Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-88-03

1988-02-01

LSIM2 User's Manual

Roger D. Chamberlain and Mark N. Edelman

Lsim2 is gate/switch-level digital logic simulator. It enables users to model digital circuits both
at the gate and switch level and incorporates features the support investigation of the
simulation task itself. Lsim2 is an augmented version of the original Isim* with the addition of
several new MSI-type components models. This user's manual describes procedures for
specifying a circuit in Isim2, mechanisms for controlling the simulation, and approaches to
modeling systems.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

6‘ Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Chamberlain, Roger D. and Edelman, Mark N., "LSIM2 User's Manual" Report Number: WUCS-88-03 (1988).
All Computer Science and Engineering Research.

https://openscholarship.wustl.edu/cse_research/760

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F760&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F760&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F760&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F760&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F760&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F760&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F760&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/760?utm_source=openscholarship.wustl.edu%2Fcse_research%2F760&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

LSIM2 USER’S MANUAL

Roger D. Chamberlain and Mark N. Edelman

WUCS-88-03

February 1988

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899

Lsim2 User’s Manual

by
Roger D. Chamberlain
and

Mark N. Edelman

Lsim2 is a gate/switch-level digital logic simulator. It enables users to model digi-
tal circuits both at the gate and switch level and incorporates features that support investi-
gation of the simulation task itself. Lsim2 is an augmented version of the original Isim*
with the addition of several new MSI-type component models. This user’s manual
describes procedures for specifying a circuit in /sim2, mechanisms for controlling the
simulation, and approaches to modeling systems.

* Chamberlain, Roger D., *‘Lsim: A Gate-Switch Level Logic Simulator,” M.S. Thesis, Department of
Computer Science, Washington University, May 1985,
Chamberlain, Roger D. and Mark A. Franklin, ‘*Collecting Data About Logic Simulation,”” IEEE Transac-
tions on Computer-Aided Design, Vol. CAD-5, No. 3, pp. 405-412, uly 1986.

Lsim2 User’s Manual

by
Roger Chamberlain
and
Mark Edelman

There are two major tasks involved in simulating a digital circuit. The first,
specifying the circuit to be simulated, is accomplished through the use of a textual circuit
description language. Circuit descriptions are processed by a translator and put into a form
that can be used by Isim2. The translation is performed by the circ2 circuit compiler. The
second task is the actual simulation of the circuit. A set of interactive commands has been
included to facilitate control of the simulation from within /sim2. In addition, the state of
the circuit can be retained by the simulator for use at a later time. This allows the user to
resume work exactly where he or she left off at a previous session. The flow of
information involved with the use of circ2 and Isim2 is represented graphically in Figure 1.
This document describes the model of the real world that is implemented by the simulator,
the format of the circuit description file that is input to circ2, and the interactive commands
input to Isim2.

An understanding of the model implemented by the simulator is essential for the
proper use of Isim2. There are always differences in the results of a simulation and
physical reality, and an understanding of the way the simulator views the real world can
help the user to minimize those differences. Also discussed are the results that can be
obtained from the simulator, both about the simulated circuit and about the simulation task
itself.

1. SIMULATION MODEL

An important consideration in any simulation is the model of the real world that the
simulator executes. Since any model is inherently limited in what characteristics it takes
into consideration, a knowledge of the way Isim2 models digital circuits is an essential first
step in the proper use of the simulator,

1.1. Logical States
The voltage levels that are associated with signal lines are modeled in Isim2 by one
of 7 logical states. These states are further divided into two major types, stable states and
transient states.
There are 4 stable states:
1 high
0 low
X undefined
z high impedance
The high state is used to model a high voltage, or a logical “‘1°*. The low state is used to
model a low voltage, or a logical *‘0”’, Undefined is used to represent an unknown state,
when little is known about the voltage level of the signal. High impedance is used to
model the high impedance output of components that have tri-state outputs.

Circuit
Description
File

Circ2
Circuit
Compiler

Compiled
Circuit
File

Lsim?2 Saved
Logic Circuit
Simulator File

Interactive
Commands

Simulation
Results

Figure 1. Lsim2 and Circ2

There are 3 transient states:

r rising
f falling
t transition to/from high impedance

These states are used to represent intermediate states during a transition between stable
states. The rising state is used during a transition from low to high, the falling state is used
during a transition from high to low, and the last state is is used as its name implies, during
a transition to or from a high impedance state.

The three transient states are only utilized in the variable delay model discussed
below. The unit and fixed delay models only use the first four stable states.

1.2. Current Drive Capabilities

Although Isim2 models signal levels with 7 logical states, there are some circuit
characteristics that require additional information for proper operation. The most notable
characteristic is the construction known as a wired-logic OR connection, where two or
more component outputs arc directly tied together and drive the same signal line. If the

March 1988 -2- Isim2

components that are tied together have tri-state outputs and all but one of them are in the
high impedance state, there is no trouble involved in determining the resulting state of the
signal, it simply follows the logical state of the enabled component output. However, if
two or more component outputs are enabled and are in two or more different states,
additional information is needed to determine the resulting state of the signal.

