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ABSTRACT OF THE DISSERTATION

Essays on Economic Decision Making

by

Hee Chun Kim

Doctor of Philosophy in Economics

Washington University in St. Louis, 2016

Doctor Brian W. Rogers, Chair

My dissertation consists of three chapters and I take different approach in each chapter to investi-

gate economic decision making behavior. The first chapter analyzes individuals’ strategic decision

making when players have replaceable identities and private information in a repeated prisoner’s

dillmma game. The second chapter studies individuals’ non-strategic decision making when she

has incomplete information about her underlying preference in a sequential choice situation. The

third chapter experimentally examines a link between an individual’s strategic thinking and non-

strategic decision making in a setting designed to elicit beliefs about independent random variables.

In the first chapter, I focus on strategic decision making of economic agents when they are re-

placeable in a repeated prisoner’s dilemma. I assume that agents have different private information

that restricts their set of actions, and that replacement of agent involves change of such private

information. In this environment, some agents are required to signal their own private information

to induce their opponent’s cooperative response, which may induce Pareto improvement of their

expected continuation payoffs. Except for a trivial equilibrium, we can have non-trivial equilib-

ria supporting cooperative action as a part of the equilibrium play; however, different from the

environment with two long-run agents, replaceable agents environment puts a restriction on an ex-

istence of the equilibrium in which agents share the risk of type uncertainty equally regardless of

the past history. Because of replacement, agents can avoid a full cost of signaling by shifting it to

their successor upon their own replacement. As replacement incurs such a situation with a strictly

positive probability, the equilibrium cannot avoid failure.

ix



In the second chapter I focus on an economic agent’s optimal decision making in a non-strategic

environment. Especially, I study a sequential choice problem where an agent’s preferences evolve

over time. I assume that an agent has an underlying preference, and she learns about her underlying

preference depending on her choice histories. Given that an agent makes an optimal decision upon

her current available menu, I characterize the sequential choice behavior that follows a Sequential

Weak Axiom of Revealed Preference (WARP-S). Using this characterization, I provide criteria for

sequential choice data that recovers agent’s underlying preference.

In the third chapter I and my co-author, Duk-Gyoo Kim, focus on a link between an optimal deci-

sion making in a non-strategic environment and strategic environment. Our research investigates

whether an individual decision maker follows own subjective optimization in a non-strategic deci-

sion making, and such a difference in subjective optimization is correlated with strategic decision

making pattern. We conducted two separate sessions in the same subject. Each session is designed

to identify subjects’ behavioral pattern in strategic and non-strategic decision making environment

respectively. From the data, we observed that subjects’ behavioral pattern shows significant simi-

larity in two sessions.
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1 Chapter 1: Two-Sided Player

Replacement and Threshold

Equilibrium

1.1 Introduction

During World War I, French and German troops confronted on the five-hundred-mile line of

the Western Front. Long and boring trench warfare taught soldiers the policy called “Live-and-

Let-Live.” According to the policy, both sides implictly agreed not to attack each other unltil they

observed any aggressive behavior (Axelrod and Hamilton (1981), Ashworth (1980)). However,

each army’s headquarter wanted her troop to take the opponent’s trench. To push their troops to

the front, the headquarters dispatched new troop leaders, and some of them aggressively led an

attack against the opponent’s trench. That means, even though each troop faced the same opponent

troop over night, it is possible that the opponent troop leader’s attitude could change over that time

period. For this reason, both troops could not be sure whether the Live-and-Let-Live policy would

continue until the next morning. This anecdote depicts a situation in which a public or a nominal

identity is separated from an actual identity.

We can find a similar discrepancy between a nominal identity and an actual identity in our modern

industry. For example, suppose that two investment firms separately invest in a joint project. In the

1



market, each firm invests in the project through the account of each firm and fully observes another

firm’s decision. All the while, an identity of an actual trader who makes an investment decision

is inside information for each firm. Actual traders who are in charge of the decision may have

different attitudes for investment and will try to maximize their own expected payoffs. Moreover,

we can also imagine that traders can be randomly replaced by another trader without notification

to another firm. Such identity separation between firm and trader can result in poor cooperation

between two firms and lower the social benefit from successful joint investment1 2.

Inspired by the above examples, this study analyzes the effect of identity separation on the equilib-

rium outcome in a repeated prisoner’s dilemma with perfect monitoring of a full history of actions

from both sides. Players are one of two types: a Stackelberg type, who always defects, or a Normal

type, who maximizes expected payoffs. Players are randomly replaced with known probability at

the end of every period, and the replacement is not publicly observed. Playing only a defective

action, which is a unique Nash equilibrium strategy for a one-shot game, is a trivial equilibrium of

the repeated game with replacement of players. My question is whether we can find a non-trivial

equilibrium that supports cooperate action as a part of equilibrium play, and how the equilibrium

play changes depending on the game environment. Interestingly, there exists the set of common

discount factors and the replacement rates such that non-trivial equilibria exist, and any set of such

equilibria contains a pure strategy renegotiation-proof equilibrium, which is not dominated by any

other pure strategy equilibrium. Moreover, I show that any set of non-trivial threshold equilibria
1Recently such replacement of players was largely issued in online game services like “League of Legends” or

“Starcraft.” In these games, multiple (3 ∼ 5) online players are matched as a team and defeat their opponent team.
Individual players are rated based upon their past game play, so that highly rated players are welcomed by the
other players. At the same time, highly rated players also prefer to play the game with similar or more highly
rated players to raise or maintain their current rating. However, there are many reported cases when professional
gamers are paid to raise the rating for another individual’s account. In online communities, these accounts are
called as “power leveler” or “fake ranker” and they are more likely to play deliberate noncooperative action (called
“trolling”) or use an illegal hacking program (called “helper” or “game hack”). Since players cannot directly
observe other actual players behind the account, they may assume a possibility that different players share the
same account or a player is replaced by another player. Due to separation between a virtual account and an actual
player, service providers can fail to completely detect whose in charge of aggresive behavior. As a result, players
in online games cannot completely believe other players’ identity and are less likely to cooperatively play to avoid
possible loss. For more information, please see the link below.

2http://forums.na.leagueoflegends.com/board/showthread.php?t=183195, http://2p.com/2598150_1/One-
Of-The-Best-Korean-LOL-Players-Got-Banned-For-1000-Years-by-EdwardsLin.html (English)
http://www.thisisgame.com/webzine/news/nboard/4/?n=50415 (Korean)
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contains a pure strategy renegotiation-proof equilibrium, which is not dominated by any other pure

strategy equilibrium.

To find non-trivial equilibrium, I define a threshold equilibrium where Normal players cooperate

when public beliefs that both players are a Normal type is sufficiently high. That is, the Normal

players play cooperate action as long as they have a higher probability of being both players’ types

to be a Normal type than a certain threshold level. Depending on behavioral pattern, I categorize

(non-trivial) threshold equilibrium into three cases: (1) infinite punishment (IP) equilibrium, (2)

finite punishment (FP) equilibrium, and (3) penance (PN) equilibrium. Infinite punishment equi-

librium begins with a cooperation phase in which the Normal players play cooperate action as long

as they only observe cooperate action in the previous period. Once they observe defect action, they

turn into a punishment phase at which any player plays defect action forever. Finite punishment

equilibrium allows players to return to the cooperation phase after the punishment phase of finite

periods. The cooperation phase is the same as infinite punishment equilibrium. Once they ob-

serve any defect action (during the cooperation phase), they turn to the punishment phase and play

defect action for finite periods, and then return to the cooperation phase. Penance equilibrium is

different from finite punishment equilibrium in that players distinguish a way to punish a two-sided

deviation from a one-sided deviation. For a two-sided deviation in which two players play defect

action at the same period during the cooperation phase, they turn to the punishment phase of finite

periods. After finite periods of defect action, both sides are supposed to return to the cooperation

phase at the next period. For a one-sided deviation in which only one side, say the “guilty side,”

plays defect action while the other, say the “innocent side,” plays cooperate action, they turn to a

penance phase. At the penance phase, the innocent side player plays only defect action until she

observes cooperate action from the guilty side. The guilty side player must play cooperate action

immediately when she enters the game as a Normal type. Once the guilty side plays cooperate

action, both sides begin again the cooperation phase from the next period.

The first result we have is that we can find non-trivial threshold equilibrium, which includes co-

operative action as a part of the equilibrium path. In the replaceable player environment, players

3



consider their survival to future with respect to the replacement rate. In other words, players dis-

count their furture payoff upon their survival, so that replacement rate plays a similar role to the

common discount factor (or time preference factor). This expectation of their future payoff may

incentivize players to follow some equilibrium path if it provides them a higher expected con-

tiuation payoffs than the trivial equilibrium’s. Moreover, perfect monitoring helps players have

a public belief, which characterzes the probability that both sides of player to be a Normal type

player. Having a high enough public belief implies that each side of players believe their opponent

as a Normal type and each are believed as a Normal type respectively. This public belief allows

players to explictly compare their expected continuation payoffs (of some non-trivial equilibrium)

with a minmax payoff of the trivial equilibrium. And then, we can characterize the minimum

level of public belief as a “threshold” at which Normal players can play a cooperative action as an

equilibrium play.

The second result is that the replacement rate governs the amount of uncertainty involved with

private information and will affect the existence of non-trivial threshold equilibrium. At the high

enough replacement rate and the time discount factor, players will find that signaling their type by

cooperative action is too costly. When the replacement of player is too frequent, they cannot expect

any cooperation will continue for long-enough periods. So that players would rather stay at the

trivial equilibrium than playing a non-trivial equilibrium with some cost. At the intermediate level

of two parameters, the infinite or finite punishment equilibrium can be supported. These equilibria

allow players to share a risk from the type uncertainty equally in the form of fixed periods of the

punishment phase. That is, regardless of “guiltiness” for causing the current punishment phase,

both sides of players must play defective action for the same number of periods. In this aspect, we

can consider them as the “equal treating” policy. However, as two parameters, the replacement rate

and the common discount factor, approach zero, such an equal treating policy will not be supported

and penance equilibrium will survive as a unique non-trivial threshold equilibrium.

Such failure of the equal treating policy comes from the replacement that separates a player from

her behavior. Consider a Normal player who is newly replaced at the beginning of the punishment

4



phase. The player will only consider of her own expected continuation payoffs on the condition of

her survival as a Normal type. That is, even if her signaling fails to earn a cooperative response

from her opponent, she will not need to take full responsibility for such a failure. For this reason,

the equal treating policy can face a failure when any newly replaced Normal player has a high

enough belief in her opponent’s type at the small enough replacement rate and the common dis-

count factor. At the small enough parameters, the player may consider a trade-off between a cost

of signaling and the amount of loss from the punishment phase. As the replacement rate becomes

smaller, the length of the punishment phase will be longer because players need enough periods

to guarantee the replacement of the player of a Stackelberg type with another Normal player after

the beginning of the punishment phase. However, a cost of signaling will grow slower than the

loss from the punishment phase since the replacement cuts down her cost of the “failed” signaling.

As a result, the Normal player will find that the amount of payoff loss spent on the punishment

phase is higher than a cost of signaling. To overcome such a systematic failure, players cannot

avoid imposing full responsibility of a deviation (from the cooperation phase) on the guilty side by

forcing a penance action. Penance equilibrium will not face such a systematic failure at any phase

of the game, so that it will be supported as a unique non-trivial threshold equilibrium even in the

asymptotic environment.

This change of equilibrium strategy distinguishes a two-sided replaceable player case from other

cases. In the case of (non-replaceable) long-run players with type change, players can share rel-

atively similar amounts of the risk even in the asymptotic environment (Ely and Valimaki (2012,

2013), Horner et al. (2011, 2013)). Such an equal treating policy can be maintained even in the

asymptotic environment because players must endogenize a cost of failed signaling upon their fur-

ture play. For this reason, a full cost of signaling will be maintained as higher than a loss from the

punishment phase. On the other hand, in a one-sided replaceable player case, a replaceable side

player is asked to take most of the responsibility for the deviation, and a long-run player will refuse

to share any risk until it becomes small enough (Mailath and Samuelson (2001, 2006)). Compared

to these previous cases, a two-sided player replacement case shows transition between different
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equilibrium paths of plays, and the transition is implied by a level of separation between a nominal

and an actual identity.

The third result is that any nonempty set of non-trivial threshold equilibria always includes (non-

trivial) renegotiation-proof equilibrium. Individual players in a two-sided replacement environ-

ment cannot expect when they will enter the game. Some players may enter the game in the

middle of the cooperation phase and others may enter the game at the punishment phase. For

this reason, even though players know that following the equilibrium path is sequentially rational

behavior, they are tempted to renegotiate with their opponent to change a “phase.” Confronting

such possibility of a renegotiation, players require the equilibrium concept to be efficient and (in-

ternally) consistent. Efficiency implies that the expected continuation payoff of the equilibrium at

each state should be at least equal to or better than that of another feasible equilibrium. Consistency

implies that the equilibrium path should be maintained as it is predicted or specified as long as they

are staying in the same game. To meet such considerations, I extend a notion of “renegotiation-

proofness” from Pearce (1989) and Ray (1994) with modification to the current environment. I

define renegotiation-proof equilibrium if it is not dominated by any other equilibria at any history.

The threshold equilibrium is useful because we can find at least one non-trivial threshold equilib-

rium that satisfies such renegotiation-proof requirement among all pure-strategy (perfect Bayesian)

equilibria. This finding supports threshold equilibrium as a reasonable choice when we confront

the equilibrium selection problem in a two-sided replaceable player environment.

This paper proceeds as follows. In the following subsection, I discuss the related literature. Section

1 introduces a model and a game environment. Section 2 includes definition of threshold equilib-

rium and its relevant concepts. Section 3 characterizes three different forms of threshold equilibria

according to their behavioral patterns. Section 4 shows existence of non-trivial threshold equilib-

rium in the asymptotic environment and existence of non-trivial renegotiation-proof equilibrium in

the nonempty set of non-trivial threshold equilibria. Section 5 concludes the study and discusses

future research.
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1.2 Related Literature

1.2.1 Lifetime of Players

In a repeated game with perfect monitoring, a long-run and a short-run player is distinguished by

their commitment to their future play. Long-run player is assumed to stay at the game until the end

of it, so that they are responsible for their past action. For this reason, long-run player’s identity is

considered to be acknowledged. On the while, short-run player will not be assumed as the same

player of the past history, so that they are considered as rather anonymous. This reason justifies

short-run player’s optimization on her current stage payoff.

In a non-cooperative repeated game, such lack of commitment plays central role for availability

of equilibrium. Consider two-person prisoner’s dilemma game. When both players are long-run

players, enforcing certain equilibrium path by threatening each other with future punishment will

work. Classic folk theorem results (Friedman (1971), Fudenberg and Levine (1983)) supports

every equilibrium that achieves individually rational and feasible payoff as the discount factor

approaches to unity. However, assuming short-run player on some side may change the range

of available equilibrium payoff. When short-run player plays only one period of the game, any

equilibrium that enforces cooperate action to short-run player will not work. A set of available

equilibria will shrink to a trivial equilibrium that players only repeat a stage-game Nash equilib-

rium. Even though we allow short-run players to stay in the game for multiple periods, we may

not achieve full cooperation as in the two long-run players case. When short-run player’s finite

life cycle is publicly known, what we can do is at most partial cooperation that brings cooperative

outcome until a few periods before the end of each life cycle (Kreps et al (1982), Kreps and Wilson

(1982)).

Now we extend our focus to the case in which short-run player has private information. We can

consider several different form of private information; short-run player’s own lifespan, payoff

structure, a set of actions, etc. Mailath and Samuelson (2001, 2006) considered an imperfectly
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monitored repeated game under which short-run players (firms) can have different type and ran-

domly replaced by another short-run player. Each short-run player’s type restricts a set of actions;

“inept” firm only plays low effort, which corresponds defect action of the prisoner’s dilemma game,

while “competent” firm can take low and high effort, which corresponds defective and cooperate

action respectively. A long-run player (a series of consumers) receives a noisy but distinguishable

signal about the action of the replaceable players (firms). Except for signal, long-run players does

not have any device to verify short-run player’s identity or action. Moreover, short-run players are

allowed to exchange lump-sum amount of payoff when they are replaced; several short-run players

can compete to replace their predecessor with inheriting long-run player’s belief about short-run

player’s type. In such setting, lump-sum exchange makes up lack of commitment for the short-run

player. That is, the short-run player assumes that her effort level (action) will be compensated or

punished through the lump-sum payment, which will be calculated based on the belief level they

built, by her successor. This payment device works as a proxy for the short-run player’s future ex-

pectation and supports long-run player’s claim for the cooperate action. As a result, at low enough

replacement rate, equilibrium encourages “competent” firm to play cooperate action to build own

“reputation.”

From this result, we may have a question about how replacement itself can affect equilibrium

outcome without signaling device and/or side payment. Current study considers this question with

assumption that players will not use any public signaling device that informs players’ type or side

payment device between actual players in the same side of account.

1.2.2 Stochastic Games and Replacement

Stochastic games that involves change of private information provides general guideline for role

of replacement. Ely et al (2002; 2003), Hőrner et al (2011), Hőrner et al (2013) consider stochas-

tic private information change while individual identity is fixed. Fixing individual identity allows

players to take long-run player’s role so that as they can achieve truthful equilibrium which en-
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forces individual players to reveal their private type correctly. This outcome can be acquired only

when they are equipped with the public/private signaling device that informs state of the world,

which directly/indirectly contains the private type of players. Moreover, long-run players can in-

ternalize loss and benefit from their private type change, truthful equilibria supports players to

share the risk of type change equally even in the asymptotic cases. That is, players expect that the

amount of loss they have in some state will be canceled out by benefit in another state, they will

not break equilibrium that shares risk of uncertainty equally among players. However, replace-

able players cannot use such “long-run rebalancing,” they are more likely to be tempted to exploit

current private information.

Mailath and Samuelson (2000) considers the stochastic game that one-sided replacement of player

involves the private type change. They considered the perfect (Bayesian) equilibrium under im-

perfect monitoring and side payment. Given that the signaling device provides statistically dis-

tinguishable information for the uncertain type of players, they can asymptotically achieve co-

operative outcome as a part of equilibrium path. However, side payment between players in the

same side plays connects different identity as if the same long-run player. That is, side payment

directly transfers the accumulated/exploited value of the previous history between different indi-

vidual identities, so that a string of replaceable players play a role of a single long-run player. As

a result, they are allowed to achieve the similar (efficient) outcome from fixed individual identity

even with replacement. However, only a one side of player has private information and long-run

player, such reputation cannot be maintained. In Cripps et al (2004, 2007), whether the unin-

formed side player’s belief about the informed side player’s type is public (Cripps et al, 2004) or

private (Cripps et al, 2007), the informed side player’s reputation (as different type) will disappear

eventually. That is, one-sided replacement of player also supports truthful equilibrium because

players can specify who is responsible for deviation from equilibrium path. Different from one-

sided replacement literature, this study focuses on a two-sided replaceable players environment in

which players cannot completely specify responsibility of actual players. Two-sided replaceable

case supports equilibrium that only a one side of player takes all responsibility of the past devia-
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tion. Except this, two-sided replaceable case also supports equilibrium that two sides of players

are equally share responsibility of the past deviation when the loss of deviation is too huge. In

one-sided replacement case, asking share of such loss will not be accepted to innocent player side.

1.2.3 Renegotiation-Proofness

In repeated game, any equilibrium that contains more than a single phase cannot avoid the problem

that whether each phase’s equilibrium strategy is robust to coalition among players. That is, if

players are open to renegotiation, they may try to avoid punishment phase which will cost not

only the punished one but also punishers. For this matter, Farrell and Maskin (1989) considered

the weak renegotiation-proofness (WRP) under the complete information. WRP requires that the

expected payoff from each phase should not be strictly dominated by that from the other phases.

They defined players’ state as the phase and restricted equilibrium strategy depends on such state.

For example, if some player can strictly improve payoff by changing to a new phase (state), then

there should be another player who weakly prefer current phase to the new phase. Pearce (1989),

Ray (1994), Benoit and Krishna (1993), Van Damme (1989) presented more general notion of

renegotiation-proofness that defines each finite history as each single state. In Pearce (1989), it

was shown that renegotiation-proof equilibrium’s payoff can asymptotically achieve the payoff

at the Pareto frontier. Ray (1994) expanded the result that such payoff may exists as singleton

sets or a continuous set on the Pareto frontier. Especially when we focus on the perfect Bayesian

equilibrium, we can exploit and expand the notion of Pearce (1989) into the incomplete information

game. Different from Pearce (1989) and Ray (1994), this study presents the possibility that the

incomplete information itself can restrict payoff from the Pareto frontier without signaling device

and/or side payment.
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H L
H (x, x) (z, w)
L (w, z) (y, y)

Table 1.1: A Payoff Structure of A Prisoner’s Dilemma game

1.3 Model

1.3.1 Basic Game Environment

I consider a stage game g with two sides of players, i = 1, 2. The stage game is a symmetric

simultaneous two-person prisoner’s dilemma game of Figure 0. Payoff structure is assume to be w

> x > y > z and 2x > w + z. Each side of individual players has type T ∈ {Normal, Stackelberg}.

The type of each individual player will be fixed until the player quits the game. An individual

player of the side i plays the game g with the player of the opponent side j (6=i). To denote the

opponent side j in terms of the opponent side of i, I will denote him/her side as -i. t ∈{0, 1, 2, · · ·}

is a discrete calendar time period. At
i is a finite set of actions for the player of the side i at time

t and at
i ∈At

i is a pure action of player of side i. Simply I denote them as the set of the player i’s

actions and the player i’s action at t respectively. At ≡ At
1×At

2 is a finite set of pure action profiles

at t at = (at
1, at

2). A Normal type (henceforth, type N) player has the set of actions {H, L} and a

Stackelberg (henceforth, type S) player has a singleton action set {L}. In other words, players can

distinguish the type N player from the type S player only by the observation of action H. We call

that H and L as a cooperative and defect action respectively.

In the repeated game, each player can be independently replaced with a strictly positive and fixed

probability at the end of each period. Formally, λ ∈ (0, 1) is a common probability of replacement

of players. θ ∈ (0, 1) is a probability that newly replaced player is the type N. δ ∈ (0, 1] is a

common time preference factor for future payoffs. I denote a repeated game under two-sided re-

placement G(g, λ , θ , δ ) consists of the stage-wise game3 g, the replacement rate λ , the distribution

of the type N player θ , and the time preference δ . In this environment, I focus on the equilibrium

3I assume that the stage-wise game g contains the set of players’ type.
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which only relies on the individual players’ incentive. Since I depict the situation in which the in-

dividual player is the decision maker, it is proper to consider only the individual players’ incentive.

For this reason, I handle actions, beliefs, and histories in the perspective of individual players at

the corresponding period. So I simply denote ’a player of side i’ as ’a player i.’

Before we define strategy in the next subsection, we need to consider a form of information that

players have at the beginning of each period. I assume that players share all history of past actions

and strategies of both sides. That is, even though players are replaceable over period, they can

access to information about past actions and strategies played by their predecessors. I assume that

players cannot observe replacement of player(s) of the opponent side and players are allowed to

adopt any public signaling devices that gives information about two players’ type. In other words,

a full history of the past actions and strategies is the only available public information. Formally,

ht = (a1
1, a1

2, · · · , at−1
1 , at−1

2 ) is a history at the beginning of period t. H is the set of all finite

histories. For each t, the set of all finite histories upto time t H t is the subset of H .

We can imagine the environment as following: consider each side of the game as the board of

a firm, and two firms invest to the joint project. Individual players are individual traders for the

firm hired by the board to delegate the firm’s invenstment decision. The board may have different

perspectives about the joint project, so that they hire a normal trader with θ or a aggresive trader

with probability 1 - θ . Firms guarantee anonymity of staffs and individual traders make decisions

based upon their attitude. Individual traders observe all the past histories of two firms, but they

may not know the private information about the past traders. Replacement decision occurs inde-

pendent of the individual traders’ attitudes and actual outcomes of their decisions. For example,

the personnel appointment process of the board, or a personal relation between the board member

and the trader could be reasons for the replacement. However, the traders will not be fired because

of the outcomes of their decisions or their attitude about the investment.
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1.1. Strategy and Belief

I define a (public) strategy of the type N player i αi: H →[0, 1] as a probability to play action

H. Since only type N players are able to play action H, the strategy is only available for type N

player. A is the set of all strategies. For specific history ht , I denote α t
i ≡ αi(ht). Similarly, I

define the strategy of the player -i α−iand a strategy profile α = (α1, α2) respectively. ui(at) is a

payoff function of the player i with respect to the action profile at = (at
1, at

2). Then, ui(L, H) = w >

ui(H, H) = x > ui(L, L) = y > ui(H, L) = z and 2x > w + z.

µi: H →[0, 1] is the player i’s belie f that player -i is the type N player with respect to history.

For specific history ht , I denote µ t
i ≡ µi(ht). µ0

i is the player i’s initial belief about the player -i’s

type. Similarly, the player -i’s belief and initial belief about the player i’s type is denoted by µ−i

and µ0
−i respectively. Also I define a belief pair and belief pair at history ht µ = (µ1, µ2) and µ t =

(µ t
1, µ t

2) respectively. I assume that the initial belief pair is a common knowledge and belief pair

updated from the previous period is inherited as a common knowledge. That is, players in every

period know the belief pair updated from the played actions and specified strategies in the previous

stage.

Specifically, I assume that the belief pair follows the Bayesian belief update rule with respect to

the strategy profile α . Without loss of generality, I consider the update rule (or the transition rule)

for µ from ht−1 with respect to strategy α . Then, player i will update his/her belief to µ t
i = (1-λ ) +

λθ = 1-λ (1-θ ) if he/she observes player -i’s previous action at−1
−i = H. On the while, if the player

i observes at−1
−i = L, then µ t

i will be updated to

µ
t
i = λθ +(1−λ )

[
µ

t−1
i
(
1−α

t−1
−i
)

(1−µ
t−1
i )+µ

t−1
i
(
1−α

t−1
−i
)] .

I can define the Bayesian belief update rule for the player -i’s belief at ht−1 in a similar way. Notice

that at−1
−i = H immediately jumps up the player i’s belief to µ t

i = 1-λ (1-θ ), the highest level of belief

that players can have. I denote the maximum belief µ ≡ 1-λ (1-θ ). On the other side, µ t
i = λθ is

the lowest level of belief that players can have in case of α
t−1
−i = 1 while he/she observes at−1

−i = L.
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Similarly I denote the minimum belief µ ≡ λθ . Then, I can restrict a set of possible beliefs M ≡

[µ , µ] ⊂ [0, 1].

U1(α ,µ; ht) is a stage-wise expected payoff of the player 1 with respect to the strategy profile α

and the belief pair µ with respect to history ht . For simplicity, I denote U1(α ,µ; ht) ≡U1(α t ,µ t).

Then we have

U1((H,α t
2),(µ

t
1,µ

t
2)) = µ t

1 ·
(
u1(H,H) ·α t

2 +u1(H,L) · (1−α t
2)
)
+(1−µ t

1) ·u1(H,L) ,

U1((L,α t
2),(µ

t
1,µ

t
2)) = µ t

1 ·
(
u1(L,H) ·α t

2 +u1(L,L) · (1−α t
2)
)
+(1−µ t

1) ·u1(L,L) ,

U1(α
t ,µ t) = α t

1 ·U1((H,α2),(µ
t
1,µ

t
2))+(1−α t

1) ·U1((L,α−i),(µ
t
1,µ

t
2)) .

Player 2’s expected payoff is similarly defined. From the stage-wise expected payoff, I define an

expected continuation payoffs for the player i in the repeated game G(g, λ , θ , δ ) with respect to

strategy α and belief pair µ at history ht ;

Vi(α,µ;ht) = Ui(α
t ,µ t)+

∞

∑
s=1

((1−λ )δ )s

[
∑

∀ht+s s.t.Prα (ht+s|ht)>0
Prα(ht+s|ht)Ui(α

t+s,µ t+s)

]
= Ui(α

t ,µ t)+(1−λ )δEht+1∼Prα (ht+1|ht)

[
Vi(α,µ;ht+1)

]
,

where Prα (ht+s | ht) is an ex-ante transition probability from the history ht to ht+s with respect to

the strategy profile α . From this formation, I define the (subgame) perfect Bayesian equilibrium

(α , µ) as following.

Definition 1. Consider a repeated game under two-sided replacement G(g, λ , θ , δ ). Suppose that

G has a initial belief pair µ0. Then, the perfect Bayesian equilibrium consists of a strategy α:

H→ [0, 1]2 and a belief system µ: H→ M2 such that, ∀i, ∀ht ,

(i) Vi(α,µ;ht) ≥ Vi((α
′
i ,α−i),µ;ht) ∀α ′i ∈ A ,

(ii) µ
t+1
i = Pr[T t+1

−i = N| α , µ , ht] ∀t, where T t+1
−i is the type of player -i at t + 1.
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1.4 Threshold Equilibrium

1.4.1 Threshold Strategy

A threshold strategy of the repeated game G(g, λ , θ , δ ) with respect to a threshold τ∗ = (τ∗A, τ∗B)

is the pure strategy (subgame) perfect Bayesian equilibrium equipped with the strategy ατ∗ and

corresponding belief system µτ∗ .

