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WORST CASE PERFORMANCE OF
RAYWARD-SMITH’S STEINER TREE
HEURISTIC

Bernard M. Waxman and Makoto Imase

1. Introduction

We prove that the worst case performance of the approximation algorithm for the
Steiner tree problem in graphs due to Rayward-Smith (RS) [4] is within two times
optimal and that its performance can be as bad as 2 — ¢ for any € > 0. In the Steiner
problem we are given an undirected graph G(V, E), a cost function C: B — R+, and
D C V. (Throughout this paper we assume that G is connected.) We are asked to
find a minimum cost spanning tree for the set D, where cost of a tree is defined in the
obvious way.

The Steiner tree problem is NP-complete [3] and no polynomial time approximation
algorithm is known [8] to have worst case performance that is bounded by 2 — ¢ times
the cost of the minimum Steiner tree, for ¢ > 0. RS is of particular interest in light
of experimental studies [5,6] and analysis of probabilistic performance [7] in which RS
compares favorably to several well known algorithms.

We give a brief description of RS referring the reader to [4,5] for a more detailed
description. Construct a collection of single node trees 7° consisting of the nodes in D.
Then repeat the following step for 1 <4 < |D| — 1 until there is only one tree.

Let v be a vertex with smallest f(v) where

) 1
flv) = Sg%?lm { Sl —1

> dist(v, T)} .

Tes

Let Ty and T, be two closest trees to v.
Join T and T% by a shortest path through wv.

Informally, f is the average cost of making r joins to r + 1 trees through a node v,
where r + 1 = |5|.
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We make use of a second algorithm, which we refer to as the minimum spanning tree
heuristic (MST'). MST begins by constructing a complete graph G[D] on D, where the
distances between nodes in G[D] correspond to the distances in G. M ST constructs a
minimum spanning tree for G[D] using one of the standard algorithms. Finally M ST
translates each edge of this tree into a path in @ to produce a solution. MST will
produce a spanning tree for G[D] which has cost within 2(|D] — 1)/|D| times the cost
of a minimum Steiner tree. For more details on M ST and a proof of this bound see
[1,2].

2. An Upper Bound on Worst Case Performance

We define a collection of algorithms {RS,| 0 < k < |D|—1]} such that RS, is equivalent
to M ST and RSip|_; is equivalent to RS. In the following specification of RS}, let V(p)
be the set of nodes in graph p.

Create a collection of single node trees 7 consisting of the nodes in D.

do T[> |D| -k —
Choose v € V such that f(v) is minimum where

. 1 .
flv) = Sg%?bl{mg%dmt(v’T)}'

Join two trees T and T closest to v by a shortest path through ».

od
Dy := Urger V(T)
do |[7T]|>1 —
Choose two trees Ty and T in 7 such that g(7y,T:) is minimum where
9(1,T2) = W€V (T )N D&V (T2)nD, dist(u,v) .
Join the trees Ty, T; by a shortest path with its endpoints in Dj.
od

Note that the function g in the second do statement is equivalent to f for |S| = 2 if the
endpoints are restricted to nodes in D. We also note that RS) does not specify what
action to take in case more than one choice is possible at some point. For simplicity
we initially assume that all choices are deterministic.
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For an instance (G, C, D) of the Steiner problem let MST(G, C, D) equal the cost
of a minimum spanning tree produced by MST on G[D], RS(G, C, D) the cost of a
solution produced by RS,and let

ID|-1
RS5,(G,C,D) = > cost(pes)
=1
where {p;;|1 < ¢ < b— 1} are the paths selected by RS;. Clearly RS, (G,C,D) >
RS(G,C,D) for k = b— 1. We will prove that RS(GQ,C,D) < MST(G, C,D) by
proving that RSx(G,C, D) < MST(G,C, D).

Lemma 2.1 For an instance (G, C, D) of the Steiner problem let {p;;| 1 <i < b—1} be
the sequence of paths generated by RS),. Then cost(py ;) < cost(pre1) fork < j < b—1,

Proof: After the selection of path py 4 all paths selected by RS have their endpoints
in Dy. Therefore, all possible path choices for the remaining steps are known with RS,

selecting paths of least cost.
O

Lemma 2.2 Let G(V, E) be a graph with subgraphs H and H' consisting of v and
v’ components, respectively. Let P = {p1,ps,...py_1} be a collection of paths such
that H U (U,ecpp) is a connected graph and each path in P has its endpoints and only
its endpoints in H. If H is a subgraph of H' then there exzists some P' C P with
|P'| = 4" —1 such that each p € P’ has its endpoints in two distinct components of H'.

