either output are uniformly and arbitrarily
distributed (all packets in distribution network, point-to-point packets and
broadcast packets not replicated in copy network).

e Packets requesting both outputs in the copy network are favored over packets
requiring only one.

e Packets requesting a specific output are favored over packets which can use
either.
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The clock period during which the first word of a packet appears on the up-
stream data leads is called t0 and in general, the clock period during which word
i appears is called ti. The delay through a node is 32 clock times, or 640 ns. So,
if an incoming packet can be switched through a node without buffering, the first
byte will appear on the output at t32. Each node makes its upstream grant signals
available at £32 in the node’s frame of reference and holds the grant leads in that
state until t32 of the subsequent cycle. Consequently, the grant signal 1s available
to the upstream neighbor any time after 64 in the neighbor’s frame of reference.

Internal Components

A block diagram of the PSE appears in Figure 4.6. The major components are
described below.

¢ Output Control Circuit (0cC). The ocC arbitrates access to the two output
ports, based on the downstream grant signals and port requests received
from the input circuits. The port requests are given in the form of three bit
request vectors, rA and rB; a value of 101 requests access to a output port 0,
110 requests output port 1, 111 requests both output ports and 100 requests
a single output port, with either one being acceptable. The individual bits
of these three bit codes are assigned the names rn, rl, and r0 with the suffix
A or B included when necessary to designate a specific side. The response is
given in the form of two bit enable vectors enA and enB; a value of 01 grants
access to port 0, a value of 10 grants access to port 1 and a value of 11 grants
access to both. The individual bits have the names enl and en0.

e Input Circuits (ICA,ICB). There is one input circuit for each input port.
Fach 1¢ includes two buffers large enough to hold a single packet, plus control
circuitry to extract information from the packet header, generate the request
vector for the 0CC and use the resulting enable vector to make decisions
on the disposition of the packet. It also modifies the packet header when
Necessary.

o Timing Circuit (TC). This circuit generates signals of the form tz and t2:7,
for various values of 7, j. Signal t¢ 1s high during clock period t¢ of the epoch;
in particular it goes high during phi2 of the preceding clock cycle and goes
low before phi2 goes high again. Signal ti:j is similar; it is high during tz
and stays high through tj.
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Figure 4.7: Input Circuit

Output Control Circuit. The Output Control Circuit is a PLA with ten
inputs and six outputs plus two flip flops which store the values of a pair of tie-
breaker variables. The flip flop ui specifies the input port that was most recently
favored the last time a tie was broken; in particular, if input port A was most
recently favored ui is 0, otherwise it is 1. Similarly, uvo gives the number of the
output port that was most recently used during an epoch when only one output
port was used.

Input Circuit. The structure of the input circuit is shown in Figure 4.7.
The main blocks are summarized below.

o Input Shift Register (I1SR). The input shift register is a 20 stage static shift
register with an output tap after the first stage and a parity checker. Packets
are shifted into the ISR from the upstream data lines. The first stage of shift
delay provides synchronization. The remaining stages allow time for control
and routing decisions to be made by the input and output control circuits.
The leads hd are connected to the output of the first shift register stage (data
bits only) and provide access to the header information. The signal rcpar
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is 1 if the parity of the first byte of the packet is incorrect. This is used to
suppress copying of packets with incorrect routing control.

o Input Control Circuit (1cC). The ICC controls the flow of packets through
the input circuit. It extracts and decodes header information from incoming
packets and stores the decoded information for packets stored in the packet
buffers. Using this information, it requests output ports from the occ and
based on the results, controls the flow of packets through the 1Cc. It also
generates the upstream grant signals. A more detailed description of the 1cC
appears below.

o Buffer Shift Register (BSR). Each BSR is a static 80 stage shift register, with
the shift control provided by the 1CC. A total of two BSRs are provided. The
buffers.are followed by a multiplexor also controlled by the 1cC, which selects
from one of the buffers or the bypass path.