Definition 2. Consider a repeated game under two-sided replacement G(g, λ , θ , δ ). I define a

T hreshold Strategy ατ∗ : H→ {0, 1}2 with respect to a threshold τ∗ = (τ∗A, τ∗B) such that, for each

i = 1, 2 and ∀ht

αi,τ∗(ht) =


1 i f (µ t

i , µ t
−i)≥ (τ∗A,τ

∗
B)

0 otherwise

I assume that threshold strategy includes a binary state process such that each belief pair is trans-

lated into the binary (Markovian) state and then each state is mapped into pure action strategy.

Since I assumed stage game g to be symmetric prisoner’s dilemma game, two sides of players will

have symmetric form. Without loss of generality, I will abuse a notation α∗ ≡ ατ∗ and µτ∗ ≡ µ∗.

We can formally define the threshold equilibrium as following;

Definition 3. Consider a repeated game under two-sided replacement G(g, λ , θ , δ ). Suppose that

G has a initial belief pair µ0 = (µ0
i , µ0

−i). Then, a threshold equilibrium (TEQ) with threshold τ∗

= (τ∗i , τ∗−i) consists of a threshold strategy α∗ : H → {0, 1}2 and a belief system µ∗ :H →M2

such that, ∀i, ∀ht ,

(i) Vi(α∗, µ∗; ht) ≥Vi((α ′i , α∗−i), µ∗; ht) ∀α ′i ∈ A ,

(ii) µ
∗,t+1
i = Pr[T t+1

−i = N | α∗, µ∗, ht] ∀t.

Threshold equilibrium has an implication to renegotiation-proofness in the repeated game with the

two-sided replacement environment. On a one hand, the environment contains strictly positive
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amount of uncertainty about the opponent’s type at every period. On the other hand, perfect moni-

toring on history of actions, players must hold public belief about each player’s type and the type

only can be verified by the cooperate action.

From a definition of threshold equilibrium, we induce an individual rationality (IR) condition. For

simplicity, I will use a notation for the replacement rate weighted discount factor η ≡ δ (1-λ ). I

will also use a notiation for threshold equilibrium (α∗, τ∗) to specify a threshold τ∗4 and simplify

the expected payoff Vi(α∗; µ∗, t) ≡ Vi(α∗, µ∗; ht).

Definition 4 (Individual Rationality). Fix G(g,δ ,λ ,θ ). Suppose a set of the threshold equilibria is

nonempty. Then, a threshold equilibrium (α∗, τ∗) satisfies individual rationality if Vi(α∗| µ∗, t) ≥
b

1−η
∀ht and ∀i.

This individual rationality bounds the least expected payoff for threshold equilibrium payoff, which

is came from a trivial equilibrium in which both players play L irrelevant to the history. With

consideration of individual rationality, I redefine a non-trivial threshold equilibrium.

Definition 5 (Non-Trivial Threshold Equilibrium). Fix G(g,δ ,λ ,θ ). Suppose a set of the threshold

equilibria is nonempty. Then, a threshold equilibrium (α∗, τ∗) such that τ∗A, τ∗B ≤ µ resepctively

and satisfies individual rationality is a non− trivial threshold equilibrium.

1.4.2 Markovian State Space

In this subsection, I construct a Markovian state space (henceforth, state space) that translates level

of belief into discrete state.

Definition 6. Fix G(g, λ , θ , δ ). I define a lower− side belie f µk
HL at k such that

4For belief system that follows Bayesian updating rule, I will implicitly assume that to be attached to threshold
strategy α∗. In other words, a threshold equilibrium (α∗, τ∗) is equivalent to a PBE (α∗, µ∗) consists of threshold
strategy α∗≡ α(τ∗i ,τ

∗
−i)

and corresponding belief system µ∗≡µ(τ∗i ,τ
∗
−i)

.
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𝑡
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τ periods of the 
equilibrium play L 

Deviation from 
Cooperative Phase 

Cooperation at 
Cooperative Phase 

Figure 1.1: A lower-side belief

µ
k
HL =

[
µ 1−µ

] µ 1−µ

µ 1−µ


k−1 µ

µ

 ,
and a upper− side belie f µk

LH at k such that

µ
k
LH =

[
µ 1−µ

] µ 1−µ

µ 1−µ


k−1 µ

µ

 ,
for any t > 0.

Moreover, I define µ0
HL = µ and µ0

LH = µ .

A lower-side belief truncates k - period history of equilibrium play (L, L) starting from µ . Consider

a history hk+1 = ((L, L))k from the initial belief µ and assume that hk+1 is induced from the

threshold strategy α . Then, the Bayesian update rule transits the player i’s belief (after observing

hk) to µk
HL. For k = 1, the player i’s belief after observing one period of (L, L) is µ·µ + (1 -

µ)·µ = µ1
HL. Similarly, for k = 2, observation of two period history ((L, L), (L, L)) updates his/her

belief to µ1
HL·µ + (1 - µ1

HL)·(1 - µ) = µ2
HL. By extending this logic, I derive a lower-side belief

µk
HL for k periods of equilibrium play (L, L). An upper-side belief similarly describes k periods

history of equilibrium play (L, L) starting from µ . Following lemma describes boundary points

and convergence property for lower- and upper-side beliefs.

Lemma 1. Fix G(g, λ , θ , δ ). Then, following holds:
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(1) For any k ≥ 0, µ ≤ µk
HL ≤ µ

k+1
HL < θ and θ < µ

k+1
LH ≤ µk

LH ≤ µ ,

(2) ∀ε > 0, ∃THL < ∞ such that ∀k ≥ THL , |µk
HL - θ | < ε ,

(3) ∀ε > 0, ∃TLH < ∞ such that ∀τ ≥ TLH , |µk
LH - θ | < ε

Proof. See the appendix.

[Lemma 1] says that (1) lower- and upper-side belief is divided by a boundary point θ , and ((2),

(3)) can arrive arbitrarily closely to the boundary point within finite periods of equilibrium play (L,

L) from any side. From lemma 1, I define the least arrival time as following.

Definition 7. Fix G(g, λ , θ , δ ). T (µ) is the arrival time from µ to µ if µ
T (µ)+1
LH ≤ µ , µ < µ

T (µ)
LH ,

and T (µ) < ∞ . Similarly, T (µ) is the arrival time from µ to µ , if µ
T (µ)
HL ≥ µ , µ > µ

T (µ)−1
HL , and

T (µ) < ∞.

Moreover, I define T (µ) = ∞ if µ ≥ θ and T (µ) = ∞ if µ ≤ θ respectively.

The least arrival time T (µ) counts the least number of periods such that µk
HL becomes higher than

some belief level µ after that. So, for any k ≥ T (µ), µk
HL ≥ µ holds. Similarly, the arrival time

T (µ) counts the greatest number of periods such that µk
LH remains higher than µ until that time.

So, for any k ≤ T (µ), µ ≤ µk
LH holds.

By using above definitions, we can find a partition on M according to the arrival times from µ and

µ respectively. Formally,

Definition 8. Fix G(g, λ , θ , δ ). I define a partition on M PM = {µ0
HL=µ , µ1

HL, · · · , θ , · · · , µ1
LH ,

µ0
LH = µ} and a Markovian state space Ω ≡ PM × PM which contains countably many states.

1.5 Equilibrium Characterization

In this section, I will characterize threshold equilibrium in terms of equilibrium path of plays. For

this purpose, we will see that threshold equilibrium can be characterized by the level of threshold
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beliefs. [Proposition 1] restricts forms of threshold equilibria with respect to their threshold belief

pairs’ least arrival time.

Proposition 1. Consider a repeated game under two-sided replacement G(g, λ , θ , δ ) with a initial

belief µ0 = (µ0
1 , µ0

2 ). Then, any threshold τ∗ of the threshold equilibrium satisfies either

(1) τ∗A ≥ θ , τ∗A ≥ τ∗B, and T (τ∗A) < min{T (τ∗B) + 1, T (τ∗B) } or

(2) θ > τ∗A > τ∗B ≥µ and T (τ∗A) > T (τ∗B)

(3) θ > τ∗A and T (τ∗A) = T (τ∗B) or

Proof. See the appendix..

[Proposition 1] restricts a pair of thresholds to three cases: (1) threshold for own belief is not

only weakly higher than the threshold for the opponent’s belief but also higher than the probability

distribution of the type N θ , (2) both are lower than θ , or (3) otherwise, at least they have the same

level. The threshold pair τ = (τA, τB) where τA < τB cannot support any threshold equilibrium.

From the [proposition 1] that restricts the available formation of the threshold pairs, we can easily

describe the formation of threshold equilibrium only by describing the the least arrival time of each

threshold. Combining this result with the construction of Markovian state space allows us to find

equivalence between two threshold equilibria in terms of the least arrival time of each threshold.

Corollary 1. Consider any two different thresholds (τ∗A, τ∗B) and (τ#
A, τ#

B) that supports threshold

equilibrium respectively. If

(T (τ∗A), T (τ∗A), T (τ∗B), T (τ∗B)) = (T (τ#
A), T (τ#

A), T (τ#
B), T (τ#

B)),

then induced threshold strategies α∗ and α# follows exactly same on-the-equilibrium (and off-the-

equilibrium paths) for any history ht .

[Corollary 1] provides us a device we can exploit to characterize threshold equilibrium. I define

a quartet (T (τ∗A), T (τ∗A), T (τ∗B), T (τ∗B)) = (n, m, s, t) to characterize threshold equilibrium. In the
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Figure 1.2: On-The-Equilirium path from α(µ∗i ,µ∗−i)
at (µi, µ−i) = (µ , µ)

following sections, we will see that the quartet is enough to depict whole on-the-equilibrium paths.

1.5.1 Infinite Punishment Equilibrium

In this subsection, I describe infinite punishment equilibrium, the case corresponds to (1) of [Propo-

sition 1]. [Theorem 1] formally describes behavioral pattern and threshold characterization of

infinite punishment equilibrium.

Theorem 1. (Infinite Punishment Equilibrium)

Fix G(g, λ , θ , δ ). Suppose that there exists some threshold equilibrium (α∗, τ∗). Then, followings

are equivalent;

(1) Threshold strategy α∗ has two phases on the equilibrium path:

(Cooperation) Any type N players play H at t if at−1 = (H, H).

(Punishment) For any t, if there is any L played in ht , then any player plays L at t .

(2) Threshold pair τ∗ is characterized by the quartet (n, m, s, t) where m < ∞ and x m
min{s, t+1}y < 1.

Infinite punishment equilibrium depicts a case in which players set higher threshold for own thresh-

old level than opponent’s belief on oneself (τ∗A ≥τ∗B) , but players cannot set too high own threshold
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level than opponent’s threshold level (T (τ∗A) < min {T (τ∗B)+ 1, T (τ∗B)}). Consider the case with

(µ1, µ2) = (µ , µ) where m < ∞ and x m
min{s, t+1}y < 1. As long as they follow equilibrium path,

players will arrive to (µ1, µ2) = (µm
LH , µm

HL) after m periods. Since µm
HL < min{µ

t+1
LH , µs

HL} and

µm
HL < µm

LH , both players would play L; even though player 1’s belief level is high enough, player

2’s belief level is not enough high so that she will not respond to cooperate action H. For further

play of the equilibrium strategy, both players’ belief will be depreciate to below µm
LH so that they

would not play H at all. That is, (infinite) punishment phase describes in which (at least) one side

of player cannot accumulate higher than threshold level before her opponent’s belief depreciates

below threshold level.

(1) of [Theorem 1] characterizes behavioral patterhn of infinite punishment strategy on the equi-

librium path. That is, players play H only if when they observed (H, H) from the past history

(cooperation phase) and plays L forever once they observe any L in any past history (punishment

phase). (2) of [Theorem 1] characterizes symmetric thresholds that induce such infinite punishment

strategy. Following proposition describes an incentive compatibility condition to support infinite

punishment equilibrium.

Proposition 2. Suppose G(g, λ , θ , δ ) satisfies

V GT
IC0 ≤

(
z+

η

1−η
y
)
< min{V GT

IC1 , V GT
IC2}

where V GT
IC0 =

(
µw+ 1−µ(1−η)

1−η
y− x

1−ηµ

)
1−µ

, V GT
IC1 =

(
1−η(1−θ)

1−η
y−z−ηθw− η2θ µ

1−ηµ
x
)

η2θ

(
(1−µ)+µ

η(1−µ)
1−ηµ

) , V GT
IC2 =

(
y

1−η
−z− µ1

LH η

1−ηµ
x
)

η

(
(1−µ1

LH)+µ1
LH

η(1−µ)
1−ηµ

) .

Then, the game G has (at least one) threshold equilibrium characterized by (n, m, s, t) such that m

< ∞ and x m
min{s, t+1}y < 1.

Condition of the [Proposition 2] is an incentive compatibility conditions under which the game has

at least one threshold equilibrium characterized by (n, m, s, t) such that m < ∞ and x m
min{s, t+1}y

< 1. V GT
IC0 ≤ z+ η

1−η
y is an incentive compatibility condition for a cooperation phase. That is, as

long as the condition is satisfied, type N players observed (H, H) in the last period will contnitue
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Figure 1.3: One-shot-deviation path from α∗ at (µi, µ−i) = (µ t
LH , µ t

HL)

to play H to maintain the cooperation phase. z+ η

1−η
y ≤ V GT

IC1 is an incentive compatibility con-

dition for a punishment phase which started from the opponent side’s deviation. That is, once the

condition is satisfied, the type N player would not deviate from playing L of punishment phase

which started from the opponent side’s play L. For such “innocent” side player, playing H will not

be effective way of deviation. Even though her deviation “signals” her type and will induce her

opponent to respond with following H, she will not be better off than keep playing L because of

her cost of “signaling.” z+ η

1−η
y ≤ V GT

IC2 is an incentive compatibility condition for punishment

phase which started from her own side’s deviation. That is, player would not deviate from playing

L when herself or one of her predecessors is the first guilty player who broke the latest cooper-

ation phase. For this reason, the deviation will be more effective signaling in that it is likely to

responded by following H from both sides. V GT
IC2 restricts long-run benefit from deviation followed

by possible cooperation phase. Once all these conditions are satisfied, we always have an infinite

punishment equilibrium characterized by (n, m, s, t) = (∞, 0, ∞, 0). IC condition for the other

infinite punishment equilibria will be always implied automatically from the [Proposition 3].

[Figure 1. 3] depicts a path of one-shot-deviation at (µ t
LH , µ t

HL) and τ∗A = µ
t+1
LH and θ > τ∗B > µ

t+1
HL .

By exploiting one-shot-deviation principle, I compare expected payoffs from equilibrium strategy

α∗i and a one-shot-deviation strategy αi’. Let α ′i to be one-shot-deviation strategy such that type N
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Figure 1.4: Ranges of IC conditions at the infinite punishmentequilibrium, where θ = 0.9, x = 2, y
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player i plays H only at period t and then return to α∗i . Then playing H will immediately “signal”

her type to her opponent (player -i) and µ
t+1
−i will jump to µ . As long as her opponent plays

equilibrium strategy α∗−i, the player i’s belief µ
t+1
LH will remain on the threshold τ∗A. As a result,

player i has a belief pair (µ t+1
LH , µ) ≥(τ∗A, τ∗B) and player -i has a belief pair (µ , µ

t+1
LH ) ≥(τ∗A, τ∗B)

which supposed to induce the cooperative play (H, H) at the next period as long as both players are

remained as type N. That is, the player i considers a continuation payoff from deviation followed

by cooperation phase. Interestingly, from some game G(g, λ , θ , δ ), we can find the case in which

those conditions are all satisfied. See the [Figure 1-4].

[Figure 1. 4] depicts range of parameters δ and 1 - λ that satisfies [Proposition 3] at g (x = 2, y =

1, w = 3, z = 0) and θ = 0.9. An area above blue line satisfies VIC0 ≤ z+ η

1−η
y and an area below

red line satisfies condition z+ η

1−η
y ≤ min{VIC1, VIC2}. Especially, along the blue line, infinite

punishment equilibrium is the only available threshold equilibrium. That is, within the boundary

line of parameters, cooperation is supported as a part of equilibrium play and any deviation from

cooperation phase will trigger an infinite play of (L, L).

Such infinite punishment equilibrium is supported because of uncertainty about opponent side

player’s type. That is, uncertainty about opponent’s type restricts actual effectiveness of renegoti-

ation to the case where opponent is the type N player. For this reason, the type N player cannot
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Figure 1.5: Finite Punishment Equilibrium from α(µ∗i ,µ∗−i)
at (µi, µ−i) = (µ , µ)

assure of renegotiation that agrees to play H during punishment phase unless they are “persuaded

by action.” However, low δ will not return high enough long-run payoff as much as the cost paid

to show their actual type. As a result, even though both players are allowed to renegotiate to finish

infinite punishment, they will not take short-run loss required to relaunch a new cooperation phase.

1.5.2 Finite Punishment Equilibrium

In this subsection, I characterize threshold equilibrium that allows cyclic interchange between

cooperation phase and punishment phase. (3) of [Proposition 1] corresponds to this case. Similar

to infinite punishment equilibrium, both players will play H during the cooperative phase as long

as they observe (H, H) in the last period. Once either of side plays L, they will immediately turn to

punishment phase and play (L, L) for finite periods. After finite periods of playing (L, L), type N

players of both sides play cooperate action H. That is, type N players signal to each other irrelevant

to causes to the latest punishment phase. After this signaling, both type N players will continue

to play equilibrium strategy of cooperative phase or another punishment phase. We call it a finite

punishment equilibrium.

Theorem 2. Fix G(g, λ , θ , δ ). Then, followings are equivalent;
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(1) Threshold equilibrium (α∗, τ∗) consists of following phases:

(Cooperation) Any type N players play H at t if at−1 = (H, H).

(Punishment) Suppose some player (side) deviated from cooperation phase. Then, both players

play L for n periods. Right after n periods of (L, L), any type N players plays H.

(2) Threshold τ∗ of (α∗, τ∗) is characterized by (n, m, s, t) where x m
min{s, t+1}y = ∞ and s = n < ∞.

(3) There exists n < ∞ such that

(IC 1) µn
HLV FN

ICA
(n) + (1 - µn

HL)V FN
ICB

(n) ≥ µn
HLV FN

ICC
(n) + (1 - µn

HL)V FN
ICD

(n),

(IC 2) z + η

(
µ1

LHV FN
ICA

(n)+(1−µ1
LH)V

FN
ICB

(n)
)
≤ 1−ηn

1−η
y + ηn

(
µn

LHV FN
ICA

(n)+(1−µn
LH)V

FN
ICB

(n)
)

,

where V FN
ICA

(n) =
x+η(1−µ)V FN

ICB
(n)

1−ηµ
= x + ηVi(α∗|(µ , µ)),

V FN
ICB

(n) =

(
z+η

1−ηn
1−η

y+ηn+1 µn
HL ·x

1−ηµ

)
1−
(

µn
HL

η(1−µ)
1−ηµ

+(1−µn
HL)
)

ηn+1
= z + ηVi(α∗|(µ , µ))

V FN
ICC

(n) = w + η
1−ηn

1−η
y + ηn+1

(
µn

LH ·V IF
ICA

(n)+(1−µn
LH) ·V IF

ICB
(n)
)

= Vi(α∗|(µ ,µ)),

V FN
ICD

(n) = 1−ηn+1

1−η
y + ηn+1

(
µn

HL ·V IF
ICA

(n)+(1−µn
HL) ·V IF

ICB
(n)
)
= Vi(α∗|(µ ,µ)).

[Theorem 2] characterizes threshold equilibrium that imposes finite n periods of punishment play

L for one-sided deviation or for two-sided deviation. Each incentive compatibility condition char-

acterizes a condition under which players will not deviate from equilibrium path of each phase. (IC

1) is incentive compatibility condition for cooperation phase. Left hand side of inequality depicts

an expected continuation payoff from equilibrium path of coopeation phase (i.e., type N player i

plays H). Similarly, right hand side of inequality depicts expected payoff from using a one-shot

deviation strategy (i.e., type N player i plays L and then return to equilibrium strategy). For the

case of two-sided deviation, the least level of belief for coopeation phase will be µn
HL. As long as

(IC 1) holds at the least belief level µn
HL, any other belief above it will hold with strict inequality.

[Figure 1-5] depicts on-the-equilibrium path starting from (µ , µ). (IC 2) is incentive compatibility

condition for punishment phase started from own side deviation. Left hand side of (IC2) inequality

depicts expected continuation payoff of the type N player i at (µi, µ−i) = (µ , µ) when she plays the
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Figure 1.6: One-shot-deviation Path at (µ t
LH , µ t

HL)

one-shot deviation action H during punishment phase. By sacrificing one period payoff as much

as (y - z), player i can expect earlier return from current punishment phase at the next period. Right

hand side of (IC 2) depicts expected continuation payoff of player i when she follows equilibrium

strategy of punishment phase. Once (IC 2) holds for the worst case at which player has n remain-

ing punishment period at higher belief level µ , the other cases at which she has shorter remaining

punishment phase at µ t
LH will automatically hold.

[Figure 1. 6] depicts one-shot-deviation path at punishment phase at belief level (µ t
LH , µ t

HL) and

τ∗A ≤ µ
t+1
LH . In case that only one side deviated from the latest cooperation phase, cooperate action

H from the guilty side will be effective to finish punishment phase early. After deviation, belief

pair will be updated to (µ t+1
LH , µ) and both players will agree to play H at the next period. On the

other hand, deviation H from the innocent side will not be so effective to finish punishment phase.

Action H from the innocent side signals only for her side’s type, the guilty side may not be assured

about whether the innocent side has enough belief about own her side. For this reason, players

cannot agree to the innocent side’s willingness for cooperation.

[Figure 1. 7] describes result of numerical example that satisfies IC conditions for finite punish-

ment equilibrium in the plane of δ and 1 - λ . As in the example of infinite punishment equilibrium,

we can find restriction on existence of finite punishment equilibrium. A lower bound for existence
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Figure 1.7: Ranges of IC conditions at the 5-period-punishment equilibrium at the game where θ

= 0.9, x = 2, y = 1, w = 2.5, z = -1, y-axis: [1-Lambda] = 1-λ , x-axis : [Delta] = δ

of each finite punishment equilibrium (of certain n) corresponds to combination of parameters at

which (IC 1) holds with equality. Similarly, a upper bound corresponds to (IC 2). Similar to infi-

nite punishment equilibrium case, δ and λ play different roles at each IC condition. In (IC 1), δ

and λ play a role of discount factor that encourages players to play cooperate action by enhanc-

ing continuation payoff of cooperation phase. That is, players are more willing to play cooperate

action because they can can expect longer periods of cooperation phase with less future discount.

On the other hand, in (IC 2), δ and λ discourages players to deviate from punishment phase. As

higher δ and 1-λ induce higher expected payoff at cooperation phase, the guilty side player is more

tempted to signal herself by playing H rather than keep following equilibrium path of punishment

phase. In other words, players are more tempted to exploit her private information. For this reason,

supporting threshold equilibrium with certain length of punishment phase requires parameters not

to high.

1.5.3 Penance Equilibrium

In this subsection, I consider threshold equilibrium where players play different action depends

on the past history of actions. Threshold formation (2) of [Proposition 1] corresponds to this
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case. Players play cooperate action H during cooperation phase. Different from previous threshold

equilibria, behavioral pattern after observing first deviation from cooperation phase will be differed

depends on history. First, suppose that only player i played defect action during cooperation phase.

Then, players turn into a penance phase. During penance phase, type N player i (guilty side)

immediately plays H and player -i (innocent side) will play L until she observes player i’s action H.

Once player i plays H, both players return to cooperation phase. Second, suppose that both players

played defect action at the same time during cooperation phase. Then, they turn into punishment

phase and play defect action L for finite periods. After punishment phase, both players return to

cooperation phase. [Figure 1. 8] describes on-the-equilibrium path of penance equilibrium when

player 1 is type N player.

Theorem 3. Fix G(g, λ , θ , δ ). Then, followings are equivalent;

(1) Threshold equilibrium (α∗, τ∗) consists of following phases:

(Cooperation) Any type N players play H at t if at−1 = (H, H).

(Punishment) Suppose both players play L at the same time during the cooperation phase. Then,

both players play L for n periods and then return to cooperation phase.

(Penance) Suppose player i’s side deviated during cooperation phase while -i did not. Then, any
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type N player i plays H when she enters the game. Player -i plays L until she observes player i’s

action H. Once player i plays H for a period, then both players return to cooperation phase.

(2) Threshold equilibrium τ∗ of (α∗, τ∗) is characterized by (n, m, s, t) where x m
min{s, t+1}y = ∞ and

0 = s < n < ∞.

(3) There exists n < ∞ such that, for any i,

(IC 1) µn
HL (x+ηVi(α

∗|(µ̄, µ̄))) + (1−µn
HL)
(

z+ηVi(α|(µ, µ̄))
)
≥

µn
HL

(
w+ηVi(α|(µ̄,µ)

)
+ (1−µn

HL)
(

y+ηVi(α|(µ,µ))
)
,

(IC 2) 1−ηn

1−η
y + ηnVi(α | (µn

HL, µn
HL)) ≥z + ηVi(α | (µ1

HL, µ)),

(IC 3) z + ηVi(α | (µn+1
HL , µ)) ≥y + η

[
z+ηVi(α|(µn+2

HL ,µ))
]
.

Penance equilibrium allows players reacting differently to their opponent depends on the latest past

deviation history. Finite punishment equilibrium or infinite punishment equilibrium served both

players in the same way irrelevant to their past behavior. Such “equal” treatment was able to justify

because of replacement that partially separates current player from the past deviation. However,

penance equilibrium enforces any descendant player to take some responsibility for the past devia-

tion so that this “unequal” treatment can be considered as unfair treat. By sacrificing such “equal”

treatment, penance equilibrium allows players not to stay in punishment phase for unnecessarily

long periods. That is, players from guilty side can legitimately avoid costly punishment as long as

they are willing to pay for “signaling” themselves. As a result, existence of penance equilibrium is

less likely to be restricted by high enough δ and 1 -λ .

(IC 1) and (IC 2) respectively corresponds to (IC 1) and (IC 2) condition from finite punishment

equilibrium; that is, (IC 1) inequality characterizes the condition that any type N players play H as

long as they observed (H, H) at the previous period. (IC 2) inequality characterizes the condition

under which any type N player would not deviate from the punishment phase before they arrive at

the threshold belief level.

(IC 3) inequality characterizes the condition under which players would not defer or avoid their

current penance action (= H) to the next period even at the exact threshold belief. In (IC 3), defer-
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ring their current penance to the next period incurs exchanges in the expected continuation payoff.

When the player takes penance action immediately, she may have expected payoff from the cooper-

ation phase and the punishment phase weighted with µ
n+1
HL and 1 - µ

n+1
HL respectively. By deferring

one more period, players may avoid a cost for penance, but will to face the same problem with

slightly higher belief level µ
n+2
HL . That is, the player compares the expected continuation payoff

from the path after taking immediate penance action at the current belief to that from deferring

penance action at the higher belief. Since µ
n+2
HL - µ

n+1
HL is nonnegative according to [Lemma 1],

having a particular n that (IC 3) hold with (at least) equality is enough5 to show that (IC 3) is

satisfied at any k > n.

1.6 Discussion on Non-Trivial Threshold Equilibrium

1.6.1 Renegotiation-Proofness

In this subsection, I define renegotiation-proofness in the repeated game under the two-sided re-

placement environment. Basic notion of renegotiation-proofness may adopted from Pearce (1989).

Consider a perfect Bayesian equilibrium (α , µ) and (α ′, µ ′) of G(g, λ , θ , δ ). We assume that

there exists some ht such that α t 6=α
′t . We call (α , µ) (weakly) dominates (α ′, µ ′) if ∀i, ∀ht ,

Vi(α
′,µ ′;ht) ≥ Vi(α,µ;ht) and holds with strict inequality at least for one ht and i.

Definition 9. (Pearce, 1989)

Consider a repeated game under two-sided replacement G(g, λ , θ , δ ). Suppose that G has a initial

belief pair µ0. A perfect Bayesian equilibrium (α , µ) is a renegotiation-proof equilibrium if (α ,

µ) is not dominated by any other perfect Bayesian equilibrium.

In case where λ= 0 and θ = 1, renegotiation-proofness implies the weak renegotiation-proofness

(WRP) of Farrell and Maskin (1989). In the notion of Farrell and Maskin, WRP requires the

5For more details, see the proof of [Proposition 5] (c) that shows existence of penance equilibrium.
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equilibrium payoffs at any reachable state not to be dominated by any payoff at another reachable

state. Without loss of generality, we can define the state as a function of history ω: H →Ω, where

Ω is the set of (countable) states and ω t ≡ ω(ht). By replacing the history to the state, we can

similarly define a (subgame) perfect equilibrium (α , µ , ω , Ω).

Definition 10. Consider a repeated game under two-sided replacement G(g, 0, 1, δ )6. Suppose that

G has a initial belief pair µ0. A perfect Bayesian equilibrium (α , µ , ω , Ω) is weakly renegotiation-

proof if for all wt and ws (such that wt , ws ∈Ω respectively), Vi(α,µ;wt) > Vi(α,µ;ws) for some

i, then V−i(α,µ;ws) ≥ V−i(α,µ;wt).