Proof: We prove this lemma by giving an algorithm for constructing a set P’. Let
C = {c1,¢c3,...cx} be the components of H’, let § = {¢;}, and initialize P’ = §.

do S#C —
select a path p € P such that p has one endpoint in some c € S
and the other the other endpoint in some ¢/ € C — S
S:=Su{c}
P':= P'U{p}
od

This algorithm will terminate after selecting 4’ — 1 distinct paths from P since H U
(Upep p) is connected.
(W

Theorem 2.1 For all instances (G, C, D) of the the Steiner tree problem in graphs
RS(@,C,D) < MST(G,C,D).
Thus, RS5(G,C,D)/OPT(QR,C,D) < 2(|D| — 1)/|D|, where OPT(G,C,D) is the cost

of & minimum Steiner iree.
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Proof: Let b= |D|, {p;; |1 <4< b—1} be the set of paths selected by RS; in
sequence, and the phrase step ¢ indicate the loop in which RS; selects the 1™ path p; ;.
Since RSp is identical to MST and RS(G,C,D) < RS, 1(G,C, D) it is sufficient to
show that

(Vk, 0 <k <b—1) (RS(G,C,D) < RS.1(G,C,D)). (1)

For 0 < k < b—1 the first k& — 1 paths selected by RSi_; and RS} are identical.
Therefore,

k1 k-1
> cost(pri) = > cost(pr_1s) - (2)

i=1 i=1
Let 2 be the node selected by RS in step k with r = [S|~1. From step k through step
my = k+r,—1, RSy, will select paths that have a total cost no more than O} = ref(z).
By the definition of RS} and lemma 2.1 we know that f(z) < cost(pr—1,), k < ¢ < b-1.
Thus

Cr, < %cost(pkq,;)- (3)

t=k

Let P = {pr_1,k, Pk—1,k+1, - - - Pr_1,6-1 } and let H; be the intermediate solution generated
by RSy at the completion of step ¢, i.e. the graph consisting of all trees in 7 at this
point. Clearly, Hy_1UP is a connected graph, each path in P has its endpoints and only
its endpoints in Hy_,, and Hy_; is a subgraph of H; for mp < i < b — 1. Therefore,
we can apply lemma 2.2 to show the existence of a set P/ ¢ P, [P| = b—1—1
where the endpoints of each path in P’ are in two distinct components of H;. Then
cost(pr,:) < minyepr cost(p) since the paths in P’ are possible choices for RS}, in step
t. Applying lemma 2.1 we have

(Vi, me <1< b— 1) (cost(pk,.;) < cost(pk_l,,-)) . (4)
Finally combining (2), (3), and (4) we have RSy(G, C, D) < RS,_1(G, C, D).
O

In those cases where RS} has more than one choice at some point we make an
arbitrary selection among the available possibilities. We modify our definition of
RS,(G,C,D) so that

|D|~1
RS(G,C,D) = Iub{ > cost(pk'.;)}

i=1

over all possible path sets generated by RS,. As long as RS; and RS._; make the
same choices through step & — 1 the proof of theorem 2.1 still holds with complete
generality.

3. A Worst Case Example

Given any € > 0 we show that there exists an instance (G, C, D) (see figure 1) of
the Steiner problem such that RS(G,C,D)/OPT(®,C,D) > 2 —e. G consists of a
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Figure 1: A worst case example for RS

spanning tree T plus a set of 2 — 1, k € Z1 additional edges E' = {e1,ez,... €301 }.
To construct G we begin with the root of T' at level [ = k. Join a left and a right
subtree to the root each by an edge of cost 2--1 4§, § > 0. Repeat this step recursively
for each subtree at level I := [ — 1 until reaching the subtrees at level 0. The level 0
subtrees are just the leaves of T'. Label the leaf nodes with the numbers 1 through 2%
from left to right. For each pair of nodes i and i +1, 1 <4 < 2% add an edge e;. For
each edge e; with ¢ = 27" (mod 27), where 0 < j < k, set the edge cost to 27+ — 2,
Since 7 = 277 (mod 27) implies that ¢ = 0 (mod 27') for any j' < 7, this mapping is
well defined.

If we let D be the set of leaf nodes of T, then the solution generated by RS will be
the tree H(D, E'). We can easily show, for a fixed k, that

k
RS(G,C,D) = > 2Fi(2it _g)

i=1

k

= 23 (2 -2
j=1

= 2k2*-2F+1).
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The minimum Steiner tree will just be the tree T'. Therefore,
k
OPT(@,C,D) = Y 2/(2"7 +6)
i1

= k2% 4 (281 —1)8.
We then have that

RS(G,C,Dy 2 ok+1 _ o
OPT(G,C,D) 1+ (2F1 —1)6/k2* &2k + (2041 — 136
2 2
1+26/k &

Thus, given any ¢ > 0 there exists k¥ € Z¥ such that RS(@, C,D)/OPT(G,C,D) >
2 — e for any fixed § > 0.
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