For this reason, Isim2 models the output current drive capability of a component as
one of two values, either strong or weak. Strong drive capability is intended to represent a
direct connection to an established voltage source, either the power supply, ground, or a
connection to an active transistor whose other side is connected to power or ground. Weak
drive capability is intended to represent a resistive connection to an established voltage
source, such as the resistive pullup provided by a 4:1 depletion mode transistor in NMOS
designs.

With the additional current drive capability information available, the simulator is
now able to determine the resulting logical state of the signal in wired-logic OR
connections. In a two component wired-logic OR connection, if one component has a high
output and a weak high drive capability and the other component has a low output and a
strong low drive capability, the resulting signal state is low. If both component outputs
have the same drive capability and different output states, the resulting state of the signal is
undefined.

1.3. Delay Models

There are three delay models supported within /sim2, the unit delay model, the fixed
delay model, and the variable delay model. They each provide different types of
information about the circuit being simulated.

The simplest delay model supported is the unit delay model. Timing issues are
completely ignored in this model and all components are assumed to have a delay of one
unit. This unit delay is not intended to have any relationship with actual time, but instead
is used to provide a mechanism for providing functional simulation of the circuit without
the overhead involved with more accurate timing simulations.

The second delay model supported is the fixed delay model. Lsim2 treats each
component as having a fixed low to high propagation, high to low propagation, enable, and
disable time associated with each output. Whenever the component is evaluated and it is
determined that an output is to change state, a component output modification event is
scheduled for the current time plus the fixed time associated with the delay through the
gate. For worst case analysis the maximum delay through a gate is specified as the fixed
delay. However, the user can specify typical delays if he or she so desires.

The most accurate delay model takes into account the fact that not all components
can have a fixed propagation delay associated with them, but are more realistically
modeled by a variable time range within which the output medification is assumed to take
place. The variable delay model uses a minimum and maximum value associated with
each of the delay times specified, and signal levels are modeled by the transient states
rising, falling, and transition to/from high impedance during the time between the known
stable states.

1.4. Timing Specifications

There are a total of 12 different delay specifications associated with the delay through
a component, as well as setup and hold times that can be associated with component
inputs, Of the 12 delay specifications, 4 are for use with the fixed delay model and 8 are

Isim2 -3 March 1988

used with the variable delay model. In addition it is possible to specify multiple delays
through the MSI-type components. These multiple delays allow the model to more
accurately reflect the operation of more complex types of components. The timing
diagram shown in Figure 2 illustrates two of the four delay specifications that are used
with the fixed delay model, low to high and high to low propagation delay. The output
enable time and output disable time follow a similar pattern for going 1o and from the high
impedance state.

Timing diagrams that illustrate the variable propagation delays are given in Figure 3.
The ambiguous regions are the points at which the signal is represented by one of the
transient logical states. Note that the maximum time is measured from the point at which
the signal reaches its final value, not from where the change begins. A general rule of
thumb is that input transient states cause transient states at the component output and input
stable states cause stable output states,

component input

component output

s | pee——

Tom Ton

Figure 2. Fixed delay specifications

maximum T, minimum 7,

1

component input

component output

minimum Tpp

maximum T,

Figure 3. Variable delay specifications

March 1988 g Isim2

Setup and hold times are used to specify input timing requirements for memory
elements (flip-flops, latches, counters, etc.). The setup time associated with an input to a
component tells how long the logical state of the input signal must be stable before the
data is latched into the component by the clock input. Violation of the setup time is
detected by the simulator and reported to the user as an error condition. The hold time
tells how long the logical state of a component input must remain stable after the data has
been latched by the clock input. Violation of the hold time is treated similarly to the setup
time. The time the data is latched by the clock input is dependent upon the type of
component involved, a level sensitive D flip flop is latched on the falling edge of the clock
input, while an positive edge triggered flip flop is latched on the rising edge.

1.5. Error Detection

There are several types of errors that can occur in a digital circuit. Setup time and
hold time violations have already been mentioned. In addition, Isim2 detects spike errors
and signal level errors.

A spike condition occurs when one or more input values to a2 component are modified
before a scheduled output change has time to propagate though the component. This might
be the case if there are static hazards in the circuit. Since such conditions are not
necessarily considered erroneous in synchronous circuit design, Isim2 allows error
detection 1 be mumed off using the noerr command.

A signal error results when a signal that is connected to more than one component
output is driven by a strong current drive capability in more than one logical state. For
example, if one component output was driving the signal with a strong ‘‘1’’ (high) state
and another component output was driving it with a strong ‘0"’ (low) state, a signal error
will result. In cases such as this, the error is reported if error reporting has not been
disabled, and the logical state of the signal is set to **x’* (undefined).

