
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

McKelvey School of Engineering Theses &
Dissertations McKelvey School of Engineering

Spring 5-2022

Scalable Software Infrastructure for the Lab and a Specific Scalable Software Infrastructure for the Lab and a Specific

Investigation of the Yeast Transcription Factor Eds1 Investigation of the Yeast Transcription Factor Eds1

Chase Mateusiak

Follow this and additional works at: https://openscholarship.wustl.edu/eng_etds

 Part of the Bioinformatics Commons, Computational Biology Commons, and the Genomics Commons

Recommended Citation Recommended Citation
Mateusiak, Chase, "Scalable Software Infrastructure for the Lab and a Specific Investigation of the Yeast
Transcription Factor Eds1" (2022). McKelvey School of Engineering Theses & Dissertations. 706.
https://openscholarship.wustl.edu/eng_etds/706

This Thesis is brought to you for free and open access by the McKelvey School of Engineering at Washington
University Open Scholarship. It has been accepted for inclusion in McKelvey School of Engineering Theses &
Dissertations by an authorized administrator of Washington University Open Scholarship. For more information,
please contact digital@wumail.wustl.edu.

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/eng_etds
https://openscholarship.wustl.edu/eng_etds
https://openscholarship.wustl.edu/eng
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F706&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/110?utm_source=openscholarship.wustl.edu%2Feng_etds%2F706&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/28?utm_source=openscholarship.wustl.edu%2Feng_etds%2F706&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/30?utm_source=openscholarship.wustl.edu%2Feng_etds%2F706&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds/706?utm_source=openscholarship.wustl.edu%2Feng_etds%2F706&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu

Washington University in St. Louis

McKelvey School of Engineering

Department of Computer Science and Engineering

Scalable Software Infrastructure for the Lab and a Specific Investigation of the Yeast Transcription

Factor Eds1

By

Chase Mateusiak

A thesis presented to the McKelvey School of Engineering of Washington University in St. Louis in

partial fulfillment of the requirements for the degree of Master of Science

May 2022

St. Louis, Missouri

© 2022 Chase Mateusiak

Dedication

To my family.

Acknowledgments

Michael Brent and the Brent lab as a whole have provided an unrivaled environment in which to learn

how to manage biological data and conduct meaningful analysis. Thank you also to Seemay Chou and

her lab, for giving me my start in this work.

I would never have known that I could contribute to science, however slightly, had I not met my

partner, Laura DeVault. Her interest and dedication to discovery has been my inspiration.

My parents, Pam Gunkler and Wally Mateusiak, and my brother, Wesley Mateusiak, provide boundless

love and support.

Finally, Boba, the dog, has reminded me to get up from the computer and go outside, which is always a

better place to do some thinking.

i

Table of Contents

List of Tables...ii
List of Figures...iii
Abstract...iv
Chapter 1: Scalable, Portable Software for a Biology Lab..1

Database Management of Sequencing Data..1
brentlabRnaSeqTools: Package Infrastructure and Testing..2
brentlabRnaSeqTools: Documentation..3
brentlabRnaSeqTools: Application...3
Calling Cards Pipeline Implementation in Nextflow..4

Chapter 2: EDS1, A Novel Regulator at the Heart of the Hexose Transporter Expression Network........6
Introduction...6
Data...10
Results...13

Eds1p and Rgt1p Regulation of Hexose Transporters 1 through 7..15
Eds1p and Rgt1p Regulation of the Hexose Transporter Network Regulators..............................20
Regulation of Eds1 by Snf1, Mig1 and Mig2...22
Eds1 Regulation of Lysine Biosynthesis..24

Discussion...26
References...29

Appendix A: Eds1..31
A1: Eds1/Rgt1 DNA Binding Domain Alignment..31
A2: Eds1 and Rgt1 Genetic Interaction...32
A3: High Confidence Regulators of Eds1...33

Appendix B: brentlabRnaSeqTools...34
B1: Getting Started with brentlabRnaSeqTools..34
B2: Process a New Run From MGI...38
B3: Environmental Perturbation Analysis Data Creation...42
B4: 90 Minute Induction Analysis Data Creation...46
B5: QC – Library Quality..54
B6: QC – Replicate Agreement...58
B7: Tally Experiment Sets..69

ii

List of Tables

Table 1: Data used to interrogate the function of Eds1 and its relationship to Rgt1...............................10
Table 2: High confidence inferred transcription factor and inferred kinase interactors..........................33

iii

List of Figures

Figure 1: Schematic of the Brent lab sequencing database..1
Figure 2: The Calling Cards pipeline...4
Figure 3: Eds1 and Rgt1 Sequence and Expression Overview..13
Figure 4: Eds1p and Rgt1p Regulation of Hexose Transporters 1 through 7..16
Figure 5: Regulation of known regulators of Rgt1 by Rgt1 and Eds1...20
Figure 6: Regulation of Eds1 by Snf1, Mig1 and Mig2...22
Figure 7: Lysine biosynthesis pathway, and the predicted effect of Eds1, from Haynes et al. 2013......24
Figure 8: Eds1 Regulation of Lysine Biosynthesis..25
Figure 9: Eds1/Rgt1 Genetic Interaction Map...32

iv

Abstract

Scalable Software Infrastructure for the Lab and a Specific Investigation of the Yeast Transcription

Factor Eds1

By

Chase Mateusiak

Master of Science in Computer Science

Washington University in St Louis, 2022

Research Advisor: Professor Michael Brent

Individual biology labs handle increasingly large data sets. Ensuring accurate data entry,

consistent sample metadata, and ease of access to the data once it is stored, are critical for both the

integrity of analysis as well as productivity of the lab. Chapter one of this thesis describes three

implementations of software meant to facilitate handling data and metadata in the lab as the size of the

data and complexity of analysis scale. The first piece of software is a database and entry interface for

storing a large and varied amount of data on biological samples. The second is a software package

which uses established bioinformatics tools to further build upon the database API to facilitate analysis.

The third is a Nextflow pipeline for the Calling Cards protocol for assaying transcription factor binding

via sequencing.

Chapter two focuses on EDS1, a gene encoding a transcription factor present in

Saccharomyces cerevisiae. EDS1 is a paralog of RGT1, an important regulator of sugar uptake. We

show that Eds1p has both functionally redundant and divergent roles in response to external nutrients.

1

Chapter 1: Scalable, Portable Software for a Biology Lab

Database Management of Sequencing Data

 To facilitate analysis of RNA sequence and other phenotype data generated on a large scale in

the lab, I have implemented a database which tracks sample development over time, catalogs strains

which corresponds to their storage in the freezer, allows for expressive and extensible description of

growth and environmental conditions, and makes connecting additional data to each biological sample

simple. The database is implemented in Django, which makes available to current and future

developers of the codebase a rich set of tools and security measures which would be difficult for a

single person to implement and maintain. The database table design conforms to standard database

design principles, which has had a large and beneficial impact on data accuracy, both of historic data

which was ported into this system, and in newly entered data.

Figure 1: Schematic of the Brent lab sequencing database

2

I have implemented a browser based front end to facilitate data entry, and which further

enforces accuracy standards. An implementation of the RNA sequence database may be viewed here:

https://github.com/BrentLab/KN99_database

The data entry front end may be viewed here:

http://18.190.159.45/

The code for the front end may be viewed here:

https://github.com/BrentLab/rnaseq_metadata_frontend

brentlabRnaSeqTools: Package Infrastructure and Testing

To aid in the utilization of the data stored in the database, I have implemented the

brentlabRnaSeqTools, an R package which extends the standard bioinformatics tools developed by

Bioconductor1. This package provides a number of features which may be divided as follows: package

infrastructure and testing, documentation, and finally application.

The brentlabRnaSeqtools package implements two methods of guaranteeing portability:

continuous integration testing which is triggered every time new code is pushed, and containerization

with Singularity. Continuous Integration testing simply means that the software package is installed

onto a remote server, and then the tests are run, to verify that the software works as intended. In this

case, every time new code is pushed to the brentlabRnaSeqTools repository, the codebase is built on

the current version of the Mac OS, Windows, and Ubuntu. Singularity builds an ‘image’, which

includes the OS, software dependencies, and the codebase. If the host system has Singularity installed,

it may then run the image, regardless of what operating system the host system has, and what operating

system the software requires. No other dependency management is required as it is all contained in the

image file.

https://github.com/BrentLab/rnaseq_metadata_frontend
http://18.190.159.45/
https://github.com/BrentLab/KN99_database

3

The purpose of implementing both of these features is to both ensure portability and also to

provide concrete example to others in the lab of how to implement these features – the infrastructure of

this package may be copied into any new project.

brentlabRnaSeqTools: Documentation

Every function in the brentlabRnaSeqTools is documented for the user in such a manner that

formatted, easy to read documentation is generated automatically. Continuous Integration encourages

code documentation through a test which requires that every function have at least a definition,

description of each input, and an example usage. As one of the steps executed in the continuous

integration protocol, the documentation is re-built on every push of new code. The code itself is also

well documented for future maintainers and developers, and care has been taken to make the code

readable. Documentation may be viewed here, and is also available within an active R session if the

brentlabRnaSeqTools is installed:

https://brentlab.github.io/brentlabRnaSeqTools/

brentlabRnaSeqTools: Application

The purpose of the brentlabRnaSeqTools package, beyond providing a template of a package

primed for upload to either of the common R repositories, CRAN, or Bioconductor, is to facilitate the

use of the data stored in the Brent lab database. The brentlabRnaSeqTools makes use of the

fundamental objects of the Bioconductor software project, the SummarizedExperiment class, which

stores assay data, sample metadata, feature metadata, and experiment metadata. Each of these attributes

itself has object definitions from Bioconductor which facilitates operations such as extracting

expression over user-defined promoter regions. SummarizedExperiment objects expose filtering and

subsetting methods, among others, which greatly ease interaction with this data, and it allows the user

https://brentlab.github.io/brentlabRnaSeqTools/

4

to store all of this data together as a single file, rather than as many separate files. Utilizing

SummarizedExperiment also provides both in-memory and on-disc based back ends, and a number of

other features, all of which together provide an immediately scalable software environment for the

user1.

This package provides a framework for the implementation of contemporary, portable software.

The goal with this package, in addition to its use as an interface to the Brent lab sequence database, is

to provide a framework which makes the adoption of what are useful, but somewhat arcane, tools such

as continuous integration, automatically generated documentation, and fundamental Bioconductor

classes, more concrete and accessible.

Calling Cards Pipeline Implementation in Nextflow

Nextflow is a domain specific language specifically built for bioinformatics pipelines2. It

facilitates modular workflows by providing tools to chain the input and output of processes together by

abstracting away the underlying system.

Figure 2: The Calling Cards pipeline

Every module is implemented using the standard open source tool commonly used for the same task. Each
module is containerized and accessible via both bioconda, and a repository for Singularity images. The
software is packaged in such a way that it complies with the guidelines set forth by nf-core, a public, though
tightly managed, repository for Nextflow bioinformatics pipelines.

Alignment QCQuantify

Extract Barcodes Trim Align

Quantification QC

Compile QC
report

5

Calling Cards is a sequencing based method developed by Rob Mitra which is orthogonal to

chromatin immunoprecipitation based methods to interrogate DNA binding transcription factors to

discover their genomic targets. After sequencing a library of reads generated from the a Calling Cards

experiment, the bioinformatics processing pipeline’s first step is to extract the molecular bar codes

from each read. The bar codes map the reads to a given transcription factor of interest. Next, reads are

aligned. The aligned reads are then transformed into counts (depth) over each nucleotide in the genome

(typically called ‘piling up’ the reads). This is transformed into a format which, given promoter

definitions, allows fast quantification of reads over promoters by bar code (transcription factor).

Quality assessment metrics are generated at the sequencer, alignment and quantification steps.

Each step in this pipeline is implemented in a fully containerized Nextflow module.

Furthermore, each step is conducted by the software package which is considered the standard software

for each task, and is fully containerized using both Conda and Singularity. The pipeline is implemented

in such a way that it complies with the Nextflow repository, nf-core, standards, meaning it could be

uploaded for public use.

Briefly, nf-core is a repository for Nextflow bioinformatics packages. It is tightly managed, and

has stringent requirements in order to have a package considered for hosting.

The Calling Cards pipeline may be found here

https://github.com/BrentLab/callingcards

https://github.com/BrentLab/callingcards

6

Chapter 2: EDS1, A Novel Regulator at the Heart of the Hexose Transporter Expression Network

Introduction

In nature, a yeast cell’s external environment is chaotic. The number of competitors, their

diversity, the availability of resources, and the presence of toxins change the homeostatic state of the

cell, and provoke a cellular response to adapt and survive. Shifts in the yeast environment may rapidly

change from nutrient poor to nutrient rich, as fruit ripens and breaks down, and as yeast population

dynamics rapidly change the availability of nutrients and presence of metabolic byproducts. The speed

and effectiveness of the response is under strong evolutionary selection, and the result is a highly

interconnected set of pathways capable of effecting great and swift change in the transcriptome in

response to the type and concentration of sugar available in the environment.

In addition to responding to external conditions, two highly conserved nutrient response

pathways signal intercellular stress. One pathway uses cyclic AMP to activate Protein Kinase A (PKA)

in the presence of excess glucose. The other uses AMP and ADP to activate the adenosine

monophosphate-activated protein kinase (AMPK) complex when the cell’s energy charge is low.

For yeast, the primary concern with sugar is how to get as much of it into the cell as possible as

quickly as possible. Thus, the genome of Saccharomyces cerevisiae (yeast) harbors genes encoding at

least 17 hexose transporters, HXT1-11, HXT13-17, and GAL2, which have a wide range of affinities

and transport capacities for glucose, galactose, fructose, or mannose3. These genes are regulated by the

PKA AMPK, HOG and TOR pathways as well as a yeast-specific pathway that begins with one of two

external sugar sensors in the plasma membrane: Snf3p and Rgt2p. All of these pathways have been

studied extensively, and the sequence-specific, DNA-binding transcription factors (TFs) on which they

act to regulate HXT gene expression are thought to be well known, among which are Mig1p, Mig2p,

7

and Rgt1p45. These factors also regulate each other as well as upstream components of the pathways,

leading a network with multiple feedback and feed forward loops and complex dynamics6. In this

paper, we reveal Eds1p to be a fourth player at the center of this densely connected network.

EDS1 and RGT1 exist as paralogs as a result of the whole-genome duplication that occurred an

estimated 100 million years ago in the lineage leading to S.cerevisiae7. Rgt1p is an extensively studied,

1170 amino acid protein with an N terminus Zn(2)-C6 DNA-binding domain. In the absence of

glucose, Rgt1p binds to and represses the expression of a number of genes including those encoding

hexose transporters (HXTs), invertase (SUC2), and hexokinase isozyme 2 (HXK2), by recruiting Ssn6-

Tup1, a general repressor complex. This repressive function requires Mth1p or Std1p which protects

Rgt1p from hyperphosphorylation by protein kinase A (PKA). In the presence of glucose, Mth1p is

degraded and MTH1 transcription is repressed, exposing Rgt1p to hyperphosphorylation by PKA and

causing it to dissociate from DNA89. In high glucose conditions, Rgt1p can functionally activate a

subset of its target genes, including HXT1. Domains required for the repressive activity and recruitment

of Ssn6p-Tup1p (Fig 3A, orange), inhibition of the repressive activity in high glucose (Fig 3A, red),

the activation activity (Fig. 3A, green) have been mapped, as have phosphorylated residues10. Most of

the Rgt1 protein shows significant conservation across the Saccharomyces species (Fig. 3A, bottom

wiggle track).

Eds1p is 919 amino acid protein with an N terminus Zn(2)-C6 DNA binding domain. Although

many regions of Eds1p are conserved, its overall conservation level (across similar species of yeast) is

much lower than that of Rgt1, a highly conserved gene (Fig. 3A, top wiggle track). Consistent with the

similarity of their DNA binding domains (DBDs; 60.7%), the DNA binding specificities of RGT1 and

EDS1 are similar, although RGT1 seems to be somewhat more specific (Appendix A1, Fig. 3B).

8

In contrast to RGT1, EDS1 is a poorly studied gene which is not the focus of any previous

publications. Even its name, “Expression Dependent on Slt1”, is based on a paper that was never

published, and existing evidence suggests that its expression is not dependent on Slt111. It is non-

essential, and the deletion mutant is reported to have slightly decreased competitive fitness in minimal

medium (MM) with 2% glucose and increased competitive fitness in yeast peptone (YP) + 2%

ethanol12. Several genome-wide, high-throughput data sets provide some clues to its function. In one

study, it was described as being repressed by both Mig1p and Mig2p, and not showing substantial

increases in expression under conditions of glucose repression unless both repressors are deleted13. It

was subjected to binding location analysis by ChIP-chip and gene expression in a strains in which it is

deleted has been assayed twice, all in high-glucose, repressing conditions141511. Analyzing the older

expression data set as well as models of Eds1p’s DNA-binding specificity, Haynes et al. predicted that

Eds1p directly represses most of the genes encoding proteins in the lysine biosynthesis pathway1516.

Indeed, the seven most significantly differentially expressed (DE) genes were all involved in lysine

biosynthesis. However, a subsequently published study of expression in transcription factor (TF)

knockout strains, this time in synthetic complete medium rather than yeast peptone, found that Lys20

was the only lysine-associated gene to be differentially expressed in the eds1Δ deletion strain, and it

went slightly down rather than up in the mutant. Indeed, only one gene (ASP3-3) was called

significantly and substantially DE by these authors, leading them to classify the Eds1 deletion strain as

“non-responsive”11.