¢ Header Modification Circuit (HMC). This component makes minor changes
to the header as specified by the 1CC. If the rot bit is asserted, words 1-3 of
the routing field are rotated, with word 1 becoming word 3, word 2 becoming
word 1 and word 3 becoming word 2. If the cpy bit is asserted the packet
is sent to both output ports and the fanout fields of the copies are modified.
The ben bit determines which copy gets the “extra” when the fanout value
is odd. The en0 and enl signals control the passage of data onto the output
links, with en0 enabling output 0 and enl enabling output 1.

Figure 4.8 details the Input Control Circuit. The ICC contains several major
components. The Header Register and Decode Logic (HRDEC) latches various fields
of an incorming packet’s header and decodes those fields into six bits. The cpy bit is
1 if the packet must be copied to both outputs. The ben bit specifies which output
receives the “extra” when the fanouts of the two copies are modified. The rot bit
is 1 if words 1 to 3 should be rotated. The rn bit is 1, if there is an incoming
packet. The r0 bit is 1, if output 0 is required and the rl bit is 1, if output 1 is
required.

The buffer control registers BCREGO, BCREG] store the decoded control bits
for packets stored in BSRO and BSR1. Each BCREG has six data inputs and six
tri-state data outputs. In addition, the rn signal has a non tri-state output. The
BCREGs have two control inputs. If latch is high at t16, the input control bits are
latched. When sbc is high, the six stored bits are placed on the tri-state outputs.

The PLA at right provides overall control of the 1CC. At the start of the epoch
1t selects one of the HRDEC or BCREGs to provide a request vector to the Output
Control Circuit. Then, based on the response, it controls the steering of data
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Figure 4.8: Input Control Circuit

to and from the buffer shift registers and controls updating the BCREGs. It also
generates the upstream grant signals. The latches at the top of the figure simply
hold the control signals for the duration of the epoch and are latched at the times
indicated.

The FIFO to the right of the PLA is used to keep track of the order of packets
stored in the buffers. The FIFO is two bits wide and two deep. The output of the
FIFO gives the number of the buffer containing the packet which is to be output
first.
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Figure 4.9: External Interface for Packet Processor

4.4. Packet Processor

The Packet Processors (PP) form the interface between the external fiber optic
links and the switch module’s internal data paths. They perform all the link level
protocol functions, including the determination of how packets are routed.

External Interface

The external leads of the packet processor are shown in Figure 4.9 and summarized
briefly below.

o Upstream data from SF (ud). Data from switch fabric. Nine bits wide in-
cluding parity.

o Downstream data to SF(dd). Data to switch fabric. Nine bits wide inciluding
parity.

o Downsiream grant from SF (dg). When asserted, allows PP to transmit
packet in subsequent epoch.
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Data from link (11). Data stream from FOL. Eight bits wide.

Link framing (1£). Link framing signal. Goes high at start of packet.
Data to link (1o0). Data stream to FOL. Eight bits wide.

PP number (ppn). Eight bit number identifying PP.

Reset (res). Resets the entire PP when it is asserted, causing any packets
stored in the PP to be discarded.

Soft reset (sr). Resets PP error flags.

Buffer overflow (bo). Asserted whenever a packet is discarded by the PP due
to buffer overflow.

FC error (fce). Asserted when the PP receives a packet containing a bad
frame check field.

Parity error (pe). This signal is asserted whenever the PP detects a parity
€rTor.

Error(err). Asserted when the PP detects any error, including those signaled
above.

Clock (phil,phi2). Two-phase, non-overlapping clock.

Start of epoch (t0). Goes high when first word of packet is present on ud
leads.

Test shift (ts). Shift lead for controlling shifting of test data.
Test in (ti). Input lead for test data.

Test out {to). Output lead for test data.

Power (pvr).

Ground (gnd).
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Figure 4.10: Packet Processor Circuit

Global Operation

The processing of packets by the PPs is determined by the PTYP field for external
packets (received from FOL) and by the OP field for internal packets (received from
SF).