2. A SIMPLE EXAMPLE

In order to bring together an understanding of how to simulate a digital circuit with
Isim2, a complete example is presented below.

2.1. Circuit Specification and Compilation

The first step involved in simulating a circuit is describing the properties of the
circuit in a machine readable format. This circuit description must include information
such as the gates to be simulated, their interconnections, delays, and other properties. In
order to facilitate this description, the circ2 circuit compiler has been developed to
translate a text file description of the circuit of interest into a format readable by Isim2.
Figure 4 is the schematic diagram of a simple three gate digital circuit that will serve as an
example for explaining the use of circ2 and Isim2. Note that there are labels on every
component and signal line. This labeling process is the first step involved in generating a
circuit description for input to circ2. A complete description consists of the following
parts:

general delay specifications (optional)
component type definitions

macro definitions (optional)
environment specification

netlist description

This is fully discussed in later in this document. A limited discussion is given below,

Isim2 -5- March 1988

i1

norl

notl

dout.h

dout.]

clk.h

Figure 4. Example circuit

along with the description of the example circuit (Figure 5).

There are two delay specifications defined, called comdel and memdel. ‘“Comdel’”
and “‘memdel’’ are user selected identifiers that will be referenced later when defining
component types. They associate minimum, maximum, and fixed low to high propagation,
high to low propagation, output enable, and output disable times with the given identifier.

There are three component types defined by the user in the circuit description,
nmos_inv, nmos_nor, and dflip_flop. They reference the built-in functions not, nor, and
dff, respectively, Not and nor are standard combinatorial gates, dff is a level sensitive
D flip flop. The other parameters in the type definition indicate the number of inputs,
output current drive capability, setup time, hold time, and delay specification to be
associated with the type. Default values are used when a particular parameter is not
explicitly given.

The environment specification defines the primary inputs to the circuit as the signals
a.h, b.h, and ¢lk.h and the primary outputs from the circuit as dout.h and dout.l.

The netlist description is where the actual components themselves first get
mentioned. Norl and notl are defined as components of types nmos_nor and nmos_inv
respectively, with their respective input and output signals indicated. The gate named ff1
is defined as a component of type dflip_flop with input signals clk.h and di.h and output
signals dout.h and dout.l. The order of the input signals is important in the description of
ff1, since that is how circ2 determines which signal is the clock signal and which is the
data. The same is true for the output signals as well, the order they are specified
determines which is the true output and which is the complemented output.

If the text of Figure 5 is stored in a file named circuit.ci, circ2 must now be invoked
in order to translate this text file into a format readable by Isim2. The following command,

% cire2 circuit.ci circuit.ls

March 1988 -6- Isim2

Example circuit specification

begin circuit
begin delays
comdel = (8,12,12 $% 2,3,3)ns;
memdel (4,6,6 5 4,6,6)ns;
end delays;
begin types
nmes_inv = (not, dc=(weak, strong), comdel);

]

nmos_nor = (nor, pins={2), dc=(weak, strong), comdel);
dflip flop = (dff, sht=(3ns, 1lns), memdel);
end types;

begin environment
inputs = (a.h,b.h,clk.h);
outputs = {(dout.h,dout.l};
end environment;
begin components
norl = {(nmos nor, inputs = (a.h, b.h), outputs = (di.1l));
notl = {(mmos inv, inputs = (di.l), outputs = (di.h));
f£f1 = (dflip flop, inputs {clk.h, di.h),
outputs = (dout.h, dout.l));

end components;
end circuit;

Figure 5. Example circuit specification

inputs the file circuit.ci and puts the resulting translated description in the file circuit.ls.
This fite will be read in the next section to input the circuit description into Isim2.

2.2. Interactive Simulation

Once a digital circuit has been specified and compiled using circ2, it is ready to be

simulated. If [sim2 is invoked with circuit.ls as an argument,

% lsim2 circuit.ls
the file circuit.ls is assumed to be a previously compiled circuit description and is read in
to the simulator. At this point, isim2 outputs a message concerning the input file and the
current simulated time, outputs a prompt,

Simulator state input from file circuit.ls

Current simulated time = 0 units.

lsim2>
and waits for an interactive command to be entered by the user. Some of the more
important commands are those involved with describing the inputs to the simulated circuit
and the form of the output required. The following commands set up these parameters for
the current example.

Isim2 -7- March 1988

lsim2> set 0 a.h

lsim2> input k.h 0000000011111111 p

1sim2> input c¢lk.h 00001100 p

lsim2> watch a.h b.h di.l1 di.h clk.h dout.h dout.l
lsim2> output 1

The first command establishes a static low level (i.e. ““0”) at the primary input signal a.h.
The second two commands define pericdic waveforms to drive the primary input signals
b.h and clk.h. The waveforms generated by these commands are shown in Figure 6. The
b.h input has a period of 16 units and the clk.h input has a period of 8 units. The watch
command tells the simulator which signals are to be output on a periodic basis, and the last
command, oufput, specifies that the output period is to be 1unit. In this example, the
default unit delay model is used. Thus, delays through circuit components are each one
generic time unit. The periods referred to in the input and output commands are also in
terms of these generic units.