At the RNA level, both RGT1 and EDS1 are more highly expressed in growth-limiting glucose

than in excess glucose, but the range of EDS1 expression is greater than that of RGT1, being higher in

limiting glucose and lower excess glucose (Fig. 3C). Furthermore, EDS1 appears to be completely

insensitive to the concentration of galactose, with both limiting and excess galactose being treated as

9

intermediate between limiting glucose and excess glucose. RGT1, on the other hand, responds to

galactose just as it does to glucose. Finally, induction of both EDS1 and RGT1 in limiting glucose is

abolished in the snf1Δ mutant, consistent with previous observations that both RGT1 and EDS1 are

repressed by Mig1p, which is inactivated by Snf1p in limiting glucose.

In this paper, we elucidate the function of Eds1p and its possible roles in the regulation of lysine

metabolism and hexose transport. We started with a genome-wide study of its binding locations during

growth on agarose plates with synthetic complete (SC) medium and galactose as the carbon source. We

also subjected its paralog from the yeast whole-genome duplication, Rgt1p, and an authentic regulator

of lysine biosynthesis genes, Lys14p, to binding location analysis in the same conditions (Table 1). The

binding locations of all of three transcription factors (TFs) were also assayed two lysine conditions,

with and without, in SC medium.

Rather than using the more conventional chromatin-immunoprecipitation sequencing (ChIP)

method, we determined binding locations using Transposon Calling Cards, a purely nucleic-acid based

method that does not involve chromatin handling or affinity purification17. We then studied the

transcriptional response to deletion of EDS1, RGT1, LYS14, and two double mutants, under the same

conditions.

Finally, we studied the effects of the eds1 mutation on the dynamic response when excess

glucose is added to a culture growing in minimal medium (MM) in a glucose-limited chemostat. To put

the role of Eds1p in the context of the known factors regulating hexose transporter expression, we also

carried out parallel RNA-Seq experiments on single mutants of RGT1, MIG1, and MIG2, as well as

double deletions and a quadruple deletion of all four genes, and SNF1 deletion mutants, in response to

addition of excess glucose.

10

These studies reveal Eds1p to be a novel player at the heart of hexose transporter regulation,

with a both redundant and non-redundant relationship with Rgt1p.

Data

Assay Strain Environment Media Sugar

TF binding Eds1, Rgt1, Lys14 Agarose plates SC +/-lysine Gal
Expression WT, eds1Δ, rgt1Δ,

lys14Δ, eds1Δ+rgt1Δ,
eds1Δ+lys14Δ

Agarose plates SC +/-lysine Gal

Expression WT, eds1Δ, rgt1Δ,
mig1Δ, mig2Δ, snf1Δ,
eds1Δ+rgt1Δ,
mig1Δ+mig2Δ,
mig1Δ+rgt1Δ,
mig2Δ+rgt1Δ,
eds1Δ+rgt1Δ+mig1Δ+mi
g2Δ

Glc limited
chemostat

Minimal Glc

Expression WT, eds1Δ, rgt1Δ,
mig1Δ, mig2Δ, snf1Δ,
eds1Δ+rgt1Δ,
mig1Δ+mig2Δ,
mig1Δ+rgt1Δ,
mig2Δ+rgt1Δ,
eds1Δ+rgt1Δ+mig1Δ+mi
g2Δ

Excess Glc
time course

Minimal Glc

Expression WT Gal limited
chemostat

Minimal Gal

Expression WT Excess Gal Minimal Gal
SC: Synthetic Complete; YPD: Yeast Extract Peptone Dextrose; Gal: galactose; Glc; glucose; WT:
Wild Type; Metabolites: glucose, ethanol, glycerol

Table 1: Data used to interrogate the function of Eds1 and its relationship to Rgt1.

11

Samples for the Calling Cards experiments were prepared following methods and strains

described in Mayhew and Mitra, 201617. There are two batches in this data set, differentiated by the

presence of absence of lysine in the media.

To replicate the calling cards conditions for the corresponding RNA sequencing assays, strains

were initially grown on YPD. Single colonies picked in the wildtype and mutants listed in Table1.

These samples were used to plate a lawn on SC media with galactose as a carbon source. Batches were

determined by the presence of absence of lysine. A 3cm x 3cm square was scraped from each colony

into 1.5 mL tube, and the RNA was isolated. RNA isolation was performed with Invitrogen RiboPure

(Catalog number AM1926), mRNA isolation with NEBNext Poly(A) mRNA Magnetic Isolation

module NEB E7420L, and library preparation was performed with NEBNext Ultra Directional RNA

Library Prep Kit for Illumina NEB E7420L. Samples were sequences at MGI.

For the chemostat samples, cells were grown in liquid minimal media with a constant flow rate

of media and atmosphere. Cells were sampled, and then 2% glucose is added to the media and the flow

is halted. Cells were subsequently sampled at 45, 60, 90, 180, 300 and 1440 minutes, though the mutant

samples were typically not healthy enough to perform RNA sequencing at 1440 minutes.

The RNA sequencing reads were processed with the nf-co.re RNAseq pipeline18. Briefly,

alignment to the sacCer3 genome was performed using STAR. Quantification was performed using

Salmon and the S288C-R64-3-1 genome annotations. Extensive QC was performed (see

nf-co.re/rnaseq for details), and additional metrics concerning the coverage and expression of the

knocked out loci in each mutant sample were performed. Samples with more than 25% coverage and

greater than 2 log2 normalized counts were excluded, as were samples with less than a million protein

coding reads.

12

Differential expression was performed using DESeq2, with effect sizes shrunk using the ashr

package, while the calling cards data was analyzed using custom scripts1920. Figures 4,5,6 and 8 use the

DESeq2 variance stabilization transformation to describe counts data.

Calling Cards data is analyzed using hypergeometric p-values, which are proxies for binding

strength of given TFs. We use a threshold of .001 for significance to filter for significantly bound

genes.

13

Results

Figure 3: Eds1 and Rgt1 Sequence and Expression Overview.

(A) Protein alignment, of Eds1 (top) and Rgt1 (below). Colored boxes on the alignments
correspond to known functional domains while vertical red lines signify phosphorylation sites.
Above and below the alignment, phastCon conservation scores show conservation across the
nucleotide sequences of each locus. (B) Binding Sequence motif for Eds1p and Rgt1p. (C) plots
EDS1 expression (left set) and RGT1 expression (right set) in excess and limited glucose,
galactose, and in both conditions in the snf1Δ mutant. (D) and (E) show Eds1 and Rgt1
expression in glucose and galactose (D) and in the snf1Δ mutant (E). In (E), solid lines represent
wild type expression, dotted lines snf1Δ mutant expression.

Figure credit: Mike Toomey

14

Eds1p differs from Rgt1p at a key serine which likely affect interaction with Mth1p. S88 is

a highly conserved serine in the Rgt1p sequence. This serine residue is critical to the effect of Rgt1p on

HXT1, which is mediated by the Rgt1p and Mth1p interaction212. In limited glucose, Mth1p prevents

Rgt1p from being phosphorylated by the PKA pathway. Hypophosphorylated Rgt1p interacts with

Ssn6p-Tup1p repressor complex and binds to the promoter of HXT1, thus repressing HXT1

transcription in low glucose. In high glucose, Mth1p is ubiquitinated and degraded, which diminishes

Mth1p concentration and consequently allows Rgt1p to become phosphorylated. This disrupts the

Rgt1p interaction with Ssn6p-Tup1p, which de-represses HXT122. As Rgt1p becomes

hyperphosphorylated, it becomes a direct activator of HXT1 expression6.

Eds1p, however, does not have a serine which aligns to the serine at position 88 in the Rgt1p

sequence. Rgt1p S88 aligns to an alanine in the Eds1p sequence, and is otherwise in a gapped and less

conserved local area. The flanking region is critical for both Rgt1p’s ability to repress HXT1 in limited

glucose, and induce HXT1 expression in high glucose , as shown by Polish, et al. through deletion of

the region 80-90 in Rgt1p . Interestingly, they also show that mutating S88 to an alanine in Rgt1p

disrupts the interaction between Rgt1p and Mth1p.

We show that Eds1p is a constitutive inducer of HXT1 expression in both limited and high

glucose. We speculate that this is due in part to the absent serine near Eds1p’s DNA binding domain.

Eds1p has fewer direct targets, but more indirect targets, than Rgt1p in SC media with

galactose. After filtering out gene features with low expression across all samples in our data, we

consider a background gene set of 6,457 genes. In SC media with galactose and lysine, there are 545

more genes differentially expressed by at least 1 fold (padj < .05) in the eds1Δ mutant compared to the

rgt1Δ mutant. In the same conditions, but without lysine in the media, there are 943 more differentially

15

expression genes in the eds1Δ mutant compared to the rgt1Δ mutant. In limited glucose, there are a

similar number of differentially expressed genes in eds1Δ and rgt1Δ mutants.

Eds1p has a large effect on the transcriptome in the initial response to high glucose, even

while being down regulated. Unexpectedly, given that EDS1 expression decreases significantly within

45 minutes in high external glucose, there are between 500 and 600 more DE genes in the eds1Δ

mutant compared to the rgt1Δ mutant at time points 45 minutes and 90 minutes. After 180 minutes in

high glucose, the RGT1 deletion has a larger effect on the transcriptome. The DE genes in the eds1Δ

mutant are significantly enriched for function in the TCA cycle, while the DE genes in the rgt1Δ

mutants are not, indicating that Eds1p has a greater role in regulating aerobic respiration in both low

and high glucose than Rgt1p.

Eds1p and Rgt1p Regulation of Hexose Transporters 1 through 7

16

Figure 4: Eds1p and Rgt1p Regulation of Hexose Transporters 1 through 7.

(A) Gene expression of hexose transporters (HXT1-7) in eds1Δ mutant(left), rgt1Δ mutant
(right). The x-axis represents shrunken log2FoldChange in the mutant compared to the wildtype
expression. The y-axis represents the calling cards hypergeometric p-value, on a -log10 scale.
The two vertical dotted lines are at +/- .5 log2foldChange, outside of which we consider the
change to be significant, in conjunction with adjusted p-values less than .05. The horizontal
dotted line is at .001, or 3 on the -log10 scale. Points above that line are considered significantly
bound. Assay conditions for are SC media with galactose as a carbon source. Rows represent the
plus lysine condition, and minus lysine condition. (B) Dynamic expression of HXT1-7 in
response to glucose in wildtype (WT) and eds1Δ, rgt1Δ and eds1Δrgt1Δ mutants. HXT1-7 are
grouped by their glucose transport affinity.

S.cerevisiae regulates the intake of glucose, its preferred sugar source, and other hexose sugars,

through 17 highly similar hexose transporters. Hxt1-7 are both the most functionally prominent, and the

most studied. The hexose transporters may be classified by their affinity to a given substrate. In relation

to glucose, Hxt1p and Hxt3p are considered low affinity glucose transporters (Km(glucose) ~ 100 mM).

17

HXT1 and HXT3 expression is regulated in response to external glucose concentration, and internal

metabolic cues. HXT2, 4 and 5 are moderate affinity glucose transporters (Km(glucose) ~10 mM). HXT2

and HXT4 respond to both glucose concentration and growth cues. HXT5 responds to growth cues and

is otherwise unresponsive to external glucose concentration. HXT6 and HXT7 are high affinity glucose

transporters (Km(glucose) ~ 1 mM), and are both regulated by external glucose concentration4.

S.cerevisiae adjusts the balance of hexose transporter expression in response to external glucose

through at least two external sensor networks: the Snf3p/Rgt2p hexose sensors, and the cAMP/PKA

membrane sensor Gpr1p5. Here, we focus on the Snf3p/Rgt2p pathway.

Snf3p and Rgt2p respond to increasing external glucose by emitting a signal which results in

the phosphorylation and subsequent ubiquitination and degradation of Mth1p and Std1p. Decreased

concentrations of Mth1p and Std1p in the nucleus allows PKA pathway to phosphorylate Rgt1p. This

disrupts the interaction between Rgt1p and the Ssn6p-Tup1p repressor complex, thereby relieving the

Rgt1p mediated repression of HXT1 and HXT3. Phosphorylated Rgt1p in high glucose becomes an

activator of STD1, MTH1 and MIG2 expression. This forms a feedback loop in which the Snf3p/Rgt2p

pathway signal initially de-represses HXT1 and HXT3, but also contributes to expression of the genes

which will eventually re-establish the repression of HXT1 and HXT3 when the external glucose is

exhausted6.

Eds1p directly activates HXT1 in limited and 2% glucose. The calling cards data shows that

Eds1 and Rgt1 both bind the HXT1 promoter (Fig. 4A). Rgt1p represses HXT1 in limited glucose and

activates HXT1 expression in high glucose. Rgt1p’s biphasic behavior consistent with previously

published literature, a result which our data confirms6.

18

In limited glucose, HXT1 expression is reduced in the eds1Δ mutant by .68 fold (padj < .05)

over the wildtype expression (Fig 4B). We also note that the expression of HXT1 trends greater in the

rgt1Δ mutant than it is in the eds1Δrgt1Δ mutant, though the difference is not statistically significant.

In 2% glucose, HXT1 expression is unaffected in the eds1Δ mutant. Knocking out RGT1, by

contrast, suppresses HXT1 induction, though notably not entirely as the expression of HXT1 is still

higher in the rgt1Δ background than it is in the wildtype in limited glucose. This is consistent with the

observation that Rgt1p is an activator of HXT1 in high glucose. However, the difference between

HXT1 expression in the rgt1Δ mutant and the eds1Δrgt1Δ is -3.45 fold (padj < .05, Fig 2B). This leads

us to hypothesize that there exists a combinatorial activation effect of Eds1p and Rgt1p on Hxt1 in high

glucose, but that Rgt1p alone is sufficient to induce HXT1 to the level observed in the wildtype.

Overall, this strengthens the hypothesis that the interaction between Eds1p and Mth1p is

different from the interaction between Rgt1p and Mth1p. Mth1p mediates the Rgt1p phosphorylation

state, and thus whether Rgt1p acts as a repressor or an activator. If Mth1p is not able to block Eds1p

phosphorylation, then given the evidence that Eds1p is bound to the promoter of HXT1, we would

expect Eds1p to act as a constitutive activator, which consistent with our observations.

Eds1p binds, but does not affect, HXT3 in limited or high glucose. Eds1 appears to bind

HXT3 in galactose in both lysine conditions. In media without lysine, Eds1p represses HXT3. However,

in minimal media, limited glucose, and in minimal media, high glucose, HXT3 is unaffected in the

eds1Δ mutant.

Eds1p may not directly regulate HXT2 and HXT4. HXT2 and HXT4 encode moderate

affinity glucose transporters which are regulated by both glucose and growth cues. Our data suggests

that Rgt1p directly contributes to the repression of HXT2 and HXT4 in limited glucose, while in high

glucose, HXT2 and HXT4 are repressed by Mig1p and Mig2p13. The binding signal between Eds1p and

19

HXT2 and HXT4 is comparatively weak and below our significance thresholds, suggesting that Eds1p

does not bind HXT2, HXT4 (Fig 2).

Eds1p, and not Rgt1p, may directly regulate HXT5. HXT5 expression, unlike the other

HXT1-7 genes, is shown to respond only to growth cues23. Eds1p and Rgt1p both bind to the HXT5

promoter (Fig 2A). The strongest effect on HXT5 expression, however, is in the eds1Δ mutant in SC

with galactose where Eds1p acts as an activator. This leads us to hypothesize that HXT5 is a direct and

functional target of Eds1p, but possibly only under certain nutrient limitations which impacts growth. It

is also possible that Eds1p exerts more control over HXT5 expression, generally, than Rgt1p.

Both Eds1p and Rgt1p directly repress HXT6 and HXT7 in limited glucose, and in

galactose. In limited glucose, and in both lysine conditions in on SC media with galactose, Eds1p and

Rgt1p repress HXT6 and HXT7. In high glucose, the effect of Eds1p and Rgt1p on both loci is minimal.

HXT6 and HXT7 are strongly repressed by Mig1p and Mig2p in high glucose, thus the minimal effect

in the eds1Δ or rgt1Δ is expected13.

20

Eds1p and Rgt1p Regulation of the Hexose Transporter Network Regulators

Figure 5: Regulation of known regulators of Rgt1 by Rgt1 and Eds1.

(A) Eds1p and Rgt1p binding data for known RGT1 regulators MTH1, STD1, MIG2, MIG3,
HXK1. The x-axis represents shrunken log2FoldChange in the mutant compared to the wildtype
expression. The y-axis represents the calling cards hypergeometric p-value, on a -log10 scale.
The two vertical dotted lines are at +/- .5 log2foldChange, outside of which we consider the
change to be significant, in conjunction with adjusted p-values less than .05. The horizontal
dotted line is at .001, or 3 on the -log10 scale. Points above that line are considered significantly
bound. Assay conditions for are SC media with galactose as a carbon source. Rows represent the
plus lysine condition, and minus lysine condition. (B) Dynamic expression of the same set of
genes in response to glucose in wildtype (WT) and eds1Δ, rgt1Δ and eds1Δrgt1Δ mutants.

Eds1p and Rgt1p bind and regulate MTH1, STD1, MIG2, MIG3 and HXK1 under certain

conditions. Mth1p and Std1p regulate Rgt1p phosphorylation, and thus modulate Rgt1p’s function as a

repressor or activator. In high glucose, Mth1p and Std1p are ubiquitinated and degraded, allowing

Rgt1p to be phosphorylated by the PKA pathway. This relieves Rgt1p mediated repression, and

eventually leads to Rgt1p becoming hyperphosphorylated, at which point Rgt1p acts as an activator of

21

certain targets, including MTH1, STD1 and MIG2. Thus, Rgt1p activates MTH1, STD1, MIG2

expression in high glucose69. Rgt1p continues to represses HXK2 expression in high glucose3. We are

not aware of data specifically on the relationship between Rgt1p and HXK1, which is a paralog of

HXK2 and is thought to function similarly.