Suppose that (α , µ , ω , Ω) violates WRP at reachable state ω t and ωs respectively. Formally,

for ω t , ωs ∈ Ω, Vi(α,µ;wt) > Vi(α,µ;ws) and V−i(α,µ;wt) > V−i(α,µ;ws). Then, consider

an agreement from both players at state ωs such that both players substitute their strategies to

the truncated strategies from ω t α |wt and induced truncated state ω |wt . This substitution immedi-

ately improves both players’ expected payoff to Vi(α,µ;wt) and V−i(α,µ;wt) respectively, so that

(α , µ , ω , Ω) violates the renegotiation-proofness. However, we cannot assure that the notion of

renegotiation-proofness is equivalent to WRP in general G(g, λ , θ , δ ) because there are cases in

which WRP is violated while renegotiation-proofness is satisfied.

On the other hand, the notion of one-shot deviation (henceforth, OSD) principle that guarantees op-

timality of subgame perfect equilibrium strategy can be extended to show renegotiation-proofness.

Different from the original OSD, renegotiation-proofness in our environment requires robustness

to one-shot deviation from the both sides of players at any history.

Proposition 3. Consider a repeated game under two-sided replacement G(g, λ , θ , δ ). Suppose

that G has the initial belief pair µ0. A pure strategy perfect Bayesian equilibrium (α , µ) is

renegotiation-proof if and only if, for any ht and µ t , there is no pure strategy and correspond-

ing belief system (α̂ , µ̂) that agrees with (α , µ) except at the single stage t, and such that (α̂ , µ̂)

6Assuming λ = 0 and θ = 1 as common knowledge fixes µ = (1, 1) for whole states and history. For that reason,
in such environment, belief pair plays no role. We keep µ to be included to the definition of the perfect Bayesian
equilibrium only for consistency of notation.
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dominates (α , µ) conditional on history ht and belief µ t being reached.

Proof. (⇒) Renegotiation-proofness automatically satisfies robustness to any two-sided OSD strate-

gies.

(⇐) Suppose that a PBE (α , µ) is not renegotiation-proof in G(g, λ , θ , δ ). We will show that

assuming robustness of (α , µ) to OSD for both sides contradicts with the non-renegotiation-

proofness of (α , µ).

Suppose that (α , µ) is robust to OSD for both sides at any ht and µ t . Then, playing OSD strategy

α̂ at any ht will not be beneficial for both players. Let denote the following history from such

deviation as ĥt+1 and induced belief µ̂ t+1. Then, for such history and induced belief, (α , µ) will

be not be dominated by another OSD, say (α ′, µ ′), by the assumption. By this way, concatenating

any finite length of (pure strategy) deviation from (α , µ) cannot dominate (α , µ) itself at the last

period of its deviation. By induction, any length of deviation from (α , µ) will not be better than

(α , µ) at any history and belief. Since we assume that (α , µ) is robust to any OSD for both sides at

any history and belief, (α , µ) is not dominated by any length of deviation starting from any history

so that it is renegotiation-proof, which is contradictory to the assumption.

Exploiting [Proposition 3] allows us to find renegotiation-proof equilibrium in the (nonempty) set

of threshold equilibrium.

Proposition 4. Fix G(g,δ ,λ ,θ ). Suppose the set of threshold equilibria is nonempty. Then there

exists a threshold equilibrium (α∗, τ∗) that is a (pure strategy) renegotiation-proof equilibrium.

Proof. See the Appendix.

Any two-sided renegotiation, especially for deviation from the punishment phase, is based upon the

actual “practice” of cooperate action, and such practice is also restricted by the fact that the player

is the type N player. Threshold equilibrium considers this fact explicitly so that it assumes that

players must confirm that not only herself has a high enough belief on her opponent but also she
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knows that her opponenet also believes about her type with high enough belief. That is, the set of

feasible non-trivial threshold equilibrium is already a restricted set of pure strategy equilibria that

assumes actual practicibility of each action. From this fact, finding the best threshold equilibrium

which is not dominated by any other feasible non-trivial threshold equilibria naturally allows the

equilibrium to be also robust to any other pure strategy OSD.

To show renegotiation-proofness of a certain non-trivial threshold equilibrium (under the assump-

tion the set of non-tirivial threshold equilibria is nonempty), I followed several steps in the proof.

Following paragraph describes the procedural order of the proof in the appendix, and explains the

purpose of each lemma. We begin with categorization of the Section 3. Each form of equilibrium

is defined with corresponding threshold level and incentive compatibility conditions. [Lemma 3]

and [Lemma 4] (of appendix) shows that each nonempty set of finite punishment and/or penance

equilibria has a certain finite and/or penance equilibium, which is not dominated by any other

threshold equilibria of the same form at each game respectively. Let denote such finite punish-

ment and penance equilibrium as (αFN , τFN) and (αPN , τPN) respectively. [Lemma 5] compares

those two threshold equilibria of different forms and shows that at least one of them will not be

dominated by another one at any (belief) state. We may call them as the best feasible threshold

equilibrium at the game. In [Lemma 6], I show that such best threshold equilibrium is also robust

to any two-sided OSD at each game. Then, by applying the [Proposition 3], we can find that there

exists a renegotiation-proof equilibrium in the nonempty set of threshold equilibria.

1.6.2 Existence and Uniqueness

In this subsection, I consider existence of threshold equilibrium on the range of δ and λ . From

a proof of existence for each equilibrium, a uniqueness of penance equilibrium is implicitly de-

rived. In the perspective that both parameters destermine individual player’s expectation for future

payoffs, they seems to have the similar role that controls the value of future payoffs. Especially

when we consider weighted discount factor η = δ (1 -λ ), this similarity of role is vivid. However,

33



two parameters play conflicting role related to a change of phase in threshold equilibrium, and this

difference in their role results uniqueness of threshold equilibrium at the asymptotic environment

where δ and 1 - λ are arbitrarily close to 1. [Proposition 5] describes existence of non-trivial

threshold equilibrium. In a process of existence proof, we will see that the only threshold equi-

librium that survives in the asymptotic environment is penance equilibrium. This result implicitly

implies that we have only one threshold equilibrium in such environment.

Proposition 5. Fix g and θ . Then, there exists a nonempty set of parameters (δE , λE)(g, θ ) ⊆

(0, 1)2 such that a nonempty set of non-trivial threshold equilibria exists if (δ , λ ) ∈ (δE , λE) (g,

θ ). Also, there exists a nonempty set of parameters (δP, λP)(g, θ ) ⊆ (δE , λE) (g, θ ) such that the

nonempty set of non-trivial equilibria only consists of penance equilibrium if (δ , λ ) ∈ (δP, λP)(g,

θ ).

Proof. We will see that each threshold equilibrium’s IC conditions do not hold at the same time.

(1) Infinite punishment equilibrium: Consider [Proposition 4]. In the formula of the proposition,

we have (
z+

η

1−η
y
)
< min{V GT

IC1 , V GT
IC2}

where V GT
IC1 =

(
1−η(1−θ)

1−η
y−z−ηθw− η2θ µ

1−ηµ
x
)

η2θ

(
(1−µ)+µ

η(1−µ)
1−ηµ

) , V GT
IC2 =

(
y

1−η
−z− µ1

LH η

1−ηµ
x
)

η

(
(1−µ1

LH)+µ1
LH

η(1−µ)
1−ηµ

) . For simplicity of compar-

ison, we turn them into the per-period average payoff by discounting them with (1-η). Then we

have

((1−η)z+ηy)< min
{
(1−η)V GT

IC1 , (1−η)V GT
IC2

}
.

As η→1, by exploiting L’Hopital’s rule, we have (1-η)V GT
IC1 → θ (y - x) and (1-η)V GT

IC2 → (y -

x) respectively. Since x > y > 0 and θ ∈ (0, 1), by the [Proposition 4], no infinite punishment

equilibria exist as η → 1 for any game.

(2) Finite punishment equilibrium: Consider (3) of [Theorem 2]. Without loss of generality,

suppose that τ∗i = µn∗
HL, where n* ≥ 2. Discounting the expected payoffs to per-period average,
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we have (1-η)V FN
ICA

(n) =
(1−η)

(
a+η(1−µ)V FN

ICB
(n)
)

1−ηµ
and (1-η)V FN

ICB
(n) =

(1−η)

(
z+η

1−ηn
1−η

y+ηn+1 µn
HL ·x

1−ηµ

)
1−
(

µn
HL

η(1−µ)
1−ηµ

+(1−µn
HL)
)

ηn+1
respec-

tively. Then, (IC 1) is rearranged as following:

Vi(α
∗
τ |(τ∗A, τ∗B)) ≥ Vi((α

′
i ,α
∗
τ,−i)|(τ∗A, τ∗B)) (IC 1)

⇔ (1−η)


(

τ
∗
AV FN

ICA
(n∗)+(1− τ

∗
A)V

FN
ICB

(n∗)
)
+

−η
n∗+1

(
V FN

ICA
(n∗)−V FN

ICB
(n∗)

1−η

)
τ
∗
A (µ

n∗
LH − τ

∗
A)

 ≥ 1−ηn∗

1−η
y + τ∗A(w− y).

When we fix n*, τ∗A ↓ 0 as η → 1. As a result, we have (1-η)V FN
ICB

(n)→ ny+z
n+1 as η → 1, so that we

violate the IR condition. To avoid such an IR violation, we need to assume τ∗A > v, where v ∈ [µ ,

θ ), as η → 1. When we suppose that τ∗A > v as η → 1,
(

µn∗
LH−τ∗A
1−η

)
τ∗A

(
V FN

ICA
(n∗)−V FN

ICB
(n∗)

)
should

not diverge to infinity. This term represents a loss from “missed signaling” that the player would

lose if the replaced opponent turned out to be a type S player. However, we have
V FN

ICA
(n∗)−V FN

ICB
(n∗)

1−η

→ ∞ as η → 1, letting τ∗A (µ
n∗
LH− τ∗A) > 0 (as η → 1) will not prevent LHS of (IC 1) diverging

to infinity. The only way we can avoid such divergence is allowing µn∗
LH ↓ θ and τ∗A ↑ θ , so that(

µn∗
LH−τ∗A
1−η

)
τ∗A

(
V FN

ICA
(n∗)−V FN

ICB
(n∗)

)
< ∞ for any η ' 1. However, such direction requires n* ↑ ∞

as η → 1.

Now we consider (IC 2). Rearranging (IC 2), we have brings follwing inequality:

Vi(α
∗
τ |(µ, µ)) ≥ Vi((α

′
i ,α
∗
τ,−i)|(µ, µ)) (IC 2)

⇔ 1−ηn∗

1−η
y+


η(ηn∗−1−1)

(
z+ηV FP(n∗)

)
+

η
(
η

n∗−1
µ

n∗
LH −µ

1
LH
)(

(x+ηV FP
(n∗))− (z+ηV FP(n∗))

)
︸ ︷︷ ︸

 ≥ z.

→−(n∗−1)x and n∗ ↑ ∞

LHS of (IC2) is consists of two items; the expected payoffs during the (n* periods of) punishment

phase and the opprtunity cost incurred during the punishment phase. As η → 1, LHS of (IC 2)

converges to n*y - (n* - 1)x so that (IC 2) is modified into following rearrangement;
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n∗ ≤ x−z
x−y (IC 2′)

For any fixed g, we may some η ' 1 such that corresponding n∗ violates (IC 2’). As a result, for

any fixed g and θ , we can find (λ , δ ) such that (IC2) is violated.

(3) Penance equilibrium: Consider (3) of [Theorem 3]. Without loss of generality, suppose that τ∗A

= µn
HL, where n > 1. We can rearrange (IC 3):

(1−η)

{
z+η [z+η (z+ηVB(n))]+η

µ
n+1
HL −ηµ

n+2
HL

1−η
((x+ηVA(n))− (z+ηVB(n)))

}
≥ y (IC 3)

where VA(n) =
µx+(1−µ)z+

(1−µ)η(µw+(1−µ)y)
1−(1−µ)η

1−η

(
µ+(1−µ)

µη

1−(1−µ)η

) , VB(n) =
µw+(1−µ)y+µηVA(n)

1−(1−µ)η . From the fixed θ , η∈[0,

1] we have VA(n) ≥ VB(n). We have limit payoff lim
λ→0

lim
δ→1

(1-η)VB(n) = θx+(1−θ)y
2 and lim

λ→0
lim
δ→1

(1-

η)VA(n) = (1+θ)x+(1−θ)y
2 respectively. Moreover, for fixed τ∗A = µ

n+1
HL , lim

λ→0
lim
δ→1

µ
n+1
HL −ηµ

n+2
HL

1−η
= 2µ

n+1
HL

- θ . Then, we can simplify the LHS of (IC 3) as η → 1 (with regarding to the order of limit):

(1−η)

{
z+η [z+η (z+ηVB(n))]+η

µ
n+1
HL −ηµ

n+2
HL

1−η
((x+ηVA(n))− (z+ηVB(n)))

}
→ θx+(2−θ)y

2 +(2τ∗A−θ)( x−y
2 ) = y+ τ∗A(x− y) > y

For another direction, we have lim
δ→1

lim
λ→0

(1-η)VB(n) = y, lim
δ→1

lim
λ→0

(1-η)VA(n) = x , and lim
δ→1

lim
λ→0

µ
n+1
HL −ηµ

n+2
HL

1−η

= µ
n+1
HL = τ∗A respectively. Similarly, the LHS of (IC 3) approaches to y + τ∗A(x - y) > y (with regard-

ing to the order of limit).

Now what we need to see is whether the limit around η = 1 from each direction does not fail (IC

3) condition. To confirm it, I consider the first derivative of the LHS for each parameter. I define

L(δ , λ , n) = (1−η)
{

z+η [z+η (z+ηVB(n))]+η
µ

n+1
HL −ηµ

n+2
HL

1−η
((x+ηVA(n))− (z+ηVB(n)))

}
.

(Claim 1) Fix g and θ . For an arbitrarily small λ > 0, there exists δλ ∈ (0, 1) such that lim
δ→1

lim
λ→0

L(δλ ,

λ , n) > y.

Consider that lim
λ→0

(1-η)VA(n) = x, lim
λ→0

(1-η)VB(n) = y, and lim
λ→0

µ
n+1
HL −ηµ

n+2
HL

1−η
= µ

n+1
HL = τ∗A. Then we

have ∂

∂δ
lim
λ→0

L(δ ,λ ,n) = 3(y-z) > 0. Now we fix an arbitrarily small λ* > 0. For such λ*, we need
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to find δ* ∈(0, 1) such that d(L(δ , λ*, n), y + τ∗A(x - y)) < τ∗A(x - y) ∀ δ∈[δ*, 1). Recall that, at

small enough λ*, we have ∂

∂δ
L(δ ,λ ,n) = 3(y - z) + o(λ*), where o(λ*) ≤ 0. Then,

d (L(δ ,λ∗,n), y+ τ∗A(x− y)) <

(3(y− z)+o(λ∗))(1−δ∗) ≤

3(y− z)(1−δ∗) ≤

τ∗A(x− y)

Then, having δ* > 1 - τ∗A(x−y)
3(y−z) will preserve L(δ , λ*, n) > b ∀ δ∈[δ*, 1).

(Claim 2) Fix g and θ . For an arbitrarily small λ > 0, there exists δλ ∈ (0, 1) such that lim
λ→0

lim
δ→1

L(δλ ,

λ , n) > y.

Consider that lim
δ→1

(1-η)VA(n) =
λ

(
(1−(1−θ)λ )x+(1−θ)λ z+ (1−θ)λ (1−λ )(λθw+(1−λθ)y)

λ (1+θ−λθ)

)
1−(1−λ )

(
(1−(1−θ)λ )(1−θ)λ+

λθ(1−θ)
λ (1+θ−λθ)

) and lim
λ→0

[ ∂

∂λ
lim
δ→1

(1−

η)VA(n)] = 0 by L’hopital’s rule. Similarly, since VB(n) =
µw+(1−µ)y+µηVA(n)

1−(1−µ)η , we also have lim
λ↓0

[ ∂

∂λ
lim
δ→1

(1-η)VB(n)] = -θ(b+θ
(1+θ)x+(1−θ)y

2 )+(1+θ)θ(w−y)
(1+θ)2 < 0.

I define Mn
HL(λ , δ ) = µ

n+1
HL −ηµ

n+2
HL

1−η
. Then lim

δ→1
Mn

HL(λ ,δ ) = (2 - λ )µn+1
HL - (1 - λ )θ . With fixed µ

n+1
HL

= τ∗A, we have lim
λ↓0

[
∂

∂λ
lim
δ→1

Mn
HL(λ ,δ )

]
= µ

n+1
HL - θ . With θx+(2−θ)y

2 +(2τ∗A−θ)(x− z+ x−y
2 ) > y, we

have

lim
λ↓0

(
∂

∂λ
lim
δ→1

L(δ ,λ ,n)
)

=

3
[
−z+ θx+(2−θ)y

2

]
− (θ +2(n+1)) x−y

2 −θ(x− z)− (1+θ)

[
(1+θ)θ(w−y)+θ(y− (1+θ)x+(1−θ)y

2 )

(1+θ)2

]
< 0.

Since lim
λ→0

lim
δ→1

L(δ ,λ ,n) > y, showing the negative sign will be enough.

From the result of (Claim 1) and (Claim 2), we can see that the LHS of (IC 3) increases toward b

in both direction, which implies the (IC 3) will not fail around η = 1.

[Proposition 5] shows that IC conditions of infinite and finite punishment equilibrium will not

hold as η approaches to 1 close enough. Such nonexistence of threshold equilibrium came from
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different role of replacement. In infinite punishment or finite punishment equilibrium, as η →

1, the type N player of guilty side is temped enough to play cooperate action to finish lengthy

punishment phase. That is, high 1 - λ implies that current cooperation phase is more likely to

continue in the next period. For this reason, as long as the game has higher 1 - λ , cooperation phase

becomes easier to maintain. Similarly, as δ grows higher, players evaluate their future payoffs

more highly, so cooperation phase becomes easier to be kept. However, high expected continuation

payoff at cooperation phase also increases temptation to deviate from punishment phase. For finite

punishment equilibrium, type N player of guilty side still can have high enough belief for her

opponent’s type because her belief depreciates slowly with low λ . As an example, consider the

situation in which the guilty side player is replaced by the type N player at the first period of the

punishment phase. In this case, the (newly replaced) guilty side player still have µ , and she expects

that her belief about her opponent type will be depreciated to θ as the punishment phase proceeds.

Definitely such depreciation of belief implies that of her expected continuation payoff. That is, the

guilty side player confronts two ways of opportunity cost from her own replacement and from her

opponent’s replacement to the type S. These two pressures from the replacement forces the (newly

replaced) guilty side player to take a fixed amount of cost to finish punishment phase earlier. Even

though players are not in punishment phase, expecting such “internal inconsistency”7 can be a

reason to deny the equilibrium.

On the other hand, penance equilibrium is free from deviation at (finite or infinite periods of) pun-

ishment phase since players are always able to finish a series of defect actions as long as they

have high enough belief. The problem that penance equilibrium confronts is another aspect of

signaling; they may be tempted to defer penance action with consideration that their opponent’s

type will not changed in a short time. Low λ implies the type S player will stay at the game for a

long enough time so that their belief about the opponent’s type will grow slowly. For this reason,

7Pearce (1989) mentioned about the internal consistency of the renegotiation-proof equilibrium. His concept based
on the fact that the renogotiation-proofness should be supported by the optimality of the equilibrium path at any
state of the game. Even though current environment does involves replacement of players, with strictly positive
probability that players can survive to another phase, the same logic of optimality of each path is required to
support the renegotiation-proofness.
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the type N player in the penance side whose belief is higher than threshold level but lower than θ

may willingly wait more periods in penance phase to earn higher belief about her opponent’s type.

In (IC 3), the type N player of guilty side may compare her expected continuation payoff from

immediate penance and deferred penance (OSD strategy) in the next period. In such situation, as

η → 1, the expected continuation payoff from an original equilibrium path and that from deferred

penance become similar while immediate benefit from avoiding immediate penance becomes rela-

tively small. At the same time, marginal increment of expected continuation payoff from deferring

penance action becomes smaller as λ → 0. As a result, penance equilibrium payoff will remain as

a available one even at the asymptotic case while the other threshold equilibria fail in such case.

This refinement of equilibrium was also considered by Hillas (1994) and McLennan (1985), but

they considered similar notion of refinement only in the complete information environment.

[Figure 1. 9] shows that infinite and finite punishment equilibrium may not exist even with low

enough λ (i.e., high enough survival rate) and high enough δ . In the figure, multiple threshold

equilibria can exist between red and blue solid curves. In the [Figure 1. 9], the blue line represents

combination of the least 1 -λ and δ where infinite punishment equilibrium’s incentive compatibil-

ity at the cooperation phase holds with equality. The red line similarly represents combination of

the highest 1 -λ and δ where finite punishment equilibrium’s (with some n > 1) incentive com-

patibility hold with equality. In the region where δ ∈[0.3, 0.78], existence region monotonously

increases as δ increases. However, at the level of δ > 0.78 and high enough 1 -λ , the game does

not have any infinite or finite punishment equilibria. Similar phenomenon is found around for 1 -λ

≈ 1.

For a matter of existence itself, there is a possibility of multiple equilibria in some region. Consider

1 -λ = 0.5 at the [Figure 1. 9]. At that point, some finite punishment equilibrium and infinite

equilibrium are both supported as threshold equilibrium. On the other hand, at the point of 1 -λ =

0.7 and δ ' 1, only finite (5-period) punishment equilibrium can be found as an available threshold

equilibrium which will achieve the best Pareto efficiency. Similarly at a point of 1 -λ = 0.4, only

infinite punishment equilibrium is supported as available threshold equilibrium.
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Figure 1.9: The map for the renegotiation-proof threshold equilibrium at the game where θ = 0.9,
x = 2, y = 1, w = 2.5, z = -1, y-axis: [1-Lambda] = 1-λ , x-axis : [Delta] = δ
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Figure 1.10: Left : ranges of IC conditions at infinite punishment equilibrium , Right : ranges of
IC conditions at the finite (n = 5) punishment equilibrium at the game where θ = 0.9,a
= 2, b = 1, c = 2.5, d = -1, y-axis: [1-Lambda] = 1-λ , x-axis : [Delta] = δ
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1.6.3 Non-monotonicity of the Equilibrium Payoffs

Conjecture 1. Fix g and θ . Suppose the set of the threshold equilibria is nonempty. Then,

renegotiation-proof equilibrium has a nonempty set of (averaged per-period) equilibrium payoffs

that is either a set of countable singleton payoffs or a subset of Pareto frontier of g.

In Ray (1994) and Pearce (1989), it is shown that the renegotiation-proof equilibrium payoff either

forms singleton sets or locates at the Pareto frontier of the one-shot game. They call such a property

as “non-monotonicity” of payoffs. Even in a two-sided player replaceable case, we can expect

renegotiation-proof payoffs similarly preserve such non-monotonicity. Since we could always find

a renegotiation-proof equilibrium in a nonempty set of non-trivial threshold equilibria, we can take

advantage of this. For any fixed game, the expected continuation payoff of threshold equilibrium

consists of Vi(α | (µ , µ)), Vi(α | (µ , µ)), Vi(α | (µ , µ)), and Vi(α | (µ , µ)). For infinite punishment

equilibrium, we can equivalently put all the other equilibrium payoff except Vi(α | (µ , µ)) to b
1−η

,

which greatly simplifies the formation of equilibrium payoffs. For finite-punishment equilibrium,

we can put Vi(α | (µ , µ)) and Vi(α | (µ , µ)) to be equal. When we simplifies x + ηVi(α | (µ , µ)) =

V IF
ICA

(n) =
x+η(1−µ)V IF

ICB
(n)

1−ηµ
and z + ηVi(α | (µ , µ)) = V IF

ICB
(n) =

(
z+η

1−ηn
1−η

y+ηn+1 µn
HL·x

1−ηµ

)
1−
(

µn
HL

η(1−µ)
1−ηµ

+(1−µn
HL)
)

ηn+1
respectively,

the equilibrium payoff at each state can be recursively calculated as weighted average of V FN
ICA

(n)

and V FN
ICB

(n). Moreover, each history of the game is characterized by each discrete singleton belief

state, and combination of the belief state and singleton payoffs will bring a singleton payoff. It

implies that the expected continuation at each history will be characterized by a singleton point

of the Pareto payoff set. For penance equilibrium, we can similarly consider that each expected

continuation payoff of history will be characterized by a singleton point of the Pareto payoff set

and each history will be characterized by discrete belief state.
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1.7 Conclusion

This paper studied non-trivial threshold equilibrium in the repeated game with two-sided replace-

ment of players. Characterization of threshold equilibrium resulted three behavioral patterns on the

equilibrium path. Infinite punishment equilibrium does not allow any player to return from pun-

ishment phase after any deviation from cooperation phase. Finite punishment equilibrium consists

of cooperation phase and finite periods of punishment phase. In finite punishment equilibrium,

players will allows return from punishment phase once both sides equally stay in the punishment

phase. Penance equilibrium distinguishes (finite) punishment phase and (indefinite) penance phase

based upon initial deviation pattern. It enforces any guilty side player to pay the cost for the past

deviation to return to cooperation phase.

Different from one-sided replaceable player environment or long-run players with type change,

two-sided player replacement takes different way of sharing a risk of type uncertainty. In the

intermediate level of the replacement rate, players share their risk equally in infinite or finite pun-

ishment equilibrium. However, as the replacement rate becomes small enough, players rather ask

a one guilty side player to take all responsibility of the past deviation regardless of her actual

guiltiness. This result implies uniqueness of penance equilibrium in the asymptotic case where the

replacement rate and the time discount rate are small enough.

Moreover, a set of non-trivial threshold equilibria have at least one pure strategy renegotiation-

proof equilibrium. Since players are randomly replaced, players cannot predict the timing that

they will enter the game. For this reason, player who entered the game during the punishment

or penance phase may be temped to renegotiate with her opponent to change current phase. As

long as we can find a nonempty set of non-trivial threshold equilibria, it will always contain a pure

strategy renegotiation-proof equilibrium. This result implies that players will find some threshold

equilibrium as non-dominated choice for any other (pure strategy) alternative equilibrium.

For further research, we can consider several ways to make it more “realistic” setting. Having more

than two players in a general non-cooperative game will be the most natural way we can extend
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this study. As the number of players increases, players may find a different way to share risk of

uncertainty when they confronts temptation of myopic deviation.
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1.8 Appendix

1.8.1 Proof of Lemma 1

Lemma 1. Consider a repeated game under the two-sided replacement G(g, λ , θ , δ ). Then,

following holds:

(1) for any τ ≥ 0, µ < µτ
HL ≤ µ

τ+1
HL ≤ θ and θ < µ

τ+1
LH ≤ µτ

LH ≤ µ ,

(2) ∀ε > 0, ∃THL < ∞ such that ∀τ ≥ THL , |µτ
HL - θ | < ε ,

(3) ∀ε > 0, ∃TLH < ∞ such that ∀τ ≥ TLH , |µτ
LH - θ | < ε

Proof. For µτ
HL, showing µ < µτ

HL < µ
τ+1
HL ≤ θ for any τ ≥ 0 automatically satisfies (2).

(i) By using induction, we can show that µ < µτ
HL < µ

τ+1
HL for any τ ≥ 0. Since µ0

HL = µ

and µ1
HL = µ·µ + (1-µ)·µ , µ0

HL < µ1
HL holds. Now assume that µ

τ−1
HL < µτ

HL for some τ ≥ 2.

Without loss of generality, denote
[

µ 1−µ

] µ 1−µ

µ 1−µ


τ−2

=
[

Aτ−1
HL 1−Aτ−1

HL

]
and

[
µ 1−µ

] µ 1−µ

µ 1−µ


τ−1

=
[

Aτ
HL 1−Aτ

HL

]
respectively. From the formulation of µ

τ−1
HL

and µτ
HL, µ

τ−1
HL < µτ

HL holds if and only if Aτ−1
HL < Aτ

HL. Moreover, Aτ−1
HL < Aτ

HL = Aτ−1
HL ·µ + ( 1

- Aτ−1
HL )·µ implies Aτ−1

HL < µ . Similarly, we have µτ
HL =

[
Aτ

HL 1−Aτ
HL

] µ 1−µ

µ 1−µ


 µ

µ


≡
[

Aτ+1
HL 1−Aτ+1

HL

] µ

µ

. Then, the assumption Aτ−1
HL < Aτ

HL implies Aτ
HL = Aτ−1

HL ·µ + ( 1 -

Aτ−1
HL )·µ < Aτ+1

HL = Aτ
HL·µ + ( 1 - Aτ

HL)·µ . So, we have µτ
HL < µ

τ+1
HL .