The status of all the signals being watched can be determined at any time during the
simulation through the use of the status command. Figure 7 shows a sample terminal
session that includes all of the commands that have been issued up to the current time.
The *“*x’” indicated as the logical state of the signals di.l, di.h, dout.h, and doutl is to
signify that the voltage level of the signal is undefined. The state of the other three signals
was established by the previously executed set and input commands. The numbers in the
final column are included to associate a signal with the appropriate column of the output of
a simulation run. This will be clarified in the next couple of paragraphs.

Once the signals for the primary inputs have been established, the simulation is ready
to begin. The following two commands will run the simulation for 32 time units, or 4
clock cycles with a clock period (signal clk.h) of 8 units.

1sim2> cont 32

This command tells /sim2 that it should continue operation until time = 32 units has been
reached. The output of the simulator is given in Figure 8.

The numbers found at the top of each column of output correspond to the signals
being waiched. The correlation between the numbers and the signal names can be
determined by examining the output of the status command given in Figure 7. The input

1
a.h

0

1
b.h

0

I N A

Figure 6. Input waveforms

March 1988 -3- Isim2

% 1sim2 circuit.ls

Simulator state input from file circuit.ls

Current simulated time = Q0 units.

lsim2> set 0 a.h

1sim2> input b.h 0000000011111111 p

lsim2> input clk.h 00001100 p

1sim2> watch a.h b.h di.1 di.h clk.h dout.h dout.l
lsim2> output 1

1lsim2> status

a.h = (0 (watched) (1)
b.h = 0 {watched) (2)
di.l = x (watched) (3)
di.h = % {watched) (4)
clk.h = 0 {watched) (5)
dout.h = x (watched) (6)
dout .} = x (watched) (7)
ilsim2>

Figure 7. Sample terminal session

waveforms from Figure 6 can be seen in columns 1 (a.h), 2 (b.h), and S (clk.h). The
remaining signals can be seen to change 1 unit after their respective inputs change. Signal
di.l changes 1 unit after b.h changes and di.h switches 1 unit after that. Signals dout.h and
dout.l change 1 unit after the clk.h signal goes high. The vertical orientation of the output
is chosen to simplify long outputs that are to be printed on continuous forms and to
improve the portability of the system among standard terminals by not requiring any
special curser positioning capabilities.

At this point the user could proceed in a number of directions. The current
simulation could be continued by specifying another cont command, the delay model could
be changed to either fixed delay or variable delay through the use of the init command, the
current state of the simulation could be stored in a disk file with the save command, a
previously saved simulation could be input with the read command, or the session could be
terminated with the quit command. The details of all available options available for
specifying circuits to circ2 and for controlling simulations from within Isim2 are discussed
in the sections that follow.

3. CIRCUIT COMPILER

This section describes the input to circ2, the circuit compiler used in conjunction
with Isim2. First a description is given of the parameters that are specified about various
parts of the circuit. Then the input syntax for circ2 is presented.

3.1. Circuit Specification

The following information is supplied to circ2. The input syntax used to specify the
information is described in the next section.

Isim2 -9- March 1988

lsim2> cont 32

(JD--.JO'\(J'I»@-UJI\JHOE;
-
ot
0]

A=

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

|0
|0
|0
10
[C
10
io
i0
[0
|0
{0
|10
[0
|0
10
10
10
|0
|0
10
Y
10
10
[0
|0
10
|0
{0
10
[0
10
10

{0
10
0
[0
[0
10
10

10
[0
|0
|0
[0
10
{0
o
I

2

110
110
110
110
110
1}0
110

1]

110
1|0
110
1]0
110
1]0
1lio0

Simulation halted

lsim2>

x|

1]
110
1|0
1j0
110
1(0
110
110
10

1]

110
110
110
1o
1|0
1j0
10

% |0
x |0
|0
10

|

I
|0
{0
10
[0
1|0
10

1]

1]
110
110
110
1i{0
]
| O

!

I
10
|0
10
1]
1i0
1]0

1]

1]
110
1i0
time

HOMOM MM

1]

110
0
[0
|0
|0
|0

110

1]
1/0
10
0
[0
|0
0
[0
110
1
t
|

= 32 units.

Figure 8. Simulator output

I
f
[
I
I
I
I
I
I
!
I
!

|
1|0
10
1|0
110
110
110
110
110

[

I
I
[
|
I
f
I
110

110
110

HoWoM oW N

March 1988

-10-

Isim2

Signals
Each signal is given a unique name for identification.
Components

unique name for identification

logic function

number of inputs and outputs (only for variable input or output gates)

names of input signals

names of output signals

output signal driving capability

parameters for tailoring operation of MSI components

timing information
Iow to high, high to low propagation times
output enable time, output disable times
setup, hold times

Some of the above information has default values associated with the logic function, but
these may be overridden for individual components. The logic functions that are available
for defining circuits are described in Appendix A. Along with the functions themselves,
the appendix gives the default values for the other parameters associated with the function.