We sought to understand if these known regulators, and targets, of Rgt1 were also regulated by

Eds1 (Fig 3A). In our data, we observe that in galactose, both Eds1p and Rgt1p bind the promoters, and

with the exception of Eds1p and MIG3, significantly repress expression of these genes in one or both

lysine conditions.

Eds1p activity seems to depend heavily on environmental conditions. In glucose, Eds1p does

not affect the expression of MTH1, STD1, or MIG3 expression. In galactose, Eds1p does affect MTH1

and STD1, but not MIG3, expression. Rgt1p also does not significantly affect MTH1 expression in

limited or 2% glucose, but Rgt1p is a strong repressor of MTH1 in SC media with galactose. Rgt1p

significantly represses STD1 in limited glucose, and in the galactose conditions, but does not affect

STD1 expression in 2% glucose. Rgt1p significantly represses MIG2 in limited glucose and galactose,

and has a small, non-significant activation effect in 2% glucose. Rgt1p suppresses MIG3 in limited

glucose and galactose, and significantly activates MIG3 in 2% glucose, which is in stark contrast to

Eds1p, which does not affect MIG3 in any of the assay conditions.

Eds1p represses HXK1 in SC media with galactose without lysine, and in limited glucose.

Rgt1p also represses HXK1 in SC media with galactose without lysine, but does not significantly affect

HXK1 expression in limited glucose. The effect on HXK1 in neither the eds1Δ mutant or rgt1Δ mutant

is significant at 45 minutes in 2% glucose, but from 45 minutes to 300 minutes in glucose, Eds1p

activates HXK1 expression, while Rgt1p represses it, with effects greater than -1.5 fold change in the

22

eds1Δ mutant over the wildtype (padj < .05). A similar effect is present in the rgt1Δ mutant on HXK1,

except that rgt1Δ acts as an activator.

This result suggests that both Eds1p and Rgt1p do regulate the known regulators of Rgt1p.

However, their effects on these target genes may not be strongly driven by the glucose signal alone,

and Eds1p generally has less effect than Rgt1p.

Regulation of Eds1 by Snf1, Mig1 and Mig2

Figure 6: Regulation of Eds1 by Snf1, Mig1 and Mig2

Each panel represents the expression of Eds1 in a different genetic background, (wt, mig1, mig2,
mig1_mig2, snf1, left to right). The first time point, noted “Limited” represents expression in
minimal media, limited glucose, directly before 2% glucose is added to the media.

Snf1p is a serine/threonine protein kinase which responds to both external glucose signals,

through the cAMP/PKA pathway, and internal metabolic signals through the Reg1p-Glc7p regulatory

complex. Snf1p is activated in low glucose conditions, which allows Snf1p to phosphorylate, among

other targets, Mig1p and Mig2p. Phosphorylated Mig1p and Mig2p are exported from the nucleus,

23

which thus de-represses genes such as HXT2, HXT4, HXT6 and HXT7 which are necessary in low

glucose conditions4.

Snf1p regulates EDS1 expression. In the transition from limited glucose to high glucose,

EDS1 expression dramatically drops (Fig 4). However, in the snf1Δ mutant, the regulation by glucose

of EDS1 expression is highly attenuated (Fig 1E and Fig4). This suggests that both induction of EDS1

expression in limited glucose, and repression of EDS1 expression in high glucose, depends on Snf1p.

Snf1p affects EDS1 expression through MIG1 and MIG2. In 2% glucose, Snf1p exists in a

hypophosphorylated state. Hypophosphorylated Snf1p does not phosphorylate Mig1p and Mig2p,

which as a result concentrate in the nucleus, where they act as repressors of many genes which are up

regulated in response to high glucose. Mig1p and Mig2p are previously shown to jointly directly

regulate EDS1 expression, which our results confirm13.

There is no significant effect on EDS1 expression in the mig1Δ mutant (Fig 4). In the mig2Δ

mutant, MIG1 expression is upregulated compared to the wildtype, and we observe that EDS1

expression is reduced compared to the wildtype. Additionally, in the mig2Δ mutant, EDS1 expression

levels begin climbing sooner than in the wildtype. In the mig1Δmig2Δ double deletion, we observe a

statistically significant difference between mig1Δmig2Δ and mig2Δ at time points 90 and 300, and

significant difference in expression of Eds1 in the mig1Δmig2Δ mutant compared to the wild type at

every time point. We use this evidence to corroborate previous work showing the direct regulatory

relationship between Mig1p and Mig2 and EDS1 expression, and suggest that this accounts for at least

part of the effect of Snf1p on EDS1.

24

Eds1 Regulation of Lysine Biosynthesis

Figure 7: Lysine biosynthesis pathway, and the predicted effect
of Eds1, from Haynes et al. 2013

Previously, we reported that Netprophet 1.0, a transcription factor network inference algorithm

which uses differential expression to infer functional and direct targets of transcription factors, found

that the inferred targets of Eds1p are enriched for genes in the lysine biosynthesis pathway24. Lysine

biosynthesis branches from the TCA cycle, and we hypothesized that Eds1p links activity of the lysine

biosynthesis pathway to glucose availability, and the metabolic state of the cell25. We used our data to

test the relation of Eds1 to known lysine biosynthesis pathways.

25

Eds1p primarily acts as a repressor of the lysine biosynthesis pathway in media when

lysine is present. The effect is, however, indirect. The binding signal between Eds1p and the lysine

biosynthesis pathway genes is generally not above our threshold of significance, though it is notable

that Lys2 and Lys14 are near the threshold. By comparison, none of the lysine biosynthesis pathway

genes are near the significance threshold for Rgt1p. We verify our previous results that Eds1p activity

represses CTP1, ACO2, LYS4, LYS12 and LYS9, but we show here that this effect is indirect.

Figure 8: Eds1 Regulation of Lysine Biosynthesis.

(A) Eds1p and Rgt1p binding data for the lysine biosynthesis pathway genes, including those which
precede the lysine biosynthesis pathway in the TCA cycle, ARO8, ARO9, CIT1 and CTP1. The x-axis
represents shrunken log2FoldChange in the mutant compared to the wildtype expression. The y-axis
represents the calling cards hypergeometric p-value, on a -log10 scale. The two vertical dotted lines are
at +/- .5 log2foldChange, outside of which we consider the change to be significant, in conjunction
with adjusted p-values less than .05. The horizontal dotted line is at .001, or 3 on the -log10 scale.
Points above that line are considered significantly bound. Assay conditions for are SC media with
galactose as a carbon source. Rows represent the plus lysine condition, and minus lysine condition. (B)
The expression of each gene in plus (left on each plot) and minus (right on each plot) gene from panel
A in the wildtype, eds1Δlys14Δ and eds1Δrgt1Δ mutants. The line connecting each point describes the
effect of lysine on expression of the given gene in a given mutant.

26

Deleting EDS1 in either the rgt1Δ or lys14Δ background significantly disregulates lysine

biosynthesis gene expression. The effect of lysine on either double mutant is significantly stronger

than the effect of lysine on the WT, or on the single mutant strains. This points to an important, but

indirect, role for both Eds1p and Rgt1p in regulating lysine biosynthesis. In conjunction with the

significant differential expression that results in the eds1Δ mutant, this adds to the evidence that Eds1p

has a strong, though indirect, role on lysine biosynthesis.

Eds1p regulates genes important to the TCA cycle. Lysine biosynthesis branches from the

TCA cycle at the 2-oxyglutarate step. In the eds1Δ mutant genes encoding enzymes which catalyze

reactions leading up to the formation of 2-oxyglutarate, are differentially expressed. Though these

appear to be mostly indirect effects, this points to a possible explanation of the relationship between

Eds1 and lysine biosynthesis.

Discussion

Currently, 547 paralogous genes, the result of the whole genome duplication event, remain

functional in the S.cerevisiae genome26. A leading theory is that these genes are important to regulating

the Crabtree effect, which describes the preference of S.cerevisiae for aerobic fermentation in the

presence of high glucose27. It has been theorized that S.cerevisiae benefits from aerobic fermentation in

high glucose by quickly filling its environment with ethanol, a fermentation byproduct, which may be

toxic to its competitors. Another theory is that, while the environment provides a plentiful energy

source which the cell can utilize quickly and cheaply, reducing TCA cycle activity allows S.cerevisiae

to redirect its resources to reproduction through mitosis28.

Rgt1p, as a regulator of the hexose transporters, is a target of pathways which respond to both

external glucose concentration, and internal metabolic signals. Thus we expect to find evidence that

27

Rgt1p, and its paralog, Eds1p, interact with both the fermentative and respiratory metabolism

pathways, which also affect growth.

Complementary lines of research support the hypothesis that Eds1p and Rgt1p interact with

both metabolism and growth pathways. Genetic interaction profiling is a method which seeks to

discover the relationship between one genomic locus on another5. RGT1 has significant negative

genetic interaction with genes associated with mitochondrial function. EDS1, conversely, has a slightly

positive interaction with the mitochondrial genes (Appendix A2) 30. A negative genetic interaction

signifies that the gene in question is not in the direct functional pathway of the gene(s) with which it

negatively interacts, while a positive interaction suggests that the genes are in the same functional

pathway. This, therefore, suggests that EDS1 and RGT1 significantly differ in their effect on aerobic

respiration.

Our data shows that Eds1p both binds and affects many of the same targets as Rgt1p. However,

over time in glucose, even while EDS1 expression drops substantially, the eds1Δ mutant generally has

hundreds more differentially expressed genes than the rgt1Δ mutant. Furthermore, in limited glucose,

and at each time point after adding glucose, the genes differentially expressed in the eds1Δ mutant are

significantly enriched for TCA cycle genes, whereas the genes differentially expressed in the rgt1Δ

mutant are not. In galactose, the genes which Eds1p both binds and induces are all functional in

meiosis and DNA repair, which suggests a role in sporulation, a growth state which occurs in nutrient

deprivation. Finally, we also note evidence (Appendix A3) that Eds1 is regulated by other targets of

Snf1p which respond to both nutrient deprivation and nutrient deprivation induced growth cues, some

of which affect sporulation and filamentous growth.

Overall, evidence shows that Eds1p is a significant regulator at the heart of the hexose

transporter regulation network, though its role in this network is secondary to Rgt1p. EDS1 expression

28

reacts to external nutrient conditions and impacts the TCA cycle, amino acid biosynthesis, and the cell

cycle differently than Rgt1p.

29

References

1. Lawrence, M. & Morgan, M. Scalable Genomics with R and Bioconductor. Stat. Sci. 29, 214–
226 (2014).

2. DI Tommaso, P. et al. Nextflow enables reproducible computational workflows. Nat. Biotechnol.
35, 316–319 (2017).

3. Reifenberger, E., Boles, E. & Ciriacy, M. Kinetic characterization of individual hexose
transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of
glucose repression. Eur. J. Biochem. 245, 324–333 (1997).

4. Horák, J. Regulations of sugar transporters: insights from yeast. Curr. Genet. 2013 591 59, 1–
31 (2013).

5. Brink, D. P., Borgström, C., Persson, V. C., Osiro, K. O. & Gorwa-Grauslund, M. F. D-Xylose
Sensing in Saccharomyces cerevisiae: Insights from D-Glucose Signaling and Native D-Xylose
Utilizers. Int. J. Mol. Sci. 22, (2021).

6. Kuttykrishnan, S., Sabina, J., Langton, L. L., Johnston, M. & Brent, M. R. A quantitative model
of glucose signaling in yeast reveals an incoherent feed forward loop leading to a specific,
transient pulse of transcription. Proc. Natl. Acad. Sci. 107, 16743–16748 (2010).

7. Dashko, S., Zhou, N., Compagno, C. & Piškur, J. Why, when, and how did yeast evolve
alcoholic fermentation? FEMS Yeast Res. 14, 826 (2014).

8. Gancedo, J. M., Flores, C. L. & Gancedo, C. The repressor Rgt1 and the cAMP-dependent
protein kinases control the expression of the SUC2 gene in Saccharomyces cerevisiae.
Biochim. Biophys. Acta 1850, 1362–1367 (2015).

9. Palomino, A., Herrero, P. & Moreno, F. Tpk3 and Snf1 protein kinases regulate Rgt1
association with Saccharomyces cerevisiae HXK2 promoter. Nucleic Acids Res. 34, 1427–1438
(2006).

10. Polish, J. A., Kim, J. H. & Johnston, M. How the Rgt1 Transcription Factor of Saccharomyces
cerevisiae Is Regulated by Glucose. Genetics 169, 583 (2005).

11. Kemmeren, P. et al. Large-scale genetic perturbations reveal regulatory networks and an
abundance of gene-specific repressors. Cell 157, 740–752 (2014).

12. Qian, W., Ma, D., Xiao, C., Wang, Z. & Zhang, J. The Genomic Landscape and Evolutionary
Resolution of Antagonistic Pleiotropy in Yeast. Cell Rep. 2, 1399–1410 (2012).

13. Westholm, J. O. et al. Combinatorial control of gene expression by the three yeast repressors
Mig1, Mig2 and Mig3. BMC Genomics 9, 1–15 (2008).

14. Harbison, C. T. et al. Transcriptional regulatory code of a eukaryotic genome. Nature 431, 99–
104 (2004).

30

15. Hu, Z., Killion, P. J. & Iyer, V. R. Genetic reconstruction of a functional transcriptional regulatory
network. Nat. Genet. 2007 395 39, 683–687 (2007).

16. Haynes, B. C. et al. Mapping functional transcription factor networks from gene expression
data. Genome Res. 23, 1319–1328 (2013).

17. Mayhew, D. & Mitra, R. D. Transposon Calling Cards. Cold Spring Harb. Protoc. 2016, 101–103
(2016).

18. Ewels, P. A. et al. The nf-core framework for community-curated bioinformatics pipelines. Nat.
Biotechnol. 2020 383 38, 276–278 (2020).

19. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for
RNA-seq data with DESeq2. Genome Biol. 15, (2014).

20. Stephens, M. False discovery rates: a new deal. Biostatistics 18, 275–294 (2017).

21. Polish, J. A., Kim, J.-H. & Johnston, M. How the Rgt1 Transcription Factor of Saccharomyces
cerevisiae Is Regulated by Glucose. (2005) doi:10.1534/genetics.104.034512.

22. Roy, A., Shin, Y. J., Cho, K. H. & Kim, J. H. Mth1 regulates the interaction between the Rgt1
repressor and the Ssn6-Tup1 corepressor complex by modulating PKA-dependent
phosphorylation of Rgt1. Mol. Biol. Cell 24, 1493–1503 (2013).

23. Verwaal, R. et al. HXT5 expression is determined by growth rates in Saccharomyces
cerevisiae. Yeast 19, 1029–1038 (2002).

24. Haynes, B. C. et al. Mapping functional transcription factor networks from gene expression
data. (2006) doi:10.1101/gr.150904.112.

25. A, F., E, D., F, R. & A, P. Repression of the genes for lysine biosynthesis in Saccharomyces
cerevisiae is caused by limitation of Lys14-dependent transcriptional activation. Mol. Cell. Biol.
14, 6411–6418 (1994).

26. Byrne, K. P. & Wolfe, K. H. The Yeast Gene Order Browser: combining curated homology and
syntenic context reveals gene fate in polyploid species. Genome Res. 15, 1456–1461 (2005).

27. Merico, A., Sulo, P., Piškur, J. & Compagno, C. Fermentative lifestyle in yeasts belonging to the
Saccharomyces complex. FEBS J. 274, 976–989 (2007).

28. Pfeiffer, T. & Morley, A. An evolutionary perspective on the Crabtree effect. Front. Mol. Biosci.
1, (2014).

29. Kuzmin, E. et al. Exploring whole-genome duplicate gene retention with complex genetic
interaction analysis. Science (80-.). 368, (2020).

30. Usaj, M. et al. TheCellMap.org: A web-accessible database for visualizing and mining the
global yeast genetic interaction network. G3 Genes, Genomes, Genet. 7, 1539–1549 (2017).

31

Appendix A: Eds1

A1: Eds1/Rgt1 DNA Binding Domain Alignment

>Eds1 DNA Binding Domain (pfam), position 54 - 95
HACDQCRRKRIKCRFDKHTGVCQGCLEVGEKCQFIRVPLKRG
>Rgt1 DNA Binding Domain (pfam), posiitons 47 - 76
CDQCRKKKIKCDYKDEKGVCSNCQRNGDRC
##
Program: water
Rundate: Sat 16 Apr 2022 18:09:59
Commandline: water
-auto
-stdout
-asequence emboss_water-I20220416-180958-0806-87210608-p1m.asequence
-bsequence emboss_water-I20220416-180958-0806-87210608-p1m.bsequence
-datafile EBLOSUM62
-gapopen 10.0
-gapextend 0.5
-aformat3 pair
-sprotein1
-sprotein2
Align_format: pair
Report_file: stdout
##
#=======================================
#
Aligned_sequences: 2
1: Rgt1
2: Eds1
Matrix: EBLOSUM62
Gap_penalty: 10.0
Extend_penalty: 0.5
#
Length: 30
Identity: 15/30 (50.0%)
Similarity: 20/30 (66.7%)
Gaps: 0/30 (0.0%)
Score: 101.0
#
#
#=======================================

Rgt1 1 CDQCRKKKIKCDYKDEKGVCSNCQRNGDRC 30
 |||||:|:|||.:....|||..|...|::|
Eds1 3 CDQCRRKRIKCRFDKHTGVCQGCLEVGEKC 32

32

A2: Eds1 and Rgt1 Genetic Interaction

Figure 9: Eds1/Rgt1 Genetic Interaction Map

This shows interaction between Eds1 (left) and Rgt1 (right) and a large set of the genes in
the S.cerevisiae genome. This results are mapped onto functional areas. This was
generated using thecellmap.org29. Significantly, Rgt1 shows strong negative interaction
with mitochondrial related genes, signifying that Rgt1 is not in the same pathway as these
genes. Conversely, Eds1 has slight positive interaction with these genes, signifying that
Eds1 is in the same pathway as some of these genes and suggesting that Eds1 has a greater
role in regulating respiration than Rgt1.

