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1. Introduction

Systems to be investigated using discrete-event simulation techniques often can be
described at varying levels of complexity and detail. At the highest levels of abstraction, system
components are few in number, but each component may embody a complete subsystem that can
be quite complex in itsclf. At lower levels of abstraction, the individual system components are
relatively simple in nature, but many components are required to specify the complete system.
Simulation of systems that include components at varying levels of abstraction, that is,

hierarchically described systems, is the focus of this paper.

A hierarchical system model has several advantages when compared to models that are
restricted to only one level of abstraction. Top down design techniques lead naturally to
hierarchical descriptions when portions of a design have progressed to different stages in the
design process. For example, in digital systems simulation a large circuit might be specified as a
set of functional blocks, each of which has a behavioral description. If the design of one of the
functional blocks is complete, its behavioral description can be replaced with a lower level
description (i.e., at the gate level) in order to verify the design of that functional block. The
behavioral descriptions of the other blocks provide the proper environment for the functional

block of interest, but cannot be modeled at the gate level if their designs are not yet complete.
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In the cases where a complete description of a system component exists at both high and
low levels of abstraction, it is not immediately clear that the low level model is to be preferred for
simulation purposes. There are often tradeoffs associated with modeling various system
components at different levels, and a hierarchical description allows the tradeoffs to be tailored to
varying user needs for information on the performance of different system components. A lower
level description often has the property of providing more information than a higher level

description but often also has the penalty of increased simulation costs.

The need for high performance discrete event simulation continues to grow, particularly,
with the advent of VLSI, in the computer design process, where simulation has become more
important and the number of components to be simulated in a typical system has increased
dramatically. One approach to providing improved performance is through the use of parallel
architectures. Clearly, to take advantage of parallel architectures, parallel versions of the
simulation algorithm must be developed. Partitioning the workload associated with the algorithm

among a set of interconnected processors can be done in three ways.

1. Across the simulation algorithm: Different subtasks of the algorithm (e.g., event
queue management, component evaluation) can be allocated to different processors and
the data can be pipelined between the processors.

2. Across the simulated system: The data itself (i.e., system components) can be
partitioned among the processors with each processor handling all subtasks of the
algorithm for the data in its partition.

3. A combination of the above two methods.

Since there are a small number of subtasks that must be performed in the simulation algorithm,
and the systems of interest are large systems, the second approach appears to have the most
potential parallelism to be exploited. Franklin et al. [1] analyze the simulation problem and
provide a taxonomy of simulation architectures. Wong et al. [2] have shown that considerable

parallelism of type 2 above exists in gate-level logic simulation.
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We assume a static allocation of system components to processors. That is, a component is
allocated to a processor previous to initiating the simulation and does not migrate from one
processor to another. We also assume a global clock algorithm, with an event-based time
increment. Each processor in the parallel system evaluates all the events that come off its local
event queue at a particular simulated time, sends a done signal to a single master processor also
indicating when in future simulated time the processor has more work to do, and then waits for a
message from the master processor telling how far to advance simulated time. The master
processor is responsible for determining (using response information from the other processors)
the next point in simulated time that has activity. After this has been determined, the master
processor sends a start message to each of the other processors communicating with the start

message the next time point to be simulated.

This paper presents a performance model of the discrete-event simulation algorithm running
on a hypercube architecture [3]. The hypercube architecture has several features that make it a
reasonable target for performing parallel simulation. First, it has high connectivity between the
various processors. In a P processor system, a message must traverse no more than log,P links
before reaching its destination, and on average will travel less than that distance [4]. Second, it is
an MIMD machine, allowing the different processors to implement component models that might
be greatly different from one another. This is often the case in hierarchical simulation where
system components are modeled at differing levels of abstraction. Third, the hypercube
architecture has good scaling properties. As the number of processors grows, the number of links
required at each processor increases only logarithmically, and the overall communications
capability in the system grows with the number of processors.

This paper is divided into five sections. The section to follow develops a model for the
performance of a hierarchical discrete-event simulation algorithm running on a hypercube
machine, The third section describes several partitioning strategies for allocating system

components in the simulation to processors on the hypercube. The fourth section describes the
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application of the model in the area of digital systems simulation, and the final section presents a

summary and conclusions.

2. Model Development

This section describes a performance model for hierarchical discrete-event simulation
running on & hypercube architecture. The model is based on work by Wong and Franklin [5] that
considered a special purpose architecture dedicated to logic simulation. This paper extends their
model to hierarchical discrete-event simulation and assumes a hypercube architecture rather than

a special purpose simulation machine.

Model variables are listed in Table 1. Along with each variable and its definition, a type is

indicated. The variable types are one of ‘‘output,” “‘input,” ‘‘design,’” and *‘auxiliary.”” Output

Table 1. Variable Definitions.