¢ Ezxternal Data Packet. Converted to internal format, with the routing field
determined by a lookup in an internal Logical Channel Translation Table
(LcxT). The packet is then transmitted to the switch fabric.

o External Link Test Packet. The PTYP field is changed to external data
packet, and the packet is returned on the outgoing FOL.

e Fxternal Control Packet. Converted to internal format, with the LN field set
to 0 and the RC set to ordinary data packet. Transmitted to SF.

¢ Internal Data Packet. Converted to external format, with contents of internal
LCN field transferred to external LCN field. Tramsmitted to FOL.

o Switch Test Packet. The RC field is set to 0 and then the first five words of
the packet are moved to the end of the packet and everything else shifted
up. In other words, the whole packet is rotated by five words. The packet is
then returned to the SF.

Internal Components

A block diagram of the PP appears in Figure 4.10. The various components are
described briefly below.



54 ACS Progress Report (7/1/87 — 6/30/88)

o Buffers. The PP contains four packet buffers. The Receive Buffer (RCB) is
used for packets arriving from the FOL and waiting to pass through the SF.
The Transmit Buffer (XMB) is used for packets arriving from the SF that
are to be sent out on the FOL. The Link Test Buffer (LTB) and Switch Test
Buffer (STB) provide paths for test packets used to verify the operation of
the FOL and SF respectively. The RCB has a capacity of 16 packets, the XMB
has a capacity of 32. The LTB and STB can each hold two packets. Together,
the four buffers require a total of about 35 Kbits of memory.

o Receive Link Interface (RLI). Converts the incoming optical signal to an eight
bit electrical format, synchronized to the local clock.

o The Receive Circuit (RCV). Checks incoming packets for errors, adds parity,
strips off FC, routes test packets to the LTB and other packets to the RCB.

o Output Circuit (OUT). Adds five bytes of header information to the front of
each packet received from the RCB. Performs logical channel translation and
sends packets to the SF. Also reads switch test packets, LCXT read/write
packets and PP parameter block read/write packets from the STB and pro-
cesses them appropriately.

e Logical Channel Translation Table (LcXT). Lookup table used to translate
an incoming logical channel number to the routing information needed by
the switch fabric.

o Input Circuit (IN). Routes internal data packets to the XMB, removing the
first five bytes of header information and routes all other packets to the LTB.
Performs the rotation required for switch test packets.

o Transmit Circuit (XMIT). Takes packets from the XMB, adds the SYNC field,
strips parity and computes the frame check. Also processes test packets from
the LTB.

¢ Transmit Link Interface (XLI). Converts from eight bit electrical format to
optical format.

The RLI and XLI will be implemented separately from the integrated circuit that
implements most of the PP functions. These will be implemented using commer-
cially available components. We are currently evaluating the TAXI chip set for this
purpose. The circuits that make up the bulk of the PP chip can be divided mto
three basic types; synchronous streams processors (SSP), packet buffers and lookup
tables.

An SSP is a circuit that has several typed I/O ports over which it sends and
receives data in a highly synchronous fashion and which transforms the contents
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of certain fields as the data passes through. These can be readily described in a
high level specification language that we have designed and can then be compiled
into a special-purpose circuit implementing the given specification. Some details
of the language and the translation process are given in the following chapter of
this report. The RCV, XMIT, OUGT and IN circuits are all examples of SSPs and our
plan is to implement them using the automatic translation process just described.

A packet buffer is a memory designed to hold packets. The XMB, RCB, LTBand
STB are all specific instances. As with the sSPs, we are designing a program that
will automatically generate a specific packet buffer given a description of its desired
characteristics (packet length, data path width, timing requirements, etc.). This
program will be used to design the particular packet buffers required for the Pp.
This is described further in the following chapter.

A lookup table is also a memory, but has a somewhat different interface than
a packet buffer, since it must offer random access to the table entries rather than
implementing a buffer. We will soon begin work on a similar program that gener-
ates a lookup table from a given specification. The LCXT is the only lookup table
in the PP, but other chips in the system also contain lookup tables, so we felt it
advantageous to design a general tool to create them.