33

A3: High Confidence Regulators of Eds1

Kinase Transcription Factor
Pkc1 Gis1
Sch9 Sfp1
Snf1 Nrg2, Cat9
Hog1 Msn2
Tpk3 Msn2

Table 2: High confidence inferred transcription factor and inferred kinase interactors

Inferred transcriptional regulators of Eds1 (right column), derived from Netprophet3.0, which includes
both over-expression and under expression data in the modeling67. The highest confidence regulators of
EDS1 predicted by Netprophet3.0 were then intersected with a inferred kinase-target interaction map8.
Then, we used StringDB to assign scores to each kinase-TF edge9. In all, filtering was performed to
select high confidence EDS1 regulators from Netprophet3.0 and high confidence Kinase-TF
relationships. Finally, those relationships were filtered for only those with a StringDB score > 900,
which StringDB considers ‘high confidence’. The result strongly suggest that EDS1 expression is
regulated by the cell’s stress response pathways, which are also known regulators of Rgt1 activity.

34

Appendix B: brentlabRnaSeqTools

This section is a selection of tutorials, or vignettes in the R vernacular, which direct users in

how to conduct certain analyses which are downstream of the RNA sequencing processing pipeline,

using the brentlabRnaSeqTools. All of this may be found at

https://brentlab.github.io/brentlabRnaSeqTools/index.html in a more pleasing format.

B1: Getting Started with brentlabRnaSeqTools

Setting Up Your R Environment

Requirements

An up to date R (so whatever the current version is – check CRAN) and up to date Rstudio

Install the following

cran_pkgs = c('tidyverse', 'devtools')

note: increase/decrease the number of CPUs. Any machine should be able to
handle at least 5. You can probably bump this up to 10 without checking
anything
install.packages(cran_pkgs, Ncpus = 5)

It is possible that there wil be install errors that come up during the installation of these two

pages. If you are on the computational/analyst side of things, then this is a good opportunity to read the

error messages and figure out what to install – both packages may have some c or maybe fortran

dependencies which you will need to install onto your computer. Googling the error helps, and

frequently R will say, “you need a gcc compiler” or something like that.

If you are not one of the computational/analyst people, then ask for help if there are errors in the

installation of those two packages.

https://rdrr.io/r/utils/install.packages.html
https://rdrr.io/r/base/c.html
https://brentlab.github.io/brentlabRnaSeqTools/index.html

35

Install the brentlabRnaSeqTools

If there is a ‘passing’ badge in the github README, then this has been successfully built on up

to date linux, mac and windows OS. It should also work for you. But, if it doesn’t, copy the error and

make an issue report. Please also include the output of Sys.info() in your issue report.

as above, you can increase Ncpus
remotes::install.packages("BrentLab/brentlabRnaSeqTools", Ncpus = 5)

Set up some environmental variables

Environmental variables are variables that are read by R and loaded into your session when you

launch R. You can set either ‘user’ level variables, which are loaded into any R session launched under

your current user, and/or you can set project level environmental variables, which are only set if you

launch into a project (see Using Rstudio Projects below). These are convenient to use, and are

particularly good at avoiding any embarrassing leaks of login credentials onto github.

User level environmental variables

1. open Rstudio

usethis::edit_r_environ('user')

2. in the file that is opened, enter some variables that you’d like to have

db_username = "some_username"
db_password = "some_password"

3. restart your R session

4. see that you can access these variables like so:

Sys.getenv("db_username")
output will be:
#> "some_password"

https://rdrr.io/r/base/Sys.getenv.html
https://rdrr.io/r/base/Sys.info.html

36

If you put the correct username/password into your environment file, then you can access the

database like so:

library(brentlabRnaSeqTools)

meta = getMetadata(
 database_info$kn99$db_host,
 database_info$kn99$db_name,
 Sys.getenv("db_username"),
 Sys.getenv("db_password"))

Since the user level environment file is stored in ~/.Renviron, there is no danger of pushing

these credentials up to git if you are in a directory which you are tracking with git/github.

Using an Rstudio project

set your working directory

If you do not already have a directory in which you store the projects you work on, create one. I

suggest a direcory called projects in your $HOME

project_dir = "~/projects"
if(!dir.exists(project_dir)){
 dir.create(project_dir)
}
setwd(project_dir)

Create a new Rstudio project

A project is a subset of the infrastructure in an R software package. You can use a virtual

environment, .Renviron files for environmental variables, etc. It is a tool for reproducibility

if this is for the nineyMinuteInduction data, for example, you might call
this project "ninetyMinInduction".
project_name = "my_new_project"

usethis::create_project(project_name)

Using the project directory

https://rdrr.io/r/base/getwd.html
https://rdrr.io/r/base/files2.html
https://rdrr.io/r/base/files2.html
https://rdrr.io/r/base/Sys.getenv.html
https://rdrr.io/r/base/Sys.getenv.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/getMetadata.html
https://brentlab.github.io/brentlabRnaSeqTools/
https://rdrr.io/r/base/library.html

37

A new Rstudio session will launch in your new project directory. Now, whenever you launch

this project, all of your environment variables in .Renviron will be loaded. If you are using a virtual

environment (a good idea for reproducibility. Use renv), then your virtual environment will be

automatically launched, also.

The /R directory is for R scripts. You could make a notebooks directory, or just put the

notebook in the project parent directory, for example.

See here for a project directory example

Using project level environmental variables in an active R project

Just as with the user level environmental variables, you can set environmental variables for a

particular project. These are read in addition to the user level variables, and will overwrite them if there

are two that are named the same thing. The first thing to do is to make sure that the project level

.Renviron is in the .gitignore so that you don’t accidently push up login credentials

you can use this, or just click on the .gitignore file in the project
usethis::edit_git_ignore('project')

In the .gitignore file, add .Renviron. Next, open a project level .Renviron

usethis::edit_r_environ("project")

and edit as before. Remember to re-launch your R session after editing the .Renviron to

have access to the environmental variables.

Using data from the lts archive

library(brentlabRnaSeqTools)
library(tidyverse)

mount the cluster, or download the 20220208 kn99 db archive
paths will need to be updated for your machine. These are examples

https://tidyverse.tidyverse.org/
https://rdrr.io/r/base/library.html
https://brentlab.github.io/brentlabRnaSeqTools/
https://rdrr.io/r/base/library.html
https://github.com/cmatKhan/eds1_mimic_cc

38

of what it would look like if you mount.
archive_prefix = '/mnt/lts/sequence_data/rnaseq_data/kn99_database_archive'
coldata_df = read_csv(file.path(archive_prefix,
"20220208/combined_df_20220208.csv"))
count_df = read_csv(file.path(archive_prefix, "20220208/counts.csv"))

gene_ids = getGeneNames(database_info$kn99$db_host,
 database_info$kn99$db_name,
 Sys.getenv('db_username'),
 Sys.getenv('db_password'))

gene_ids = gene_ids$gene_id[1:6967]

coldata_df_fltr = coldata_df %>%
 filter(purpose == "fullRNASeq",
 !is.na(fastqFileName))

count_df_fltr = count_df[, colnames(count_df) %in%
 coldata_df_fltr$fastqFileName]

coldata_df_fltr = filter(coldata_df_fltr,
 fastqFileName %in%
 colnames(count_df_fltr))

make sure the order of the count cols matches order of the metadata rows
count_df_fltr = count_df_fltr[order(match(colnames(count_df_fltr),
 coldata_df_fltr$fastqFileName))]

if this checks false, stop and figure out why. useful functions would be
setdiff(). Read the ?setdiff docs -- it is asymetric.
stopifnot(identical(colnames(count_df_fltr),
 coldata_df_fltr$fastqFileName))

dds = DESeq2::DESeqDataSetFromMatrix(countData = count_df_fltr,
 colData = coldata_df_fltr,
 design = ~1)
rownames(dds) = gene_ids

blrs = brentlabRnaSeqSet(dds = dds)

everything should work as usual from here

B2: Process a New Run From MGI

After receiving a new run from MGI, align, count and QC brentlabRnaSeqTools package

library(brentlabRnaSeqTools)
library(tidyverse)

https://tidyverse.tidyverse.org/
https://rdrr.io/r/base/library.html
https://brentlab.github.io/brentlabRnaSeqTools/
https://rdrr.io/r/base/library.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/brentlabRnaSeqSet.html
https://tibble.tidyverse.org/reference/rownames.html
https://rdrr.io/pkg/DESeq2/man/DESeqDataSet.html
https://rdrr.io/r/base/colnames.html
https://rdrr.io/r/base/identical.html
https://rdrr.io/r/base/stopifnot.html
https://rdrr.io/r/base/colnames.html
https://rdrr.io/r/base/match.html
https://rdrr.io/r/base/order.html
https://rdrr.io/r/base/colnames.html
https://rdrr.io/r/base/match.html
https://dplyr.tidyverse.org/reference/filter.html
https://rdrr.io/r/base/match.html
https://rdrr.io/r/base/colnames.html
https://rdrr.io/r/base/NA.html
https://dplyr.tidyverse.org/reference/filter.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/r/base/Sys.getenv.html
https://rdrr.io/r/base/Sys.getenv.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/getGeneNames.html
https://rdrr.io/r/base/file.path.html
https://readr.tidyverse.org/reference/read_delim.html
https://rdrr.io/r/base/file.path.html
https://readr.tidyverse.org/reference/read_delim.html

39

Get the metadata from the database

meta = getMetadata(
 database_info$kn99$db_host,
 database_info$kn99$db_name,
 Sys.getenv("db_username"),
 Sys.getenv("db_password")
)

Filter out the reads of interest

run_df = meta %>%
 filter(runNumber == 5500)

Look at it. Make sure it is correct

View(run_df)

Write out

If you have mounted your local to HTCF, you can write directly to HTCF. Otherwise, write to

your computer and follow the directions below to move it to HTCF.

sample_sheet = createNovoalignPipelineSamplesheet(run_df,
"/scratch/mblab/chasem/rnaseq_pipeline/scratch_sequence")

write_csv(sample_sheet,
"/path/to/where/you/write_things/run_<some_identifier>.csv")

Move a file to HTCF

Log into HTCF and make a directory that will store the input/output for this run. For example,

if I were processing run_1234, I would log into HTCF and make a directory like so:

$ mkdir /scratch/mblab/chasem/rnaseq_pipeline/align_count_results/run_1234

Back on your local computer, send the file from your local to HTCF with scp

copy the file from your computer to a directory in your personal subdirectory
of the lab scratch space
$ scp /path/to/where/you/write_things/run_<some_identifier>.csv \

https://readr.tidyverse.org/reference/write_delim.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/createNovoalignPipelineSamplesheet.html
https://rdrr.io/r/utils/View.html
https://dplyr.tidyverse.org/reference/filter.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/r/base/Sys.getenv.html
https://rdrr.io/r/base/Sys.getenv.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/getMetadata.html

40

<your_username>@htcf.wustl.edu:/scratch/mblab/<your_username>/rnaseq_pipeline/
align_count_results/run_1234

Please note that there is no requirement that the path look like this:

<your_username>/rnaseq_pipeline/align_count_results/run_1234. It is just an

example of what it might look like.

On HTCF, start the pipeline

The first time you do this, navigate to your scratch space and do this:

$ git clone https://github.com/cmatKhan/brentlab_rnaseq_nf.git

If you have done this before, navigate into your brentlab_rnaseq_nf directory and do this to pull

any possible updates:

$ git pull https://github.com/cmatKhan/brentlab_rnaseq_nf.git

If you get some sort of error that says something like, “this is not a git directory”, when you

know it is, in fact, a git directory, then HTCF deleted some files. In that case, navigate out of

brentlab_rnaseq_nf, delete it (rm -rf brentlab_rnaseq_nf), and use the git clone

command described above.

Copy the fastq files into scratch

I suggest having a rnaseq_pipeline directory in your personal scratch space. If you don’t

have one, make one, or otherwise navigate to where ever you are keeping rnaseq type data. You can

use the script here for the job. Ask if you need help setting this up to use on HTCF. Here is an example,

assuming that you have this scriptin your $PWD

$./fastqFilesToScratchFromSamplesheet.sh path/to/sample_sheet.csv
/lts/mblab/sequence_data/rnaseq_data/lts_sequence

https://github.com/BrentLab/brentlabRnaSeqTools/blob/main/inst/bash/fastqFilesToScratchFromSamplesheet.sh
https://github.com/BrentLab/brentlabRnaSeqTools/blob/main/inst/bash/fastqFilesToScratchFromSamplesheet.sh

41

Run the pipeline

Navigate into the directory into which you are going to store the input/output of the pipeline,

eg:

$ cd rnaseq_pipeline/align_count_results/run_1234

Make the params file

You will need a file describing the experiment. This should go into the directory where the

input/output is stored. It must look like this, and the paths must be correct. Save this as, eg,

params_run1234.json. The example below is also shown here

{
"output_dir": ".",
"sample_sheet": "path/to/sample_sheet.csv",
"run_number": "1234",
"KN99_novoalign_index":
"/scratch/mblab/chasem/rnaseq_pipeline/genome_files/KN99/KN99_genome_fungidb.nix",
"KN99_fasta":
"/scratch/mblab/chasem/rnaseq_pipeline/genome_files/KN99/KN99_genome_fungidb.fasta"
,"KN99_stranded_annotation_file":
"/scratch/mblab/chasem/rnaseq_pipeline/genome_files/KN99/KN99_stranded_annotations_
fungidb_augment.gff",
"KN99_unstranded_annotation_file":
"/scratch/mblab/chasem/rnaseq_pipeline/genome_files/KN99/KN99_no_strand_annotations
_fungidb_augment.gff",
"htseq_count_feature": "exon"
}

Run nextflow

NOTE: both in the params file, and in the run script below, you must make sure that the paths

are correct. They won’t be, unless you change them to make them correct for you.

Next, make a script to run the pipeline. [An example may be found here]

((https://github.com/BrentLab/brentlabRnaSeqTools/blob/main/inst/bash/run_novo_nf_pipeline.sh), or

you can copy/paste what is below into a file. Remember to update the paths.

https://github.com/BrentLab/brentlabRnaSeqTools/blob/main/inst/bash/run_novo_nf_pipeline.sh
https://github.com/BrentLab/brentlabRnaSeqTools/blob/main/inst/params_example.json

42

#!/bin/bash

#SBATCH --time=15:00:00 # right now, 15 hours. change depending on time
expectation to run
#SBATCH --mem-per-cpu=10G
#SBATCH -J your_jobname.out
#SBATCH -o your_jobname.out

ml miniconda

until HTCF updates and spack is available, this works. When HTCF updates and
we have spack, ill update this...though at that point, hopefully we are no
longer using this pipeline
source activate /scratch/mblab/chasem/rnaseq_pipeline/conda_envs/nextflow

mkdir tmp

nextflow run /path/to/brentlab_rnaseq_nf/main.nf \
 -params-file /path/to/your_params.json

You can check progress by looking at the squeue and the <your_jobname>.out. Right

now, it is taking a very long time for HTCF to launch nextflow. When HTCF updates to the ‘new’

implementation, it starts much faster.

B3: Environmental Perturbation Analysis Data Creation

Create a data object ready for analysis for the Environmental Perturbation experiment set.

brentlabRnaSeqTools package

BrentlabRnaSeqSet

The BrentlabRnaSeqSet is a child of the DESeqDataSet, which is a child of

SummarizedExperiment.

Therefore, the brentlabRnaSeqSet has all of the DESeq functionality – eg, DESeq size

factor normalization, or the DESeq() function – as well as all of the SummarizedExperiment methods,

and some more ‘custom’ methods more suited to our purposes. It is easily extensible – for those more

https://bioconductor.org/packages/release/bioc/vignettes/SummarizedExperiment/inst/doc/SummarizedExperiment.html
http://bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#the-deseqdataset

43

computationally minded users, it would be a good idea to learn and use the object oriented

programming tools. There are many cases in which doing so will make your code less error prone,

easier to test, more reproducible, and easier to maintain long term.