3.2. Macro Definitions

Macro definitions are allowed in the circuit description language. The macro circuit
is described just as any other circuit, with the exception that the macro must be given a
name so that it can later be specified as a component in a larger circuit. When referencing
a macro, the macro name is given as the logic function of the component in place of one of
the built-in functions. Macros may be nested, as long as the referenced macro has been
defined earlier. Recursive macro definitions are not supported.

The macro facility is provided for two reasons. One, if the circuit consists of
multiple copies of a group of components, macro definitions can greatly decrease the
quantity of user generated input required to specify a circuit. This is often the case for
digital circuits. Two, the ability to define a large functional unit as a macro can help
simplify the specification of a large circuit by allowing one to include an independently
specified subsection of the circuit without concern for naming conflicts between the
subsection and the remainder of the circuit. This is analogous to the ability to use the same
name for more than one variable in block structured programming languages.

3.3. Input Syntax

The following is a description of the input syntax of circ2, the circuit compiler
designed for use with Isim2. The circuit description is divided into five sections, delay
specifications, type definitions, macro definitions, environment specification, and netlist
description. All identifiers in the circuit description must consist of a sequence of letters,
digits, and the characters *.’, *_’, °[’, ‘1", and *”, starting with a letter or the character ‘[".
Comments begin with a ‘#’ and continue to the end of the line. The overall block structure
is as follows:

Isim2 -11- March 1988

begin circuit
delay specifications
type definitions
macro definitions
environment specification
netlist description
end circuit;
The delay specifications and macro definitions are optional.
The first section, delay specifications, associates a name with a set of delay values.
The name is later referenced when the delay values are to be associated with component
types and individual components. The syntax is:
begin delays
delayname = (low to high propagation times $
high to low propagation times $
enable times $ disable times) timescale;

delayname = (low o high propagation times $
high to low propagation times $
enable times $ disable times) timescale;
end delays;
where each of the four times may consist of:
minimum time, maximum time, fixed time

for the corresponding change. Not all four times need be specified, default conditions are
interpreted as follows:

(@ - (2$2%$0,00%00,0
(a$b) - (a$b3$0,0,050,00
(a$8%c) Y (a$a$cso)

(@a$bsc) - (a$bscso)

The meaning of each time specified is somewhat self-evident, the low to high propagation
times refer to the time required for a low to high transition of a component output, the high
to low propagation times refer to a high to low transition, the output enable times refer to
the time required to leave a high impedance state, and the output disable times refer to the
time required to enter a high impedance state. The time scale is one of the following:

ms milliseconds

us microseconds
ns nanoseconds
ps picoseconds

The default scale is nanoseconds. The following conditions must hold for the delay times:
minimum time < fixed time < maximum time

If the fixed time is not given, it defaults to the maximum time. If either the minimum or
maximum times are not given, they default to the fixed time. If only one time is given, all
three times take the given value. The above rules apply to all time specifications, low to
high and high to low propagation times, enable times, and disable times, and are checked
by circ2 to ensure that they are met.

March 1988 -12- Isim2

The following delay specification is from the example circuit described previously:

begin delays
comdel = (8,12,12 $ 2,3,3)ns;
memdel = {4,6,6 $ 4,6,6)ns;
end delays;

It defines two delay specifications, called comdel and memdel. Comdel indicates a
minimum low to high propagation delay of 8 ns, a maximum and fixed low to high
propagation delay of 12 ns, a minimum high to low propagation delay of 2ns, and a
maximum and fixed high to low propagation delay of 3 ns. The enable and disable times
all defaultto 0 ns. Memdel has a minimum low to high and high to Iow propagation delay
of 4 ns, as well as maximum and fixed propagation delays of 6 ns. Its enable and disable
times also default to 0 ns.

The delay specifications given above provide sufficient information for the simulator
to model the circuit using a unit, fixed, or variable delay model. The model that is actually
used depends upon the interactive commands given by the user during the simulation run.

With the MSI-type components it is possible to define more than one delay for use in
the operation of a single component. These multiple delays are named using a base name
and a set of input/output suffix labels. The details of this naming scheme will be covered in
the coming sections.