4.5. Broadcast Translation Circuit

The Broadcast Translation Circuit (BTC) provides unique addresses for each of
the copies of a broadcast packet replicated by the copy network. It also provides
a hardware assist for updating the table of new addresses for a single broadcast
channel.

External Interface
The external leads of the BTC are shown in Figure 4.11 and described briefly below.

¢ Upsiream data leads (ud) Incoming data from upstream neighbors. Nine bits
wide including parity.

o Downstream data leads (dd) Outgoing data to downstream neighbors. Nine
. bits wide including parity.

o Heset (res). Resets the entire BTC when it is asserted, causing any packets
stored in the BTC to be discarded.

o Soft reset (sr). Resets PP error flags.
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Figure 4.11: External Interface for BTC

o Error (err). Asserted when the BTC detects any error.

¢ Clock (phil,phi2). Two-phase, non-overlapping clock.

e Start of epoch (t0) Goes high when first word of packet is present on udleads.
o Test shift (ts). Shift lead for controlling shifting of test data.

e Test in (ti). Input lead for test data.

o Test out (to). Output lead for test data.

o Power (pwr).

¢ Ground (gnd).

Global Operation
The BTC’s operation depends upon the type of packet passing through it.

o Ordinary Data Packet. These packets are passed straight through the main
shift register unchanged.

o Broadcast Data Packet. The routing field is replaced with a new field selected
from an internal Broadcast Translation Table (BTT). The new field is selected
using the BCN of the packet.

o Read/Write BTT Block. These two packet types are used for updating the
BTT in large chunks and for reading it for auditing and testing purposes.
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e Read/Write BCIT Block. These packets read and update the entire broadcast
copy index table.

e Single Enitry Update. This packet supplies a set of new routing fields for
this BCN. The BTC chooses which one to write into the BTT depending on
the value of the broadcast copy indez, which is determined from an internal
Broadcast Copy Indez Table (BCIT). 1[0] specifies the new fanout for the
connection, I[1] specifies which group of routing fields are contained in the
packet. I{2}-1[65] contains the routing fields.

e All other packets are passed through like ordinary data packets.

Internal Components

The internal components that make up the BTC are similar to those in the PP.
In particular, the BTC can be described as a single $sp along with two lookup
tables, one for the BTT and the other for the BCIT. This structure is illustrated in
Figure 4.12 and the components are described briefly below.

¢ Broadcast Translation Table (BTT). This is the table used to store the rout-
ing information for packets belonging to to multipoint connections. The
prototype version will consist of 256 entries, each four bytes long, plus par-
ity.
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e Broadcast Copy Index Table (BCIT). This table is used to compute the
broadcast copy index of the BTC, for use in updating the BTT when the
fanout of a connection changes. It contains 512 single byte entries, plus
parity.

e BTC Control (BTCC). This is the control circuit that processes all received
packets using the BTT and BCIT.

Our plan is to implement the two lookup tables using a lookup table generator,
which is described briefly in the next section. The BTCC will be implemented as
a synchronous streams processor using the program we are developing for that
purpose.
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The implementation of the prototype packet switch for the ACS project will
require several custom VLSI chips. In the past year, we have designed preliminary
versions of two chips and gained considerable insight into both the impact of low-
level design issues on architecture and on the design process itself. In this chapter,
we review our efforts at constructing special purpose tools to reduce the amount of
manual effort associated with the design of integrated circuits. Our most ambitious
effort in this area is the design of a circuit generator for a particular class of circuits
that arise frequently in our work and which we refer to as synchronous streams
processors. We have also begun several other projects which seek to automate or
partially automate other design tasks.

5.1. Synchronous Streams Processors

Many of the circuits required in a fast packet switching system contain a large
number of functional modules that accept packets on one or more input ports,
modify the packet headers and transfer the packets to one or more output ports.
The various modules operate in tight synchronism because of the use of fixed length
packets. We have come to view each of the specific modules as special cases of a
generic synchronous streams processor or SSP.