Setup

library(brentlabRnaSeqTools)
library(rtracklayer)
library(tidyverse)

set variables

KN99_GFF_RDS = Sys.getenv("kn99_stranded_gff_rds")
DB_USERNAME = Sys.getenv("db_username")
DB_PASSWORD = Sys.getenv("db_password")

note: I mount to the cluster and output directly to it
DDS_OUTPUT_DIR = "."

controls whether dds objects are written
WRITE_OUT = FALSE

pull the database as a brentlabRnaSeqSet object

blrs = brentlabRnaSeqSetFromDatabase('kn99',DB_USERNAME, DB_PASSWORD)

Add gene level data (optional)

this adds all of the data regarding each locus as a GRange object to the gene data slot of the

brentlabRnaSeqSet object. Useful if you are going to use other Bioconductor packages.

kn99_gff = readRDS(KN99_GFF_RDS)

kn99_genes = kn99_gff[kn99_gff$ID %in% rownames(blrs)]

rowRanges(blrs) = kn99_genes[order(match(kn99_genes$ID,rownames(blrs)))]

rownames(blrs) = rowData(blrs)$ID

Create Sets

https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://tibble.tidyverse.org/reference/rownames.html
https://tibble.tidyverse.org/reference/rownames.html
https://rdrr.io/r/base/match.html
https://rdrr.io/r/base/order.html
https://rdrr.io/pkg/SummarizedExperiment/man/RangedSummarizedExperiment-class.html
https://tibble.tidyverse.org/reference/rownames.html
https://rdrr.io/r/base/match.html
https://rdrr.io/r/base/readRDS.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/brentlabRnaSeqSet.html
https://rdrr.io/r/base/Sys.getenv.html
https://rdrr.io/r/base/Sys.getenv.html
https://rdrr.io/r/base/Sys.getenv.html
https://tidyverse.tidyverse.org/
https://rdrr.io/r/base/library.html
https://rdrr.io/r/base/library.html
https://brentlab.github.io/brentlabRnaSeqTools/
https://rdrr.io/r/base/library.html

44

If the experiment set you want is not already created, issue an ‘issue report’, and describe the

EXACT filter that you want to use to create the set. What goes into your set depends on what you

describe as your filter, so spend time with the database to figure out what is there.

ep_list = list(
 wt = createExperimentSet(blrs, 'envPert_epWT'),
 titr = createExperimentSet(blrs, 'envPert_titrationWT'),
 pert = createExperimentSet(blrs, 'envPert_perturbed')
)

NOTE!! AS OF 20220201 CNAG_03894 forms a linear depdendence with both
concat treatment and libraryDate columns. it is being removed here to solve
that issue

ep_list$pert = ep_list$pert[,ep_list$pert$genotype1 != "CNAG_03894"]

Quality Filter

ep_list_qc_passing = map(names(ep_list),
 ~qaFilter(ep_list[[.]],1,paste0("ep_",., "_iqr")))

Expression Filter

How this is done is up to you, and obviously affects what genes are left in.
Below is an example. You need to think about the thresholds and filter method
that suits your purpose best.

expr_fltr_list = map(ep_list, ~rowSums(edgeR::cpm(counts(.))>4) >= 4)

ep_list_qc_passing_fltr = map2(ep_list_qc_passing, expr_fltr_list, ~.x[.y,])

Set Design

setBaseConcatTreatmentBaseCond = function(ep_set, concat_base_cond){
 colData(ep_set)$concat_treatment =
 relevel(colData(ep_set)$concat_treatment, ref = concat_base_cond)

 colData(ep_set) = droplevels(DataFrame(colData(ep_set)))

 ep_set

}

https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://rdrr.io/r/base/droplevels.html
https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://rdrr.io/r/stats/relevel.html
https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://purrr.tidyverse.org/reference/map2.html
https://rdrr.io/pkg/edgeR/man/cpm.html
https://rdrr.io/r/base/colSums.html
https://purrr.tidyverse.org/reference/map.html
https://rdrr.io/r/base/paste.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/qaFilter.html
https://rdrr.io/r/base/names.html
https://purrr.tidyverse.org/reference/map.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/createExperimentSet.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/createExperimentSet.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/createExperimentSet.html
https://rdrr.io/r/base/list.html

45

setEpDesign = function(ep_set, design){
 design(ep_set) = design

 ep_set
}

concat_base_cond_list = list(

 wt = "YPD_noAtmosphere_30_noTreatment_noTreatmentConc_noPH_30",
 titr = "RPMI_noAtmosphere_30_noTreatment_noTreatmentConc_noPH_30",
 pert = 'PBS_noAtmosphere_30_noTreatment_noTreatmentConc_noPH_0'
)

ep_designs = list(
 wt = formula(~libraryDate + concat_treatment),
 titr = formula(~libraryDate + concat_treatment),
 pert = formula(~libraryDate + concat_treatment + genotype1)
)

ep_list_qc_passing_fltr = map2(ep_list_qc_passing_fltr,
 concat_base_cond_list,
 setBaseConcatTreatmentBaseCond)

ep_list_qc_passing_fltr = map2(ep_list_qc_passing_fltr,
 ep_designs,
 setEpDesign)

Coerce back to DeseqDataObjects for proessing

ep_dds_list = map(ep_list_qc_passing_fltr, coerceToDds)
names(ep_dds_list) = names(ep_list)

DDS_OUTPUT_DIR = "/mnt/scratch/rnaseq_pipeline/experiments/epDatafreeze"

WRITE_OUT = TRUE

if(WRITE_OUT){
 today = format(lubridate::today(),"%Y%m%d")

 output_dir = file.path(DDS_OUTPUT_DIR, today)

 dir.create(output_dir, recursive=TRUE)

 map(names(ep_dds_list), ~write_rds(ep_dds_list[[.]],
 file.path(output_dir,
 paste0("ep_",.,".rds"))))
}

https://rdrr.io/r/base/paste.html
https://rdrr.io/r/base/file.path.html
https://readr.tidyverse.org/reference/read_rds.html
https://rdrr.io/r/base/names.html
https://purrr.tidyverse.org/reference/map.html
https://rdrr.io/r/base/files2.html
https://rdrr.io/r/base/file.path.html
https://lubridate.tidyverse.org/reference/now.html
https://rdrr.io/r/base/format.html
https://rdrr.io/r/base/names.html
https://rdrr.io/r/base/names.html
https://purrr.tidyverse.org/reference/map.html
https://purrr.tidyverse.org/reference/map2.html
https://purrr.tidyverse.org/reference/map2.html
https://rdrr.io/r/stats/formula.html
https://rdrr.io/r/stats/formula.html
https://rdrr.io/r/stats/formula.html
https://rdrr.io/r/base/list.html
https://rdrr.io/r/base/list.html

46

B4: 90 Minute Induction Analysis Data Creation

Create a data object ready for analysis for the 90 Minute Induction experiment set.

brentlabRnaSeqTools package

BrentlabRnaSeqSet

The BrentlabRnaSeqSet is a child of the DESeqDataSet, which is a child of

SummarizedExperiment.

Therefore, the brentlabRnaSeqSet has all of the DESeq functionality – eg, DESeq size

factor normalization, or the DESeq() function – as well as all of the SummarizedExperiment methods,

and some more ‘custom’ methods more suited to our purposes. It is easily extensible – for those more

computationally minded users, it would be a good idea to learn and use the object oriented

programming tools. There are many cases in which doing so will make your code less error prone,

easier to test, more reproducible, and easier to maintain long term.

Setup

library(brentlabRnaSeqTools)
library(rtracklayer)
library(tidyverse)

set variables

KN99_GFF_PATH = Sys.getenv("kn99_gff")
DB_USERNAME = Sys.getenv("db_username")
DB_PASSWORD = Sys.getenv("db_password")

note: I mount to the cluster and output directly to it
DDS_OUTPUT_DIR =
"/mnt/htcf_scratch/chasem/rnaseq_pipeline/experiments/90minDataFreeze"

controls whether dds objects are written
WRITE_OUT = FALSE

Pull the database ----

blrs = brentlabRnaSeqSetFromDatabase('kn99',DB_USERNAME, DB_PASSWORD)

https://brentlab.github.io/brentlabRnaSeqTools/reference/brentlabRnaSeqSet.html
https://rdrr.io/r/base/Sys.getenv.html
https://rdrr.io/r/base/Sys.getenv.html
https://rdrr.io/r/base/Sys.getenv.html
https://tidyverse.tidyverse.org/
https://rdrr.io/r/base/library.html
https://rdrr.io/r/base/library.html
https://brentlab.github.io/brentlabRnaSeqTools/
https://rdrr.io/r/base/library.html
https://bioconductor.org/packages/release/bioc/vignettes/SummarizedExperiment/inst/doc/SummarizedExperiment.html
http://bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#the-deseqdataset

47

filter down to just the protein coding genes. Note that this works because the
nctr-rna annotations were all added to the end of the annotation file.
blrs = blrs[1:6967,]

Add gene level data (optional) ----

this adds all of the data regarding each locus as a GRange object to the
gene data slot of the brentlabRnaSeqSet object. Useful if you are going to
use other Bioconductor packages.

kn99_gff = rtracklayer::import(KN99_GFF_PATH)

kn99_genes = kn99_gff[kn99_gff$ID %in% rownames(blrs)]

rowRanges(blrs) = kn99_genes[order(match(kn99_genes$ID,rownames(blrs)))]

rownames(blrs) = rowData(blrs)$ID

If the experiment set you want is not already created, issue an ‘issue report’, and describe the

EXACT filter that you want to use to create the set. What goes into your set depends on what you

describe as your filter, so spend time with the database to figure out what is there.

90 minute induction

2016 Grant set, singles

blrs_90min = createExperimentSet(blrs, 'ninetyMin_2016Grant')

Quality Filter ----

blrs_90min_qc_passing = qaFilter(blrs_90min,
 rle_iqr_threshold = .6125,
 iqr_colname = "ninetyMin_iqr")

Set perturbed loci to zero

blrs_90min_qc_passing = setPerturbedLociToZero(blrs_90min_qc_passing)

Expression filtering

https://brentlab.github.io/brentlabRnaSeqTools/reference/setPerturbedLociToZero.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/qaFilter.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/createExperimentSet.html
https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://tibble.tidyverse.org/reference/rownames.html
https://tibble.tidyverse.org/reference/rownames.html
https://rdrr.io/r/base/match.html
https://rdrr.io/r/base/order.html
https://rdrr.io/pkg/SummarizedExperiment/man/RangedSummarizedExperiment-class.html
https://tibble.tidyverse.org/reference/rownames.html
https://rdrr.io/r/base/match.html

48

Filter out low expression genes (and anything else you don’t want in the analysis set). How you

do this is up to you, the analyst. You might use the method proposed in this paper by, among others,

Wolfgang Huber, and implemented in the bioconductor package geneFilter (as well as DESeq, by

default), or you could filter based on some number of samples having greater than some threshold of

expression, which is shown below.

How this is done is up to you, and obviously affects what genes are left in.
Below is an example. You need to think about the thresholds and filter method
that suits your purpose best.

mid_expression_filter <- rowSums(edgeR::cpm(counts(blrs_90min_qc_passing))>4) >=
4

high_disp_fltr = rownames(blrs_90min_qc_passing) %in% passing_genes_all$gene_id

blrs_90min_qc_passing = blrs_90min_qc_passing[high_disp_fltr,]

Split the replicate groups

note, qaFilter returns those samples with less than 3 replicates, which have NA
in the RLE stats. Filter those out, also

blrs_90min_qc_passing =
 blrs_90min_qc_passing[,!is.na(colData(blrs_90min_qc_passing)$ninetyMin_iqr)]

protocol_tallies = replicateByProtocolTally(blrs_90min_qc_passing)

protocol_tallies$replicates_with_less_than_four_in_both_old_or_new. All of the
genotypes should be in the list below

protocol_fltr =
 as_tibble(colData(blrs_90min_qc_passing)) %>%
 filter(!(genotype1 == "CNAG_00031" & libraryProtocol == "SolexaPrep"),
 !(genotype1 == "CNAG_00871" & libraryProtocol == "E7420L"),
 !(genotype1 == "CNAG_00883" & libraryProtocol == "E7420L"),
 !(genotype1 == "CNAG_01626" & libraryProtocol == "E7420L"),
 !(genotype1 == "CNAG_02774" & libraryProtocol == "E7420L"),
 !(genotype1 == "CNAG_03018" & libraryProtocol == "SolexaPrep"),
 !(genotype1 == "CNAG_03279" & libraryProtocol == "SolexaPrep"),
 !(genotype1 == "CNAG_03849" & libraryProtocol == "E7420L"),
 !(genotype1 == "CNAG_04353" & libraryProtocol == "E7420L"),
 !(genotype1 == "CNAG_05222" & libraryProtocol == "SolexaPrep")) %>%
 pull(fastqFileNumber)

https://dplyr.tidyverse.org/reference/pull.html
https://magrittr.tidyverse.org/reference/pipe.html
https://dplyr.tidyverse.org/reference/filter.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://tibble.tidyverse.org/reference/as_tibble.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/replicateByProtocolTally.html
https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://rdrr.io/r/base/NA.html
https://rdrr.io/r/base/match.html
https://tibble.tidyverse.org/reference/rownames.html
https://bioconductor.org/packages/release/bioc/html/genefilter.html
https://www.pnas.org/content/107/21/9546

49

blrs_90min_qc_passing_protocol_fltr =
 blrs_90min_qc_passing[,colData(blrs_90min_qc_passing)$fastqFileNumber %in%
 protocol_fltr]

colData(blrs_90min_qc_passing_protocol_fltr)$libraryDate =
 droplevels(colData(blrs_90min_qc_passing_protocol_fltr)$libraryDate)

Re-examine tallies after separating the protocol groups

note that the column names may not reflect what is actually pasesd -- this
function needs some updating due to hard coding colnames. Columns are in order of
the
tables passed in
protocol_fltr_tally =
 createInductionSetTally(as_tibble(colData(blrs_90min)),
 as_tibble(colData(blrs_90min_qc_passing)),
 as_tibble(colData(blrs_90min_qc_passing_protocol_fltr)),
 grant_df)

Split

blrs_90min_qc_passing_protocol_fltr_split =
 splitProtocolGroups(blrs_90min_qc_passing_protocol_fltr)

libraryprotocol date date have their levels dropped. genotype1 still needs it
this needs to be handled internally somehow

blrs_90min_qc_passing_protocol_fltr_split$SolexaPrep$genotype1 =
 droplevels(blrs_90min_qc_passing_protocol_fltr_split$SolexaPrep$genotype1)

blrs_90min_qc_passing_protocol_fltr_split$E7420L$genotype1 =
 droplevels(blrs_90min_qc_passing_protocol_fltr_split$E7420L$genotype1)

Examine replicate tallies by protocol group

filter out those samples with less than 3 replicates in either libraryDate or
genotype1

helper function to create model matricies by protocol
createFullSetModelMatricies = function(full_set_split){

 full_set_mm_list = list(
 E7420L = model.matrix(~libraryDate+genotype1,
 as_tibble(colData(full_set_split$E7420L))),
 SolexaPrep = model.matrix(~libraryDate+genotype1,
 as_tibble(colData(full_set_split$SolexaPrep))))

https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://tibble.tidyverse.org/reference/as_tibble.html
https://rdrr.io/r/stats/model.matrix.html
https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://tibble.tidyverse.org/reference/as_tibble.html
https://rdrr.io/r/stats/model.matrix.html
https://rdrr.io/r/base/list.html
https://rdrr.io/r/base/droplevels.html
https://rdrr.io/r/base/droplevels.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/splitProtocolGroups.html
https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://tibble.tidyverse.org/reference/as_tibble.html
https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://tibble.tidyverse.org/reference/as_tibble.html
https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://tibble.tidyverse.org/reference/as_tibble.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/createInductionSetTally.html
https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://rdrr.io/r/base/droplevels.html
https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://rdrr.io/r/base/match.html
https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html

50

 full_set_mm_list
}

return those replicate sets which have less than 2 replicates
lowReplicateParams = function(model_matrix){

 mm_summary_df = tibble(model_params = colnames(model_matrix),
 replicate_tally=colSums(model_matrix))

 low_rep_parameters = mm_summary_df %>%
 filter(replicate_tally < 2) %>%
 pull(model_params)

 low_rep_parameters = str_remove(low_rep_parameters, "libraryDate")
 low_rep_parameters = str_remove(low_rep_parameters, "genotype1")

 return(low_rep_parameters)
}

create model matricies from the blrs_90min_qc_passing_protocol_fltr_split
full_set_mm_list =
 createFullSetModelMatricies(blrs_90min_qc_passing_protocol_fltr_split)

find low rep parameters
low_rep_parameters = lapply(full_set_mm_list ,lowReplicateParams)

all dates, no genotypes
low_rep_parameters = lapply(low_rep_parameters, as.factor)

create filters for each protocol set
e7420l_fltr =
 !colData(blrs_90min_qc_passing_protocol_fltr_split$E7420L)$libraryDate %in%
 low_rep_parameters$E7420L

solexaprep_fltr =
 !colData(blrs_90min_qc_passing_protocol_fltr_split$SolexaPrep)$libraryDate %in%
 low_rep_parameters$SolexaPrep

create the full set list
fltr_full_set_90min = list(
 E7420L = blrs_90min_qc_passing_protocol_fltr_split$E7420L[, e7420l_fltr],
 SolexaPrep = blrs_90min_qc_passing_protocol_fltr_split$SolexaPrep[,
solexaprep_fltr]
)

drop the factor levels which no longer exist from the filtered libraryDate
column
colData(fltr_full_set_90min$E7420L)$libraryDate =

https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://rdrr.io/r/base/list.html
https://rdrr.io/r/base/match.html
https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://rdrr.io/r/base/match.html
https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://rdrr.io/r/base/lapply.html
https://rdrr.io/r/base/lapply.html
https://rdrr.io/r/base/function.html
https://stringr.tidyverse.org/reference/str_remove.html
https://stringr.tidyverse.org/reference/str_remove.html
https://dplyr.tidyverse.org/reference/pull.html
https://magrittr.tidyverse.org/reference/pipe.html
https://dplyr.tidyverse.org/reference/filter.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/r/base/colSums.html
https://rdrr.io/r/base/colnames.html
https://tibble.tidyverse.org/reference/tibble.html

51

 droplevels(colData(fltr_full_set_90min$E7420L)$libraryDate)

colData(fltr_full_set_90min$SolexaPrep)$libraryDate =
 droplevels(colData(fltr_full_set_90min$SolexaPrep)$libraryDate)

no more low rep sets left
fltr_full_set_mm = createFullSetModelMatricies(fltr_full_set_90min)

low_rep_parameters_2 = lapply(fltr_full_set_mm, lowReplicateParams)