Var. Type Definition
Rp Output | Simulation run time using P processors
c Input Number of system components to be simulated
L Input Number of levels in hierarchical system description
B Input Number of busy ticks in the simulation
E Input Number of event/component evaluations
M., Input Number of messages when P — oo
ky Input Fraction of event/component evaluations at level
o Input Wortk distribution across communications links
B Input Work distribution across processors
P Design | Number of processors
Iy Design | Single event/component evaluation time at level I
ter Design | CPU time for single message formulation
Ier Design | CPU time for single message transmission
tep Design | CPU time for single message reception
b Design | Link time for single message transmission
iy Design | Link time for single message protocol overhead
Mp Aux. Number of messages with P processors
H Aux. Average number of hops required per message
W Aux, Average communications width
tepyr Aux, Total CPU time per busy tick
tcomm Aux, Total communications link time per busy tick
LEvaL Aux. Total component evaluation time per busy tick
g Aux. Average single event/component e¢valuation time
fcomcpy | AUX. Total communications overhead for CPU per busy tick
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variables are the dependent variables, input varjables are the independent variables, design
variables are design parameters of the architecture, and auxiliary variables are intermediate

values (i.e., functions of input and design variables) used to simplify the expressions.

If the simulation runs for B busy ticks (simulation time points that have one or more events
that need to be evaluated), the simulation run time for P processors can be expressed as

Rp = Bmax(fcpy - teom) (1)
where fcpy is the average processor time per busy tick and tcoa, is the average communications
link time per busy tick. Communications is assumed to occur concurrently with processing,
hence the maximum of processor time or communications time will determine the total run time.
The processor time can be further divided into component evaluation time and overhead required

to process messages (formulate outgoing messages, handle communications protocols, etc.).
tepy = tpvar + lcomepy @
The component evaluation time can be expressed in terms of the average time to perform a
component evaluation, g, the average number of events per busy tick per processor, EABP), and

the computation imbalance factor .

o, = Btz ©
E is the number of event/component evaluations performed over the entire simulation. The
imbalance factor is intended to account for the fact that the computational workload may not be
perfectly balanced across the processors at each busy tick. During each busy tick, the most
heavily loaded processor takes, on average,  times longer to perform its evaluations that it would
if the evaluations were evenly distributed across all processors. Thus, B= 1 implies a perfect
balance and B > 1 indicates the degree of imbalance. The average time to perform a component
evaluation, #, can be expressed in terms of the number of levels in the hierarchical description,

L, the fraction of component evaluations at each level, &;, and the time to perform a component

evaluation at each level, #;.
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L
g = Y kitg 4)

I=1

At each busy tick, there are Mp/B messages to be transmitted over the communications
channels, where M) is the number of messages with P processors over the entire simulation. The

start and done messages used for time synchronization account for an additional 2(P—1) messages

(MpiBY2(P-1)

7 as the average number of messages originating at each

at each busy tick, giving

processor at each busy tick. Each processor receives, on average, the same number of messages
from other processors. If each message must traverse, on average, H communications links

before it reaches its final destination, #/-1 intermediate processors must receive and then resend

(Mp/B)Y+2(P—1)
P

the message, giving (H-1) as the average number of pass-through messages seen

by each processor at each busy tick. Assuming tcr, tor, and fc as the CPU time to formulate,
transmit, and receive a message, the expression below gives the time spent by each processor at
each time point processing communications at each busy tick.

Mp Mp

et (P —1) —2(P-1)

B (5
lcomery = O —““I‘;“““—(ICF'*‘ terticr)+ _'"“}',““““—(H ~1){tcr+ter)

Note that a2 communications imbalance factor o has been introduced to account for an unequal

distribution of message volume across processors. This can be rearranged to the following,

M (ter+tcr) M, for
fcoucry = OL[H[—;-+2P—2} < 7 LA [ BP +2P—2} -%:»} (6)

where the first term in the square brackets, [ 1, accounts for the work that must be performed on
all messages, either original or pass-through, and the second term accounts for the work that must

be performed when a processor originates a message (e.g., formulation of the message itself).

'With appropriate substitutions, the processor time equation, (2), can be rewritten as follows.

E L Mp (ter+icr) Mp lep
= R - — _ +2P -2 —— 7
tory = B Elk,:m " a[H[ S0P 2J 5+ | 2P (7
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The average communications link time per busy tick is related to the first term in equation
(6). The second term in (6) is not included in the link equation because the link does not

distinguish between original messages and pass-through messages. The volume of individual
. Mp .
message hops (represented by the expression aH[ T+2P—2J) clearly is the same. The CPU

times fp and fcp are replaced by the transmission time #,, and the link overhead for the message
protocol #y. The factor of P in the denominator is replaced by a W, the average communications

width, or number of simultaneous messages that can be transmitted concurrently.