(ii) By using induction, we can show that µ < µτ
HL< θ for any τ ≥ 0. For τ = 0, µ0

HL = µ < θ . Now

assume that µ
τ−1
HL < θ holds. As in the (i), we can decompose µ

τ−1
HL =

[
Aτ−1

HL 1−Aτ−1
HL

] µ

µ


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= Aτ−1
HL ·µ + ( 1 - Aτ−1

HL )·µ so that Aτ−1
HL < θ = θ ·µ + ( 1 - θ )·µ . Since Aτ

HL = Aτ−1
HL ·µ + ( 1 - Aτ−1

HL )·µ

< θ , µτ
HL =

[
Aτ

HL 1−Aτ
HL

] µ

µ

 = Aτ
HL·µ + ( 1 - Aτ

HL)·µ < θ .

For µτ
LH case, we can exploit similar proof.

1.8.2 Proof of Proposition 1

Proposition 1. Consider a repeated game under two-sided replacement G(g, λ , θ , δ ) with a initial

belief Γ0 = (µ0
i , µ0

−i). Then, any threshold (τ∗i , τ∗−i) of the TEQ satisfies either

(1) τ∗i ≥ θ , τ∗i ≥ τ∗−i, and T (τ∗i ) < min{T (τ∗−i) + 1, T (τ∗−i) } or

(2) θ > τ∗i > τ∗−i ≥µ and T (τ∗i ) > T (τ∗−i)

(3) θ > µ∗i and T (τ∗i ) = T (τ∗−i) or

Proof.

(A) Consider the case τ∗−i > τ∗i ≥ θ where T (τ∗i ) < T (τ∗−i). Define η ≡ δ (1-λ ). Without loss of

generality, I assume that τ∗i = µ t
LH and τ∗−i = µn

LH where t > n. To have (α∗, τ∗) as a threshold

equilibrium, we need optimality condition such that Vi( αµ∗ | (τ∗i , τ∗−i)) ≥ Vi( (αi’, α−i,µ∗)| (τ∗i ,

τ∗−i)) where αi’ is an OSD strategy such that player i deviates from H to L only at the one period

and then return to equilibrium strategy αi,µ∗after that. At (µ1, µ2) = (µ t
LH , µn

LH), the type N player

1 plays H and then plays L while (type N) player 2 plays L because (µn
LH , µ t

LH)� (τ∗i , τ∗−i) = (µ t
LH ,

µn
LH). As a result, we have V1( α∗| (µ1, µ2)) = d + η

1−η
b < V1( (α1’, α∗2 )| (µ1, µ2)) = b

1−η
, which

violates optimality condition of PBE.

(B) Consider the case τ∗i < θ and τ∗−i > θ . Without loss of generality, I assume that τ∗i = µ t
HL and

τ∗−i = µn
LH , where n, t < ∞. By using the similar logic in (A), I define an OSD strategy αi’. Suppose

that (µ1, µ2) = (µ t
HL, µn

LH). Then, V1( α∗| (µ1, µ2)) = d
1−η

< V1( (α1’, α∗2 )| (µ1, µ2)) = b
1−η

which

violates the optimality condition.
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(C) Consider the case τ∗i < τ∗−i < θ . Without loss of generality, I assume that τ∗i = µ t
HL and τ∗−i =

µn
LH , where n < t < ∞. I similarly define an OSD strategy α

′
i . At (µ1, µ2) = (µ t

HL, µn
LH), V1( α∗| (µ1,

µ2)) = 1−ηn−t

1−η
d + ηn−tV1( α∗| (µn

HL, µ)) ≤ Vi( (α1’, α∗2 )| (µ1, µ2)) = 1−η t

1−η
b + η t 1−ηn−t

1−η
c + ηnV1(

α∗| (µ , µn
HL)), which violates optimality condition.

(D) Consider the case τ∗i > θ > τ∗−i and ∞ > T (τ∗i ) ≥ T (τ∗−i ). Without loss of generality, let sup-

pose τ∗i = µ t
LH and τ∗−i = µn

HL where t > n. Consider that (µ1, µ2) = (µ , µ). At the state, a player

1 has V1(α∗|(µ , µ)) = 1−ηn

1−η
b + ηnV1(α∗|(µn

LH , µn
HL)). We can decompose V1(α∗|(µn

LH , µn
HL)) = d

+ ηV1(α∗|(µn+1
LH , µ)) = d + η

[
µ

n+1
LH
(
a+ηV1(αµ∗|(µ,µ))

)
+(1−µ

n+1
LH )

(
a+ηV1(α

∗|(µ,µ))
)]

.

On the other hand, using an OSD strategy α
′
1 gives V1((α

′
1,α∗2 )| (µ , µ)) = d + ηV1(α∗|(µ1

LH , µ)).

Note that we can also decompose V1(α∗|(µ1
LH , µ)) = µ1

LH(a+ηV1(α
∗|(µ,µ))) + (1-µ t

LH)
(

d +ηV1(α
∗|(µ,µ))

)
.

Optimaility condition of PBE requires

1−ηn

1−η
b+ηnV1(α

∗|(µn
LH ,µ

n
HL))≥ d +ηV1(α

∗|(µ1
LH ,µ)). (1)

Unless we have

a+ηV1(α
∗|(µ,µ))≤ d +ηV1(α

∗|(µ,µ)), (2)

(1) does not hold. Now we consider whether (2) holds.

Suppose that (2) holds. Since V1(α∗|(µ , µ)) = µ(a+ηV1(α
∗|(µ,µ))) + (1-µ)

(
d +ηV1(α

∗|(µ,µ))
)

,

we have

V1(α
∗|(µ,µ))≤ d +ηV1(α

∗|(µ,µ)), (3)

and

V1(α
∗|(µ,µ)) = a+η(1−µ)(d+ηV1(α

∗|(µ,µ)))
1−ηµ

. (4)

Moreover, from the assumption a ≥(c + d)/2, we have d + ηV1(α∗|(µ , µ)) ≤ a
1−η

. Then, we have
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V1(α
∗|(µ,µ))≥ d +ηV1(α

∗|(µ,µ)), (5)

so that we have V1(α∗|(µ , µ)) = d + ηV1(α∗|(µ , µ)). Then, we finally have a + ηV1(α∗|(µ , µ))

= d + ηV1(α∗|(µ , µ)) = a
1−η

, which implies V1((α
′
1,α∗2 )| (µ , µ)) = V1(α∗|(µn

LH , µn
HL)). To have

V1(α∗|(µ , µ)) ≥ V1((α
′
1,α∗2 )| (µ , µ)), we need b

1−η
≥ V1((α

′
1,α∗2 )| (µ , µ)) = V1(α∗|(µn

LH , µn
HL)).

On the while, the individual rationality condition requires V1(α∗|(µn
LH , µn

HL)) ≥ b
1−η

so we have

V1(α∗|(µn
LH , µn

HL)) = b
1−η

.

Now we consider V1(α∗|(µn
HL, µn

HL)) and V1((α”
1 ,α∗2 )|(µn

HL, µn
HL)) where α”

1 is an OSD strategy

at (µ1, µ2) = (µn
HL, µn

HL). From V1(α∗|(µn
HL, µn

HL)) = b
1−η

and V1((α”
1 ,α∗2 )|(µn

HL, µn
HL)) = d +

ηV1(α∗|(µn+1
HL , µ)), optimality condition requires

b
1−η
≥ d +ηV1(α

∗|(µn+1
HL ,µ)). (6)

V1(α∗|(µn
HL, µn

HL)) = b
1−η
≥V1((α”

1 ,α∗2 )|(µn
HL, µn

HL)) = d + ηV1(α∗|(µn+1
HL , µ)). By using the similar

decomposition, we have V1(α∗|(µn+1
HL , µ)) ≥ V1(α∗|(µ , µ)), which implies V1((α”

1 ,α∗2 )|(µn
HL, µn

HL))

≥ a
1−η

> b
1−η

. This inequality is contradictory to (6).

Now we showed that (2) will not hold, which implies that

a+ηV1(α
∗|(µ,µ))> d +ηV1(α

∗|(µ,µ)). (2′)

However, (2’) implies

1−ηn

1−η
b+ηnV1(α

∗|(µn
LH ,µ

n
HL))< d +ηV1(α

∗|(µ1
LH ,µ)), (1′)

which violates the optimality condition at (µ1, µ2) = (µ , µ).

47



1.8.3 Proof of Proposition 4

Lemma 2. Fix G(g,δ ,λ ,θ ). Suppose the set of the finite punishment equilibria is nonempty and

there exists a finite-punishment equilibrium (α∗, τ∗) such that Vi(α∗| µ)≥Vi(α ′| µ) for any feasible

finite-punishment equilibrium (α ′, τ ′) at G and for any i. Then, (α∗, τ∗) is not dominated by any

feasible finite-punishment equilibria at G for any µ ∈ Ω.

Proof. Suppose that a finite punishment equilibrium (FN TE) (α∗, τ∗) satisfies Vi(α∗| µ) ≥Vi(α ′|

µ) for any feasible finite punishment equilibrium (α ′, τ ′) at G and for any i. This assumption also

implies Vi(α∗| (µ , µ)) ≥Vi(α ′| (µ , µ)) for any feasible finite punishment equilibrium (α ′, τ ′) and

for any i.

Now we assume that there exists some µ < τ∗ such that Vi(α∗| µ)≤Vi(α∗OSD
| µ) for any i and Vi(α∗|

µ) < Vi(α∗OSD
| µ) for some j where α∗OSD is the two-sided one-shot deviation strategy at µ . With

out loss of generality, assume that V1(α∗| µ) < V1(α∗
OSD

| µ), µ = µn′
HL and τ∗ = µn

HL where n′ < n 8.

Then, if there is another feasible FN TE (α ′, τ ′) such that τ ′ = µn′
HL,

V1(α
∗
OSD|µ) = µ (a+ηV1(α

∗|µ̄)) + (1−µ)
(

d +ηV1(α
∗|(µ, µ̄)

)
< µ (a+ηV1(α

∗|µ̄)) + (1−µ)
(

d +ηV1(α
∗
OSD|(µ, µ̄)

)
= µ (a+ηV1(α

∗|µ̄)) + (1−µ)

(
d +η

[
1−ηn′

1−η
b+ηn′V1(α

∗
OSD|µ)

])
...

< V1(α
′|µ ′) = V1(α

′|µ).

This relation implies V1(α∗| µ) < V1(α
′
| µ). However, this relation also violates the assumption

V1(αµ∗ | (µ , µ)) ≥V1(αµ ′ | (µ , µ)) because

8For other cases where n′ ≥ n, Vi(αµ∗ | µ)≥Vi(αµ ′ | µ) trivially implies Vi(αµ∗ | µ)≥Vi(αµ ′ | µ) so that we only consider
the case n < n′.
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V1(αµ∗|(µ,µ)) = 1−ηn′

1−η
b + ηn′V1(α

∗|µ)

< V1(α
′ |(µ,µ)) = 1−ηn′

1−η
b + ηn′V1(α

′|µ).

So, for a FN TE (α∗, τ∗) that achieves the highest Vi(α∗| µ) among all feasible FN TEs, (α∗, τ∗)

cannot have any OSD strategy at any µ < τ∗. Moreover, we already have Vi(α∗| µ) ≥Vi(α ′| µ) and

Vi(α∗| (µ , µ)) ≥Vi(α ′| (µ , µ)) for any feasible FN TE (α ′, τ ′) and for any i . As a result, we can

say that (α∗, τ∗) is not dominated by any other feasible FN TE at G.

Lemma 3. Fix G(g,δ ,λ ,θ ). Suppose the set of the penance punishment equilibria is nonempty

and there exists a penance equilibrium (α#, τ#) such that Vi(α#| τ#) ≥Vi(α’| τ
′
) for any feasible

penance equilibrium (α ′, τ ′) at G and for any i. Then, (α#, τ#) is not dominated by any penance

equilibrium (α ′, τ ′) at G for any µ ∈ Ω.

Proof. We consider the game G such that all feasible penance equilibria (PN TEs) have τ ′i = µn
HL

and τ ′−i = µn′
HL where n > n′ = 0. At such game, Vi(α

′
| (µ̄ ,µ̄)) and Vi(α

′
, | (µ ,µ̄)) is the same for all

feasible PN TEs. Since they all share the same equilibrium expected payoff at (µ ,µ̄) and (µ̄ ,µ̄), we

are allowed to only consider the dominance among the feasible PN TEs by comparing the expected

payoff at (µ , µ).

Now suppose that a feasible PN TE (α#, τ#) where τ#
i = µs

HL has the highest expected payoff at (µ ,

µ) among all feasible PN TEs. Then for any feasible PN TE (α
′
, τ
′
) we have

Vi(α
∗|µ) = 1−ηs

1−η
b + ηsVi(α

#|τ#)

≥ Vi(α
′|µ) = 1−ηn′

1−η
b + ηn′Vi(α

′|τ ′).

So, for any µ < τ#, playing any other PN TE cannot dominate (α#, τ#).

Lemma 4. Fix G(g,δ ,λ ,θ ). Suppose the set of the threshold equilibrium is nonempty. Then, for a

there hold equilibrium (α∗, τ∗), two following properties are equivalent;

(1) Vi(α∗| µ) ≥Vi(α ′| µ) for any feasible threshold equilibrium (α ′, τ ′),
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(2) Vi(α∗| µ) ≥Vi(α ′| µ) for any feasible threshold equilibrium (α ′, τ ′) at any reachable state µ .

Proof. Suppose that (αFN , µFN) is the finite punishment equilibrium with the highest expected

payoff at µ and (αPN , µPN) is the penance equilibrium with the highest expected payoff at µPN .

(1) Suppose Vi(αFN | µ) ≥Vi(αPN | µ) for any i. Then we have Vi(αFN | (µ , µ)) ≥Vi(αPN | (µ , µ))

for all i. From (IC 3) of PN TE and (IC 2) of FN TE, we have

Vi(α
PN |(µ,µ)) = d + ηVi(α

PN |(µ1
LH ,µ))

≤ d + ηVi(α
FN |(µ1

LH ,µ))

≤ Vi(α
FN |(µ,µ)).

Now we assume that µFN = µn
HL and µPN = µn′

HL. For case n ≥ n
′
, we have

Vi(α
PN |µ) = 1−ηn′

1−η
b + ηn′Vi(α

PN |µn′
HL)

≤ 1−ηn′

1−η
b + ηn′Vi(α

FN
OSD|µn′

HL)

= Vi(α
FN
OSD|µ),

where αFN
OSD is a two-sided OSD strategy that plays H at µn′

HL and then return to αFN after that. In

the previous lemma, we showed that any feasible PN TE at any µ < µFN cannot dominate Vi(αFN |

µ) so that V (αPN | µ) cannot dominate V (αFN | µ) for any µ < µFN .

For case n < n’, let suppose (αPN , µPN) dominates (αFN , µFN) at (µ , µ). Then, there exists some

s where n ≤s < n’ such that Vi(αFN | (µs
HL, µs

HL)) < Vi(αPN | (µs
HL, µs

HL)) and Vi(αFN | (µs+1
HL , µ

s+1
HL ))

≥ Vi(αPN | (µs+1
HL , µ

s+1
HL )). So

Vi(α
FN |µ) = 1−ηn

1−η
b + ηnVi(α

FN |µn
HL)

< 1−ηs+1

1−η
b + ηsVi(α

PN |µs
HL)

≤ 1−ηs+1

1−η
b + ηsVi(α

FN |µs
HL).
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Then let define another FN TE (αFN′ , µFN′) where µFN′ = µ
s+1
HL . As long as (αFN′ , µFN′) is

feasible, Vi(αFN′ |µ ) > Vi(αPN | µ) implies Vi(αFN′ |µ) > Vi(αPN | µ) because of the facts that the

expected payoff at (µ , µ) is equal to that at (µ , µ) and Vi(αFN′ |µ) > Vi(αPN | µ) if and only if

Vi(αFN′ |(µ , µ)) > Vi(αPN | (µ , µ)). This result contradicts to the assumption that no other feasible

FN TE dominates (αFN , µFN). Consequently, (αPN , µPN) cannot dominate (αFN , µFN) at (µ , µ).

(2) Suppose Vi(αPN | µ)≥Vi(αFN | µ) for all i. Similarly we have Vi(αPN | (µ , µ))≥Vi(αFN | (µ , µ))

for all i. For (µ , µ), the optimality condition (1) of PBE satisfies

Vi(α
PN |(µ, µ̄)) = µ

(
c+ηVi(α

PN |(µ̄,µ1
LH))

)
+ (1−µ)

(
b+ηVi(α

PN |(µ,µ1
LH)
)

≥ µ
(
a+ηVi(α

PN |µ̄)
)

+ (1−µ)
(

d +ηVi(α
PN |(µ, µ̄)

)
= Vi(α

PN
OSD|(µ, µ̄)).

for all i. That is, a two-sided OSD strategy αPN
OSD at (µ , µ) is worse than αPN for player i with µi

= µ so that player j with µ j = µ cannot assume that his/her opponent i will follow αPN
OSD. For this

reason, having the optimality condition as a one-sided OSD robustness is enough for showing a

two-sided OSD robustness.

Now we assume that µFN = µn
HL and µPN = µn′

HL. For a case n ≤ n’, let suppose (αFN , µFN)

dominates (αPN , µPN) at (µ , µ). Then, assume that another PN TE (αPN′ , µPN′) where µPN′ =

µn′
HL is feasible at G. Since all PN TEs have the equivalent expected payoff at (µ , µ) and (µ , µ),

as long as it is feasible,

Vi(α
PN |µ) = 1−ηn

1−η
b + ηnVi(α

PN |µn
HL)

< 1−ηn′

1−η
b + ηn′Vi(α

FN |µn′
HL)

≤ 1−ηn′

1−η
b + ηn′Vi(α

PN |µn′
HL)

= Vi(α
PN′|µ).
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This result contradicts to the assumption that (αPN , µPN) is not dominated by any other feasible

PN TE. To avoid such contradiction, any other PN TE that has a threshold pair higher than µPN

should not be feasible at G. However, having threshold pair lower than µPN implies that those

feasible PN TEs will not dominate (αPN , µPN) because of the fact that Vi(αPN | (µ , µ)) ≥Vi(αPN |

(µ , µ)) which is implied from the individual rationality.

The case n > n’ also can be similarly proved.

Lemma 5. Fix G(g,δ ,λ ,θ ). Suppose the set of the threshold equilibria is nonempty and there

exists a threshold equilibrium (α∗, τ∗) such that Vi(α∗| µ) ≥Vi(α ′| µ) for any feasible threshold

equilibrium (α ′, τ ′) at G. Then, (α∗, τ∗) is robust to any pure action OSD strategy.

Proof. Suppose that the set of the threshold equilibria is nonempty and there exists a threshold

equilibrium (α∗, τ∗) such that Vi(α∗| µ) ≥Vi(α ′| µ) for any feasible threshold equilibrium (α ′,

τ ′). We only consider the robustness for the two-sided OSD strategy since the robustness to the

one-sided OSD is achieved by the optimality condition of PBE. We also assume that non-trivial

threshold equilibrium (α∗, τ∗) allows players to play H at (µ , µ) and play L at at (µ , µ) as the

equilibrium strategy respectively.

(1) At µ ≥τ∗, playing an OSD strategy (= L) rather than the equilibrium strategy (= H) will not be

beneficial for both players. Let denote the OSD strategy (α∗OSD, τ∗OSD) that deviates from (α∗, τ∗)

at (µ , µ). From the individual rationality, we have

Vi(α
∗
OSD|µ) = b + ηVi(α

∗|(µ1
LH ,µ

1
LH))

= b + η

{
µ1

LH (a+ηVi(α
∗|µ̄))+(1−µ1

LH)
(

d +ηVi(α
∗|(µ, µ̄)

)}
≤ µ (a+ηVi(α

∗|µ̄))+(1−µ)
(

d +ηVi(α
∗|(µ, µ̄)

)
= Vi(α

∗|µ)

for any i. Given that playing (α∗, τ∗) is weakly better than the OSD strategy, (α∗, τ∗) will be robust

to the two-sided OSD strategy at any other states µ ∈Ω where µ ≥τ∗ by the similar extension.
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(2) At µ < τ∗, playing an OSD starategy (= H) rather than the equilibrium strategy (= L) will not

be beneficial for both players. Let denote the OSD strategy (α∗OSD, τ∗OSD) that deviates at such µ .

Knowing that the opponent, say -i, plays H, player i has

Vi(α
∗
OSD|µ) = µ (a+ηVi(α

∗|µ̄)) + (1−µ)
(

d +ηVi(α
∗|(µ, µ̄)

)
≤ µ

(
c+ηVi(α

∗|(µ̄,µ))
)

+ (1−µ)
(

d +ηVi(α
∗|µ
)

by the (IC 1) condition of each TEQ. Given that playing (αµ∗ , µ∗) is weakly better than the OSD

strategy, (α∗, τ∗) will be robust to the two-sided OSD strategy at any other states µ ∈Ω where µ <

τ∗ by the similar extension.

Consider the case that players agree to play OSD with the expectation of playing another threshold

equilibrium, say (α ′, τ ′), which allows players to play H at µ < τ∗. That is, players agree to play

L as if they play another TEQ’s strategy but renegotiate again to return to (α∗, τ∗) once they arrive

to the next state. In such case, given the assumption that (α∗, τ∗) provides the weakly highest

expected payoff at any states, players may realize that the expected payoff at such state will not be

feasible or not dominate the expected payoff from (α∗, τ∗) from the result of the previous lemma.

As a result, (α∗, τ∗) will be robust to the two-sided OSD.

(3) Consider the state µ where µ1 ≥τ∗i and µ2 < τ∗−i without loss of generality. For player 2, as in

(2), playing the equilibrium action (= L) will bring weakly better expected payoffs than the OSD

strategy (= H) even if the player 1 has agreed to play the OSD strategy (because of her low belief

about the player 1’s type). As a result, the player 2 may not have an incentive to follow the OSD

strategy. For the player 1, with consideration that the player 2 would not follow the OSD strategy,

her expected payoff from the two-sided OSD strategy will not be actually realized. As a result, the

one-sided OSD strategy is the only available OSD strategy she can consider and IC conditions of

each TEQ blocks such OSD strategy as the weakly worse strategy than (α∗, τ∗).
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1.8.4 Proof of Theorem 1

Theorem 1. Fix G(g, λ , θ , δ ). Suppose that there exists some threshold equilibrium (α∗, τ∗).

Then, followings are equivalent;

(1) Threshold strategy α∗ have two phases on the equilibrium path:

(a : Cooperation) Any type N players play H at t if at−1 = (H, H).

(b : Punishment) For any t, if there is any L played in ht , any types of players play L at t .

(2) Threshold pair τ∗ is characterized by the quartet (n, m, s, t) where m < ∞ and x m
min{s, t+1}y < 1.

Proof.

To show equivance of two considtions, I will show that (1)⇒(2) and then (2)⇒(1) holds.

((1) ⇒ (2)) Suppose the TEQ (α∗, τ∗) follows on- and off-the-equilibrium path described in (1)

repectively. Then, to satisfy the equilibrium path of (a) and (b), m < min{s, t+1} needs to be

satisfied. Suppose not. First consider that t + 1 < s. Then, the case m ≥t + 1 corresponds to

the proof (A) case of the propotion 1, which does not support the TEQ. So, we exclude this case.

Second, consider the case s < t + 19 and m≥ s. Then we can put the equilibrium threshold pair (τ∗i ,

τ∗−i) = (µm
LH , µs

HL). From this threshold, consider the player i triggered the punishment phase at the

τth calender time period. Then, the equilibrium path requires both players to play L for s periods.

After s periods of punishment play (L, L), the player i would arrive to the state (µs
LH , µs

HL) ≥(τ∗i ,

τ∗−i) = (µm
LH , µs

HL). Then, at the τ+s+1 th calender period, which is the same to the s+1 th period

of the punishment phase, the type N player i must play the equilibrium play H which is followed

by the equilibrium play H if the player -i is the type N. As a result, having s < t+1 and m≥ s will

not have the on-the-equilibrium path of (a) and (b).

((2)⇒(1)) From the above part, it is shown that having a threshold characterized by the quartet (n,

m, s, t) which satisfies m < min{s, t+1} automatically implements the equilibrium path of (a) and

(b).
9Since s < ∞ automatically implements t = ∞, having strict inequality for t + 1 < s and s < t + 1 would not be affect

the result of the proof.
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1.8.5 Proof of Theorem 2

Theorem 2. Suppose a threshold (τ∗i , τ∗−i) supports TEQ. Then followings are equivalent;

(1) TEQ consists of following phases :

(a : Cooperation) Any type N players play H at t if at−1 = (H, H).

(b : Punishment) Suppose any side(s) deviates from the cooperation phase. Then, both sides’

players play punishment L for n (=s) periods. Right after n periods of (L, L), any type N players

plays H.

(2) TEQ is characterized by (n, m, s, t) such that x m
min{s, t+1}y = ∞ and n = s < ∞

(3) for given (g, λ , θ , δ ), there exists n < ∞ such that

(IC 1) µn
HL·V IF

ICA
(n) + (1 - µn

HL)·V IF
ICB

(n) > µn
HL·V IF

ICC
(n) + (1 - µn

HL)·V IF
ICD

(n),

(IC 2) d + η ·
(

µ1
LH ·V IF

ICA
(n)+(1−µ1

LH) ·V IF
ICB

(n)
)
≤ 1−ηn

1−η
b + ηn

(
µn

LH ·V IF
ICA

(n)+(1−µn
LH) ·V IF

ICB
(n)
)

,

where V IF
ICA

(n) =
a+η(1−µ)V IF

ICB
(n)

1−ηµ
, V IF

ICB
(n) =

(
d+η

1−ηn
1−η

b+ηn+1 µn
HL·a

1−ηµ

)
1−
(

µn
HL

η(1−µ)
1−ηµ

+(1−µn
HL)
)

ηn+1
,

V IF
ICC

(n) = c + η
1−ηn

1−η
b + ηn+1

(
µn

LH ·V IF
ICA

(n)+(1−µn
LH) ·V IF

ICB
(n)
)

,

V IF
ICD

(n) = 1−ηn+1

1−η
b + ηn+1

(
µn

HL ·V IF
ICA

(n)+(1−µn
HL) ·V IF

ICB
(n)
)

.

V IF
ICC

(n) = c + η
1−ηn

1−η
b + ηn+1

(
µn

LH ·V IF
ICA

(n)+(1−µn
LH) ·V IF

ICB
(n)
)

,

V IF
ICD

(n) = 1−ηn+1

1−η
b + ηn+1

(
µn

HL ·V IF
ICA

(n)+(1−µn
HL) ·V IF

ICB
(n)
)

.

Proof. In this proof of the theorem 2, I will show that (1)⇔ (2) holds. Since I explained how the

IC conditions of (3) are implemented from the threshold pair (τ∗i , τ∗−i) = (µn
HL, µn

HL) in the original

paper, we will omit for the part (3)⇔ (1).

((1) ⇒ (2)) Suppose that TEQ (α∗, τ∗) that follows the on- and off-the-equilibrium path in (1).

Suppose that both sides triggered the punishement phase at the same time. Then, to return to the

cooperation phase at n (= s) th period of the punishment phase, it is required to have (τ∗i , τ∗−i) =

(µn
HL, µs

HL). so we have m = ∞ which implies x m
min{s, t+1}y = ∞.
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((2)⇒ (1)) From the above part, it is true that having the quartet satisfies x m
min{s, t+1}y = ∞ and n =

s < ∞ automatically implement (a) and (b) part of (1). In this part, I will show that the quartet also

implements off-the-equilibrium path of (c) and (d). First, suppose that the player i’s side triggered

the punishement phase at the calendar time τ . If the player i deviates to play H at v (< n-1)th

period of the punishment phase, then the player i and j arrives at the state (µv+1
LH , µ̄) and (µ̄ , µ

v+1
LH )

respectively. Since µ̄ ≥µ
v+1
LH > θ > µn

HL = τ∗i = τ∗− j, any type N players of both sides would play H.

If the player j deviates to play H v (< n-1) th period of the punishment phase, then the player i and

j arrives at the state (µ̄ , µ
v+1
HL ) and (µv+1

HL , µ̄) respectively. Since µ
v+1
HL < µn

HL, both player needs to

play L for remaining n - (v+1) periods to arrive to µn
HL. Second, suppose that both sides deviates

from the cooperation phase at the same calendar time τ . If the player i solely deviate to play H at

the v(<n− 1)th period of the punishment phase, then he player i and j arrives at the state (µv+1
HL ,

µ̄) and (µ̄ , µ
v+1
HL ) respectively so that they have to wait for another n - (v+1) periods to arrive to

the threshold level µn
HL. If both players deviate at the same time at any v(<n), then both player

immediately jumps to the state (µ̄ , µ̄) and any type N players of the both sides plays H at the next

period.
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2 Chapter 2: Sequential Choice with

Preference Learning

2.1 Introduction

Most of decision theory frameworks assumes a decision maker’s preference to be fixed over time.

However, such standard setting is vulnerable to some real world observations, especially to a

“choice reversal.” A choice reversal depicts the following situation: consider two (available) al-

ternatives a and b. The decision maker chooses a at the first chance. At the second chance of her

choice she chooses b even though a is still available. Reily (1982) and Grether and Plott (1979)

found experimental evidences for such an choice reversal which cannot be explained when they

assume a fixed preference. A fixed preference restricts a decision maker to have the same choice

outcome at the same choice set, so that such a choice reversal should not happen.