Recheck tallies again

protocol_fltr_tally =
 createInductionSetTally(as_tibble(colData(blrs_90min)),
 as_tibble(colData(blrs_90min_qc_passing)),
 rbind(as_tibble(colData(fltr_full_set_90min$E7420L)),

as_tibble(colData(fltr_full_set_90min$SolexaPrep))),
 grant_df)

Create hold out set

min_set_size = 1

hold_out_set = list(
 SolexaPrep = createTestTrainSet(fltr_full_set_90min$SolexaPrep, min_set_size),
 E7420L = createTestTrainSet(fltr_full_set_90min$E7420L, min_set_size)
)

Set the experiment designs

setNinetyMinDesign = function(obj){
 obj$genotype1 = as.factor(obj$genotype1)
 relevel(obj$genotype1, ref = "CNAG_00000")

 obj$libraryDate = as.factor(obj$libraryDate)
 relevel(obj$libraryDate, ref = min(as.character(obj$libraryDate)))

 design(obj) = formula(~libraryDate + genotype1)

 obj
}

fltr_full_set_90min = map(fltr_full_set_90min, setNinetyMinDesign)

hold_out_set$SolexaPrep$train = setNinetyMinDesign(hold_out_set$SolexaPrep$train)
hold_out_set$E7420L$train = setNinetyMinDesign(hold_out_set$E7420L$train)

https://purrr.tidyverse.org/reference/map.html
https://rdrr.io/r/stats/formula.html
https://rdrr.io/r/base/character.html
https://rdrr.io/r/base/Extremes.html
https://rdrr.io/r/stats/relevel.html
https://rdrr.io/r/base/factor.html
https://rdrr.io/r/stats/relevel.html
https://rdrr.io/r/base/factor.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/createTestTrainSet.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/createTestTrainSet.html
https://rdrr.io/r/base/list.html
https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://tibble.tidyverse.org/reference/as_tibble.html
https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://tibble.tidyverse.org/reference/as_tibble.html
https://rdrr.io/r/base/cbind.html
https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://tibble.tidyverse.org/reference/as_tibble.html
https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://tibble.tidyverse.org/reference/as_tibble.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/createInductionSetTally.html
https://rdrr.io/r/base/lapply.html
https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://rdrr.io/r/base/droplevels.html
https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://rdrr.io/r/base/droplevels.html

52

convert everything back to DESeqDataObjects for the time being

hold_out_set$SolexaPrep = map(hold_out_set$SolexaPrep, coerceToDds)
hold_out_set$E7420L = map(hold_out_set$E7420L, coerceToDds)

fltr_full_set_90min = map(fltr_full_set_90min, coerceToDds)

combine protocol groups

refactorDesign = function(dds){

dds$libraryProtocol =
 dds$libraryProtocol %>%
 as.character() %>%
 as.factor() %>%
 droplevels()

dds$libraryDate =
 dds$libraryDate %>%
 as.Date() %>%
 as.factor() %>%
 droplevels()

dds$genotype1 =
 dds$genotype1 %>%
 as.character() %>%
 as.factor() %>%
 droplevels()

mm = model.matrix(~libraryProtocol + libraryDate + genotype1,
 as_tibble(colData(dds)))

min_date = colData(dds) %>%
 as_tibble() %>%
 filter(libraryProtocol == "E7420L") %>%
 pull(libraryDate) %>%
 as.Date() %>%
 min()

mm_redux = mm[,-which(colnames(mm) == paste0("libraryDate", min_date)), drop=FALSE]

design(dds) = mm_redux

dds
}

full_set_90min_both_protocols = cbind(fltr_full_set_90min$SolexaPrep,

https://rdrr.io/r/base/cbind.html
https://rdrr.io/r/base/paste.html
https://rdrr.io/r/base/colnames.html
https://rdrr.io/r/base/which.html
https://rdrr.io/r/base/Extremes.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/r/base/as.Date.html
https://magrittr.tidyverse.org/reference/pipe.html
https://dplyr.tidyverse.org/reference/pull.html
https://magrittr.tidyverse.org/reference/pipe.html
https://dplyr.tidyverse.org/reference/filter.html
https://magrittr.tidyverse.org/reference/pipe.html
https://tibble.tidyverse.org/reference/as_tibble.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://tibble.tidyverse.org/reference/as_tibble.html
https://rdrr.io/r/stats/model.matrix.html
https://rdrr.io/r/base/droplevels.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/r/base/factor.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/r/base/character.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/r/base/droplevels.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/r/base/factor.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/r/base/as.Date.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/r/base/droplevels.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/r/base/factor.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/r/base/character.html
https://magrittr.tidyverse.org/reference/pipe.html
https://purrr.tidyverse.org/reference/map.html
https://purrr.tidyverse.org/reference/map.html
https://purrr.tidyverse.org/reference/map.html

53

 fltr_full_set_90min$E7420L)

sizeFactors(full_set_90min_both_protocols) =
 c(estimateSizeFactors(fltr_full_set_90min$SolexaPrep)$sizeFactor,
 estimateSizeFactors(fltr_full_set_90min$E7420L)$sizeFactor)

full_set_90min_both_protocols = refactorDesign(full_set_90min_both_protocols)

train_set_90min_both_protocols = cbind(hold_out_set$SolexaPrep$train,
 hold_out_set$E7420L$train)

sizeFactors(train_set_90min_both_protocols) =
 c(estimateSizeFactors(hold_out_set$SolexaPrep$train)$sizeFactor,
 estimateSizeFactors(hold_out_set$E7420L$train)$sizeFactor)

train_set_90min_both_protocols = refactorDesign(train_set_90min_both_protocols)

test_data = list(
 SolexaPrep = hold_out_set$SolexaPrep$test,
 E7420L = hold_out_set$E7420L$test
)

Write out

if(WRITE_OUT){
 today = format(lubridate::today(),"%Y%m%d")

 output_dir = file.path(DDS_OUTPUT_DIR, today)

 dir.create(output_dir, recursive=TRUE)

 # note: this is probably better done with a function and map() as the list gets
 # longer
 write_rds(fltr_full_set_90min$E7420L,
 file.path(output_dir,"full_set_new_protocol_input.dds"))

 write_rds(fltr_full_set_90min$SolexaPrep,
 file.path(output_dir, "full_set_old_protocol_input.dds"))

 write_rds(test_data,
 file.path(output_dir, "test_data.rds"))

 write_rds(hold_out_set$E7420L$train,
 file.path(output_dir, "train_set_new_protocol_input.rds"))

 write_rds(hold_out_set$SolexaPrep$train,
 file.path(output_dir, "train_set_old_protocol_input.rds"))

 write_rds(full_set_90min_both_protocols,

https://readr.tidyverse.org/reference/read_rds.html
https://rdrr.io/r/base/file.path.html
https://readr.tidyverse.org/reference/read_rds.html
https://rdrr.io/r/base/file.path.html
https://readr.tidyverse.org/reference/read_rds.html
https://rdrr.io/r/base/file.path.html
https://readr.tidyverse.org/reference/read_rds.html
https://rdrr.io/r/base/file.path.html
https://readr.tidyverse.org/reference/read_rds.html
https://rdrr.io/r/base/file.path.html
https://readr.tidyverse.org/reference/read_rds.html
https://rdrr.io/r/base/files2.html
https://rdrr.io/r/base/file.path.html
https://lubridate.tidyverse.org/reference/now.html
https://rdrr.io/r/base/format.html
https://rdrr.io/r/base/list.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/cbind.html
https://rdrr.io/r/base/c.html

54

 file.path(output_dir, "full_set_both_protocol_input.rds"))

 write_rds(train_set_90min_both_protocols,
 file.path(output_dir, "train_set_both_protocol_input.rds"))

}

Copy the HTCF DESeq scripts to the working directory

These scripts will run DESeq in parallel on HTCF. The only items you’l need to edit is the path

to the lookup file (if you are running more than one model), and to the dds_input in deseq_mpi.sh. If

you do not keep deseq_de.R in the same directory as deseq_mpi.sh, then you’ll need to update the path

to the deseq_de.R script, also.

if(WRITE_OUT){
 htcf_deseq_scripts = c(system.file('bash',
 'htcf_parallel_deseq.sh',
 package = "brentlabRnaSeqTools"),
 system.file('R_executable',
 'deseq_de.R',
 package = "brentlabRnaSeqTools"))

lapply(htcf_deseq_scripts, file.copy, to = DDS_OUTPUT_DIR)
}

B5: QC – Library Quality

Details of library quality metrics and thresholds

Cryptococcus

Metric Threshold Status

Protein Coding Total 1e6 1

Not Aligned Total Percent .07 2

Perturbed Coverage .25 4

NAT coverage: expected .5 8

NAT log2cpm: expected 5 8

NAT coverage: unexpected .5 16

NAT log2cpm: unexpected 2.5 16

https://rdrr.io/r/base/lapply.html
https://rdrr.io/r/base/system.file.html
https://rdrr.io/r/base/system.file.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/file.path.html
https://readr.tidyverse.org/reference/read_rds.html
https://rdrr.io/r/base/file.path.html

55

Metric Threshold Status

G418 log2cpm: expected 5.688 32

G418 log2cpm: unexpected 5.688 64

overexpression FOW 2 128

missing marker in metadata 256

Note that libraryComplexity is included in the qc metrics now, but there is no threshold

currently set. The default setting for libraryComplexity is to calculate the portion of the total counts

made up by the top 25 expressed genes

library(brentlabRnaSeqTools)
library(tidyverse)

Get the metadata from the database

meta = getMetadata(
 database_info$kn99$db_host,
 database_info$kn99$db_name,
 Sys.getenv("db_username"),
 Sys.getenv("db_password")
)

Filter out the reads of interest

run_df = meta %>%
 filter(runNumber == 5500)

Create QC table

You will need to have the cluster mounted to your local for this to work. Note that you may get

warnings about the index file being older than the bam. That isn’t critical and can generally be ignored,

though something I am aware of and trying to figure out.

pipeline_out =
"/mnt/scratch/rnaseq_pipeline/align_count_results/run_5500/rnaseq_pipeline_results/
run_5500_samples"

run_qc = novoalignPipelineQC(run_df, pipeline_out,
Sys.getenv("kn99_stranded_gff_rds"))

https://rdrr.io/r/base/Sys.getenv.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/novoalignPipelineQC.html
https://dplyr.tidyverse.org/reference/filter.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/r/base/Sys.getenv.html
https://rdrr.io/r/base/Sys.getenv.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/getMetadata.html
https://tidyverse.tidyverse.org/
https://rdrr.io/r/base/library.html
https://brentlab.github.io/brentlabRnaSeqTools/
https://rdrr.io/r/base/library.html

56

parse this out into a QC sheet

qc_table = addQcColsToMeta(run_df, run_qc)

write_csv(dplyr::select(qc_df, -c(genotype1, genotype2, marker1, marker2)),
"~/Desktop/tmp/run_5500_qc.csv")

auto and manual audit

audited_qc_df = autoAuditQcTable(qc_table) %>%
 # add manual audit columns
 mutate(manualAudit = NA,
 manualStatus = NA)

update manual audit

audited_qc_df = edit(audited_qc_df)

audited_qc_df %>%
 dplyr::select(-c(genotype1, genotype2, marker1, marker2)) %>%
write_csv("~/Desktop/tmp/run_5500_qc.csv")

post Counts to database

count_files = Sys.glob(file.path(pipeline_out, "count", "*_read_count.tsv"))
names(count_files) = str_remove(basename(count_files), "_read_count.tsv")

compiled_counts = map(names(count_files), ~readHTSeqFile(count_files[[.]], .)) %>%
 plyr::join_all() %>%
 filter(!startsWith(feature, "__")) %>%
 dplyr::select(-feature)

fastq_df = read_csv("/mnt/lts/sequence_data/rnaseq_data/kn99_database_archive/
20220131/fastqFiles.csv")

note: commented out to prevent me from accidently running this
res = postCounts(database_info$kn99$urls$counts,
5500,
Sys.getenv("kn99_db_token"),
compiled_counts,
fastq_df)

res

https://readr.tidyverse.org/reference/read_delim.html
https://dplyr.tidyverse.org/reference/select.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/r/base/startsWith.html
https://dplyr.tidyverse.org/reference/filter.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/pkg/plyr/man/join_all.html
https://magrittr.tidyverse.org/reference/pipe.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/readHTSeqFile.html
https://rdrr.io/r/base/names.html
https://purrr.tidyverse.org/reference/map.html
https://rdrr.io/r/base/basename.html
https://stringr.tidyverse.org/reference/str_remove.html
https://rdrr.io/r/base/names.html
https://rdrr.io/r/base/file.path.html
https://rdrr.io/r/base/Sys.glob.html
https://readr.tidyverse.org/reference/write_delim.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/r/base/c.html
https://dplyr.tidyverse.org/reference/select.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/r/utils/edit.html
https://dplyr.tidyverse.org/reference/mutate.html
https://magrittr.tidyverse.org/reference/pipe.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/autoAuditQcTable.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/addQcColsToMeta.html

57

Send QC to database

note: commented out in the vignette to prevent me from running accidently
res = postQcSheet_test(database_info$kn99$urls$qualityAssess,
Sys.getenv("kn99_db_token"),
5500,
"~/Desktop/tmp/run_5500_qc.csv",
"/mnt/lts/sequence_data/rnaseq_data/kn99_database_archive/20220131/
fastqFiles.csv")

a code of 200 or 201 means it worked. anything else means failure
res

IGV browser shot

kn99_gff = readRDS(Sys.getenv("kn99_stranded_gff_rds"))

unique_loci = str_replace(unique(run_qc$locus), "CNAG", "CKF44")

unique_loci = c(unique_loci, c("CNAG_NAT", "CNAG_G418"))

bam_prefix = file.path(pipeline_out, "align")
bam_suffix = "_sorted_aligned_reads_with_annote.bam"

bam_list_df = run_df %>%
 distinct(fastqFileNumber, .keep_all = TRUE)

bam_list = unlist(map(pull(bam_list_df, fastqFileName), ~file.path(bam_prefix,
paste0(., bam_suffix))))

bam_list = map(bam_list, ~c(.,
"/mnt/scratch/rnaseq_pipeline/align_count_results/run_5500/rnaseq_pipeline_results/
run_5500_samples/align/
Brent_3235_GTAC_1_SIC_Index2_08_TGAGGTTATC_AAGCACGT_S2_R1_001_sorted_aligned_reads_
with_annote.bam"))
names(bam_list) = bam_list_df$fastqFileNumber

igvScriptAll = function(ffn){
 for(locus in unique_loci){
 granges = kn99_gff[kn99_gff$ID == locus & kn99_gff$type == 'gene']
 print(granges)
 basename = paste(ffn, locus, sep = "_")
 createIgvBatchscript(
 bam_list = bam_list[[ffn]],
 granges = granges,
 igv_genome = Sys.getenv("kn99_stranded_igv_genome"),

https://rdrr.io/r/base/Sys.getenv.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/createIgvBatchscript.html
https://rdrr.io/r/base/paste.html
https://rdrr.io/r/base/print.html
https://rdrr.io/r/base/names.html
https://rdrr.io/r/base/c.html
https://purrr.tidyverse.org/reference/map.html
https://rdrr.io/r/base/paste.html
https://rdrr.io/r/base/file.path.html
https://dplyr.tidyverse.org/reference/pull.html
https://purrr.tidyverse.org/reference/map.html
https://rdrr.io/r/base/unlist.html
https://dplyr.tidyverse.org/reference/distinct.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/r/base/file.path.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/unique.html
https://stringr.tidyverse.org/reference/str_replace.html
https://rdrr.io/r/base/Sys.getenv.html
https://rdrr.io/r/base/readRDS.html

58

 output_dir = "/home/oguzkhan/Desktop/tmp/igv/",
 output_file_basename = basename)
 }

}

igvScriptAll(names(bam_list)[1])

Running the IGV batch scripts

It is likely easiest just to cd into the place where you output the scripts

cd /home/oguzkhan/Desktop/tmp/igv/scripts

for batch_script in $(ls .); do
 xvfb-run --auto-servernum igv.sh -b batch_script
done

I then scp these into the run directory before moving the run directory over to lts

scp -r /home/oguzkhan/Desktop/tmp/igv
chasem@htcf.wustl.edu:/mnt/scratch/rnaseq_pipeline/align_count_results/run_5500/
rnaseq_pipeline_results/run_5500_samples/

then log into htcf, go to the pipeline output and move the whole run directory to
lts

rsync -aHv run_5500_samples /lts/mblab/sequence_data/rnaseq_data/lts_align_count/

B6: QC – Replicate Agreement

Calculate RLE to evaluate replicate agreement

Introduction

This illustrates how to construct the data object for the Sample Agreement QC step – RLE – on

each of the data sets. In each case, once you have added the design (the last step for each set), you need

to write the object to file and send it to the cluster. I suggest mounting to the cluster and writing to the

mounted directory. See the vignette Running DESeq on HTCF for instructions on running DESeq on

https://rdrr.io/r/base/names.html

59

HTCF. Note that at the bottom of this script, there are instructions on how to copy the necessary scripts

to run the DESeq model using MPI on htcf.