W

The communications width, W, is bounded by the number of bidirectional links at each processor,

M It
leomm = OLH[ BP +2P—2] Grac+tyr) 3

and therefore is less than or equal to PlgP. In existing commercial hypercubes, W is further
limited by the memory bandwidth at each processor (i.e., even though there are IgP incoming
message links and lgP outgoing message links at each processor, the memory bandwidth is not

sufficient for each of these 2Ig P links to be active simultaneously).

‘The intermediate variables that have not yet been evaluated are M, the number of messages
that are needed to perform the simulation on P processors, and #, the average number of hops
required by each message. Both of these values are dependent upon the component partitioning
and allocation schemes utilized, as well as characteristics of the hypercube interconnection

network, and are desciibed in the following section.

3. Partitioning Strategies

Two static component partitioning strategies are considered in this paper. The first, a
random partitioning, is used as a benchmark against which other strategies can be compared. The
second strategy is heuristic based, and is an attempt to minimize communication volume while
maintaining a high degree of computational parallelism. Finding an optimum partitioning is an

NP-hard problem [6], and therefore leads to algorithms with exponential cost, not a realistic
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alternative for the systems of interest (i.e., those with large numbers of components).

The first partitioning strategy to be considered is random partitioning. In this technique, C
components are each randomly placed on one of P processors, yielding an average of C/P
COmPpONents per processor. A message is generated whenever a component on processor i wishes
to communicate some information to a component on a different processor j (i#f). With C/P
components per processor, the component receiving the message could be any of the other
(C/P)-1 components on processor ¢ or the C—(C/P) components on other processors, all with
equal probability. With M., being the number of messages which would occur as P — o, the

number of messages for a P processor system is:

Mp = M”% = M. (1-1/P), C»1 ©)
In this equation the number of messages equals zero when there is only one processor and
increases with increasing P until it is equal to M., when each system component is on a separate

processor.
Note that on an N-dimensional hypercube (N =Ig P) the number of processors reachable in

N

i hops is given by the binomial coefficient {1} , with the maximum number of hops required

equal to N. The average number of hops that a message (destined for one of P—1 other

processors) must travel is therefore given by the following expression.

N
n- g EiY] - A A
'The second partitioning strategy to be considered is based on a heuristic that attempts to
minimize communications requirements while maintaining a high degree of processor load
balancing [7]. The system components and their interconnections are first represented by a graph,
with each component corresponding to a vertex and an edge connecting two vertices if the

corresponding system components communicate with each other during the simulation. A seed

vertex is then chosen for each of P partitions such that no two seed vertices are less than some
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minimum distance, D, from one another in the graph (i.e, the shortest path from any seed node to
any other seed niode is of length greater than or equal to D). The partitions are then grown out
from the seed vertices in a breadth-first manner, at each iteration adding a vertex to each partition
ensuring that the vertex chosen has not already been allocated to some other partition. Once the
partitions have been formed, they are randomly allocated to the P processors in the hypercube.

The specification of the algorithm used to select the seed vertices is given in Appendix A.

Given the random allocation of partitions to processors, the expression for the average
number of hops that a message must travel is still given by equation (10). The improvement

gained by using the heuristic is obtained by lowering the message volume Mp.

Unfortunately, the heuristic partitioning algorithm does not lend itself to a simple
expression for Mp, so we therefore resort to more pragmatic modeling methods. In our

experience [7], the following expression has been successful in matching experimental results,

4]
My = M,,(ao—-]-}+a2P) (11)
where the constants a, 4, and a, depend upon the connectivity of the system under simulation.
In the example that follows, the values for the constants will be determined by measuring

communications volume after partitioning a system using the heuristic described above.

4. Digital Systems Simulation Example

This section describes the application of the performance model developed above to digital
systems simulation. For this example, we will consider the system components to be at one of
two hierarchical levels. The lower level is the gate/switch level (e.g., system components such as
NAND, NOR, NOT gates, pass transistors, etc.) and the higher level is the MSI level (e.g., system
components such as multiplexors, shift registers, counters, etc.). Example values for the input
variables (gathered from simulations of representative circuits running on a standard von

Neumann architecture [8]) are provided at the model inputs to show the effects of different design
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parameters and partitioning strategies on the simulation performance. These results are given as
a set of curves (Figures1-3) showing the predicted speedup over a single processor

implementation, R /Rp , versus the number of processors, P.