To explain a choice reversal, some frameworks separated actual choice set and nominal choice

set. They assumed that, even though a decision maker faces some choice set, the actual choice set

within which she considers to choose alternatives can be different from that. They called it as a

“consideration set.” In particular, Masatlioglu, Nakajima, and Ozbay (2012) (henceforth, MNO),

Masatlioglu and Nakajima (2012) (henceforth, MN), and Caplin and Dean (2011) (henceforth,

CD) tried to explain choice reversal in such a perspective.

On the other hand, Manzini and Mariotti (2007, 2011) assumed a decision maker who considers
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multiple attributes of alternatives. Such a decision maker assumed to have a hierarchy on attributes

and filter out alternatives sequentially according to such a hierarchy.

Different from such works, I consider a situation in which a decision maker’s underlying (com-

plete) preference is partially reflected on a decision making while the choice set is fully considered.

That is, a decision maker has a temporal preference that consists of subset of a complete prefer-

ence. A sequence of temporal preferences nondecreasingly converges to her complete preference.

To explain such a situation, I construct a choice sequence with binary learning (henceforth, CBL)

framework.

CBL framework assumes a sequential choice environment in which decision maker faces arbitrary

choice sets and chooses her optimal alternative over time. Decision maker has her fixed underlying

preference which is complete, transitive and acyclic preference, say a “well-defined” preference,

over all the available alternatives. However, her underlying preference may not fully known to

herself. We can think of several reasons for such a status: insufficient information about specifica-

tions of commodities, inexperience of commodity feature, etc.. Then, decision maker may uncover

her underlying preference by sequential experience of choices. In this study, I focus on a specific

learning rule called “binary learning rule.”

Binary learning rule basically resembles binary information search process from computer science.

Based on her underlying preference, decision maker compares some “reachable” alternatives to

her current choice. If she find some alternative is better than current choice in her underlying

preference, she learns a binary relation and use it for her next choice. I also allowed decision maker

to learn her underlying preference not only via direct comparace but also via indirect comparance.

For example, once she learned that “a is bettern than b” and “b is better than c” separatedly, then she

will automatically learn “a is bettern than c.” I axiomitized binary learning rule into two properties

called “elimination” and “transitivity.” However, different from computer, human decision maker

may not reach to all the alternatives in the process of learning. When she compares her current

choice with another alternative, her comparance may depend on her horizon of experience. For

example, when she considers a laptop computer to buy, she would remind her current experience.
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When she felt that her current one is heavy, which weights 4.2 lb, she will consider candidates

that weight less than 4.2 lb. However, if she did not felt any inconvenience so far from a screen

definition, she may not care of it. Likewise, her learning process itself is restricted by her current

horizon of experience. I depicted such a restriction as a “range o f learning.” That is, when

decision maker compares her current choices with other alternatives, she is restricted consider

alternatives only in her current range of learning.

And then, I characterize a choice sequence that comes from a behavior of a decision maker who

follows binary learning rule with certain range of learning. I formalize this characterization as

sequential weak axiom of revealed preference (WARP - S). Once we find a sequence that satisfies

WARP - S, then we can uncover some well-defined underlying preference.

Moreover, we can explain some extent of multiple-time choice reversal using CBL framework1.

Assuming fully known underlying preference is not able to explain multiple-time/repeated choice

reversals that is observed in the field experiments like Chu and Chu (1990) and Cox and Grether

(1996). In these works, they exhibited that frequency of such event is reducing over repetition

of conducts. That is, the more subjects repeat choices between two alternatives, the less subjects

turn over from their previous change. Most of subjects stopped to turn over between the second or

the third time repetition. In psychology, frequency−based (probability) learning theory explains

such a situation2. The model explans well a particular event with a lottery, however it cannot

embrace a decision making situation which requires standard preference order. On the other hand,

CBL framework embraces a standard preference order and multiple-time choice reversal within

the same framework.

The remaining part of this paper has the following structure. In the section 2, I will introduce

the basic setting of the model and describe the learning rule. In the section 3, I will characterize

choice sequences that satisfy CL framework according to the decision maker’s range of learning.
1Multiple-time/repeated choice reversal depicts the situation in which the choice reversal occurs more than or equal

to two times. That is, once a is chosen over b, and in the later time b is chosen over a. Moreover, in the next
time, a is chosen over b again, and so on. Flipping between two alternatives more than one time is depicted as
multiple-time/repeated choice reversal.

2For more detailed explanation on this model, see the Humprey (2006).
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And then, in the section 4, I will discuss about properties and relationship among differently char-

acterized choice sequences. Section 5 will compare the implication and the prediction result to

those from previous works, especially CD (2011) and MN (2012). Section 6 will conclude this

paper and suggest the path for future research.

2.2 Model

2.2.1 Basic Environment

I consider a decision maker who faces a sequence of choice sets. Let X be a finite set of alternatives

and X = 2|X |\{Ø} be the set of all nonempty subsets of X . t ∈ T = { 1, 2, · · · } is a discrete time

index. St ∈ X is a choice set at time t given as subset of X . ct ∈ St is a choice outcome at time t.

A choice sequence is a sequence of pairs hT = (St , ct)T
t=0 for some finite T ∈ T. H is the set of

all finite choice sequences. P = 2|X×X | is the set of all nonempty binary relations on X . A binary

relation on X is a set of binary pairs of alternatives in X .

I define the binary relation over X at time t %t ∈P. I call the set %t as temporal preference at t and

for any x, y ∈ X such that (x, y) ∈ %t holds, I say “x is preferred to y at time t” and denote x%ty. I

also define a set �t

� t = {(x, y) ∈ X×X | (x, y) ∈%t and (y, x) /∈%t }

and for any x, y ∈ X such that (x, y) ∈ � t holds, I say “x is strictly preferred to y at time t” and

denote x� ty. Similarly, I define a set ∼t

∼t= {(x, y) ∈ X×X | (x, y) ∈%t and (y, x) ∈%t }

and for any x, y ∈ X such that (x, y) ∈ � t holds, I say “x is indifferent to y at time t” and denote

x∼t y.
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I assume that the initial preference %0 = X×X so that the decision maker starts from the state

that she is indifferent among all the alternatives. I also assume the existence of the underlying

preference � which is complete, transitive, and asymmetric relation3 over X . The set of the under-

lying preference is defined as P�.

2.2.2 Learning Rules

Learning rule governs change of the decision maker’s preference over time. The decision maker’s

preference change is irreversible: decision maker’s preference is only allowed to changed from the

indifference relation to the strict relation. We can consider such preference change as the “learning”

process. For this concept of preference learning, I characterize the learning process with two

features. First, the learning process should be restricted to change the temporal preference to fixed

underlying preference. That is, the learning process will stop after some finite steps of learning.

Second, the learning process should be restricted to some range of learning. That is, when decision

maker learns of his/her underlying preference, he/she would not learn all the preference relation

between all alternatives. With those two feature in mind, I formalize the learning rule as a function

Γ: H ×X×P�→ P. At some t, Γ(ht , Bt , �) is a temporal preference with respect to a history ht ,

a range of learning Bt ⊆X , and underlying preference �∈P�. Defining a learning rule requires to

specify corresponding underlying preference and the (sequence of) range of learning (�, {Bt}∞
t=0).

For this reason, when it is required, we will explicitly denote (�, {Bt}∞
t=0) for the specification of

the learning rule.

From h0 ∈H , the learning rule produces a sequence of temporal preferences up to T {Γ(ξt)}T
t=0,

where Γ(ξt) is the binary relation over X . For simplicity, I define a set of all triplets Ξ≡H ×X×P�

and triplet ξt ≡ (ht , Bt , �).

Now we consider two properties on the learning rules: for all t, for any x, y ∈ X ,
3For simplicity, I omitted the explanation of completeness, transitiveness, and asymetricity of the binary relation. I

define the conditions as following: (1) Completeness: for any x, y ∈X , either x�y (or (x, y) ∈ �) or y�x (or (y, x)∈
�), (2)Transitiveness: if x�y (or (x, y) ∈ �) and y�x (or (y, z) ∈ �), then x�z (or (x, z) ∈ �), (3) Asymmetricity:
if x�y (or (x, y) ∈ �), then not y�x (or (y, x) /∈ �).
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(Elimination) For any x = ct , y ∈Bt , either [x � y⇒ (y, x) /∈ Γ(ξt)] or [y � x⇒ (x, y) /∈ Γ(ξt)]

(Transitivity) For any x = ct , {y, y′} ⊆ Bt , x � y and y′� x =⇒ (y′, y) ∈ Γ(ξt).

(Elimination) property formally defines how the decision maker’s temporal preference between

current choice and alternative in her range of learning comes to converge to her underlying prefer-

ence. Given ct and Bt , she compares her current choice and alternatives in her range of learning.

Then, she realizes her (binary) underlying preference between them. This process is formalized

as elimination of temporal preferences that is not matched to her underlying preference. Through

elimination, she only left temporal preference that coincides with her underlying preference from

the next periods. From the (Delimitation) property, any sequence of preferences must be non-

increasing sequence, formally Γ(ξt) ⊆ Γ(ξt+1) for all t.

(Transitivity) property formally imposes indirect way of learning branches from (Elimination).

It assumes that decision maker is discernible between two alternatives that are better and worse

respectively than her current choice. If some alternative in range of learning is considered strictly

better than the current choice and the other one is worse than that, I assume that she can compare

those two even though she didn’t directly experienced them this period.

These properties can be thought as the least bound of learning process. Even though the decision

maker cannot figure out the whole ranking of given alternatives, she can at least learn whether

her current choice is better and/or worse than what she compares to. And also, from her learning,

she never fails to learn the transitive relation between the current choice and the other alternatives.

For this reason, this study restricts its focus on the learning rules that equips (Elimination) and

(Transitivity) as the least properties of learning process. This restriction brings the formal definition

of the binary learning rule.

Definition 1. Assume Γb is a binary learning rule if and only if , for all t and for any x, y ∈ X ,
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(x, y) ∈ Γb(ξ t+1) ⇔

(x, y) ∈ Γb(ξ t)and (x, y) is neither excluded by (Elimination)nor by (Transitivity)at t.

2.3 Characterization

I characterize a choice function that rationalizes binary learning rule. Different from the static

choice function that only considers current choice sets, we restricts the choice function to be con-

sistent with sequential choice histories. Formally, choice function C: H ×X → X induces an

alternative from the current choice set with respect to choice history so far. With consideration of

availability of chosen alternative at certain time, we denote Ct ≡C(ht , St). 4

I define a choice function that depicts the behavior of decision maker who adopts binary learning

rule.

Definition 2 (Choice with Binary Learning). A choice function C is a choice with binary learning

(CBL) if and only if there exists a binary learning rule Γb with respect to (�, {Bt}∞
t=0) such that,

for any ht , Ct is %t - best alternative and Γb(ζt−1) = %t . i.e., for any t

Ct ∈ x ∈ St | there exists no y 6= x ∈ St such that y �t x where Γb(ζt−1) =%t .

Then I call a choice function C isgenerated by binary learning rule Γb with respect to (�, {Bt}∞
t=0),

or simply say C is generated by (�, {Bt}∞
t=0).

The definition of CBL allows the decision maker to have indifferent preference among some al-

ternatives. For such case, we adopt the tie-breaking rule that the decision maker chooses any of

indifferent alternatives with the same probability. Since the number of alternatives are restricted to

be finite, the probability that is assigned to indifferent alternatives will be strictly positive.

Before we get into the deeper discussion, we briefly recall the static choice function. In static

choice situation, the decision maker’s preference is assumed to be fixed over time. That is, se-
4For t = 0, I assume Ht−1 = ({/0}, { /0}, { /0}).

63



quential consistency of choice is automatically induced from static consistency. A notion of static

consistency is formalized by standard weak axiom of revealed preference (WARP).

Definition 3 (Standard WARP). A choice function C satisfies the standard Weak Axiom of Revealed

Preference (WARP) if the following property holds: for any x, y ∈ X

x =Ct and x, y ∈ St =⇒∀t ′ 6= t such that x, y ∈ St ′, y 6= Ct ′.

Example 1. Let X = {a, b, c}, underlying preference � : a � b � c, and Bt = X for all t. Assume

that (S0, C0) = ({a, b, c}, c), (S1, C1) = ({a, b, c}, b), (St , Ct) = ({a, b}, a) for any t ≥ 2. This choice

sequence violates standard Weak Axiom of Revealed Preference (WARP) since (S0, C0) and (S1,

C1) show different choice behaviors even b and c are both available at t = 1 and t = 2.

On the other hand, consider a choice function C generated by (�, X). (0) We start from the initial

preference %0 : a ∼0 b ∼0 c. (1) Γ(�, %0, c, X) = {(a, b), (b, a), (a, c), (b, c)} = %1. Since �

includes (a, c) and (b, c), (c, a) and (c, b) are excluded from %0 by (Elimination). (2) From t = 1

to 2, Γ(�, %1, b, X) = {(a, b), (a, c), (b, c)} = %2. As in the first step, (b, a) is excluded from %1

by (Elimination). As a result, from the next time, Ct = a given St = {a, b}.

In this example, we can see the case that is unable to be explained by standard fixed preference

but able to by choice with binary learning. For each period, each choice outcome Ct is the optimal

outcome according to %t . c is not rejected as an optimal choice given her initial preference. At t =

1, b is not rejected as her optimal choice given her preference a ∼1b �1 c. Excluding c from her

choice outcome is rational enough behavior at this step. From t = 2, a is always chosen. Since a is

the best outcome according to her preference a �2b �2 c, it is also said to as rational behavior.

On the other hand, from the above example, we can observe the features that characterize choice

with binary learning: there is no choice reversal between already chosen items. Once her learning

of preference between alternatives occurs, the decision maker does not revert choice between them.

For this reason, if she chooses another alternative in the later time (even though the past choice is
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still available), it reveals that her underlying preference strictly prefers the later alternative to the

past one. For the same reason, if she chooses the same item in the later time, it also reveals that the

item is the most preferred one among her choice set.

I generalize these observations to characterize revealed preference for sequential choice with learn-

ing. To begin with, we need to define the notion of revealed preference on sequential choice en-

vironment. Since the binary learning rule produces temporal preferences depends on its range of

learning, we need to specify it.

Definition 4 (Revealed Preference). Assume C is a choice function. Define the revealed preference

at t with respect to B = {Bt}∞
t=0 Pt

B∈P.

For any x, y ∈X , (x, y) ∈Pt
B if

(i) Cs = y, Cr = x and x, y ∈ Bs, Sr, where s < r ≤ t , or

(ii) Cs = Cr = x and x, y ∈ Bs, Sr, where s < r ≤ t , or

(iii) ∃ w ∈ X such that x Pr
B w and w Ps

B y where r 6= s ≤ t, and ∃t ′ ≤ t such that Ct ′ ∈{x, y, w} and

x, y ∈ Bt ′ .

Then, I denote x Pt
B y and call x is revealed preferred to y at t.

Using the notion of revealed preference, I define sequential weak axiom of revealed preference

with respect to B = {Bt}∞
t=0.

Definition 5 (WARP - S). A choice sequence C satisfies the sequential weak axiom of revealed

preference with respect to B = Bt
∞
t=0 (WARP-S(B)) if the following property holds:

for any x, y ∈ X and for any t and ht ,

x Pt
B y =⇒ y 6= Ct ′ ∀t ′ > t such that x, y ∈ St ′.

From definition of WARP-S(B), I characterize the choice function C generated by (�, B) in terms

of WARP-S(B).
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Proposition 1. For some B = {Bt}∞
t=0 C satisfies WARP - S(B) if and only if C is a CBL.

This result also allows us to find some underlying preference � that generates C as a result of her

binary learning. Following result dictates this finding formally.

Corollary 1. C satisfies WARP - S(B) if and only if there exists some � ∈ P�such that C is

generated by (�, B).

We will briefly see how the above result can be used. Consider the example 1 again.

Example. 1 (Revisited) Let X = {a, b, c}. Assume that (S0, C0) = ({a, b, c}, c), (S1, C1) = ({a, b,

c}, b), (St , Ct) = ({a, b}, a) for any t ≥ 2.

First, we will see WARP - S(X) is satisfied for this choice sequence. From t = 0 to 1, we have b P1
X

c since a, b are both available at S1 = {a, b, c} and C0 = c and C1 = b. By the same way, we have a

P2
X b since S1 = {a, b} and C1 = b and C2 = a. Also we have b P2

X c that is inherited from b P1
X c.

From the next period, we have Pt
X = {(a, b), (b, c)} and decision maker stays at a. So it does not

violate WARP - S(X).

Now we see how theorem 1 works. Put PX = lim
t→∞

Pt
X.5 Consider some underlying preference that

includes PX. In this example, we have PX = P2
X. Since the underlying preference requires to be

complete, transitive, and asymmetric, the only candidate for underlying preference including PX is

� = {(a, b), (b, c), (a, c)}. As we can see in the above, C is generated by (�, X).

Theorem guarantees existence of underlying preference� that explains given choice function C as

a result of learning. In other words, by showing satisfaction of WARP - S(B), we can find at least

one complete, transitive, and asymmetric underlying preference � such that C is generated by (�,

B).

This result points out the connection between temporal consistency and well-defined6 (underlying)

preference. WARP - S(B) requires the consistency based on sequential choice: revealed preference
5For existence of this limit, we need additional proof. This issue will be considered in the section 4. In this example,

it exists and PX = P2
X.

6To indicate complete, transitive, and asymmetric underlying preference, I abuse the word ’well-defined.’

66



at each time should not conflict with upcoming choice outcomes. This sequential consistency does

not require well-defined preference at given time. It only requires the partial preference that does

not conflict with upcoming choice outcomes. However, WARP - S(B) suffices such sequential

consistency to be continued until the end of choices, and this condition is necessary and sufficient

condition to guarantee existence of well-defined preference.

Furthermore, such sequential consistency largely depends on choice of B. The same choice se-

quence can be valid for WARP - S with respect to some B, but not for another one. This finding

make us consider the connection between the structure of range of learning and requirement for

existence of well-defined preference. Wider range of learning more effectively narrows down the

candidate of well-defined preference that is compatible to given sequential choice. On the other

hand, such wider range of leaning restricts the possible choices that can be justified as not violat-

ing sequential consistency. That is, as we have more effective prediction in the sequential choice,

requirement for sequential consistency comes to be more restrictive. We will discuss about this

link more deeply at the section 5.

2.3.1 Proof of Proposition

In this subsection, I provide a proof for Proposition 1. The proof consists of a series of lemmas

which will be also useful for the next section’s result.

Lemma 1. Assume a choice function C satisfies WARP-S(B) and Pt
B is a revealed preference at t

with respect to B. Then, there exists a limit revealed pre f erence with respect to B PB ≡ lim
t→∞

Pt
B.

Proof. Suppose that a choice function C satisfies WARP-S(B) and Pt
B is a revealed preference at t

with respect to B. For the proof of this lemma, we will first show that for any x, y ∈X and t ≥ 0

such that xPt
By, xPj

By for any j ≥t and ¬(yPk
Bx) for any k ≥ 0. From this fact, the assumption that

C satisfies WARP-S(B) implies Pt
B weakly increases over time. As a result, we may have lim

t→∞
Pt

B =⋃
t→∞

Pt
B.
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(WTS) Suppose that xPt
By where x, y ∈X and t ≥ 0. Then, for any k, ¬(yPk

Bx). Moreover, for any

j ≥t, xPj
By.

(Proof) By the definition of revealed preference, xPt
By requires some (i) r < s≤ t such that {x, y}

∈ Br ,Cr∈{x, y}, Cs = x or (ii) some w 6= x, y ∈ X such that x Pr
B w and w Ps

B y where r , s ≤ t, and

some t ′ ≤ t such that Ct ′ ∈{x, y, w} and {x, y} ∈ Bt ′ .

For case (i), suppose that s is the least time such that x is revealed preferred to y. Then, by

definition, xPj
By for any j ≥s. Since we assume that s is the least time that x is revealed preferred

to y, we may not have yPk
Bx for any k ≤s. If we have, then it violates WARP-S(B) at s. By the

similar way, for any k > s, having Ck = y allows to have yPk
Bx but it also violates WARP-S(B) at k.

Consequently we have ¬(yPk
Bx) for any k.

For case (ii), suppose that v ≡ max{r, s, t’} is the least time such that x is revealed preferred to

y. By definition, xPj
By for any j ≥ v. To show that ¬(yPk

Bx) for any k ≥ v, suppose that there

exists some t” ≥ v such that Ct” = y and {x, y} ⊆ St”. Then, it violates WARP-S(B) at t” so that

it is contradictory. To show that ¬(yPk
Bx) for any k < v, suppose that there exists some t” < v such

that y Pt”
B x. Without loss of generality, suppose that r, t ′, t” < s. Then, at s - 1, at least y Ps−1

B w

so that we have ¬(wPk
By) which contradictory to assumption. For the other cases, we have similar

contradiction.

From the above existence of limit preference, we find the following proposition.

Proposition 2. Assume a choice function C satisfies WARP-S(B) and PB be a limit revealed pref-

erence with respect to B. Then, for any x, y ∈ X and any � ∈ P� such that C is generated by (�,

B),

(x, y) ∈ PB⇒ x � y.

Proof. Assume that C satisfies WARP-S(B). From the above lemma, we have PB =
⋃

∞
t=0PB

t . Now

we suppose x PBy and t ≥0 is the least time such that xPB
ty. Then, by WARP-S(B), there is no s
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≥0 such that (x, y) ∈ St+s and y = Ct+s. So that ¬(yPs
Bx) ∀s ≥0. Moreover, since t ≥0 is the least

time such that (x, y) ∈ PB
t , there is no t ′ ≤ t such that (y, x) ∈ PB

t ′ . Then (y, x) /∈
⋃

∞
t=0PB

t . xPB
ty

implies there exists (i) r < s = t such that {x, y} ∈ Br ,Cr∈{x, y}, Cs = x or (ii) some w 6= x, y ∈ X

such that x Pr
B w and w Ps

B y where r , s ≤ t, and some t ′ ≤ t such that Ct ′ ∈{x, y, w} and {x, y} ∈

Bt ′ .

Now we assume that C is generated by (�, B) for some arbitrary � ∈ P� such that (y, x) ∈ �. For

(i), by (Elimination), Cr ∈{x, y} and {x, y}⊆ Br implies (x, y) /∈ Γb(ξ r+1) so that (x, y) /∈ Γb(ξ t−1)

= %t . Then, at t, x = Ct is not %t- best alternative since y ∈St while (y, x) ∈ Γb(ξ t−1). For (ii),

without loss of generality, assume that x Pr
B w and w Ps

B y is earned by the case (i) respectively and

r < s. Now we check each case for relative order for t’ and Ct ′ . First, suppose t’ < r < s and Ct ′ =

x or y. Then, by (Elimination) at t’, (x, y) /∈ Γb(ξ t ′+1) so that (x, y) /∈ Γb(ξ r−1) = %r. Then, at r,

having Cr = x violates %r since y is available at Sr while (y, x) ∈%r. Second, suppose that suppose

t’ < r < s and Ct ′ = w. Then, by (Transitivity) at t ′, (x, y) /∈ Γb(ξ t ′+1) so that (x, y) /∈ Γb(ξ r−1) =

%r. Similar to the first case, it violates %r so that it is contradictory. By exploiting these tricks to

the other cases, we have that assuming (y, x) ∈ � always violates the definition of CBL.

This proposition allows us to have weak acyclic of revealed preference.

Proposition 3. Assume a choice function C satisfies WARP-S(B) and PB is a revealed preference

with respect to B. Then, a transitive closure of PB tc(PB) such that

tc(PB) = {(x, y) ∈ X×X | ∃K ∈ Nand x0 ,x1, · · · , xK ∈ X suchthat

x = x0, (xk−1, xk) ∈ PB f or all k ∈ {1, · · · , K}and xK = y}

is weakly acyclic. That is, for any x, y ∈ X such that (x, y) ∈tc(PB), (y, x) /∈ PB.

Proof. For this proposition, I only consider the minimal transitive closure such that (x, z) ∈tc(PB)

from (x, y) ∈ PB and (y, z) ∈ PB where x, y, z ∈ X . Proof of longer length of transitive closure can

be inductively induced from the extension of this minimal case. Suppose (x, y) ∈ PB and (y, z) ∈
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PB. Then, we may have the least r, s ≥0 such that (x, y) ∈ Pr
B and (y, z) ∈ Ps

B. (1) Suppose that (x,

z) ∈PB. Then, from the above proposition, (x, z) /∈PB is automatically induced. (2) Suppose that

(x, z) /∈PB. Then, there is no t ≥ 0 such that (x, z) ∈ Pt
B. Now assume that (z, x) ∈ Pt′

B for some

t ′ ≥ 0. Let v = max{r, s, t ′}. Without loss of generality, let v = t ′. To have (z, x) ∈ Pt′
B, it needs

some t” < t’ such that Ct”∈ {x, z} ⊆ Bt”. However, having such t” < t’ automatically induces (x, z)

∈ Pmax{r,s,t”}
B which implies contradiction.

As a result of such propositions and lemma, we have Proposition 4.

Proposition 4. C satisfies WARP - S with respect to some range of learning B = {Bt}∞
t=0 if and

only if C is a CBL.

Proof. The case that CBL implies WARP-S(B) is immediate from the construction of CBL. So,

we only consider the case that WARP-S(B) implies CBL.

Suppose C satisfies WARP-S(B). This assumption returns that, for any x, y ∈ X , if (x, y) ∈ PB
t for

some t, then (y, x) /∈ PB
s for any s. So, for any x, y ∈ X such that (x, y) ∈ PB

t for some t, we have

(x, y) ∈ PB and (y, x) /∈ PB. Then, we can find some set of underlying preferences�B ≡ {� ∈ P�|

PB ⊆�}. Since tc(PB) is weakly acyclic according to Proposition 3, �B is should be nonempty.

(WTS) Pick any �∈ �B. Then, for any Γb that equips (�, B), Ct ∈{x∈St | there exists no y 6=x∈St

such that y �t x where Γb(ζt−1) = %t} for any t.

(Proof) Suppose not. That is, at some t, Ct = x, y �tx, and y 6= x ∈ St . Then, we have some s ≤ t

- 1 such that (x, y) ∈ Γb(ζs−1) and (x, y) /∈ Γb(ζs). Consequently (x, y) /∈ Γb(ζs) for some s ≤ t -

1 implies (x, y) /∈ �. On the other hand, according to Proposition 2, WARP-S(B) implies (x, y) ∈

PB
t so that (x, y) ∈ PB ⊆ �, which is contradictory.
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2.4 Range of Learning and Sequential Consistency

In this section, I discuss about the way to restrict the range of learning that can recover well-defined

underlying preference from choice sequence.

2.4.1 Range of Learning and Requirement for Sequential

Consistency

First, larger range of learning implies the decision maker learns more about pairwise underlying

preference at each time. As a result, the revealed preferences will weakly increase at each period.

In other words, the monotonicity in the range of learning is continued to the weak monotonicity of

revealed preference. The following lemma formally depicts this implication.

Lemma 2. Assume a choice function C generated by (�0, B0) and (�1, B1) where B0 = {B0
t }∞

t=0

and B1 = {B1
t }∞

t=0 respectively. Pt
B0 and Pt

B1 is revealed preference at t from each pair respectively.

Then,

B0
t ⊆ B1

t f or all t ⇒ Pt
B0 ⊆ Pt

B1 f or all t.

Proof. Suppose that (x, y) ∈Pt
B0 where x, y ∈ X at some t and B0

t ⊆B1
t for all t. We consider three

cases of revealed preference realizations respectively.

(1) Suppose there are r ≤ s ≤ t such that y = Cr, x = Cs, x, y ∈B0
r , and x, y ∈ Ss. Then we have x, y

∈B1
r so that, by definition, (x, y) ∈Pt

B1 .

(2) Suppose there are r ≤ s ≤ t such that x = Cr, x = Cs, x, y ∈B0
r , and x, y ∈ Ss. Then we have x, y

∈B1
r so that, by definition, (x, y) ∈Pt

B1 .

(3) Suppose there is an alternative w ∈ X such that (x ,w) ∈ Pr
B0 and (w, y) ∈ Ps

B0 where r , s ≤ t,

and there is t ′ ≤ t such that Ct ′ ∈{x, y, w} and x, y ∈ B0
t ′ . Without loss of generality, (x ,w) ∈ Pr

B0

and (w, y) ∈ Ps
B0 is realized according to (i) or (ii) of Definition 4 respectively. Then, by exploiting
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proof in (1) or (2) above, we have (x ,w) ∈ Pr
B1 and (w, y) ∈ Ps

B1 . By the assumption, x, y ∈ B0
t ′

implies x, y ∈ B1
t ′ . Then, by the (iii) of Definition 4, (x, y) ∈Pt

B1 .

With this lemma, I discuss about the connection between the revealed preference and underlying

preference. Main idea is this: each revealed preference is constructed to capture the sequential

choice behavior that explicitly reveals the underlying preference. That is, at least each revealed

preference can be confirmed as the reflection of underlying preference of the decision maker if she

truly adopted the range of learning. WARP - S enforces such revealed preference to be consis-

tent with her upcoming choice sequence. This enforcement assures the existence of well-defined

underlying preference that allows revealed preferences as its partial reflection.