You can see all defined sets by entering ?createExperimentSet. If an experiment set you

are interested in does not exist as an option in set_names, then you’ll need to use the

extractColData(blrs) of the blrs object below to play around and come up with a set of

filters to define your new set. See the github repository, “R/ExperimentSetFunctions.R” for examples

Setup the environment

library(brentlabRnaSeqTools)
library(rtracklayer)
library(tidyverse)
library(caret)

set variables

KN99_GFF_RDS = Sys.getenv("kn99_stranded_gff_rds")
DB_USERNAME = Sys.getenv("db_username")
DB_PASSWORD = Sys.getenv("db_password")

note: I mount to the cluster and output directly to it
DDS_OUTPUT_DIR = Sys.getenv("OUTPUT_DIR")
TODAY = format(lubridate::today(),"%Y%m%d")

controls whether dds objects are written
WRITE_OUT = TRUE

Pull the database

blrs = brentlabRnaSeqSetFromDatabase('kn99',DB_USERNAME, DB_PASSWORD)

Add gene level data (optional)

this adds all of the data regarding each locus as a GRange object to the gene data slot of the

brentlabRnaSeqSet object. Useful if you are going to use other Bioconductor packages, or

brentlabRnaSeqTools::createIgvBrowserShot()

https://brentlab.github.io/brentlabRnaSeqTools/reference/brentlabRnaSeqSet.html
https://lubridate.tidyverse.org/reference/now.html
https://rdrr.io/r/base/format.html
https://rdrr.io/r/base/Sys.getenv.html
https://rdrr.io/r/base/Sys.getenv.html
https://rdrr.io/r/base/Sys.getenv.html
https://rdrr.io/r/base/Sys.getenv.html
https://github.com/topepo/caret/
https://rdrr.io/r/base/library.html
https://tidyverse.tidyverse.org/
https://rdrr.io/r/base/library.html
https://rdrr.io/r/base/library.html
https://brentlab.github.io/brentlabRnaSeqTools/
https://rdrr.io/r/base/library.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/createExperimentSet.html

60

kn99_gff = readRDS(KN99_GFF_RDS)

kn99_genes = kn99_gff[kn99_gff$ID %in% rownames(blrs)]

rowRanges(blrs) = kn99_genes[order(match(kn99_genes$ID,rownames(blrs)))]

90minuteInduction

2016 grant set

This is the data set defined by the single locus KOs in 90minuteInduction conditions for

genotypes in the grant_df (this is a data object which is loaded as part of

brentlabRnaSeqTools – take a look if you are interested)

Create the set and quality filter

blrs_90min_grant = createExperimentSet(blrs, 'ninetyMin_2016Grant')

note that this filters out those samples which failed QC1,
but but does not filter on RLE unless the argument rle_iqr_threshold
is set to a numeric value
blrs_90min_grant_fltr = qaFilter(blrs_90min_grant)

remove WT which fall on dates with no perturbed samples
blrs_90min_grant_fltr =
 filterWtByExperimentalLibdate_90min(blrs_90min_grant_fltr)

Add the design

blrs_90min_grant_fltr = estimateSizeFactorsByProtocol(blrs_90min_grant_fltr)

min_libdate = min(as.Date(colData(blrs_90min_grant_fltr)$libraryDate))

colData(blrs_90min_grant_fltr)$libraryDate =
 colData(blrs_90min_grant_fltr)$libraryDate %>%
 relevel(ref = as.character(min_libdate)) %>%
 droplevels()

colData(blrs_90min_grant_fltr)$libraryProtocol =
 colData(blrs_90min_grant_fltr)$libraryProtocol %>%
 factor() %>%
 relevel(ref = "SolexaPrep") %>%

https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/r/stats/relevel.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/r/base/factor.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://rdrr.io/r/base/droplevels.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/r/base/character.html
https://rdrr.io/r/stats/relevel.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://rdrr.io/r/base/as.Date.html
https://rdrr.io/r/base/Extremes.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/estimateSizeFactorsByProtocol.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/filterWtByExperimentalLibdate_90min.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/qaFilter.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/createExperimentSet.html
https://tibble.tidyverse.org/reference/rownames.html
https://rdrr.io/r/base/match.html
https://rdrr.io/r/base/order.html
https://rdrr.io/pkg/SummarizedExperiment/man/RangedSummarizedExperiment-class.html
https://tibble.tidyverse.org/reference/rownames.html
https://rdrr.io/r/base/match.html
https://rdrr.io/r/base/readRDS.html

61

 droplevels()

colData(blrs_90min_grant_fltr)$genotype1 =
 colData(blrs_90min_grant_fltr)$genotype1 %>%
 relevel(ref = "CNAG_00000") %>%
 droplevels()

mm = model.matrix(~libraryProtocol+libraryDate+genotype1,
 extractColData(blrs_90min_grant_fltr))

min_new_protocol = min(as.Date((unique(pull(filter(
 extractColData(blrs_90min_grant_fltr),
 libraryProtocol == 'E7420L'),
 libraryDate)))))

mm = mm[,-which(colnames(mm) == paste0('libraryDate',min_new_protocol))]

inspect the model matrix for linear dependencies

lin_dep_report = caret::findLinearCombos(mm)

add the design to the object

design(blrs_90min_grant_fltr) = mm
rm(mm)

write out

if(WRITE_OUT){

 outpath = file.path(DDS_OUTPUT_DIR,
 "90minDataFreeze",
 TODAY,
 "grant_only_input.rds")

 dds = DESeq2::DESeqDataSetFromMatrix(
 colData = extractColData(blrs_90min_grant_fltr),
 countData = counts(blrs_90min_grant_fltr),
 design = design(blrs_90min_grant_fltr))

 sizeFactors(dds) = sizeFactors(blrs_90min_grant_fltr)

 write_rds(dds, outpath)
}

2016 Grant Set with Doubles

https://readr.tidyverse.org/reference/read_rds.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/extractColData.html
https://rdrr.io/pkg/DESeq2/man/DESeqDataSet.html
https://rdrr.io/r/base/file.path.html
https://rdrr.io/r/base/rm.html
https://rdrr.io/r/base/paste.html
https://rdrr.io/r/base/colnames.html
https://rdrr.io/r/base/which.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/extractColData.html
https://dplyr.tidyverse.org/reference/filter.html
https://dplyr.tidyverse.org/reference/pull.html
https://rdrr.io/r/base/unique.html
https://rdrr.io/r/base/as.Date.html
https://rdrr.io/r/base/Extremes.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/extractColData.html
https://rdrr.io/r/stats/model.matrix.html
https://rdrr.io/r/base/droplevels.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/r/stats/relevel.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://rdrr.io/r/base/droplevels.html

62

This has all double KO samples in which either of the KO loci are in the grant_df, plus

single KO samples corresponding to one of the double KO perturbed loci and WT.

Create set and quality filter

blrs_grant_with_doubles = createExperimentSet(blrs,
'ninetyMin_2016GrantWithDoubles')

note that this filters out those samples which failed QC1,
but but does not filter on RLE unless the argument rle_iqr_threshold
is set to a numeric value
blrs_grant_with_doubles_fltr = qaFilter(blrs_grant_with_doubles)

remove WT which fall on dates with no perturbed samples
blrs_grant_with_doubles_fltr =
 filterWtByExperimentalLibdate_90min(blrs_grant_with_doubles_fltr)

Add the design

blrs_grant_with_doubles_fltr =
estimateSizeFactorsByProtocol(blrs_grant_with_doubles_fltr)

min_libdate = min(as.Date(colData(blrs_grant_with_doubles_fltr)$libraryDate))

colData(blrs_grant_with_doubles_fltr)$libraryDate =
 colData(blrs_grant_with_doubles_fltr)$libraryDate %>%
 relevel(ref = as.character(min_libdate)) %>%
 droplevels()

add a 'genotype' column which is a concatenation of genotype1 and genotype2
colData(blrs_grant_with_doubles_fltr)$genotype =
 paste(colData(blrs_grant_with_doubles_fltr)$genotype1,
 colData(blrs_grant_with_doubles_fltr)$genotype2,
 sep = "_") %>%
 str_remove('_$') %>%
 factor() %>%
 relevel(ref = "CNAG_00000") %>%
 droplevels()

colData(blrs_grant_with_doubles_fltr)$libraryProtocol =
 colData(blrs_grant_with_doubles_fltr)$libraryProtocol %>%
 factor() %>%
 relevel(ref = "SolexaPrep") %>%
 droplevels()

mm = model.matrix(~libraryProtocol+libraryDate+genotype,

https://rdrr.io/r/stats/model.matrix.html
https://rdrr.io/r/base/droplevels.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/r/stats/relevel.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/r/base/factor.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://rdrr.io/r/base/droplevels.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/r/stats/relevel.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/r/base/factor.html
https://magrittr.tidyverse.org/reference/pipe.html
https://stringr.tidyverse.org/reference/str_remove.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://rdrr.io/r/base/paste.html
https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://rdrr.io/r/base/droplevels.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/r/base/character.html
https://rdrr.io/r/stats/relevel.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://rdrr.io/r/base/as.Date.html
https://rdrr.io/r/base/Extremes.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/estimateSizeFactorsByProtocol.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/filterWtByExperimentalLibdate_90min.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/qaFilter.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/createExperimentSet.html

63

 extractColData(blrs_grant_with_doubles_fltr))

min_new_protocol = min(
 as.Date(
 (unique(
 pull(
 filter(extractColData(blrs_grant_with_doubles_fltr),
 libraryProtocol == 'E7420L'), libraryDate)))))

mm = mm[,-which(colnames(mm) == paste0('libraryDate',min_new_protocol))]

inspect the model matrix for linear dependencies

lin_dep_report = caret::findLinearCombos(mm)
lin_dep_report

add the design to the object

design(blrs_grant_with_doubles_fltr) = mm
rm(mm)

Write out

if(WRITE_OUT){

 outpath = file.path(DDS_OUTPUT_DIR,
 "90minDataFreeze",
 TODAY,
 "grant_doubles_input.rds")

 dds = DESeq2::DESeqDataSetFromMatrix(
 colData = extractColData(blrs_grant_with_doubles_fltr),
 countData = counts(blrs_grant_with_doubles_fltr),
 design = design(blrs_grant_with_doubles_fltr))

 sizeFactors(dds) = sizeFactors(blrs_grant_with_doubles_fltr)

 write_rds(dds, outpath)
}

All

This set is all samples – singles and doubles – which are in the 90minuteInduction conditions.

Create set and quality filter

https://readr.tidyverse.org/reference/read_rds.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/extractColData.html
https://rdrr.io/pkg/DESeq2/man/DESeqDataSet.html
https://rdrr.io/r/base/file.path.html
https://rdrr.io/r/base/rm.html
https://rdrr.io/r/base/paste.html
https://rdrr.io/r/base/colnames.html
https://rdrr.io/r/base/which.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/extractColData.html
https://dplyr.tidyverse.org/reference/filter.html
https://dplyr.tidyverse.org/reference/pull.html
https://rdrr.io/r/base/unique.html
https://rdrr.io/r/base/as.Date.html
https://rdrr.io/r/base/Extremes.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/extractColData.html

64

blrs_90min_all = createExperimentSet(blrs, 'ninetyMin_all')

note that this filters out those samples which failed QC1,
but but does not filter on RLE unless the argument rle_iqr_threshold
is set to a numeric value
blrs_90min_all_fltr = qaFilter(blrs_90min_all)

remove WT which fall on dates with no perturbed samples
blrs_90min_all_fltr =
 filterWtByExperimentalLibdate_90min(blrs_90min_all_fltr)

Add the design

blrs_90min_all_fltr = estimateSizeFactorsByProtocol(blrs_90min_all_fltr)

min_libdate = min(as.Date(colData(blrs_90min_all_fltr)$libraryDate))

colData(blrs_90min_all_fltr)$libraryDate =
 colData(blrs_90min_all_fltr)$libraryDate %>%
 relevel(ref = as.character(min_libdate)) %>%
 droplevels()

add a 'genotype' column which is a concatenation of genotype1 and genotype2
colData(blrs_90min_all_fltr)$genotype =
 paste(colData(blrs_90min_all_fltr)$genotype1,
 colData(blrs_90min_all_fltr)$genotype2,
 sep = "_") %>%
 str_remove('_$') %>%
 factor() %>%
 relevel(ref = "CNAG_00000") %>%
 droplevels()

colData(blrs_90min_all_fltr)$libraryProtocol =
 colData(blrs_90min_all_fltr)$libraryProtocol %>%
 factor() %>%
 relevel(ref = "SolexaPrep") %>%
 droplevels()

mm = model.matrix(~libraryProtocol+libraryDate+genotype,
 extractColData(blrs_90min_all_fltr))

min_new_protocol = min(
 as.Date(
 (unique(
 pull(
 filter(extractColData(blrs_90min_all_fltr),
 libraryProtocol == 'E7420L'), libraryDate)))))

mm = mm[,-which(colnames(mm) == paste0('libraryDate',min_new_protocol))]

https://rdrr.io/r/base/paste.html
https://rdrr.io/r/base/colnames.html
https://rdrr.io/r/base/which.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/extractColData.html
https://dplyr.tidyverse.org/reference/filter.html
https://dplyr.tidyverse.org/reference/pull.html
https://rdrr.io/r/base/unique.html
https://rdrr.io/r/base/as.Date.html
https://rdrr.io/r/base/Extremes.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/extractColData.html
https://rdrr.io/r/stats/model.matrix.html
https://rdrr.io/r/base/droplevels.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/r/stats/relevel.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/r/base/factor.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://rdrr.io/r/base/droplevels.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/r/stats/relevel.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/r/base/factor.html
https://magrittr.tidyverse.org/reference/pipe.html
https://stringr.tidyverse.org/reference/str_remove.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://rdrr.io/r/base/paste.html
https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://rdrr.io/r/base/droplevels.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/r/base/character.html
https://rdrr.io/r/stats/relevel.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://rdrr.io/r/base/as.Date.html
https://rdrr.io/r/base/Extremes.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/estimateSizeFactorsByProtocol.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/filterWtByExperimentalLibdate_90min.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/qaFilter.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/createExperimentSet.html

65

inspect the model matrix for linear dependencies

lin_dep_report = caret::findLinearCombos(mm)
lin_dep_report

add the design to the object

design(blrs_90min_all_fltr) = mm
rm(mm)

Write out

if(WRITE_OUT){

 outpath = file.path(DDS_OUTPUT_DIR,
 "90minDataFreeze",
 TODAY,
 "90min_all_input.rds")

 dds = DESeq2::DESeqDataSetFromMatrix(
 colData = extractColData(blrs_90min_all_fltr),
 countData = counts(blrs_90min_all_fltr),
 design = design(blrs_90min_all_fltr))

 sizeFactors(dds) = sizeFactors(blrs_90min_all_fltr)

 write_rds(dds, outpath)
}

Environmental Perturbation

Create Sets

ep_list = list(
 wt = createExperimentSet(blrs, 'envPert_epWT'),
 titration = createExperimentSet(blrs, 'envPert_titrationWT'),
 perturbed = createExperimentSet(blrs, 'envPert_perturbed')
)

NOTE!! AS OF 20220201 CNAG_03894 forms a linear depdendence with both
concat treatment and libraryDate columns. it is being removed here to solve
that issue

ep_list$perturbed = ep_list$perturbed[,ep_list$perturbed$genotype1 != "CNAG_03894"]

Quality Filter

https://brentlab.github.io/brentlabRnaSeqTools/reference/createExperimentSet.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/createExperimentSet.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/createExperimentSet.html
https://rdrr.io/r/base/list.html
https://readr.tidyverse.org/reference/read_rds.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/extractColData.html
https://rdrr.io/pkg/DESeq2/man/DESeqDataSet.html
https://rdrr.io/r/base/file.path.html
https://rdrr.io/r/base/rm.html

66

ep_list_qc_passing = map(ep_list, qaFilter)

Expression Filter

How this is done is up to you, and obviously affects what genes are left in.
Below is an example. You need to think about the thresholds and filter method
that suits your purpose best.

expr_fltr_list = map(ep_list, ~rowSums(edgeR::cpm(counts(.))>4) >= 4)

ep_list_qc_passing_fltr = map2(ep_list_qc_passing, expr_fltr_list, ~.x[.y,])

Set Design

setBaseConcatTreatmentBaseCond = function(ep_set, concat_base_cond){
 colData(ep_set)$concat_treatment =
 relevel(colData(ep_set)$concat_treatment, ref = concat_base_cond)

 colData(ep_set) = droplevels(DataFrame(colData(ep_set)))

 ep_set

}

setEpDesign = function(ep_set, design){
 design(ep_set) = design

 ep_set
}

concat_base_cond_list = list(

 wt = "YPD_noAtmosphere_30_noTreatment_noTreatmentConc_noPH_30",
 titration = "RPMI_noAtmosphere_30_noTreatment_noTreatmentConc_noPH_30",
 perturbed = 'PBS_noAtmosphere_30_noTreatment_noTreatmentConc_noPH_0'
)

ep_designs = list(
 wt = formula(~libraryDate + concat_treatment),
 titration = formula(~libraryDate + concat_treatment),
 perturbed = formula(~libraryDate + concat_treatment + genotype1)
)

ep_list_qc_passing_fltr = map2(ep_list_qc_passing_fltr,
 concat_base_cond_list,
 setBaseConcatTreatmentBaseCond)

ep_list_qc_passing_fltr = map2(ep_list_qc_passing_fltr,

https://purrr.tidyverse.org/reference/map2.html
https://purrr.tidyverse.org/reference/map2.html
https://rdrr.io/r/stats/formula.html
https://rdrr.io/r/stats/formula.html
https://rdrr.io/r/stats/formula.html
https://rdrr.io/r/base/list.html
https://rdrr.io/r/base/list.html
https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://rdrr.io/r/base/droplevels.html
https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://rdrr.io/r/stats/relevel.html
https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://purrr.tidyverse.org/reference/map2.html
https://rdrr.io/pkg/edgeR/man/cpm.html
https://rdrr.io/r/base/colSums.html
https://purrr.tidyverse.org/reference/map.html
https://purrr.tidyverse.org/reference/map.html