The second section of the input to circ2, type definitions, associates the following
information about a component type with a unique name to identify the type:

logic function
number of inputs and outputs
setup and hold times
output driving capability
parameters for tailoring operation of MSI components
delay specification
The syntax of the type definition section is:
begin types
typename = (function, pins=(inputs,outputs),
sht=(setuptime, holdtime),
de=(high_drive_capability, low_drive_capability),
param=(md=mode,wid=width,sz=size,
msc=miscellaneous,clkopt=clock_options,
clropt=clear_options)
delayname);

typename = (function, pins=(inputs,outputs),

sht=(setuptime, holdtime),

dc=(high_drive capability, low_drive_capability),

param=(md=mode,wid=width,sz=size,
msc=miscellaneous,clkopt=clock_options,
clropt=clear_options)

delayname);

end types;

The parameters associated with a type definition are listed below:

Isim2 -13- March 1988

function reference to a built-in function
pins ordered pair of number of inputs
and number of outputs
sht ordered pair of setup time and hold times
dc output high and Iow current drive capability
param list of MSI specific parameters
delayname previously defined delay specification

The only essential piece of information is the function (and the pins and param sections for
the MSI components). All other parameters have a default value associated with the
function. These default values, along with a list of the available built-in functions, are
provided in Appendix A.

Again referring to the example described previously, the following type definitions
were made:

begin types

nmos_inv = (not, dc=(weak, strong), comdel);
nmos_nor = (nor, pins=(2), dc={(weak, strong), comdel):
dflip flop = (dff, sht=(3ns, Ins), memdel);

end types;

There are three type definitions given in the above example. Nmos_inv references the
built-in function not, specifies a weak, or resistive, high drive capability, specifies a strong
low drive capability, and references the previously defined comdel delay specification.
Nmos_nor references the nor built-in function, indicates that there are to be two input
signals (pins = (2)) to components of this type, and specifies the same drive capability and
delay specification as the nmos_inv type. The dflip_flop type definition references the
built-in function dff, a level sensitive D flip flop that retains the D input at its outputs when
the clock input goes low, provided the setup and hold times are met. It has a setup time of
3ns, a hold time of 1ns, and references the memdel delay specification. The drive
capability for this type defaults to strong high and strong low.

In addition to the delay explicitly associated with the component type through the
type declaration, the MSI components can utilize additional delays to allow different
delays to be associated with different input/output pairs. These delays are referenced
through the named delay making use of several two letter suffix combinations. The delay
name given in the type specification is used as a base for the determination of the
alternative delays to use. The altemnative names are formed by replacing the last two
characters of the original delay name with the two letter suffix that corresponds to the
correct input/output pair. If a delay with the indicated name is not found, the origional
delay remains in use. For example, an MSI RAM component has four delay suffixes:

€0 - output enable delay

do - data in to data out delay

ao - address in to data out delay

¢o - chip select in to data out delay

If the delay declaration section included the following:

ramleo = (12,20,15);
ramldo = (25,50,30);
ramlaoc = (17,45,20);

and the type declaration for this RAM was:

March 1988 -14- Isim2

ram_1 = (ram,pins=(8,3),param=(md=0,wid=3,s2z=3,msc=100), ramleo);

then output enable signal changes would utilize the delays specified by ram1eo, data input
changes would utilize those specified by ram1do, and address input changes those specified
by ramlao. Since the fourth suffix combination, co, was not defined, the delays used when
the chip select input changes will be those specified by the delay explicitly associated with
the type declaration {ramIeo in this case).

The third section consists of macro definitions. Macros are used to associate a single
name with a group of components. The syntax for defining macros is as follows:

begin macro macroname
environment specification
netlist description

end macro;

begin macro macroname
environment specification
netlist description

end macro;

The environment specification and netlist description are syntactically the same as the
sections described below. The environment specification defines the inputs and outputs of
the macro, and the netlist description defines the internal details of the macro.

The fourth section of the input to circ2 is the environment specification. This section
identifies the primary inputs and outputs of a circuit or a2 macro definition. The input
syntax is as follows:

begin environment
inputs = (signalname, signalname, ...);
outputs = (signalname, signalname, ...);
end environment;
Circ2 requires that all signals be driven by at least one component output or be listed as
primary inputs. An error message is generated if this requirement is not met. Although it
is possible to set the value of any signal, periodic input waveforms can only be specified
for primary inputs.

The final section is the netlist description. This is where the individual components
that make up the circuit or macro are specified and their interconnections indicated. The
type definitions given previously are referenced here and the following additional
information is given for each component:

unique name

names of component input signals

names of component output signals

mask information (for ROM and PL.A components only)

The syntax for the netlist description is:

lsim2 -15- March 1988

begin components
componentame = (typename,
inputs = (signalname, signalname, ...),
outputs = (signalname, signalname, ...),
mask = (mask_type,mask_contents));

componentname = (typename,
inputs = (signalname, signalname, ...),
outputs = (signalname, signalname, ... },
mask = (mask_type,mask_contents));
end components;

The syntax for the mask portion of the netlist description is:
mask = (ROM, wordl,word2,word3,...);
for a ROM component and:
mask = (PLA, eqnl,eqn2,eqn3,...);
for a PLA component, where word1, word2, word3, ... are decimal values that represent the
contents of the ROM being specified. If the width of the binary equivalent for the decimal
value given for a word is smaller than the word width of the ROM, the given value is

padded with zeros to match the ROM word length, Similarly, if the required width is
greater than the ROM word width the excess information is truncated.