From those two results, we have the following result that governs the connection between consid-

eration sets and underlying preferences. Wider range of learning allows us to catch more revealed

preferences. And proposition above justifies revealed preferences as a proper reflection of the un-

derlying preference if they are consistent to upcoming choice outcomes. These two results can be

combined to have result that shapes the least amount of underlying preference according to relation

between the ranges of learning. Following corollary formalizes this explanation.

Corollary 2. Assume a choice sequence C generated by (�0, B0) and (�1, B1). Then, for all x, y

∈ X ,

B0
t ⊆ B1

t f or all t ⇒
[
x PB0 y ⇒ x �1 y

]
.

This result suggests the basic criterion we can exploit to confirm the minimum level of prediction

for underlying preference. When we have enough (a priori or exogenous) information to determine

the decision maker’s range of learning, this finding allows us to exploit that information to set up

the boundary for prediction level. Suppose that we have some exogenous reason to confirm that

some reference set I is always included to her range of learning. Then, forming her range of

learning to include I every time will guarantee the revealed preference relations PI generated by Bt

= I as her underlying preference (as long as choice function satisfies WARP - S with respect to I.)
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These results give us another way to finding proper range of learning. In this paper, I assume that

the range of learning to be general function of sets generated from history of choice environment.

For this generality, there is difficulty in guessing a proper form of function. Proposition (x)] allows

us to try arbitrary sequences of sets as range of learning. If we find some sequence of sets to

satisfy WARP - S, then we can narrow down proper candidates for range of learning to include

such sequence of sets at each time.

Moreover, this connection exhibits continuous prediction level depends on given choice data’s

level of sequential consistency. As I briefly mentioned in section 3.2, larger range of learning

needs tighter requirement for existence of well-defined underlying preference that generates given

choice function as CBL. Since wider range of learning confirms more pairs as revealed prefer-

ence than smaller one, revealed preference from larger one has higher possibility to conflict with

upcoming choice outcomes. On the other hand, more pairs in revealed preference implies higher

predictability for underlying preference. This results allows us to make a choice between pre-

dictability and consistency. For some choice data, even it is not fully fit to some high level of

sequential consistency, we can find another (lower) level of sequential consistency that also pro-

vides another level of predictability. For this matter, CBL framework is very flexible to different

level of sequential consistency while maintaining proper level of predictability.

The following corollary depicts this finding.

Corollary 3. Fix the choice function C and ranges of learning B0, B1. PB0 and PB1 is revealed

preference from B0 and B1 respectively. Suppose that B0
t ⊆ B1

t for all t. Then,

[C satisfies WARP−S(B0) ⇒ C satisfies WARP−S(B1)] ⇔ [PB0 ⊆ PB1] .

By combining [the above proposition] and [the lemma] we have a [theorem] that determines

whether the certain range of learning can generate the CBL choice function.

Theorem 1. Fix B0 = {B0
t }∞

t=0 and B1 = {Bt
t}

∞
t=0 such that B0

t ⊆B1
t for all t. Suppose tc(PB0) is not

weakly acyclic. Then, there is no � ∈ P� such that C is generated by (�, B1).
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Proof. By the Proposition 3, if tc(PB0) is not weakly acyclic, then C is not satisfying WARP -

S(B0). Then there is some s, s’ where s < s’ and alternatives x, y ∈ X such that (x, y) ∈ Ps
B0 while

y = Cs′ and x, y ∈Ss′ . From the [lemma 2] above, we have (x, y) ∈Ps
B1 . So C also violates WARP -

S(B1) which implies that there are no � ∈ P� such that C is generated by (�, B1).

This theorem restricts the range of learning by the inclusion relation. That is, once a revealed

preference from a certain range of learning violates the sequential consistency (or WARP-S), any

range of learning that includes such range of learning also violates the sequential consistency. This

result makes us to save an effort to find a ’reasonable’ range of leaning. As long as we have

some non-empty range of learning that its limit revealed preference violates weak acyclicity, any

other non-empty range of leaning that includes such range of learning can be excluded from our

consideration.

2.5 Comparison to Previous Choice Set Based

Frameworks

In this section, I will compare choice with learning framework (henceforth, CL) to previous choice

set-based frameworks, especially Masatlioglu and Nakajima (2012) (henceforth M&N) and Caplin

and Dean (2011) (henceforth C&D)7. To help reader’s understanding, I will briefly summarize

frameworks in two previous papers. Then, I will compare three frameworks with CBL framework.

Set-based frameworks focus on characterization of the choice sequences that explains choice re-

versal occurs within the same or fixed choice set. Those frameworks consider that the decision

maker’s changing consideration set or range of focus causes choice reversal over time. Assum-

ing that the decision maker has fully known preference over all alternatives, they separate actual

choice set and nominal choice set the decision maker faces. That is, even the decision maker faces

7For the comparison of model-based frameworks and model-free (or standard) frameworks, see Masatlioglu et al
(2012).

74



superficially the same choice set, underlying choice set can be differ at each time.

Assuming such choice environment, set-based frameworks focuses on recover the decision maker’s

underlying preference by infer actual choice set. Depending on the generation process of (se-

quences of) actual choice set, their recovery can be different prediction from standard model-free

framework8.

However, set-based frameworks does not consider the order of choice sequences those occur on the

difference choice sets. That is, they focus on recovery of underlying preferences that is revealed

only from the same or fixed choice sets. However, if the choice sequence is combined of choice

sequences from different choice sets and such whole sequential information is available, we can

extract more information on the decision maker’s preference.

Masatlioglu and Nakajima (2012)

Masatlioglu and Nakajima (2012) introduce a choice by iterative search (CIS) to capture the under-

lying preference in the sequential choice situation. They assume that the decision maker chooses

the best alternative in her current consideration set at each time. Given that she knows her complete

and transitive underlying preference without indifference, consideration set restricts her choice set

itself. Even though the decision maker nominally faces choice set St , actual choice set is consider-

ation set Bt ⊆ St is different from St . This notion of consideration set is main difference from CL

framework. I assume the consideration set as the decision maker’s range of learning, not the range

of actual choice. CL framework allows all the alternatives in the choice set to be considered for

choice.

Another difference is placed on the cause of choice reversal. In their setting, it is assumed that the

decision maker’s consideration set changes over time depends on her current consideration set. In

other words, next period’s consideration set is supposed to be generated from current consideration

8To see more detailed discussion on this difference, see Masatioglu et al (2012).
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set. They call such consideration set generation process as choice by iterative search (CIS) process.

Because of CIS process, even though she faces the same choice set for a few periods, changes in her

consideration sets can cause changes in choice outcomes. CIS process consequently enforces path

of consideration set to be fixed according to her initial choice outcome and choice set. It means, if

the decision maker starts from a particular initial choice outcome and a choice set, choice sequence

should be exactly the same irrelevant to her choice history on another choice set.

Authors use the expression C(S, x) = y to denote choice outcome from choice set S that started

from x and end up with y. With my notation, it can be written in (S, Ct)T
t=0, where T < ∞, with C0

= x and CT = y. The final choice (CT ) is assumed as the most preferred alternatives in
T
∪

t=0
Sk. That

is, the decision maker stops her searching when she arrived at her best choice. This observation

allows them to define revealed preference �c such that y �c x if C(S,x) = y.

To characterize the CIS process, they introduced a dominating anchor axiom defined by the fol-

lowing9.

Definition 6 (Dominating Anchor). For any finite set S ∈ X, there exists some alternative x∗ ∈ S

such that C(T, x∗) /∈ S\{x∗} for all T including x∗.

From the dominating anchor axiom, they characterize the choice function as the choice by iterative

search (CIS). Moreover, axiom imposes acyclicity on �c .

Theorem 2 (Choice by Iterative Search). A choice function C(·, ·) obeys the dominating anchor

axiom if and only if C(·, ·) is a CIS. Moreover, underlying preference�C generating C if and only

if � includes a transitive closure of �c tc(�c).

Since the CIS process covers very broad range of choice sequences, they attach additional struc-

ture on the generation process of consideration sets. They assume the next period’s consideration

set to be union of unique set of alternatives that contains current period’s choice outcome and

current consideration set itself. Actually, this structure depicts the (unique) expansion of consid-

eration set depending on current choice outcome and consideration set. This process is called as
9I’m exploiting original paper’s expression to maintain its conceptual philosophy.
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the Markovian choice by iterative search (MCIS)10. MCIS identifies two additional cases as the

revealed preference: x �c y if (i) x = C(S∪{y}, z) 6=C(S, z), or (ii) x = C(S∪{y}, z) and y = C({y,

z}, z). The first case captures the bifurcation of path of consideration sets. Since MCIS process de-

pends on choice set and current consideration set, the change of choice set itself can cause changes

in consideration set generating process. For this reason, consequential change in path of consid-

eration sets can cause different final choice outcome. The second case captures part of transitivity

among choice outcomes. If some alternative, say y, is revealed to prefer another one, say z, and x

is revealed to preferred to z even y was available, then x is also revealed to preferred to y.

Caplin and Dean (2011)

Caplin and Dean (2011) introduce an alternative based search (ABS) to explain choice reversal as

the consequence of searching behavior. They assume given choice sequence to have infinite length

and the decision maker to stay at her best alternative once she found it.

They define sequence of consideration sets to be non-decreasing and subset of choice set. Formally,

Bt ⊆ A and Bt ⊆ Bt+1 for all t, where A is a choice set. It is the same to the setting in MCIS of M&N.

While MCIS bases on fixed consideration set generation process, they assume those consideration

sets to be simply non-decreasing. For this reason, they call such consideration set as ever-searched

set. They define the set of sequences of the non-decreasing sets as Z ND and Z A ∈ Z ND to

comprise of (consideration) sets Bt selected from A ∈ X ,

ZA = {Z ∈ Z ND |Bt ⊂ A f or all t ≥ 0}.

Also they defined the t th choice outcome from Z A CA(t) ∈ A. Without harming the philosophy of

original notion, I introduce the alternative based search (ABS) representation as the following :

Definition 7 (ABS). Choice sequence (A, Ct)∞
t=0 has an ABS representation (�, S) if there exists a

10Authors characterized MCIS process with additional properties including strong version of dominating anchor ax-
iom.
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underlying preference � and a search correspondence S : X→ Z ND , with SA ∈ A for all A ∈ X

such that

CA(t) = {x ∈ SA(t) | x � y f or all y ∈ Zt}.

ABS representation explicitly assumes the choice outcome to be the best alternative among the

searched alternatives. In other words, as in M&N, C&D assume fully known underlying preference

over consideration set. For this reason, ABS does not allow choice reversal between ever-searched

alternatives. The only possible case that choice reversal can happen is when newly considered

or added item to consideration set is better than current choice outcome. In other words, if the

choice reversal happens between two alternatives, say x and y, then no choice reversal is allowed

to happen again between them in the upcoming choice sequence.

And the assumption allows them to consider every choice reversal as the evidence of revealed

preference. That is, once choice outcome is moved from x at time t to y at t + s for any t, s ≥1,

the decision maker is considered to reveal her underlying preference x � y. This finding allows

revealed preference relation � ABS on X to be defined by x � ABSy if there exists A ∈ X and s,t ≥ 1

such that y ∈CA(s) and x ∈CA(s + t), but y /∈CA(s + t).

2.5.1 Application of Sequential Order of Choices

In this subsection, I will show how can we use whole choice sequence to extract the decision

maker’s underlying preference. Consider that following example.

Example 2. Let X = {a, b, c, d, e}. Assume that (S0, C0) = (X , e), (S1, C1) = ({b, c, d}, e), (S2, C2)

= (X , c), (S3, C3) = ({b, c, d}, b), (S4, C4) = (X , a). From this whole choice sequence C, I define

subsequences for different choice set X and {b, c, d} and denote them CX and Cbcd respectively.

That is, (SX
0 , CX

0 ) = (S0, C0) = (X , e), (SX
1 , CX

1 ) = (S2, C2) = (X , c), and so on. (Sbcd , Cbcd) is defined

similarly.
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According to ABS, we can find two transitive closures a � ABS c � ABS e, and b � ABS d. Given

choice sequence CX , the sequence ends up with a through c and e. Assuming that this sequence is

the only available choice sequence within X , a pair (X , �ABS1), where �ABS1 is an arbitrary under-

lying preference order that includes a� ABS c and a� ABS e, is qualified as ABS representation that

generates CX . As the same reason, a pair ({b, c, d},�ABS2), where�ABS2 is an arbitrary underlying

preference order that includes b � ABS d, is qualified as CIS that generates Cbcd . Finally, a pair

(X , �∗ABS), where �∗ABS is an arbitrary preference order includes tc(�ABS), is qualified as ABS rep-

resentation for entire sequence C. MCIS recovers exactly same two transitive closures. However,

ABS and MCIS both can’t tell anything about relation between a and b or c and d. According to

CL, we can have candidates for entire underlying preference. Assume Bt = X for all t. C satisfies

WARP - S(X) and (� = a � b � c �d �e, X) uniquely generates C as CBL. For the case Bt = St

for all t, C satisfies WARP - S(S) and (� = a � b � c �d �e, St) also generates C as CBL.

Example 2 exhibits how CL framework extracts additional information about the underlying pref-

erence from whole choice sequences. Why such difference comes out in the same choice sequence?

The reason comes from the conceptual difference between set-based frameworks and CL frame-

work. Set-based frameworks defines the preference relations on the base of (actual) choice set.

They define each choice outcome as the most preferable alternative within some (actual) choice

set. In other words, each choice outcome is considered as the reflection of fully known underlying

preference at each (actual) choice set. For this reason, sequential order between different choice

sets does not affect choice outcomes.

On the while, CL framework considers that the decision maker’s temporal preference is affected by

her past choice history. Even I assume that her underlying preference is fixed, her temporal pref-

erences which partially reflect her underlying preference is shaped by her past choice sequence.

Depending on what she had faced and experienced before her current preference is formed and af-

fects her current decision. On this ground, I can define the decision maker’s sequential consistency

in the form of WARP - S and extract the additional information on her underlying preference. For

this reason, additional information on underlying preference is differed by whole choice sequence’s
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consistency. Consider the following example.

Example 3. Let X = {a, b, c, d, e}. A choice sequence C, CX , and Cbcd is defined as in Example

2. Now I define concatenation of CX and Cbcd and denote C
′
. For C

′
, (C

′
0, S

′
0) = (CX

0 , SX
0 ) = (X , e),

(C
′
1, S

′
1) = (Cbcd

1 , Sbcd
1 ) = (X , c), (C

′
2, S

′
2) = (CX

2 , SX
2 ) = (X , a), (C

′
3, S

′
3) = (Cbcd

0 , Sbcd
0 ) = ({b, c, d}, c),

(C
′
4, S

′
4) = (Cbcd

1 , Sbcd
1 ) = ({b, c, d}, b).

ABS and MCIS can recover the same underlying preference on both C and C′. Since they consider

the sequential consistency on the set-wise ground, unless the recovered underlying preference from

each choice set does not conflict to another, both choice sequences are considered as consistent one.

On the while, CL framework defines different consistency for each choice sequence. For C, WARP

- S(X) and WARP- S(S) are satisfied. However, for C′, WARP - S(X) is not satisfied. WARP - S(S)

is still satisfied for C′, but recovered underlying preference is quite different from that from C.

According to Bt = St for all t, an arbitrary underlying preference �′ that includes a � c � e and

b � d � c can be paired with St to generate C
′
. That is, depends on whole sequence’s sequential

order, extent of additional information can be differed and her range of learning can be specified.

This example briefly exhibits how the whole sequence’s sequential order affect defining sequential

consistency and how such consistency affect the recovery of underlying preference. According

to CBL, sequential consistency is defined on whole sequence’s sequential order. This relation of

sequential order and consistency is captured by WARP - S. WARP - S explicitly restricts sequential

consistency in terms of range of learning. By the range of learning, the recovery of underlying

preference is defined in terms of revealed preference11.

On the other hand, set-based frameworks provide the same recovery of underlying preference re-

gardless of whole choice sequence’s order. They define the whole choice sequence’s consistency

based on each set-wise sequence’s consistency. In other words, they define whole choice sequence

consistent if subsequences that are defined on each fixed choice set exhibits consistency and pref-

erence order derived from each choice sets is not in conflict with that from the other choice sets.
11Detailed discussion on this relation between range of learning and revealed preference will be provided in the section

5.
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This difference raises question about the usage of whole choice sequence’s order: whole sequential

data can be used to make up insufficient set-wise sequential choice data. Set-based frameworks not

requires the whole sequence’s order. That is, they can define consistency that are robust to whole

choice sequence’s order. On the other hand, as a result of such context-free property, they hesi-

tate to determine some relations as the revealed preference. If set-wise data on decision maker’s

preference is rich enough, such lost can be compensated by sharing recovery from different choice

sequences. However, if set-wise choice data is not enough for such make-up, we can use whole

sequential choice’s order to make up insufficient information about individual’s underlying prefer-

ence.

2.5.2 Repeated Choice Reversal and Procedural Information

Compared to set-based frameworks, CBL framework can explain repeated choice reversal. Choice

reversal is the situation at which the decision maker change her choice from one to another alter-

natives when two alternatives are both available. Repeated choice reversal especially indicates the

case at which such choice reversal between a pair of alternatives occurs more than or equal to two

times. Set-based frameworks do not allow such repeated choice reversal : since they assume that

the decision maker’s underlying preference is fully known and her next period’s actual choice set

always includes the current choice outcome, such repeated choice reversal cannot happen. How-

ever, CL frameworks restrictively allows repeated choice reversal depends on its range of learning.

Consider the following example.

Example 4. Let X = {a, b} and underlying preference a � b. Suppose that choice sequence C

consists of (S0, C0) = ({a, b}, a), (S1, C1) = ({a, b}, b), (St , Ct) = ({a, b}, a) for all t ≥ 2. Since C

exhibits repeated choice reversals, neither ABS nor MCIS consider it as consistent. From X = St =

{a, b} for t = 1, 2, WARP - S(X) and WARP - S(S) are both violated.

However, this inconsistency is explained by assuming Bt =
t−1
∪

k=0
{Ck} for all t ≥1 and B0= {/0}. This

case assumes that the decision maker only learn the underlying preference between past experi-
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enced alternatives and current choice outcome. In other words, the decision maker only learns

from her direct experience. I denote WARP - S that uses this range of learning WARP - S(C).

(0)Γ(�, %0, a, { /0}) = %1 = %0. At t = 0, no learning occurs. Since a and b are not yet experienced,

decision maker cannot confirmed her preference. (1) Γ(�, %1, b, {a}) = %2 = {(a, b)}. After her

experience of both a and b, she can confirm which one is better. (2) Γ(�, %t , a, {a, b}) = %t+1

= {(a, b)} for all t ≥3. From her learning at t = 1, she chooses her best choice a according to her

preference.

This case distinguishes the difference of CL framework from set-based frameworks. This particular

example sheds some light on theoretical justification of the empirical findings from Chu and Chu

(1990) and Cox and Grether(1994). In those empirical works, when subjects face two different

lotteries (with different combination of award and probability), they occasionally exchanges their

current choice with another lottery even it is available before and worse in numerically expected

amount. They found that such choice reversal is remained even after the subjects’ first experience

of choice reversal. However, choice reversal is largely reduced after their experience of (realization

of) both lotteries. Especially, Chu and Chu found that only a small proportion of subjects exhibit

choice reversal after third time repetition 12. CL framework provides theoretical ground to explain

such repeated choice reversal as a result from the decision maker’s learning process.

Moreover, CL framework captures some detailed relationship among alternatives by expoliting the

procedural observations.

Example 5. Let X = {a, b, c, d}. S0 = S1 = {a, b}, S2 = S3 = {c, d}, S4 = S5 = {a, c}, St = {b,

c} for all t ≥ 6 and C0 = C1 = a, C2 = C3 = c, C4 = c, C5 = a, C6 = c, Ct = b for all t ≥ 7. This

choice sequence compatible with ABS, and WARP - S(S). From ABS , we can find �ABS = {(a,

c), (b, c)}. In this case, we cannot define relation between a and b or c and d. However, from CL

framework, we can find a PS b PS c PS d.

12This finding was formalized as so called frequence−based probability learning theory. To see detailed model, see
the Humprey (2006).
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In this example, changing sequential choices (S4, S5) and (S6, S7) can give a different interpretation.

In example 5, changing choice from C6 = c to C7 = b is accepted as learning a relation between

b and c since they are not learned even after learning the relation between a and c in (S4, S5).

However, when we assume that S4, S5 = {b, c}, S6, S7 = {a, c}, and (C4, C5) = (c, b), showing

(C6, C7) = (c, a) is not accepted as learning. According to learning process, chaging C4 = c to

C5 = b also updates the relation between a and c by the transitivity, so that C6 should be a rather

than c. On the other hand, ABS accepts all such cases as relevant choice sequences and consider

such changes in choices as the search process. In other words, ABS process ignores the procedural

information between choice sequences which can reflect decision maker’s information state that

can be differed depends on information gained in her previous choices.

2.5.3 Brief Discussion on the Frameworks

From the examples in the above, it seems there is no exact relationship between set-based frame-

work and general CL framework. For set-based framework, it requires each choice sequence to be

complete that has ends up with some final choice. Moreover, when choice sequence only contains

incomplete choice data that does not have final choice, they ignores information from such incom-

plete choice data. With exchange of such conservatism for data acceptance, they suggests more

reliable recovery of underlying preference. On the other hand, CL framework accepts such incom-

plete data if they contains enough procedural information. However, CL framework’s recovery of

underlying preference is more vulnerable to small change in procedural information or context.

Moreover, current CL framework does not allow bifurcation of choice path and final choice that

is accepted in the MCIS model since it assumed non-decreasing update for temporal preference.

Even with such limitness of current study, I think we can explain such bifrucation of final choice

when we assume “forgetable” memory on the individual preference in the future study.
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2.6 Conclusion

In this study, I constructed choice with binary learning (CBL) framework that captures sequential

consistency that is governed by binary learning rule. I assumed that the decision maker’s tempo-

ral preference (partially) reflects her underlying preference at that time but separated from that.

Her sequential behavior is assumed to shape her temporal preference that weakly converges into

her underlying preference. Sequential consistency requires her to choose the best and available

alternative(s) according to her temporal preference at each time.

I focused on a simple learning rule with the least amount of rationality, and then placed all the

other causes of non-standard behavior on the idiosyncrasy of range of learning. By doing this,

we could narrow down our focus on the having the proper range of learning that justifies given

choice function as CBL. According to its range of learning, we have the corresponding level of

predictability for underlying preference without losing the decision maker’s rationality.

Consequently, flexibility of sequential consistency has the two opposite side of implication. It

provides us the ground to justify non-standard behavior as a result of sequential learning over time.

It attributes reason of such non-standard behavior to the decision maker’s temporal indifference,

which mainly comes from “insufficient experience/learning.” However, it also justify somewhat

“totally irrational” behavior as result of rational behavior. It only blames such irrationality to the

decision maker’s idiosyncrasy. This issue is deeply connected to intrinsic question of our field of

decision theory : what draws the rationality of human behavior?

Besides such philosophical question, I was able to find the explicit relationship between the pre-

dictability and sequential consistency. For this purpose, I characterize sequential weak axiom of

revealed preference. Moreover, by using this identification, I could partially infer the underlying

preference that the decision maker would had behind of her learning.

Understanding such sequential consistency gives us two implications. First, CBL framework al-

lows us to explain the multiple-time choice reversal without losing well-defined underlying pref-

erences’ properties : transitivity and completeness. Even though there are philosophical issues,
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we could theoretically rationalize repeated choice reversals as the result of the trial-and-error de-

rived from learning process. This multiple-time choice reversal was not explained in the previous

frameworks.

Second, it can improve recovery of underlying preferences by tightening sequential consistency.

I suggested detailed characterization of sequential consistency according to the range of learning

on which alternatives are compared to each other. As a result of characterization, we can capture

weakly larger set of relation compare to previous frameworks.

Even though I found improvement in those aspects, there are limitations of this work. First, CBL

framework itself is still capturing too wide range of choice sequences. Rationality of sequential

choice behavior completely depends on how we are assuming/setting the decision maker’s con-

sideration set. For this reason, any choice sequence that can be explained by some consideration

set also can be rejected by another consideration set. However, even with this concern, CBL

framework itself provides a way to escape from those concern. Since CBL framework requires to

explicitly exhibit the consideration set with its underlying preference, if there are two conflicting

underlying preference that explains given choice sequence, we can focus only on whether each

consideration set is appropriate as the decision maker’s range of learning. This appropriateness

may be confirmed via empirical test.

Second, I only focused on the three observable candidates of consideration sets. I was able to

capture the sequential consistencies observed from the choice sequences generated by those con-

sideration sets. Definitely they are not the exhaustive set of (general) axioms that will generate the

class of choice sequences generated by general learning rule. Finding this set of axioms will make

us better in understanding the whole aspect of sequential consistency.
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3 Chapter 3: Mixing Propensity and

Strategic Decision Making (with

Duk-Gyoo Kim)

3.1 Introduction

A growing number of studies in economics and political science consider bounded rationality both

in decision making and in strategic behavior. In decision making, rationality of individuals could

be limited by a cognitive limitations of their minds. Individuals’ strategic behaviors are also away

from theoretical predictions with full rationality assumption, not only because their rationality is

limited but also because their belief about other individuals’ bounded rationality varies.

Our primary goal is to examine how individuals’ non-strategic decision making (against proba-

bilstic events) pattern is related to their strategic decision making (against actual anonyous oppo-

nent) pattern. In repetitive decision making under uncertainty, experimental observations suggest

that significant amount (more than 40%) of subjects do not make decisions to maximize their ex-

pected payoff, but match their decisions to the probability of events. (Rubinstein (2002), Neimark

and Shuford (1959)) We call such individual tendency in repetitive decision making as a mixing

propensity. We claim that without considering individuals’ heterogeneous mixing propensity, it is

challenging to map individuals’ strategic behaviors to their underlying belief.
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We build upon two leading theories formalizing bounded rationality in strategic thinking: the

Level-k (Lk) model (Costa-Gomes, Crawford and Broseta (2001), Costa-Gomes and Crawford

(2006)) and the Cognitive Hierarchy (CH) model (Camerer, Ho, and Chung (2002, 2004)). Both

models assume that individuals use only finite (=k) steps of iterative dominance, and such k varies

by individual. One distinctive difference is that the Lk model assumes that individuals believe

others’ cognition level is homogeneous, while the CH model assumes that they believe it is mixed.

To analyze experimental observations, they implicitly share an assumption that every subject does

not have the mixing propensity, which may create sizable misinterpretation: An individual who

has a certain type of mixing propensity may show homogeneous choice patterns even when she

has a heterogeneous belief, while an individual who has another mixing propensity may make

heterogeneous choice patterns that fully reflect her heterogeneous belief when the best response to

the belief is a probabilistic mixture of many choices.

To address our question, we conducted two separate laboratory experiments: Odd-Ratio Decision

Making (ODM) experiment and a modified beauty contest game, within the same subjects. In a

nutshell, from ODM we can identify individuals’ mixing propensities and categorize them into

three types. With such mixing propensity types, observations from the beauty contest game can

help us describe the belief distribution better.

ODM experiment can be understood as a repetition of matching penny games with unknown events.

See Table 3.1 for illustration. Subject’s options are on the first column; U, M and D in this example.

The first row shows events and probabilities; (L=3/4, R=1/4) means the event L will be realized

with probability 3/4, or R otherwise. The matrix shows the subject’s payoff. For example, if she

chooses M and an event L is randomly drawn, she earns (3− v)/4 points, where v is for adjusting

certainty equivalent. v will be separately measured.

The ODM experiment consist of four separate games and each game consists of four sets respec-

tively. Each set also consists of four rounds. A new event is drawn from the probability distribution

at the beginning of each set. Subjects know that the event is realized, and the event will not be

changed within a set, but do not know which event is realized. That is, subjects face the same
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Game 1 L = 3/4 R = 1/4

U 1 0

M (3-v)/4 (1-v)/4

D 0 1

Table 3.1: An example of ODM experiment

unknown event for four rounds, and after a new event is drawn, they face another unknown event

for another four rounds, and so on. Based on subjects’ choice patterns from four different games,

we can categorize their mixing propensities into four types. Rational Optimizer (RO) will play an

optimal action that maximizes the expected payoff for all rounds at all sets. Probability Matcher

(PM) will mix his/her action to match the given probability within each set and this mixing pro-

portion will be equal across the sets. Hedging Matcher (HM) will play intermediate action for all

rounds at all sets. We will use the Maximum Likelihood estimation for categorization.

A modified beauty contest game will be conducted with the same subjects who participate in the

ODM experiment. In the beauty contest game in Costa-Gomes and Crawford (2006), subjects earn

more when they guess the match’s action more accurately. This idea continues in our game. Both

player 1 (P1) and player 2 (P2) know the choice intervals and target parameters of P1 and P2. P1’s

goal is to submit a number within P1’s choice interval that is closest to P2’s number times P1’s

target parameter. Three distinctive differences are as follows: (1) Subjects play eight rounds of

beauty contest games in five sets. At each set, they play with a new match. This setup allows

us to fully utilize the individuals’ mixing propensity type. (2) The payoff function is deliberately

designed in a way to distinguish a player’s deterministic choice from a naive random choice within

an interval. (3) We introduce a calculation panel which tracks subjects’ exact thought process.