67

 ep_designs,
 setEpDesign)

Coerce back to DeseqDataObjects for proessing

ep_dds_list = map(ep_list_qc_passing_fltr, coerceToDds)

DDS_OUTPUT_DIR = "/mnt/scratch/rnaseq_pipeline/experiments/epTally"

if(WRITE_OUT){
 today = format(lubridate::today(),"%Y%m%d")

 output_dir = file.path(DDS_OUTPUT_DIR, today)

 dir.create(output_dir, recursive=TRUE)

 map(names(ep_dds_list), ~write_rds(ep_dds_list[[.]],
 file.path(output_dir,
 paste0("ep_",.,".rds"))))
}

Copy the HTCF DESeq scripts to the working directory

These scripts will run DESeq in parallel on HTCF. The only items you’l need to edit is the path

to the lookup file (if you are running more than one model), and to the dds_input in deseq_mpi.sh. If

you do not keep deseq_de.R in the same directory as deseq_mpi.sh, then you’ll need to update the path

to the deseq_de.R script, also.

if(WRITE_OUT){
 htcf_deseq_scripts = c(system.file('bash',
 'htcf_parallel_deseq.sh',
 package = "brentlabRnaSeqTools"),
 system.file('R_executable',
 'deseq_de.R',
 package = "brentlabRnaSeqTools"))

lapply(htcf_deseq_scripts, file.copy, to = DDS_OUTPUT_DIR)
}

After DESeq(), Calculate RLE

Environmental Perturbation

https://rdrr.io/r/base/lapply.html
https://rdrr.io/r/base/system.file.html
https://rdrr.io/r/base/system.file.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/paste.html
https://rdrr.io/r/base/file.path.html
https://readr.tidyverse.org/reference/read_rds.html
https://rdrr.io/r/base/names.html
https://purrr.tidyverse.org/reference/map.html
https://rdrr.io/r/base/files2.html
https://rdrr.io/r/base/file.path.html
https://lubridate.tidyverse.org/reference/now.html
https://rdrr.io/r/base/format.html
https://purrr.tidyverse.org/reference/map.html

68

Load in the post DESeq() data sets

Note: this entirely depends on what set you want to look at – in this example, I am doing the

sample agreement and tallies for the EP sets

DESEQ_OUTPUT_LIST = list(
 ep_wt =
"/mnt/scratch/rnaseq_pipeline/experiments/epTally/20220201/ep_wt_20220201_output.rd
s",
 ep_titration =
"/mnt/scratch/rnaseq_pipeline/experiments/epTally/20220201/ep_titration_20220201_ou
tput.rds",
 ep_perturbed =
"/mnt/scratch/rnaseq_pipeline/experiments/epTally/20220201/ep_perturbed_20220201_ou
tput.rds"
)

Environmental Perturbation

Create the set

get deseq output object
ep_dds_list = list(
 ep_wt = readRDS(DESEQ_OUTPUT_LIST$ep_wt),
 ep_titr = readRDS(DESEQ_OUTPUT_LIST$ep_titration),
 ep_pert = readRDS(DESEQ_OUTPUT_LIST$ep_perturbed)
)

add a column describing replicate groups if necessary

ep_dds_listep_pertrep_col =
 paste(ep_dds_listep_pertgenotype1,
 ep_dds_listep_pertconcat_treatment, sep = "_")

calculate RLE

ep_rle_list = list(
 ep_wt = removeLibdateByReplicate(ep_dds_list$ep_wt, "concat_treatment"),
 ep_titr = removeLibdateByReplicate(ep_dds_list$ep_titr, "concat_treatment"),
 ep_pert = removeLibdateByReplicate(ep_dds_list$ep_pert, "rep_col")
)

Update the database

https://brentlab.github.io/brentlabRnaSeqTools/reference/removeLibdateByReplicate.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/removeLibdateByReplicate.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/removeLibdateByReplicate.html
https://rdrr.io/r/base/list.html
https://rdrr.io/r/base/paste.html
https://rdrr.io/r/base/readRDS.html
https://rdrr.io/r/base/readRDS.html
https://rdrr.io/r/base/readRDS.html
https://rdrr.io/r/base/list.html
https://rdrr.io/r/base/list.html

69

if(UPDATE_DB){

 updateRleTable = function(set_name, set_rle_summary){
 iqr_col = paste0(set_name, "_iqr")
 med_dev_col = paste0(set_name, "_median_dev")

 update_df = set_rle_summary %>%
 dplyr::select(replicateAgreementNumber, rle_iqr, rle_median_deviation) %>%
 dplyr::rename(!!quo_name(iqr_col) := rle_iqr,
 !!quo_name(med_dev_col) := rle_median_deviation)

 res = patchTable(
 database_info$kn99$urls$replicateAgreement,
 Sys.getenv("kn99_db_token"),
 update_df,
 "replicateAgreementNumber")

 res
 }

res_list = map(names(ep_rle_list), ~updateRleTable(., ep_rle_list[[.]]
$without_libdate_effect$summary))

check status ----
failures should only be those without enough replicates to calculate RLE
extract_status = map(res_list, ~map(., ~as.numeric(.$status_code)))

extract_status[[1]][unlist(extract_status[[1]]) != 200]
extract_status[[2]][unlist(extract_status[[2]]) != 200]
extract_status[[3]][unlist(extract_status[[3]]) != 200]
}

B7: Tally Experiment Sets

Introduction

The purpose of tallying the experiment sets is to track the development of a given set. These are

meant as examples – if you are the analyst consuming a given data set, it is a good idea to figure out

how to tally your set to see how close it is to being done.

For each set (eg, the Environmental Perturbation), if you extract the code and paste it into a

clean notebook, a somewhat formatted html document will be created. You can publish this to Rpubs, a

https://rdrr.io/r/base/unlist.html
https://rdrr.io/r/base/unlist.html
https://rdrr.io/r/base/unlist.html
https://rdrr.io/r/base/numeric.html
https://purrr.tidyverse.org/reference/map.html
https://purrr.tidyverse.org/reference/map.html
https://rdrr.io/r/base/names.html
https://purrr.tidyverse.org/reference/map.html
https://rdrr.io/r/base/Sys.getenv.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/patchTable.html
https://ggplot2.tidyverse.org/reference/tidyeval.html
https://ggplot2.tidyverse.org/reference/tidyeval.html
https://dplyr.tidyverse.org/reference/rename.html
https://magrittr.tidyverse.org/reference/pipe.html
https://dplyr.tidyverse.org/reference/select.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/r/base/paste.html
https://rdrr.io/r/base/paste.html

70

free server for rendered Rmd notebooks, which is a nice way of sharing the set progress as well as a

method of tracking progress over time, as the rendered results are saved on the Rpubs server.

Setup

library(brentlabRnaSeqTools)
library(rtracklayer)
library(tidyverse)

set variables

KN99_GFF_RDS = Sys.getenv("kn99_stranded_gff_rds")
DB_USERNAME = Sys.getenv("db_username")
DB_PASSWORD = Sys.getenv("db_password")

note: I mount to the cluster and output directly to it
DDS_OUTPUT_DIR = "."

controls whether dds objects are written
WRITE_OUT = FALSE

pull the database as a brentlabRnaSeqSet object

Note: you really only need the metadata for this task. You could use getMetadata.

blrs = brentlabRnaSeqSetFromDatabase('kn99',DB_USERNAME, DB_PASSWORD)

Add gene level data (optional)

this adds all of the data regarding each locus as a GRange object to the gene data slot of the

brentlabRnaSeqSet object. Useful if you are going to use other Bioconductor packages.

kn99_gff = readRDS(KN99_GFF_RDS)

kn99_genes = kn99_gff[kn99_gff$ID %in% rownames(blrs)]

rowRanges(blrs) = kn99_genes[order(match(kn99_genes$ID,rownames(blrs)))]

rownames(blrs) = rowData(blrs)$ID

Environmental Perturbation

https://rdrr.io/pkg/SummarizedExperiment/man/SummarizedExperiment-class.html
https://tibble.tidyverse.org/reference/rownames.html
https://tibble.tidyverse.org/reference/rownames.html
https://rdrr.io/r/base/match.html
https://rdrr.io/r/base/order.html
https://rdrr.io/pkg/SummarizedExperiment/man/RangedSummarizedExperiment-class.html
https://tibble.tidyverse.org/reference/rownames.html
https://rdrr.io/r/base/match.html
https://rdrr.io/r/base/readRDS.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/brentlabRnaSeqSet.html
https://rdrr.io/r/base/Sys.getenv.html
https://rdrr.io/r/base/Sys.getenv.html
https://rdrr.io/r/base/Sys.getenv.html
https://tidyverse.tidyverse.org/
https://rdrr.io/r/base/library.html
https://rdrr.io/r/base/library.html
https://brentlab.github.io/brentlabRnaSeqTools/
https://rdrr.io/r/base/library.html

71

Create Sets

ep_list = list(
 wt = createExperimentSet(blrs, 'envPert_epWT'),
 titr = createExperimentSet(blrs, 'envPert_titrationWT'),
 pert = createExperimentSet(blrs, 'envPert_perturbed')
)

NOTE!! AS OF 20220201 CNAG_03894 forms a linear depdendence with both
concat treatment and libraryDate columns. it is being removed here to solve
that issue

ep_list$pert = ep_list$pert[,ep_list$pert$genotype1 != "CNAG_03894"]

ep_list_qc_passing = map(ep_list,qaFilter)

ep_list_qc_passing_with_iqr = map(names(ep_list),
 ~qaFilter(ep_list[[.]],1,paste0("ep_",., "_iqr")))
names(ep_list_qc_passing_with_iqr) = names(ep_list)

condition_lists = list(
 wt = alist(medium,
 atmosphere,
 temperature,
 timePoint,
 treatment,
 treatmentConc,
 pH),
 titr = alist(medium,
 atmosphere,
 temperature,
 timePoint,
 treatment,
 treatmentConc,
 pH),
 pert = alist(genotype1,
 medium,
 atmosphere,
 temperature,
 timePoint,
 treatment,
 treatmentConc,
 pH))

ep_tally_list = map2(names(ep_list), condition_lists,

https://rdrr.io/r/base/names.html
https://purrr.tidyverse.org/reference/map2.html
https://rdrr.io/r/base/list.html
https://rdrr.io/r/base/list.html
https://rdrr.io/r/base/list.html
https://rdrr.io/r/base/list.html
https://rdrr.io/r/base/names.html
https://rdrr.io/r/base/names.html
https://rdrr.io/r/base/paste.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/qaFilter.html
https://rdrr.io/r/base/names.html
https://purrr.tidyverse.org/reference/map.html
https://purrr.tidyverse.org/reference/map.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/createExperimentSet.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/createExperimentSet.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/createExperimentSet.html
https://rdrr.io/r/base/list.html

72

 ~createEPTally(ep_list[[.x]],
 ep_list_qc_passing[[.x]],
 ep_list_qc_passing_with_iqr[[.x]],
 .y))
names(ep_tally_list) = names(ep_list)

names(ep_list_qc_passing_with_iqr) = names(ep_list)

write_csv(env_pert_tally,
'../../../datafreeze_202111/data/env_pert_tally_20211122.csv')

add those samples with less than 2 replicates
iqr_fltr_rle_summary_mod = removed_effect_rle_summary %>%
filter(INTERQUARTILE_RANGE<iqr_threshold | is.na(INTERQUARTILE_RANGE))

write_csv(iqr_fltr_rle_summary_mod,
'../../../datafreeze_202111/data/iqr_fltr_rle_summary_20211122.csv')

ep_wt tallies

tally_type_list = c('unfiltered_tally',
 'qc1_passing_tally',
 'iqr_filter_qc1_passing_tally')

ep_tally = map(ep_tally_list, ~map(tally_type_list, reshapeEnvPertTallies, .))

ep_tally = map(ep_tally, setNames, tally_type_list)

RLE results

Norm Counts Iqr

note that this function requires that ep_list and ep_list_qc_passing_with_iqr
be in the namespace already (see the setup section)
TODO: save the norm count rle from the sample agreement step for this function
cumDistIqr = function(set_name){
 plot(ggplot() +
 stat_ecdf(data = norm_count_rle),
 aes(!!rlang::sym(paste0("ep_",set_name, "_iqr"))),
 color = 'orange') +
 stat_ecdf(data = extractColData(ep_list_qc_passing_with_iqr[[set_name]]),
 aes(!!rlang::sym(paste0("ep_", set_name, "_iqr"))),
 color = "blue") +
 ggtitle("orange = normalized counts; blue = libdate_model_removed_libdate"))
+
 scale_x_continuous(limits = c(0,1), breaks = seq(0,1,.05))+

https://purrr.tidyverse.org/reference/map.html
https://purrr.tidyverse.org/reference/map.html
https://purrr.tidyverse.org/reference/map.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/names.html
https://rdrr.io/r/base/names.html
https://rdrr.io/r/base/names.html
https://rdrr.io/r/base/names.html
https://brentlab.github.io/brentlabRnaSeqTools/reference/createEPTally.html

73

 scale_y_continuous(limits = c(0,1), breaks = seq(0,1,.05))
}

Environmental Perturbation – WT

unfiltered tallies

ep_tallywtunfiltered_tally %>%
 DT::datatable(
 options = list(
 pageLength=50,
 scrollX='400px',
 fixedColumns = list(leftColumns = 2),
 autoWidth = TRUE)
)

qc1 passing

ep_tallywtqc1_passing_tally %>%
 DT::datatable(
 options = list(
 pageLength=50,
 scrollX='400px',
 fixedColumns = list(leftColumns = 2),
 autoWidth = TRUE)
)

iqr filtered

ep_tallywtiqr_filter_qc1_passing_tally %>%
 DT::datatable(
 options = list(
 pageLength=50,
 scrollX='400px',
 fixedColumns = list(leftColumns = 2),
 autoWidth = TRUE)
)

Environmental Perturbation – Perturbed

unfiltered tallies

ep_tally$pert$unfiltered_tally %>%

https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/r/base/list.html
https://rdrr.io/r/base/list.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/r/base/list.html
https://rdrr.io/r/base/list.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/r/base/list.html
https://rdrr.io/r/base/list.html
https://magrittr.tidyverse.org/reference/pipe.html

74

 DT::datatable(
 options = list(
 pageLength=50,
 scrollX='400px',
 fixedColumns = list(leftColumns = 2),
 autoWidth = TRUE)
)

qc1 passing

ep_tally$pert$qc1_passing_tally %>%
 DT::datatable(
 options = list(
 pageLength=50,
 scrollX='400px',
 fixedColumns = list(leftColumns = 2),
 autoWidth = TRUE)
)

iqr filtered

ep_tally$pert$iqr_filter_qc1_passing_tally %>%
 DT::datatable(
 options = list(
 pageLength=50,
 scrollX='400px',
 fixedColumns = list(leftColumns = 2),
 autoWidth = TRUE)
)

Titration Tallies – WT

unfiltered tallies

ep_tally$titr$unfiltered_tally %>%
 DT::datatable(
 options = list(
 pageLength=50,
 scrollX='400px',
 fixedColumns = list(leftColumns = 2),
 autoWidth = TRUE)
)

qc1 passing

ep_tally$titr$qc1_passing_tally %>%

https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/r/base/list.html
https://rdrr.io/r/base/list.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/r/base/list.html
https://rdrr.io/r/base/list.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/r/base/list.html
https://rdrr.io/r/base/list.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/r/base/list.html
https://rdrr.io/r/base/list.html

75

 DT::datatable(
 options = list(
 pageLength=50,
 scrollX='400px',
 fixedColumns = list(leftColumns = 2),
 autoWidth = TRUE)
)

iqr filter

ep_tally$titr$iqr_filter_qc1_passing_tally %>%
 DT::datatable(
 options = list(
 pageLength=50,
 scrollX='400px',
 fixedColumns = list(leftColumns = 2),
 autoWidth = TRUE)
)

https://rdrr.io/r/base/list.html
https://rdrr.io/r/base/list.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/r/base/list.html
https://rdrr.io/r/base/list.html

	Scalable Software Infrastructure for the Lab and a Specific Investigation of the Yeast Transcription Factor Eds1
	Recommended Citation

	Abstract
	Chapter 1: Scalable, Portable Software for a Biology Lab
	Database Management of Sequencing Data
	brentlabRnaSeqTools: Package Infrastructure and Testing
	brentlabRnaSeqTools: Documentation
	brentlabRnaSeqTools: Application
	Calling Cards Pipeline Implementation in Nextflow

	Chapter 2: EDS1, A Novel Regulator at the Heart of the Hexose Transporter Expression Network
	Introduction
	Data
	Results
	Eds1p and Rgt1p Regulation of Hexose Transporters 1 through 7
	Eds1p and Rgt1p Regulation of the Hexose Transporter Network Regulators
	Regulation of Eds1 by Snf1, Mig1 and Mig2
	Eds1 Regulation of Lysine Biosynthesis

	Discussion
	References

	Appendix A: Eds1
	A1: Eds1/Rgt1 DNA Binding Domain Alignment
	A2: Eds1 and Rgt1 Genetic Interaction
	A3: High Confidence Regulators of Eds1

	Appendix B: brentlabRnaSeqTools
	B1: Getting Started with brentlabRnaSeqTools
	B2: Process a New Run From MGI
	B3: Environmental Perturbation Analysis Data Creation
	B4: 90 Minute Induction Analysis Data Creation
	B5: QC – Library Quality
	B6: QC – Replicate Agreement
	B7: Tally Experiment Sets