The circuits used to illustrate the use of the performance model are a 330 component
hierarchical description of a stopwatch chip scaled to 33,000 components, a 1200 component
description of a priority queue chip scaled to 12,000 components, and a 3100 component
radiation treatment planning chip scaled to 31,000 components. The circuits were exercised,
using a unit delay timing model with random input and initial state vectors, and the following

data was collected:

input value meaning

parameter stopw pqueue tp

B 3,080 1199 5741 | busy ticks

E 9,687,100 750,390 | 2,535,930 | event/component evaluations

M., 10,108,800 | 1,294,670 | 2,593,950 | potential message volume

ky 0.883 0.97 0.998 | fraction of evaluations at SSI level
ko 0.117 0.03 0.002 | fraction of evaluations at MSI level
ag 0.554 0.565 0.366 | constants for equation (11)

a; 0.827 0.778 0414 when using heuristic partitioning
as 0.0043 0.0019 0.0016

Although not measured directly, for the purposes of this example we will assume the
communications and processor imbalance factors, o and B, range from 1.1 to 2.2, increasing

linearly with the number of processors.

The number of processors, P, is varied from 2 to 64, and representative values for the other

design parameters are given below:

designparm. | value | meaning

Igy 150 us | evaluation time at gate/switch level

£ 450 us | evaluation time at MSI level

top 40 us | CPU message formulation time

tep 20 ps | CPU message transmission time

tcr 20 us | CPU message reception time

Iy 32 us | Link message transmission time [9]

Ly 320 us | Link message protocol overhead time [10]
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Figure 1 gives the stopwatch speedup for both the random partitioning case and the
heuristic partitioning case under three different sets of design parameters. The middle pair of
curves uses the design parameters given in the table above, the top pair of curves results when the
cost of communications is decreased by a factor of four, and the bottom pair of curves results
when the cost of component evaluation is decreased by a factor of three. In all three cases, the
random partitioning curve is the lower of the two, as would be expected. Figure 2 provides the
same set of curves for the priority queue, and Figure 3 privides the same set of curves for the RTP
chip.

There are several things to note about the curves. First, as communications cost goes down
relative to CPU cost, the speedup is improved. This is due to the fact that the simulation run time
is now due primarily to processor workload and can therefore more closely approximate an ideal
linear speedup. Achieving linear speedup is prevented by the processor imbalance factor, B,
being greater than one. Second, as communications cost goes up relative to CPU cost, the
relative difference between random and heuristic partitioning increases. This is attributable to the
fact that when communications costs are a significant contributor to the simulation run time, the
lower message volume experienced with the heuristic partitioning algorithm can be of benefit.
This is especially true for low processor populations, where the heuristic seems to work quite

well,
5. Summary and Conclusions

This paper has presented an analytical model for the performance of a hierarchical discrete-
event simulation on a hypercube architecture. Model inputs include independent variables
(determined by the simulation being performed) and design parameters (determined by the
technology). The model predicts the run time of a simulation taking into consideration the
processor workload due to system component evaluation, processor workload due to required

message processing, and communications workload.
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An example of the use of the model was given for the application area of digital systems
simulation. Example input parameters were gathered from a sequential simulation of a pair of
digital circuits, and the predicted speedup over a sequential simulation was plotted. The curves
indicated the importance of communications workload relative to communications workload, as

well as showed the improvement in speedup due to the heuristic partitioning algorithm.

Topics currently under investigation include the relaxation of several of the assumptions
mentioned at the beginning of the paper (e.g., static allocation relaxed to allow migration of
system components to different processors during the simulation, and global clock algorithm
relaxed to allow different processors to simultaneously be at different points in simulated time)
and the use of simulated annealing to partition the system components for allocation onto

Processors.
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Appendix A

Seed Vertex Selection Algorithm

We wish to select P seed vertices such that all P vertices are at least a distance D away
from each other. The heuristic begins by choosing the first vertex randomly. Then, given a seed
vertex s;, it moves out in a breadth-first manner marking vertices out to distance I». The next
seed vertex is chosen randomly from the perimeter of the set of marked vertices. The perimeter
consists of those vertices which are at distance D from the marking seed vertex and are marked
by only one seed vertex. In the following algorithm, s; is the i* seed vertex and M (s;) is the set

of vertices marked by s;.

Randomly select s4;
Assign s, to partition 1;
fori:=2to P do
M(s;q) = {5 )
ford:=1t0D do
M(s;y) =M (s;;) ) {vertices of distance d from s, };
endfor
perimeter = marked vertices M (s;_,) with distance D from s;_; not otherwise marked;
if (perimeter is not empty) then
s; = randomly selected vertex from perimeter;
else
s; = randomly selected unassigned veriex;
endif
Assign s5; 1o partition i;
endfor
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