The syntax for the PL.A equations is:
output_name = product + product + ...
where + stands for a logical OR operation. A product is defined as:
product = input_name * input_name * ..,

with * standing for a logical AND operation. The names used within the equation
descriptions should correspond to the names given in the first portion of the netlist
description for the PLA component. The input name may be prefaced with an
exclamation mark (1) to denote complementation of the input signal within the product
term.

The typename can be either a type defined in the type definitions section of the
circuit description or a macroname defined in the macro definitions section. If it is a
macro, the input signals and output signals refer to the primary inputs and outputs
indicated in the macro definition. Additionally, if the typename refers to a macro, the
mask option is not valid since that option is utilized only at the component level. It is
important for the number of inputs and outputs to correspond exactly with the number in
the referenced type or macro, otherwise an error will result. If the netlist description is
within a macro definition, other macros can still be referenced as component types,
provided that the referenced macro has been previously defined. In other words, no
forward references are allowed when defining macros.

The following example illustrates the use of macros in describing a circuit for input
to circ2. The circuit to be described, shown in Figure 9(a), is an 8 bit even parity
generator. The two blocks of the circuit that are surrounded by the dotted lines are the
same, and are therefore excellent candidates to be defined as a macro. The circuit inside
the blocks is shown again in Figure 9(b). The macro is given the name ‘‘evenpard”’ to
signify that it is a 4 bit even parity generator. The complete circuit description is given in

March 1988 -16- Isim2

d2.h !
o>

d3. : xorl

L e e —— e J . evenpar.h

T _1) >—

(a) complete circuit

ixorl

il intl

Q? > ' ixor3

I evenp
e) >—
i3

i; ;E int2

(b) macro evenpar4

Figure 9. Eight bit parity generator

Figure 10. The components Ixor and hxor are actually references to the macro evenpar4,
and are expanded into the 3 components that make up the macro during compilation by
circ2. The inputs and outputs listed with 1xor and hxor are placed into one to one

Isim2 -17- March 1988

Eight bit parity generator

begin circuit
begin delays
xordel = (10 $ 10)ns;
end delays:
begin types
ttl_xor = (xor, de=(strong, strong), xordel):
end types;
begin macro evenpard
begin environment
inputs = (i1,12,i3,i4);
outputs = {(evenp):
end environment;
begin components
ixorl = (ttl_xox, inputs=(il,i2), outputs=(intl));
ixor2 = (ttl xor, inputs=(i3,id), outputs=(int2)}:
ixor3 = (ttl_xox, inputs=(intl,int2), outputs={evenp)):
end components;
end macro;
begin environment
inputs = {(d0.h,dl1.h,d2.h,d3.h,d4.h,d5.h,d6.h,d7.h);
outputs = (evenpar.h);
end environment;
begin components
lxor = (evenpard, inputs={d®.h,dl.h,d2.h,d3.h),
outputs={(lpar)):;
hxor = (evenpard4, inputs=(d4.h,d5.h,d6.h,d7.h),
outputs={hpar)}:
xorl = (ttl xor, inputs=(lpar,hpar), outputs={evenpar.h));
end compeonents;
end circuit;

Figure 10. Parity generator circuit description

correspondence with the signals listed as inputs and outputs in the environment
specification within the macro definition.

There are a couple of things worth noting at this point that pertain to the use of
macros. Note that the components and signal lines inside the macros are not labeled in
Figure 9(a). When the user wishes to identify a particular point within a macro to the
simulator, the name is input by identifying the macro, typing a ‘/*, and then identifying the
point within the macro. For example, the command

watch Ixor/int1
tells Isim2 to watch the intl signal within the Ixor macro. Unique points within nested

March 1988 -18- Isim2

macros are identified by extending the above notation with additional macro names
separated by ‘/* characters. The signals listed in the environment specification of the
macro are referenced by the name under which they are known in the circuit description
one level up, where the macro is called and input and output signal names are given.

4. INTERACTIVE CONTROL

The parameters used in controlling the simulated circuit fall into two major
categories, those that are fixed for the duration of a simulation run, and those that can be
modified during the run. Fixed parameters include the number of logical states used in the
simuiation, the delay model used in the simulation, and the resolution of simulated time
(the smallest increment of time representable during the simulation). Modifying these
parameters requires the circuit to be reinitialized and the simulation to start again at
time = 0. The second category is the set of dynamically modifiable parameters. These
parameters may change several times during a single simulation run. They generally
control the operation of the simulator: input specification, output specification, traced
signals, watched signals, error reporting, forced signals and components, and data
collection.