Estimation and inference about the underlying belief structure would be similar to those in Camere,

Ho, and Chung (2004), but we believe the PM type subjects can represent the entire underlying be-

lief structure more accurately. That is, if PM type subjects are likely to show the similar probability

matching behavior in a SDM experiment, their individual distribution of choices in a SDM experi-
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ment may represent their underlying belief about their opponent more accurately than other types.

Interestingly, in the actual experiment, PM type subjects are more likely to diversify their choices

to different levels of cognition compare to other types. Individual PM type subjects showed 1.06

for average variances of cognition level in individual choice distribution, while RO and HM types

showed 0.61 and 0.65 respectively.

This study will proceed aby following order. In the section 2, we will describe details of experi-

mental design. In the section 3, we will show results of experiment and discuss of its implication.

Section 4 will conclude the study.

3.2 Related Literature

This study is developed on the empirical and theoretical findings those assume that individual sub-

jects play strategies of different level of iterative dominance. Among many previous behavioral

models, we mainly consider two models: Level-k model from Costa-Gomes and Crawford (2006)

and Cognitive Hierarchy model from Camerer, Ho, and Chung (2002). Both models share the same

assumptions that (1) individuals optimal chooses the best response to their underlying belief about

their opponent’s action and (2) every individual expects their opponent’s play (at most) certain level

of iterative dominant strategy. On the other hand, both model differs in the assumption that subjects

adopt the uniform belief or heterogenous belief structure. Level-k model assumes that individuals

have the uniform belief such that all their opponents play the same level of iterative dominant strat-

egy. For example, L2 subject assumes that all their opponents play a one-time iterative dominant

(or L1) strategy. From that assumption, Level-k subjects are supposed to play a certain strategy

that best response to their uniform belief. In the Costa-Gomes and Crawford (2006), about 55%

of subjects are identified as showing a certain level of play that can be interpreted as adopting the

Level-k model. On the other hand, some subjects explicitly mixed two or more different strategies

that represents different level of iterative dominance. Such systematic pattern is not coincides to

the uniform belief assumption. In Costa-Gomes and Crawford (2006), authors found source of
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such deviation from the learning. That is, even individuals started from the initial uniform belief,

the experience leads subjects to shift to the higher level of iterative dominance while keeping the

uniform belief structure. However, for some subjects, such mixing occured irrelevant to the time

horizon. These observations suggested us to consider of alternative model that can explain such

behavioral pattern. Cognitive Hierarchy model allows individuals to have heterogeneous belief

structure. For example, L2 subject assumes their opponent plays not only L1 strategy but also

L0, which is uniform random, strategy. Depends on the individual belief about the proportion of

users of two different strategies, each subject may find a different best response. In Camerer, Ho,

and Chung (2002), authors explicitly estimated the structure of belief by using observations from

previous studies and their original experimental observation. However, even CH model allows the

heterogeneous belief structure, they cannot fully explain the observations with mixed choices. That

is, as the best response to the heterogenous belief, choosing the interim choices consistently can be

strictly better than mixing the different choices those correspond to different strategies respectively.

This study attempt to explain such puzzle by relaxing the assumption that all individuals have

the same (rational) response to the same belief. That is, we consider that individuals may show

different response to the same belief and this difference in “individual optimization” may lead to

the apparent puzzle that mixes different strategies. Especially, in Rubinstein (2002) subjects fre-

quently showed matching their responses to the probability distribution of possible events. The

author asked undergraduate students to solve five modified but similar sequential choice problems

which have a unique stochastic dominant (or “Rational”) solution each. Here is ’Catch the mes-

senger’ problem in Rubinstein (2002).
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(‘Catch the messenger’). Imagine you are a detective at a shop- ping center. You know

that every day at noon, a messenger arrives with an envelope. The identity of the mes-

senger is unknown; he is one of dozens of messengers who work for a delivery company.

The shopping center has four gates and you have only one video camera, which you have

to install each morning in one of the four gates. Your aim is to take photos of the maxi-

mum number of messengers as they enter the shopping center. You have to choose a plan

determining where to install the camera every morning. You have in hand the results of a

reliable statistics on the entry of messengers according to gate: 36% use the Green gate,

25% the Blue gate, 22% the Yellow gate and 17% the Brown gate.

Day : Sun Mon Tue Wed Thu

Plan : ____ ____ ____ ____ ____

However, only a small portion of students always played stochastic dominant action (= “Green

gate”). Likewise, many psychology literature found significant propensity for mixing different

strategies. In psychology, such behavioral pattern is called as “probability matching” behavior.

Neimark and Shuford (1959) and Vulkan (2002) also provide lab-experiment observations from

psychology that support the existence of probability matching behavior. When we consider that

similar probability matching behavior can occur at the strategic decision making process, the mix-

ing strategies of different levels could be better reflection for the underlying belief structure.

However, only a little experiment studies explictly considered such behavioral pattern in the opti-

mization process in the identification of underlying belief structure in the strategic decision mak-

ing environment. Healy et al. (2015) considered whether individuals show the similar level of

iterative dominance in the different form of the game. Healy et al. (2015) conducted several

different (strategic) games to the same individuals. Specifically, subjects practiced four different

non-strategic tests and played a strategic decision making session. In the strategic decision making

session, subjects played the ’undercutting game’ and ’beauty-contest game’ for four and five times

respectively. While the undercutting game only allowed the discrete choices, the beauty contest al-
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lowed some interim choices that does not represent any level of iterative dominance. In the result,

even two games shared the similar structure that requires players to exploit iterative dominant strat-

egy, individuals show almost no correlation between the level of iterative dominance. Moreover,

there was no significant connection was found between the individual trait, like IQ, and the level

of iterative dominance. Healy et al. (2015) attempted to find a consistency of the strategic process

in different environment, but did not considered it in terms of individual optimization pattern.
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3.3 Experimental Design

3.3.1 Odd-Ratio Decision Making Experiment

We design an odd-ratio decision making experiment (henceforth, ODM experiment) to identify

an individual’s specific mixing propensity. The entire ODM experiment consists of four different

Matching Pennies games, and subjects play each game repetitively. Each game consists of four

sets and each set consists of four rounds. That is, each Matching Pennies game is repeated for

16 rounds. Subjects are told that a new state is randomly drawn from the known probability

distribution per each set. Subjects face the same state for four rounds within a set and as the set

changes they will face another state for another four rounds. Since there are four different games,

each subject plays 64 rounds (4 games × 4 sets × 4 rounds) during the entire experiment.

To prevent subjects’ learning about the state from previous outcomes, the outcome of the game will

not be notified to the subjects during the experiment. They will be informed of the realized outcome

at the end of the experiment and will get paid privately according to the outcome. Moreover, the

game with the states (of computer player) allows us to prevent them from concerning the others’

payoff (e.g., the inequality aversion of Fehr and Schmidt (1999)).

Table 3.2 describes four Matching Pennies games respectively. In every round, subjects choose

one among the first column of rows. The state is drawn from the first row of columns with the

probability associated to each state. For example, subjects can choose one among U, M and D in

Game 1 and a state is either L with probability 3/4 or R with probability 1/4. Subject’s payoff is

described in the payoff matrices.

We varied structures of each Matching Pennies game by (1) existence of dominant actions, (2) the

number of selectable actions and (3) the highest expected payoffs subjects can earn. See Table

3.3.1.

vi is the discount of payoffs for the hedging action (M in Game 1, 2 and B in Game 3, 4) for subject

i. This discount is adopted to prevent the subject’s bias toward the hedging action due to risk
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Game 1 L = 3
4 R = 1

4
U 1 0
M 3−vi

4
1−vi

4
D 0 1

Game 3 L =1
2 R = 1

2
U 1 0
M 1−vi

2
1−vi

2
D 0 1

Game 2 L = 1
2 C = 1

4 R = 1
4

U 1 0 0
M 0 1 0
D 0 0 1
B 1−vi

2
1−vi

4
1−vi

4

Game 4 L = 1
4 LC = 1

4 RC = 1
4 R = 1

4
U 1 0 0 0

MU 0 1 0 0
MD 0 0 1 0
D 0 0 0 1
B 1−vi

4
1−vi

4
1−vi

4
1−vi

4

Table 3.2: Matching Pennies games in the ODM
Each subject may play all four games with random order; Discount for a hedging behavior vi (Game 1 and 2: M, Game
3 and 4: B) varies by individuals.

Existence of
dom. actions?

The number
of states

The highest
expected payoff

Game 1 Y 2 3
4

Game 2 N 2 1
2

Game 3 Y 3 1
2

Game 4 N 4 1
4

Table 3.3: Comparison of Four Matching Pennies Games

aversion. Since the hedging action gives exactly the same expected payoff from each single action

choice and always guarantees a positive amount of payoff, risk-averse subjects may consider the

hedging action as the dominant choice. To exclude this concern, we measured their risk-averseness

before the beginning of the ODM experiment, and discounted their payoff of the hedging action

accordingly.1

From this formation, we categorize four possible types of individual mixing propensity: Rational

Optimizer (RO), Probability Matcher (PM), Uniform Matcher (UM), and Hedging Matcher (HM).

Those four types are distinguished by their behavioral pattern.

Observation 1. (Mixing Propensity) Individuals with a different mixing propensity are to show

different decision-making patterns;

1detailed footnote goes here to address (1) how to measure the risk-averseness, (2) how to make subjects not to think
about the relationship between this pretest and actual experiment.
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Game 1 Set 1 Set 2 Set 3 Set 4
RO U4 U4 U4 U4
PM U3D1 U3D1 U3D1 U3D1
UM U4 D4 U4 U4
HM M4 M4 M4 M4

Table 3.4: Model Behavior of Four Types in Game 1

1. A RO always plays the action that maximizes expected payoff.

2. A PM mixes different actions within each set and the proportion of mixing follows the prob-

ability distribution of the states.

3. A UM plays a single action within each set but changes actions across the sets. The propor-

tion of such mixing follows the probability distribution of the states.

4. A HM always plays an hedging action that provides a positive payoff at any cases.

Each type has a different play pattern in the set and the game-wise level. The following table 3.3.1

shows possible choice patterns of each type in Game 1.

The RO type subject is expected to play an action U all the time since U maximizes the expected

payoff. The PM type subject is expected to play action U three or four times at each set because

the PM type is expected to mix his/her play to match with the given probability within each set.

The HM type subject is expected to play the intermediate action M all the time.

3.3.2 Strategic Decision Making Experiment

We design a strategy decision making (SDM) experiment to identify individual strategic decision

making process with the consideration of the individual mixing propensity. Entire experiment

consists of eight sets and each set consists of five rounds of the beauty contest game. In each

set, two anonymous subjects are randomly matched and play a whole set with the same partner.

The beauty contest game in each set will be also the same for all rounds of the set. As the set
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changes, each subject will be randomly rematched to another anonymous partner. The game they

play will be also changed to another game randomly. Eight games have different structure in terms

of players’ choice intervals and target numbers. Each game will be played only at the one set. The

game subjects played in the previous sets will not be played in the following sets.

Similar to the ODM experiment, the realized outcome of their choice action will not be informed

during the experiment. That is, subjects play the game without feedback and the final outcome of

their choice actions will be informed only at the end of entire SDM experiment. We adopt this

restriction to prevent subjects from a retrospective or an experience-based learning. Subjects will

earn payoffs at each round according to a payoff function and monetary compensation will be paid

according to sum of payoffs at the end of experiment. All such structure of the SDM experiment

will be informed to the subjects by written form and spoken by experimenters.

We designed eight games to be paired into four pairs. And each subject are assigned to play the

two different positions of the same game within each set. For example, the game αn2βn4 and

βn4αn2 is paired game. So, the player 1 of the game αn2βn4 plays exactly the same role of the

player 2 of the game βn4αn2. Similarly, the player 1’s role of the game βn4αn2 is exactly same to

the player 2’s role of the game αn2βn4. We designed each set to be consisted of four pairs which

converese the role. So each subjects will play both sides’ role at the same set. This feature will be

also informed to the subjects at the instruction stage of the SDM experiment.

To suppress subjects’ experience-based learning and routinzed choice pattern, we adopted two

randomization devices. At each experiment, subjects play 8 different beauty contest games and

the basic structure of games will be the same. Repeating the same game 5 times at each set allows

subjects revealing their belief strructure under the assumption that their mixing propensity in the

ODM experiment will be also applied to the SDM experiment. However, repeating the same game

may involve the experience-based learning that subjects show change of iterated dominance level.

Since we focus on capturing subjects’ initial belief and strategic decision, we need to aviod such

experience-based learning as much as possible.
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Form Target Structure # of Iteration Pattern of Iteration
End with

Dominance
αn2βn4 Mix / High 17 A Y
βn4αn2 Mix / High 18 A N
δn3βn1 Mix / Low 4 A Y
βn1δn3 Mix / Low 5 A N
βn1βn2 Low 4 S Y
βn2βn1 Low 4 S Y
δn3γn3 High 2 A N
γn3δn3 High 2 A Y

Table 3.5: A Structure of the Beauty Contest Games

The first device is imposing the variation of the game structure. We adopted eight different combi-

nations of choice intervals and target numbers. α denotes a choice interval [100, 500], β denotes

[100, 900], δ denotes [300, 900], and γ denotes [300, 500] respectively. A target number is defined

as n1 = 0.5 , n2 = 0.7 , n3 = 1.1 , and n4 = 1.5 respectively. At each set, subjects face different

pairs of target numbers. Moreover, we designed the sames to be differed in the target structure, the

number of iteration to arrive to Nash equilibrium choice, the pattern of iterated strategies, and the

location of Nash equilibrium choice. So choosing always the biggest and/or the smallest number

may not maximize their payoffs. This fact will be also notified to the subjects at the instruction

stage. Combined with no-feedback policy, such variation will prevent subjects to change their

strategic/behavioral pattern after they observe the outcome of the past choice. As a result, we can

expect subjects to concentrate on their own strategy and belief to maximize their payoff at each

game. [Table 3.5] summarizes more details about structure of games2.

“Target Structure” describes combination of the pair of target numbers. “High” denotes the case

in which both p1 and p2 are bigger than 1. Similarly, when both p1 and p2 are smaller than 1, we

denote it as “Low.” “Mix” denotes the case in which (1 -p1)(1- p2) < 0. So, either p1 > 1 > p2

2“End with dominance” = whether Nash equilibrium action is located at the end of choice interval. Since Nash
equilibrium corresponds to infinite times of dominance iteration, “end with dominance” means the interval’s end
corresponds to such iterated dominance.
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or p2 > 1 > p1. “Mix/High” denotes “Mix” case where p1·p2 > 1. “Mix/Low” denotes another

“Mix” case where p1·p2 < 1. “# of Iterration” describes how many steps of the iterated dominance

is required to arrive to Nash equilibrium. Every game has a different number of iteration to find

an exact Nash equilibrium choice. “Pattern of Iteration” describes whether the number correspond

to each step of the iterated dominance strictly (or monotonely) increases/decreases as the level

of iterated dominance increases. In case of strict increasing or decreasing, it is denoted as “S.”

Otherwise, they will change alternatively (increase and then decrease or vice versa), and it is

denoted as “A.” For example, a game αn2βn4 corresponds the case “A.” Start with L1 strategy (1st

level of iterated dominance) 419.4, L2 strategy decreases to 361.1. And then, L3 strategy increases

to 440.3. On the other hand, the game βn1βn2 corresponds to the case “A” that L1, L2 and L3

strategies decrease strictly. “End with Dominance” describes the location of the Nash equilibrium

number on the choice interval. If Nash equilibrium is located at the end of each interval (i.e, a1 or

b1), we denoted is as “Y.” Otherwise, the Nash equilibrium is located at the interior of the choice

interval and is denoted as “N.”

Given this structure, [Table 6] shows numbers correspond to Nash equilibrium, each level of the

iterated dominance, and the remaining intervals correspond to each round of the iterated deletion

respectively. L1 implies the first level of the iterated dominance when the subject considers his/her

opponent to choose numbers with equally same probability over the all interval (L0 player of CGC

(2006), CHC(2004)). L2 and L3 corresponds to the second and third level of iterated dominance

at which the subject considers their opponent to play L1 and L2 strategy respectively. NE implies

the choice corresponds to Nash equilibrium of the game.

The second device we adopted in this study to prevent subjects’ experience-based learning is a

permutation in the order of play. Even we changed the game structure over the game, repeating

the same game may allow subjects to learn about the optimal strategy that will be played at the

paired game. For example, subject who played game αn2βn4 may learn to play another strategy

at βn4αn2 (the paired game of αn2βn4) with reflection of own play at the game αn2βn4. Our
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Form L1 L2 L3 NE 1st Round 2nd Round 3rd Round 4th Round
αn2βn4 419 360 440 500 100, 450 105, 500 105, 472.5 110.25, 500
βn4αn2 515 629 540 750 150, 750 150, 675 157.5, 750 157.5, 708.75
δn3βn1 678 363 373 300 300, 900 300, 495 300, 495 300, 300
βn1δn3 330 339 181 150 150, 450 150, 450 150, 247.5 150, 247.5
βn1βn2 303 209 106 100 100, 450 100, 315 100, 157.5 100, 110.25
βn2βn1 419 212 146 100 100, 630 100, 315 100, 220.5 100, 110.25
δn3γn3 463 550 550 550 330, 550 363, 550 399.3, 550 439.3, 550
γn3δn3 500 500 500 500 330, 500 363, 500 393.5, 500 439.3, 500

Table 3.6: A List of Strategic Choices with respect to the Iterated Dominance

Figure 3.1: Calculation Panel Screen Example

concern is that playing the paired games in a row may reinforce effect of such experence-based

learning. To aviod such change in choice from experinece-based learning, we will intentionally

permutate the play order of the games two paired games are not to be played in series. And the

assignment of the order will be random by individual. This permutation and randomization will

be helpful to prevent experience-based learning that may occur when subjects face paried games.

[Randomization for the interval weight is not updated: will be added]

3.3.3 Calculation Panel

Subjects can use the calculation panel to find the exact number that corresponds to their best

response for partner’s choice. There are two modules in at each game’s calculation panel. The
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above module (“A module”) gives result for the best response for the player him/herself with

respect to the prediction of the opponent’s choice. The below module (“B module”) provides the

best response for the opponent with respect to the prediction of the opponent’s prediction about

the player’s choice. For each module, there are two range numbers. In the range of A module,

subjects can put in the minimum and maximum range within which their opponent’s choice might

be placed. Then clicking the gray boxed “Calculate” button may generate the red-colored number

that maximizes the own payoffs. The distribution over the range is fixed as the uniform distribution

over the settled range and subjects will be informed of it. The [Figure 3.1] considers the player 1

at the game δn3βn1. If player 1 want to find L1 strategy with belief of partner’s range from 100

to 900, he/she may enter 100 for MIN and 900 for Max and activate [Calculate] button. Then, A

module will generate the result 678 as the closest intezer approximate of the best response 678.3.

This calculation panel also allows subjects to find the number for the higher order of iterated

dominance (Lk with k > 1). To have the L3 result, the player 1 need to know his/her partner’s L2

choice in advance. Then, the player 1 enter MIN 100 and MAX 900 which corresponds to his/her

own range of choice to have own L1 best response. Then, put the L1 best response to the range of

B module to calculate the L2 best response of the opponent. For example, 678 in the game δn3βn1

corresponds to his/her opponent’s range for the L2 choice. From that result, the player 1 can put

in 678 for both MIN and MAX (since s/he alrealy have point prediction) and click [Calculate] to

have a result of L2 response of the opponent, which is 339 in the [figure 1]. Then, putting 339 for

A module’s range will generate player 1’s L3 best response.

Moreover, a usage record of the calculation panel allows us to track the individual subjects’ de-

cision process. That is, having tractable records for calculation process at each step of iterated

dominance may help us to figure out the paths subjects might followed to have the final decision.

Comparing the lastly confirmed result from the calculation panel and actual decision making also

will help us to understand how the subjects use their calculation process when they making the

strategic decision. At the calculation panel, subjects will be informed of the recording of their

usage of panel and the result of usage will not be related to their monetary outcome at the end
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Date 150420 150421 150914 150915-1 150915-2 150915-3 SUM
Participated 19 13 17 11 13 13 86

Effective 11 12 12 8 11 8 62

Table 3.7: Details of Laboratory Sessions

Type Count %
RO 28 45.2
PM 16 25.8
HM 18 29.0

Summation 62 100

Table 3.8: Overall Distribution of Mixing Propensity in the ODM experiment

of session. They will be confirmed that their payoff from action choice is the only factor that

determines their own monetary compensation.

3.4 Results

Six sessions of laboratory experiment were conducted at Missouri Social Science Experimental

Lab (MISSEL) of Washington University in St. Louis with 86 participants ([Table 3.7]). From

all paricipants, we collected 62 effective subjects from those who passed screening tests of both

experiments. We estimated their individual type by using experimental data from the ODM exper-

iment. Using MLE method3, we found that RO, PM, and HM type subjects share 45.2%, 25.8%

and 29% respectively from all effctive samples. ([Table 3.8])

Using this basic group categorization, we will consider their behavioral pattern in the SDM ex-

periment. We propose a main hypothesis that subjects’ behavioral patterns ODM experiment are

inherited to the SDM experiment. To identify it, we separatedly tested two sub-hypotheses:

(1) RO types are more likely to show a higher level of cognition level with less dispersion than PM

types

3For detailed statitical process, please see the appendix.
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E[µi] E[(σi)2]
RO 3.17 0.61
PM 2.71 1.03
HM 2.32 0.65

Table 3.9: Mean of Distributions of Individual Means and Varinaces in Cognition Level

(2) HM types have different distribution of variances of cognition level from PM types, but have a

similar distribution to RO types.

3.4.1 (Result 1) RO types are more likely to show a higher level of

cognition level with less dispersion than PM types.

First, we compared two groups’ distributions in the SDM choices’ cognition level. From individ-

uals’ choices, we could find variance of their own distribution of cognition level. Collecting such

individual variances, we can find the distribution of variances of cognition level for each group.

[Table 3.9] shows a summary result of two distributions. RO type subjects showed 3.17 for an

average cognition level of choices and 0.61 for mean of variances respectively. PM and HM type

subjects showed 2.71 and 2.32 for an average cognition level of choices, and 1.03 and 0.65 for

mean of variances respectively. Interestingly, RO and HM type subjects showed relatively lower

variance than PM type subjects. On the other hand, RO type showed relatively higher average

cognition level than other type subjects. This result briefly implies that three types of subjects are

effective to describe their behavioral pattern.

To consider such difference more detailed way, we conducted test of distributions between each

pair.

[Table 3.10] shows a summary result of a test between different two groups. We used the Fisher

method (F-test) to measure a similarity between two groups’ distributions. We tested null hypoth-

esis that two distributions are from the same population by using mean and variance respectively.
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Mean Test Variance Test
Types RO&PM RO&HM PM&HM RO&PM RO&HM PM&HM

P-Values 0.012 0.004 0.11 0.044 0.439 0.024

Table 3.10: Test Result (p-values) Between Distributions

Test of means between RO and PM type group resulted p-value 0.012 (one-sided) and 0.024 (two-

sided) respectively. These p-values provide enough evidence to reject the null hypothesis at high

enough significance level. Test of variances showed p-values 0.044 (one-sided) and 0.089 (two-

sided). Even though such a result is less than result from mean test, it is enough to satisfy 5% level

of statitical significance. Combining these two test results, we can reject the null hypothesis that

RO and PM type subjects have the same mean and/or variance for level of cognition.

[Figure 3.2] shows a proportion of total choices from each type’s group. In the figure, RO types

shows distinctive single-peaked shape at 4 or more level while PM types shows multi-peaked

distribution for all levels. The result of hypothesis (1) supports our presumption that PM and RO

types are inherit their behavioral pattern showed in the ODM experiment to the SDM experiment.

RO types, who consistently choosed actions that maximize expected payoff, also showed consistent

choice behavior at certain level of cognition. On the other hand, PM types, who matched their

actions to a given probability disctributions of opponent’s action, also distributed their actions to

several different cognition level.

3.4.2 (Result 2) HM types are less likely to diversify their behavior

than PM types, but an average level of cognition is lower

than RO types.

The next hypothesis examines whether HM types are distnguished by other types by choosing a

certain intermediate level of cognition. In the ODM experiment, HM types choosed actions that

gives positive payoffs in any events. We interpreted their behavior as an subjective optimization

which is supposed to minimize a risk of wrong (or missed) prediction. So we presumpted that HM
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Figure 3.2: Proportion of Total Choices from Each Type

types may choose some intermediate level(s) of cognition within their own support of beliefs. For

example, suppose that some subject has a belief about her opponent’s cognition level distribution

such as L0: L1: L2 = 20: 30: 50 (%). In this case, if L1 choice can give her a positive payoff in

any events, she may choose L1 choice consistently. Likewise, we presumpted that their behavioral

pattern may show a single-peaked shape as in the RO types, but the average level of cognition will

be lower than RO types because they are likely to choose some intermediate level(s) of cognition

consistently.

Hypothesis (2) tests whether HM types have a different shape of choice distribution compare to

the other types. We first considered overall shape of individual distributions. Since RO types

showed obvious single-peaked shape distribution, comparing distributions of variances of individ-

ual choices from HM and RO types may provide us a statistical evidence. In the [Table 3.9], RO

and HM types showed 0.61 and 0.65 for mean of variances respectively. Via the F-test method,

we compared two groups’ distributions of individual variances. We set the null hypothesis that

two sample distributions came from the population with the same variance. Test resulted p-values
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0.439 (one-sided) and 0.879 (two-sided) respectively ([Table 9]). The test results cannot reject the

null hypothesis. We also tested a hypothesis that two samples come from the population with the

same mean. Test resulted p-values 0.004 (one-sided) and 0.008 (two-sided) respectively ([Table

9]). Test result shows strongly denies the hypothesis that RO and HM type group has the same

mean for distribution of individual choices. Combining these results, we would say that HM type

subjects are likely to have a single-peaked shape for their individual choice distribution, which is

similar to RO type subjects, but their overall choice levels are lower than RO type subjects.

Similarly we tested the difference between HM types and PM types. In the [Table 3.9], we have

results from tests for their means and variances from individual distributions. For variances, we

have p-values 0.024 (one-sided) and 0.048 (two-sided) respectively. This result also supports our

hypothesis that HM types have the single-peacked individual distribution, which is distinguished

from behavioral pattern of PM types, who diversify their choices to several different levels of

cognition.

We interpret this result as a support for our hypothesis: HM types are likely to choose an inter-

mediate level of cognition consistently. HM type subjects are likely to choose a certain level of

cognition level consistently, which is similar to RO types and strongly distinguished from PM

types. However, their overall level of cognition is lower than RO types. Such a behavioral pattern

not only distnguishes them from other types but also matched to our prediction for HM types.

3.4.3 Recovery of Belief Structure

We now consider belief structure of PM types; From the above result, we observed that three types

are likely to show similar behavioral pattern in both (ODM and SDM) experiments. For RO type

subjects, this result implies that distribution of RO type subjects, which is mostly focused on a

Nash equilibrium action, cannot fully reveal their underlying belief structure. It says most of RO

type subjects put the highest weight of their belief on the Nash Equilibrium action, but silent about

the other belief they might had. However, PM subjects are more like to diversify their response
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Level L1 L2 L3/3+ NE Undef. SUM
Count 97 79 57 159 248 640

W/ Undef. (%) 0.152 0.123 0.089 0.248 0.388 100
W/O Undef. (%) 0.247 0.202 0.145 0.406 - 100

Table 3.11: Overall Distribution of Cognition Level for PM Types in the SDM
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Figure 3.3: Proportion of Total Choices from PM Type

in the SDM experiment, which is expected to be fitted to their underlying belief structure. So we

consider 16 PM type subjects’ actual responses to recover their underlying belief structure.

In summary result (See [Table 3.11] and [Figure 3.3]), PM type subjects distributed their responses

over almost every level of cognition. Even they distributed mostly their responses on the NE

responses, they put similar weight on the different level of cognition. Especially, subjects put

more weights on the L1 and L2 actions than NE actions. This result implies that most of PM type

subjects consider the existence of L0 (or random behaving) subjects. Moreover, as they consider

of L0 subjects, they also aware of similar proportion of L1 subjects who may best response to L0

subjects.

Another interesting observation is that as the level of cognition gets higher, the proportion of such

a level gets smaller. From [Table 3.11], L1 to L3/+ level share is 24.7 %, 20.2 %, and 14.5 %

respectively. When we consider undefined response as a random-like behavior, which correspond
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to L0 behavior, this trend is still consistent. This proportion jumps to 40.6% at the NE action.

This trend allows us to have two inferences: First, (PM type) subjects consider that less opponents

play a higher level of cognition. For this reason, they may strategically assigned a less proportion

to the higher level of cognition. Second, subjects may have some “framing” effect on the Nash

Equilibrium. That is, even though most of NE actions require higher level of cognition than other

actions, they may consider it as some “focal point” and put the highest weight. This interpretation

is also consistent to our observation for RO type subjects. Assuming that RO type subjects also

have the similar belief structure to PM types, they are mostly best reponse on NE action based

upon their “rational optimization” pattern.