An sSP, is a module with one or more typed input and output ports, a local clock
synchronized by external timing signals and a function which can be described in

59
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a style similar to a conventional programming language (see Figure 5.1). The local
clock is set to 0 when the external synchronization signal start_time is received,
and is then incremented on every tick of the global system clock ¢. The period
between successive start.time signals is referred to as an epoch and all events
happen at specific times during an epoch.

Each port has a type associated with it. The base type is bit and complex
types can be constructed using arrays and structures. As an example, the following
declaration defines the format of an internal packet in the BPN prototype.

struct ipfmt {
bit opl5], rcl3];
bit fan_1ln[8]:
bit ben_ilcn[16];
bit srcl8];
bit £i11[4], ptypl4];
bit elcn[16];
bit infol[72][8];
};

In addition to its type, a port has a start time and a width. The start time
defines at what point in each epoch the data item defined for that port begins to
appear on the port. The width of the port defines the number of bits available
to carry the data. These pieces of information are sufficient to define when in an
epoch and where on a port, specific items of data appear. This allows a designer
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to describe the function of an SSP in terms of actions on port fields, ignoring the
details of timing and bit location.

We now turn to a simple example to illustrate how an sSSP can be described.
The circuit we will describe combines the functions of the IN and XCVT circuits
of the packet processor. It accepts an input packet from the switch fabric on one
port and based on the control field directs the packet to either the XMB or STB.
For test packets, the RC field is set to 0 and the packet is rotated by five words.
In addition, packets sent to the XMB are placed in a format that is intermediate
between the internal and external formats; basically, it is the internal format with
the first five words removed. As part of this transformation, the logical channel
number in the ILCN field is copied to the ELCN field.

struct hpfmt { // Hybrid packet format
bit f£i11f4], ptyp[4];
bit elcn[16];
bit info[72][8];
¥
module inxcvt(port[8] struct ipfmt <sfpe0, >1tbp2,
port{8] struct hpfmt >xmbp@6 )
if sfp.op == DP_DATA ->
xmbp.fill = sfp.fill;
xmbp.ptyp = sfp.ptyp;
Xmbp.elcn sfp.ben_ilen;
xmbp.info = sfp.info;
| sfp.op == OP_STEST ->
1tbp: (0 .. 74*8) = sfp:(5%8 .. 79%8); /* Rotate */
1tbp: (75%8 .. 79%8) = sfp:(0 .. 4%8);

1tbp: (75%8 ., 75%8+2) = 0; /* Clear rotated RC */
| sfp.op != OP_DATA &% sfp.op != OP_STEST ->
1tbp = sfp;

£i;
end

The example module defines three eight bit wide ports; sfp is an input port
(indicated by <) carrying data in mpfmt, starting at time 0; 1tbp is an output port,
also carrying data in mpfmt, starting at time 2; xmbp is an output port carrying
data in hpfmt, starting at time 6. The program specifies the appropriate action
based on the OP field of the incoming packet. The assignments define the contents
of the various output fields. Unspecified output fields are filled with zeros. The
notation port: (i..j) refers to a range of bits on the given port, providing a simple
iow level mechanism for rearranging large blocks of a packet. Notice that the only
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Figure 5.2: Unbuffered Switch Element

times that must be defined explicitly are the times at which data items start to
flow across ports.

Our second example is a 2 x 2 unbuffered switch element that could be used in a
self-routing switching network. A block diagram of the switch element is shown in
Figure 5.2. Each switch element uses the first (low order) bit of the address (addr)
to select which port to output the packet on. The switch element also rotates
the bits of the address to place the next address bit in the correct place for the
next switch element to use in routing this packet. It may occur that both input
packets to the switch element request the same output port. If one of these does
not contain useful data (ptyp = PT.NONE), no problem exists since that packet is
dropped anyway. However, if both packets contain valid data (ptyp = PT.PPOINT),
the “straight through” packets are given priority. That is, if both packets request
output 0, the packet on input 0 is passed on and the packet on input 1 is discarded.
Whenever a packet containing valid data is discarded, an error signal is asserted.
The specification of this circuit is shown in Figure 5.3.