3.5 Conclusion

In this study, we examined how individual optimization pattern is related to their strategic decision

making via laboratory experiment. We considered each individual has different ways of optimiza-

tion when they face a probabilistic event and categorized them into three different types: Rational

Optimizer (RO), Probability Mathcer (PM), and Hedging Matcher (HM). Interestingly, we found

more than a half of entire subjects showed different patterns from rational optimization. Moreover,

they showed different patterns of strategic decision making according to their optimization pattern.

While RO type subjects focused on a NE equilibrium action, PM and HM type subjects choosed

their actions to a lower levels of cognition. Especially PM type subjects diversified their actions to

multiple different levels of cognition as they diversified their actions in the ODM experiment.

Assuming that PM type subjects showed similar optimization pattern in the SDM and ODM ex-

periment, we can have more detailed recovery of underlying belief structure for strategic decision

making. In the result, we observed that (PM type) subjects played different actions and assigned

less proportion of actions to higher levels of cognition (L1: 15.2%, L2: 12.3%, L3/+: 8.9%).

This result suggests that subjects strategically assigned their actions based upon their underlying

belief. Moreover, we observed PM type subjects also assigned higher proportion (24.8%) on the
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Nash equilibrium action. This result supports previous result from Camerer et al. (2002, 2004)

that subjects consider Nash equilibrium as one of focal point. Summing up these observations, we

can conclude that subjects actually have heterogeneous belief structure, which consists of several

different levels of cognition, but still consider the Nash equilibrium as a plausible focal point.
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3.6 Appendix: Statistical Model Specification

3.6.1 ODM Model Specification

In the ODM experiment, subjects make one choice at each round, 64 in total. To analyze the

individual subjects’ decision-making patterns, we use the maximum likelihood method.

Let xi,k
g, j denote the number of subject i’s decision that equals to the type k subject’s decision in

game g of set j. We define k ∈ K = {RO, PM, HM} and g, j = 1, 2, 3, 4. We similarly define a

vector xi k
g = (xi,k

g,1, · · · , xi,k
g,4).

We define εk ∈ [0, 1] the type specific rate of random choice that is independently and identically

distributed (“i.i.d.”). cg is the number of actions that each subject has in game g. that is, c1 = c2

= 3, c3 = 4, and c4 = 5. Since εk is assumed to be type specific and identically distributed over

all the choices, we formulate the probability that the subject of the type k makes some predicted

decision at game g as 1− εk + εk/cg = 1− (cg−1) · εk/cg.4 Then, Li,k
g (εk| xi,k

g ) is the probability

of observing xi,k
g when the subject i is of type k :

Li,k
g (εk|xi,k

g ) =
4

∏
j=1

[
1− (cg−1) · εk/cg

]xi,k
g, j ×

[
ε

k/cg

]4−xi,k
g, j
.

Similarly, we define x̂i,k
g the number of sets of subject i’s decision that equals to the type k’s decision

in game g. That is, x̂i,k
g counts the number of sets in each vector xi k

g such that each set has exactly

the same number of the type k subject’s decision. For example, consider the RO type subject who

may choose the same action in 3 sets (say, set 1, 2, and 3) and mixed two actions in another set

(say, set 4). Then, x̂i,k
g = 3 since the number of sets that equals to the RO type subject’s decision

is 3 (set 1, 2, and 3). With the similar notion, we define a vector x̂i,k = (x̂i,k
1 , · · · , x̂i,k

4 ). Then, we

define L̂i,k(εk| x̂i,k) the probability of observing x̂i,k when the subject i is of type k :

4For illustration, suppose that a subject is a RO. With εRO = 0 or she do not make any mistakes, she will choose the
action that maximizes the expected payoff with probability one. If εRO = 1 or she makes a choice in a completely
random manner, then the probability of the optimal choice is 1/cg.
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L̂i,k(εk|x̂i,k) =
4

∏
g=1

[
Li,k

g (εk|xi,k
g )
]x̂i,k

g
×
[
1−Li,k

g (εk|xi,k
g )
]4−x̂i,k

g
.

Now, we define zi,k as a type indicator for subject i where zi,k = 1 if subject i is of type k and

∑k∈K zi,k = 1. From L̂i,k(εk|x̂i,k), subject i’s maximum likelihood function can be calculated :

Li(ε,zi|xi) = ∏
k∈K

L̂i,k(εk|x̂i,k)zi,k

= ∏
k∈K

[
4

∏
g=1

{
Li,k

g (εk|xi,k
g )
}x̂i,k

g
×
{

1−Li,k
g (εk|xi,k

g )
}4−x̂i,k

g

]zi,k

,

where ε = (εk)k∈K , zi = (zi,k)k∈K , and xi = (xi,k
g )g=1,··· ,4

k∈K .

As a result, we can estimate the distribution of zi = (zi,k)k∈K which may assist us to categorize the

subject i’s individual mixing propensity; we may categorize subject i to one of four types which

has the highest zi,k.

3.6.1.1 Type Categorization

Each mixing propensity type subject has different model play pattern for each game. Define xi, k
g, j

is the number of subject i’s decision that equals to the type k subject’s decision in game g of set

j. Similarly, x̂i, k
g is the number of the sets of subject i’s decision that equals to the type k subject’s

decision in game g. Consider an example subject i with play (UUUD, UUUM, UUDD, UUUU) in

the game 1. Each entry of the vector corresponds to four actions played at each set. For the RO

type subject, xiRO
1 = (xi,RO

1,1 , · · · , xi,RO
1,4 ) = (3, 3, 2, 4) and x̂i,RO

1 = 1. Similarly, for the PM type, xiPM
1

= (4, 3, 3, 3) and x̂i,RO
1 = 1. At the set 2, the subject played M instead of D (what was supposed to

play for the PM type), we count three U actions as the matching actions for the PM type and D as

a mismatching action. Similarly, at the set 3, since the subject played D more than one time, we
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Set 1-4 Game 1 Game 2 Game 3 Game
4

Round 1 U U ALL ALL

Round 2 U U ALL ALL

Round 3 U U ALL ALL

Round 4 U U ALL ALL
Set 1-4 Game 1 Game 2 Game 3 Game

4

Round 1 U U U U

Round 2 U D U MU

Round 3 U U M MD

Round 4 D D D D

Table 3.12: (Up) The RO type subject’s model play pattern example, (Down) The PM type sub-
ject’s model play pattern example

count the excess number of D action as the mismatching action. For the HM type, xiHM
1 = (0, 1, 0,

0) and x̂i,HM
1 = 0.

(1) Rational Optimizer (RO)

In game 1 and 3, the RO type subject is supposed to play U for every round of every set. In the

game 2 and 4, since all actions are expected to give the exactly the same payoff, any choice will

be accepted as the optimal choice. We identify the RO type from the other types by the pattern of

plays in the game 1 and 3.

(2) Probability Matcher (PM)

We can distinguish the PM type subject from the other type by observing their mixing proportion

of plays: the proportion must be kept across the sets and matched to the given distribution of the

virtual players’ type. In the game 1, the PM type subject is supposed to play U three times and D

one times. The order of play is irrelevant as long as the frequency is kept to U : D = 3 : 1 at every

set. In the game 2, U and D is supposed to play two times respectively at every set. This proportion

of mixing play is matched to the given distribution of the virtual player’s type (L: R = 1: 1). In

the game 3, to match the given distribution of the virtual player’s type, the action U is supposed to

play two times, M and D is supposed to play one time respectively at every set. In the game 4, all
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Game 1 Game 2 Game 3 Game 4
Set 1 M4 M4 B4 B4
Set 2 M4 M4 B4 B4
Set 3 M4 M4 B4 B4
Set 4 M4 M4 B4 B4

Table 3.13: The HM type subject’s model play pattern example

actions (U, MU, MD, D) are supposed to play one time at every set.

(3) Hedging Matcher (HM)

The HM type subject is supposed to play the hedging actions which always provide some positive

amount of payoff. At each game, such hedging action (Game 1 and 2 : action M, Game 3 and 4 :

action B) would provide disounted payoff so that it cannot be beneficial than playing the rational

action. The amount of discoutn may vary by the individual result of the risk aversion test. For this

reason, the pattern of plays that the HM type subject will be easily distinguished from the other

type subject.

3.6.2 SDM Model Specification

3.6.2.1 Information and Payoff Function

At each round, subjects face the information set (a1, b1, p1; a2, b2, p2). Each subject will be

informed of their own and their partner’s strategic environment respectively. This setting justifies

the assumption that the information about the game structure is common knowledge. In every

game, subjects will be notified that they play a player 1’s role and their partner play a player 2’s

role. a1 and b1 is the minimum and the maximum number that the player 1 can choose respectively.

We denote the player 1’s choice interval [a1, b1]. p1 is the target number for the player 1. x1 is a

choice action of the player 1. At this step, we assume that x1 ∈ [a1, b2]. Notations for the player 2

are defined in similar way. At each round, subjects earn payoffs from their choice action x1 based

on the prediction for the player 2’s choice x2. We define the payoff function P(x1|a1,b1, a2, b2; x2)
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as following;

P(x1|a1,b1,a2,b2;x2) = 100×

1−
|log

(
x1−p1·x2

|a1−p1·b2| +1
)
|

log(b1−a1 + p1(b2−a2))

≡ 100×

1−
|log

(
x1−p1·x2

|e1| +1
)
|

log
(
e1− e1

)
 .

e1 and e1 denotes the largest and smallest possible difference between x1 and p1·x2 respectively.

That is, e1 ≡ b1 - p1·a2 and e1 ≡ a1 - p1·b2. For simplicity, we denote P1(x1|a1,b1, a2, b2, x2) ≡

P1(x1|e1, x2) where e1 = (e1, e1).

Basically the player 1 can maximize own payoff by minimizing the difference x1 - p1·x2 with

respect to own prediction about x2. Suppose that the player 1 has a belief that his/her partner

chooses a certain action x2 in an interval [x2, x2] ⊆ [a2, b2] and each x2 is uniformly distributed

within the interval [x2, x2]. We denote such belief as a probability distribution f 1(x2|x2, x2). Then,

the expected payoff from the player 1’s choice x1∗ is given by

E
[
P1(x1∗|e1,x2)

]
=

ˆ x2

x2

100× (1−
|log

(
x1∗−p1·x2

|e1| +1
)
|

log
(
e1− e1

) )

 f 1(x2|x2,x2)dx2.

Then, the optimal choice x1∗ that maximizes P1(x1∗|e1, x2) satisfies the equation

(x1∗− p1 · x2 + |e1|)(x1∗− p1 · x2 + |e1|) = (|e1|)2.

Observation 2. (Payoff Function)

(1) Separate a point-based prediction and an interval-based prediction

(2) Payoff normalization across different game structure

We inserted the asymmetric concavity by using a log function to effectively separate a point-based

prediction and an interval-based prediction. That is, the payoff decreases with concave manner

when |x1 - p1·x2| > 0 and the slope of function is different when x1 - p1·x2 > 0 and x1 - p1·x2 < 0.

This modification is required to distinguish the subject who uses an exact number as a prediction
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from the one who uses the interval that may have the same mean under the uniform distribution.

For example, suppose that the player 1 has p1 = 1.5 and [a1, b1] = [100, 900]. Consider two cases

in which (1) the player 1 predicts the player 2 plays exactly 300 and (2) the player 1 has a belief

that player 2’s choice is uniformly distributed within the interval [100, 500]. In the former case,

the player 1 may choose 450 to capture p1·x1 = 1.5×300. In the latter case, the player 1 may

choose 50(
√

205 - 4)' 515.89 to best respond to own belief. [Costa-Gomes and Crawford (2006)]

(henceforth CGC) adopted a kinked linear function that imposes different linear slopes at two

different intervals. Even though they avoided a simple linear function, they couldn’t distinguished

the choice from the point-based prediction and that from the interval-based prediction. In CGC,

two different predictions will be led to the same optimal choice 450. 5 Imposing an asymmetric

concavity on the payoff function can be useful device to aviod those two belief structures.

Second, we normalize the payoff function by using the largest and smallest difference of prediction

e1 and e1. This normalization will help subjects put similar weights on every game. Since each

game has different choice interval, the extent of the prediction error also can be different by games.

The normalization adjusts the unit of payoffs so that the extent of payoff loss from the prediction

error will be relatively measured.

3.6.2.2 Statistical Model Specification

In the SDM experiment, we focus on the identification of the individual strategy with respect to the

mixing propensity which requires the estimation of an individual strategy and the mixing propen-

sity type respectively. For this concern, the estimation will be conducted by a two-layer process.

In the first layer, we will fix (or assume) the individual mixing propensity k among four types (

RO, PM, UM, or HM). Then, given fixed individual type, we will guess a type-specific strategy

5Distinguishing the point-based and the interval-based predction is a senstive issue as long as we are based on the
iteratve dominance model. In either Lk or CH model, the L1 strategy will be based on the interval-based prediction
rather than the point-based prediction. That is, both models assume that L1 strategy users believe that the L0 player
plays randomly over the interval. On the other hand, the point-based prediction is different in that the arbitrary
belief anchors on a certain point in the interval. For that reason, separating those two cases will provide a useful
evidence to confirm that individuals develop their prediction based on the belief that L0 players exist.
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si(k) of the subject i with respect to such fixed type. We allows multiple type-specific strategies.

In the next subsection we will discuss about how we can guess the type-specific strategies from

the actual data. Having such set of strategies Si(k), we will use the maximum likelihood method to

estimate the probability distribution of likelihood for each strategy. From the result of the estima-

tion, we pick the most probable type-specific strategy si∗(k) for type k. In the second layer of the

estimation, we collect the most probable type-specific strategies for each type k and define such

set of four type-specified strategies Si∗ ≡{si∗(RO), si∗(PM), si∗(UM), si∗(HM)} as a set of types

for the second layer. Among those four types of Ri, we estimate the most probable type by using

the maximum likelihood method. In sum, we conduct the estimation in the two stage; first, among

the strategies within each type and, second, among the type-specific strategies. For this reason, the

below specification generally depicts the maximum likelihood method we will use for each layer

of estimation. We generally denote each type s and the set of s as S. In the first layer, si(k) and

Si(k) (for each k) will replace s and S repectively. Similarly, si∗(k) and Si∗ will replace s and S

respectively. As a result, two-layer estimation will specify the most probable mixing propensity

type and strategy combination for each individual.

ai
j, l and bi

j, l is subject i’s lower and upper bound in the lth round of the set j respectively. xi
j, l is

the subject i’s unadjusted guess at the lth round of the set j. For the concern that xi
j, l is chosen

at the out of bounds, we redefine an adjusted guess R(xi
j, l) ≡ min{bi

j, l , max{ai
j, l , xi

j, l}} which

restricts actual choice into the interior of bounds at each round. I define a target guess for a type

s individual at the lth round of the set j ts
j, l . That is, ts

j, l is the exact number to be chosen from a

type s individual at the game of lth round of the set j. T i,s
j, l ≡ [ts

j, l - 0.5, ts
j, l + 0.5] ∩ [ai

j, l , bi
j, l] is

a target bound for an adjusted guess of the type s individual i in the lth round of the set j. That

is, T i,s
j, l restricts choosable bound around the exact target ts

j, l with respect to a small possibility of

error (±0.5). Since we assume that all subjects can find the correct guess by using the calculation

panel, we only allow very narrow range around the exact target guess.

εs ∈[0, 1] is a type-specific error rate of adjusted guess and ds(R(xi
j, l), λ ) is a type s individual’s

error density with a precision level λ for the adjusted guess in the lth round of the set j. For preci-
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sion level λ , we assume λ to be the same across the sets and rounds. I assume that εs is identically

and independently distributed (“i.i.d.”) over all rounds. Also I assume that all individuals are risk

neutral.

Pi
j, l(x| y) is a subject i’s payoff from an own guess x given his/her partner’s guess y at the lth round

of the set j. From this payoff, we define a type s individual i’s expected payoff in the lth round of

the set j as Pi,s
j, l (x) :

Pi,s
j, l (x)≡

ˆ bi
j, l

ai
j, l

Pi
j, l(x |y) f s

j, l(y)dy

where f s
j, l(y) is a density of y that is distributed according to type s’s belief.

We assume that a “spike-logit” shape of error6. With this assumption, ds(R(xi
j, l), λ ) is defined as :

ds(R(xi
j, l),λ ) =


exp
[
λPi,s

j, l (R(x
i
j, l))

]
´
[ai

j, l ,b j, l ]\T
i,s
j, l

exp
[
λPi,s

j, l (z)
] f or R(xi

j, l) ∈ [ai
j, l,b j, l]\T i,s

j, l

0 f or R(xi
j, l) ∈ T i,s

j, l .

We define ni,s
j the number of rounds that type s subject i plays the exact type s guess at the set j and

Ni,s
j a collection of such rounds in the set j. We define vectors xi

j ≡(xi
j,1, xi

j,2, · · · , xi
j,5) and R(xi

j)

≡(R(xi
j,1), R(xi

j,2), · · · , R(xi
j,5)) the subject i’s guesses and adjusted guesses in the set j respectively.

By consideration that type s individual i chooses the (adjusted) guess R(xi
j, l) with probability 1 -

εs, we have a sample density for R(xi
j, l) in the set j ds(R(xi

j), εs, λ ) :

ds(R(xi
j), ε

s, λ ) ≡ (1− ε
s)ni,s

j (εk)5−ni,s
j ∏

l /∈Ni,s
j

ds(R(xi
j, l),λ ).

Similarly, we define R(xi) ≡(R(xi
1), R(xi

2), · · · , R(xi
8)) as the subject i’s adjusted guess for entire

experiment and ds(R(xi), εs, λ ) as a sample density function for entire experiment :
6I assumed the distribution of error with the consideration that the error rate to be decreased with convex rate. The

use of calculation panel may reduce the possibility of error that purely comes from the miscalculation. Moreover,
with the consideration of rounding, I allowed the range of exact choice to include the closest integer.
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ds(R(xi), ε
s, λ ) ≡

[

j= 1]8∏ds(R(xi
j), ε

s, λ ).

Now we define zi,s
j a type s indicator for the subject i where zi,s

j = 1 if the subject is of type s and

∑
s∈S

zi,s
j = 1. ε ≡(εs)s∈S is a vector of error rates for all types and zi

j ≡(zi,s
j )s∈S is a vector of type

indicators in the set j. From this definition, we have a subject i’s log-likelihood function L(zi
j, ε ,

λ | R(xi
j, l)) :

L(zi
j,ε,λ |R(xi

j, l)) ≡ ∑
s∈S

zi s
j ln
[
ds(R(xi), ε

s, λ )
]
.

3.6.2.3 Endogenous Type Categorization

For categorization of individual type-specific stategies, we use a actual choice data to guess the

candidates for type-specific strategies. Different from the ODM experiment, the SDM experiment

does not provide explicit belief formation that individuals are expected to follow. The RO type,

who might use one single action for whole experiment, is relatively easy to identify. On the other

hand, an identification of other types, PM, UM, and HM types, needs to find not only strategies

subjects may use but also proportion among those strategies. This consideration enforces us to

(theoretically) try the infinite number of different mixing proportions with different strategies. For

example, PM type who adopts L1 strategy and L2 strategy with mixing proportion 0.75 and 0.25

and who adopts with mixing proportion 0.50 and 0.50 should be classified as different types. To

avoid the difficulties, we need to restrict to our attention to some set of types. To this end, we will

exploit the actual choice observation to guess the probable strategies and mixing proportion among

them by individuals.

(1) Rational Optimizer (RO) type

RO types always have a fixed set of type-specific strategies. That is, RO - L1 type subject is

expected to choose L1 strategy always and RO - L2 type subject is expected to choose L2 strategy

always, so on. Since we restrict our attention to only four strategies (L1, L2, L3 and NE), this

117



Game RO-L1 RO-L2 RO-L3 RO-NE
αn2βn4 419.4 361.1 440.3 500
βn4αn2 515.9 629 541.8 750
δn3βn1 678.3 363.9 373.1 300
βn1δn3 330.8 339.2 181.9 150
βn1βn2 350 173.9 122.5 100
βn2βn1 347.8 245 121.75 100
δn3γn3 300 550 363 550
γn3δn3 500 330 500 500

Table 3.14: Rational type’s pattern of play in the SDM experiment

assumption restricts the set of the RO type’s strategies. That is, for RO type, we construct the set

for RO type as Si(RO) = {RO-L1, RO-L2, RO-L3, RO-NE} for any individual i. From four types,

we find the specific strategy si∗(RO) that maximizes the likelihood among them.

At each round of the sets, the RO type subject is supposed to play a certain action correspond

to that strategy. For example, the RO-NE type subject may play the action correspond to NE

strategy of each round. While the most of the rounds allows distinction of different strategies,

the game δn3γn3 and γn3δn3 allows sharing the same number for the different strategies. In the

game δn3γn3, L2 player and NE player can play the same choice 550. Similarly, in γn3δn3, L1,

L3 and NE players who may play 500 will not be distinguished. To distinguish them, we need

to rely on the records from the calculation panel. In δn3γn3, L2 player may use the calculation

panel to calculate L1 partner’s choice 500. And then, by putting 500 into own calculation panel or

conducting own calculation may lead to have 550 as a best-response choice. NE player, to arrive

to 550, may start with own choice for L1 strategy and have 300 for the initial calculation. Different

from other types, NE type may repeatedly use (more than 3 times) the calculation panel to arrive

NE strategy.

(2) Probability Matcher (PM) type

For the identification of PM type, we need to specify not only strategies but also the mixing pro-

portion among the strategies. In case of the RO type, picking a certain strategy from the fixed

set is enough for idenfication of the type-specific strategy. On the while, PM types are allowed
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PM - L1+L2 Round 1 Stg. Round 2 Stg. Round 3 Stg. Round 4 Stg. Round 5 Stg.
αn2βn4 419.4 L1 361.1 L2 419.4 L1 361.1 L2 419.4 L1
βn4αn2 515.9 L1 515.9 L1 515.9 L1 521.7 L2 521.7 L2
δn3βn1 678.3 L1 363.9 L2 363.9 L2 678.3 L1 678.3 L1
βn1δn3 339.2 L2 330.8 L1 330.8 L1 330.8 L1 339.2 L2
βn1βn2 350 L1 173.9 L2 173.9 L2 350 L1 350 L1
βn2βn1 245 L2 347.8 L1 245 L2 347.8 L1 347.8 L1
δn3γn3 550 L2 300 L1 300 L1 300 L1 550 L2
γn3δn3 330 L2 500 L1 500 L1 330 L2 500 L1

Table 3.15: A PM type subject’s pattern of play at SDM experiment

to use more than one strategy with respect to their own belief structure. For this reason, we need

to specify the multiple strategies they may adopt and the frequency how often the strategies are

used together. The way how we can guess them at the same time is the main concern for the

identification of PM type’s type-specific strategy.

For the identification of (pure) strategies, we restrict our focus to 11 different combinations of

strategies. Since we assume that subjects use only four pure strategies (L1, L2, L3, and NE), PM

type subjects can have (i) 6 different combinations of 2-strategy case : L1 + L2, L1+ L3, L1 + NE,

L2 + L3, L2 + NE, L3 + NE (ii) 4 combinations of 3-strategy case : L1 + L2 + L2, L1 + L2 +

NE, L2 + L3 + NE, L1 + L3 + NE, (iii) only combination of 4-strategy case. As an example, we

consider a L1 + L2 case in the follwing table. The example table describes PM type subject who

uses L1 and L2 strategies and mixes them with proportion L1 : L2 = 3 : 2.

Each two columns describes the actions of each round and corresponding strategies. The first col-

umn shows choices of the PM type subject of L1 + L2 strategy. The subject may use either pure L1

strategy or L2 strategy. The next column shows the corresponding strategies for each choice. For

example, subject’s action 419.4 (of the first column) at the game αn2βn4 of round 1 corresponds

to L1 strategy (of the second column). For PM type, we first identify which strategies are used in

each set and then find an average proportion among them. In this process, we exclude choices that

does not have corresponding strategies from L1, L2, L3, and NE. Once we have average propor-

tion among the strategies, we round up/down it to be fitted with 5-round setting. Similarly, PM
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type subject who uses different collection of strategies with different mixing proportion can be

classified.

This way of guessing process is based on the assumption that the PM type subject would keep the

same mixing proportion across the sets for the same collection of pure strategies. This assumption

allows us to guess the mixing proportion from an observed average proportion of choices. From

a vector xi ≡(xi
1, xi

2, · · · , xi
5), we can find the frequency of each choice that corresponds to each

strategy. Then, we will use the the observed frequency as the guess for the mixing proportion.

By using this process, we will find at most five candidates for PM type-specified strategies from

each set-wise observation. For example, consider the subject i’s choices in the set 1 that shows the

proportion among each strategy as L1 : L2 = 2 : 1 : 1 : 1. We will name a type-specified strategy

PM - 1 which shows the mixing proportion L1 : L2 : L3 : NE = 2 : 1 : 1 : 1. Then, we compare

the actual choices in other sets (set 2~8) with this PM - 1 strategy. Similarly the actual choices in

set 2 shows L1 : L2 : L3 : NE = 1 : 2 : 1 : 1. Then, we may have another type-specified strategy

PM - 2 with the mixing proportion L1 : L2 : L3 : NE = 1 : 2 : 1 : 1, so on. As a result, we may

have at most eight different guesses for the PM type-specified strategies.

For the matter of counting ni,s
j , we will consider all the possible cases. Consider the PM - 1 at the

set 2 of the above example. For L1 and L2 strategy, the rounds that corresponds to them will be

counted as the fitting ones. For one L3 and one NE strategy, they might be considered to be fitting

one. Compare to PM - 1, one more L3 strategy is appeared at the set 2. Then, we pick one of

two L3 choices as the deviating choice from NE strategy. For the concern that different choice of

deviating choice may induce different estimation result, we may consider both cases as deviation

and choose the case that gives higher likelihood result.

(3) Hedging Matcher (HM) type

For HM type, we allows the HM type subjects to choose non-Lk choices and this relaxation leads

us to another difficulty; whether to consider such choices as a strategic hedging behavior or not.

For this concern, we exploit two assumptions : (1) any hedging behavior will be based on the belief
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HM - L1+L2 Round 1 Round 2 Round 3 Round 4 Round 5 L1 L2
αn2αn4 380 400 415 375 365 419.4 361.1
αn4αn2 516 580 600 550 629 515.9 629
αn4βn1 400 450 650 550 600 678.3 363.9
βn1αn4 332 333 333 338 335 330.8 339.2
βn1βn2 350 180 250 200 300 350 173.9
βn2βn1 250 300 333 325 280 347.8 245
δn3γn3 300 550 350 500 400 300 550
γn3δn3 350 400 500 450 400 500 330

Table 3.16: A HM type subject’s pattern of play at SDM experiment

that consists of multiple Lk strategies, (2) any hedging behavior based on a certain belief will be

bounded by the interval formed from the belief. For example, consider some HM type subject

at the game αn2βn4 who has a belief that his/her partner may play either L1 or L2 strategy with

some mixing proportion. Then, his/her belief may form a bound for his/her hedging choice and

that bound may depend on the L1 (419.4) and L2 (361.1) strategies. Given his/her belief of L1

and L2, choosing any numbers outside of the interval formed by 419.4 and 361.1 (in this case,

[361.1, 419.4]) is always weakly dominated strategy by some other number locates in the interior

of the interval. From these assumptions, we can infer that any HM type subjects may choose the

number that is located within the interval that is bounded by Lk strategies he/she based on. This

inference, even though it allows broader range than UM or PM type allows, provides ground to

identify whether the subject shows consistent HM type behavior. Consider an example for HM

type subject with strategies L1+L2. The table shows that all choices taken by the HM type subject

are consistently located in the interval of L1 and L2 strategies. This pattern of play that the HM

type subject can be distinguished from randomly playing subjects.

For HM type, specifying the adopted strategies will be enough to identify the type. Different from

the UM or PM type, we focuses on the identification of the HM subject itself. So we consider 6

different combinations of two strategies that can form bounds : L1 + L2, L1 + L3, L1 + NE, L2 +

L3, L2 + NE, and L3 + NE.

Even though the wide range of target guess is allowed, we can effectively identify the consistent
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behavior from the HM type. First, every combination of strategies has the different formation

depends on the game structure. For example, L1 + NE may have the broadest range in most

of games but not for game 1 and 8. For this reason, even the random-likely behaving subject

consistently chooses the number between L1 and NE strategies, the subject may show consistent

deviation at game 1 and 8 of every round. Moreover, the formation of the interval in the game

also changes. In the game 1, 2 and 7, L1 strategy locates lower than NE strategy while NE locates

lower than L1 in the set 3, 4, 5, and 6. From this structure, the HM type subjects with a certain

belief need to know the exact range that will bound his/her optimal hedging choice. Moreover, the

range that is covered by such combinations are at most equal to smaller than a half of entire choice

interval and apparent game environment randomly changes across the sets. For this reason, the

probability that the subject who consistenly chooses numbers bounded by certain pure strategies is

statistically insignificant.
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