This example illustrates some simple field re-arrangement and the use of the
C preprocessor to ease the function description. The macro Shipout illustrates
several features of the specification language. It handles “assigning” the given
input to the given output. It also rotates the address field of the packet to set
up the address bits for the next routing element. The first line sets up the entire
packet on the destination port. The next two lines override this for the address
field, replacing it with a rotated copy. This example also shows the concurrent
use of the if. Note that the guards are not mutually exclusive. If several of the
guards evaluate to true, the statements associated with all of them are “executed.”
For example, in the case of routing two “straight through” packets (ing — outp
and in; — outy), the first two guards are both true and both of their actions are



5. Tools for Design of Communication Circuits

typedef struct {

bit ptypl2]; /* packet type */

bit addr[6]; /* destination address */

bit datal[72][8]; /* data in packet */
}packet;

/* various packet types */
#define PT_NONE 0 /* no data in this packet */
#define PT_PPOINT 1 /+* point-to-point packet  */

#define Shipout(in,out) \
out = im; \
out.addr[5] = in.addr[0]; \
out.addr:(0 .. 4) = in.addr:(1 .. 5);

router (port[8] packet

63

<in0®@0, <inilQQ, /% input data poxrts */
>out0@4, >outit4; /* output data ports */
port[1] bit >outconfl@4) /* output conflict %/
{
outconfl = 0;
if (in0.addr[0] == 0 &% in0.ptyp '= PT_NONE) ->
Shipout(in0,out0);
| (inl.addr[0] == 1 && inl.ptyp != PT_NONE} ->
Shipout(inl,outi);
| (in0.addr[0] == 1 &&
(inil.addr[0] != 1 || ini.ptyp == PT.NONE)) ->
Shipout(in0,outl);
b (ini.addrf[0] == 0 &&
(in0.addr[0] '= 0 || inO.ptyp == PT_NONE)) ->
Shipout(ini,out0);
|  (inO.ptyp != PT_NONE && inl.ptyp != PT_NONE &&
((in0.addr[0] == 0 &% inl.addr[0] == 0) ||
(in0.addr[0] == 1 &% ini.addr[0] == 1))) ->
cutconfl = 1;
fi
+

Figure 5.3: Specification of Unbuffered Switch Element
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Figure 5.4: Target SSP Architecture

performed. It also uses the feature that all unspecified outputs are 0. Thus, if no
packet is routed to an output, an all zero packet (ptyp = PT_NONE) is output.

The simple paradigm of typed, synchronous ports can also be used to define
control signals that must be exchanged between different modules. This allows us
to define more complicated interfaces such as are required on the output side of
various buffers. Modules can also have local variables that can be used to save
information across time epochs.

5.2. Implementation of SSPs

SsPs that perform simple functions, as are typical in the Packet Processors, fit
nicely into a common architecture illustrated in Figure 3.4. This architecture
supports several input and output ports of varying widths. Input ports connect to
a common input bus and outputs to a common output bus. Between these are a
set of processing elements (PE). Each processing element has data registers which
latch selected input fields. The guard evaluation logic in addition, contains the
combinational logic to evaluate the conditions in if-statements. The ezpression
evaluation logic evaluates expressions on the right side of assignments. The delay
lines are used to delay the passage of certain fields to the output bus in order to
satisfy timing constraints. The control and timing element provides timing signals
for latching input data and controlling access to the output bus.
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Figure 5.5: Structure of SSP Generator

We have developed a circuit generator that takes a high level description of
an SSP and creates a circuit implementing it, by tailoring the target architecture.
We have divided the translation into several parts as illustrated in Figure 5.5.
The compiler takes the high level module description and translates it to a simple
register transfer language. This is further processed by an $SPassembler which
translates it further to a PE description language. This is further processed by
a PE assembler which generates the actual mask-level description of the module,
using a library of standard cells and a set of PE generators, which include existing
tools such as a PLA generator. An initial version of the compiler has been written
which is capable of generating most of the circuits needed within the project.
Several extensions are planned as well.
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