4.1. Fixed parameters
Parameters that are fixed for the duration of a simulation run;

Number of logical states
4 high, low, high impedance, undefined
(for use with unit or fixed delay model)
7 high, low, high impedance, rising, falling,
transition to/from high impedance, undefined
(for use with variable delay model)

Delay model
unit delay
fixed delay
variable delay

Time resolution

The unit delay model is used to test the functional accuracy of the circuit, without
concern for timing issues. All components are simulated with a delay of 1 unit, where the
unit is not associated with any real time value. This model provides for the fastest
execution time, but provides only functional information about circuit performance.

The fixed delay model is used when a more accurate timing model is desired.
Components are modeled by a fixed time delay, for worst case analysis a maximum
propagation delay would be used. The delay can vary from component to component, and
the low to high and high to low propagation delays can be different as well,

The most accurate timing model supported is the variable delay model. Propagation
delays through individual components are characterized by a maximum and a minimum
value, and the output signal goes to an intermediate logical state during the time interval
between the maximum and minimum propagation delays.

There is a potential tradeoff between the execution time of the simulator and the
resolution of the simulated time clock. This is due to the assumptions made about event
distribution that were used to speed up the event queue processing. With a very fine

Isim2 -19- March 1988

simulated time resolution it is possible to defeat the assumptions, slowing down the
processing of the event queue and thereby slowing down the simulation as a whole. As
long as the ratio of the time resolution to the maximum delay specification is somewhat
less than 1000, the assumptions should not be endangered and no performance degradation
should result. For example, if the time resolution is specified at .1 ns, there should be no
problem with the above considerations as long as the maximum delay specification for
components in the circuit is less than 100 ns.

4.2, Simulation startup

In order to startup Isim2 and initialize the simulation, the following command is
given to the operating system,

% lsim2 circuit.ls circuit.init

Circuit.ls is assumed to be the output of the circ2 circuit compiler or the result of a
previously executed save command from within Isim2. Lsim2 will initially execute
interactive commands from the file circuit.init if present, as well as from the file Isimrc in
the user’s home directory.

4,3, Interactive commands

There are a host of commands that can be interactively entered during the simulation.
These commands are provided to control the runtime operation of Isim2. They generally
provide control over the set of dynamically modifiable parameters associated with the
simulation, including input specification, output specification, tracing signals, watching
signals, error reporting, forcing stuck-at conditions on signals and components, and
controlling data collection. They also provide control over the fixed, or static, parameters
described previously. Commands arc normally terminated with newline, but can carry
over to multiple lines by preceding the newline with a ", When specifying a list of
components or signals as arguments to a command, the standard wildcard characters, ‘*’
and.‘?’, operate as one would expect. All of the commands can be given through the use of
an indirect command file as well as directly from the terminal. The commands are as
follows:

1. Alias command

alias

alias id

alias id command
Associate the string id with command so that id can subsequently be used in place of
command as an interactive input. When no arguments are specified, the current list of
aliases is reported. If only id is given, the alias associated with id is reported. For
example,

lsim2> alias s set 0

1sim2> s a.h

will set the signal a.h to 0.
2. Collect command

March 1988 -20- Isim2

collect on

collect on file

collect out

collect out -p

collect out -c component ...
collect off

collect off -p

collect off -c component ..,

‘Tum the data collection facilities on or off, or output data collection results, depending on
the argument given. Data collection is initially off. This is useful for monitoring small
parts of the simulation without clouding the data with uninteresting portions of the task,
such as reading in the circuit description from a disk file. If file is specified, raw data is
output to the file suitable for input to the § statistical analysis package. The ““-p”’ flag
causes comumunication between partitions to be reported. The ‘“‘-¢’’ flag causes the
reporting of the number of events processed for each component listed. The two flags can
be combined in one command,

3. Cont command

cont
cont time

Continue the simulation for the specified time. If time is not specified, the time given with
the last invocation of the cont command is assumed. This command allows the user to
easily run the simulation for a specific amount of time in a repetitive fashion, as is often
the case when simulating clocked circuits,

4. Debug command

debug on
debug off

Turn the debugging output on or off, depending on the argument given. The initial value
is off. The output supplied includes messages conceming events being scheduled, retrieval
of events from the event queue, and a variety of other messages that are conditional on
compile time switches.

5. Force command

force state signal ...
force state -i component/inp ..,
force state -0 component/outp ...

Force the level of the specified signals, component inputs, or component outputs o the
given logical state. This simulates a stuck-at condition for fault simulation. For example,

1sim2> force 1 a.h

puts the ah signal in a stuck-at-1 state. The logical state of this signal now cannot be
modified by the simulator until it is explicitly freed using the free command described
below. Component inputs and outputs are numbered starting with 1, so the output of a gate
with only a single output would be specified by component/1. The “*-i’’ and ‘‘-0’’ signify
that the identifiers to follow are component inputs and outputs, respectively. They do not
have to be immediately after the state specification, but may follow a list of signals. A
‘“—s’” option is also available, to signify that the identifiers to follow are signals. This is to
allow signals to follow component inputs and outputs on the command line. For example,

Isim2 -21- March 1988

force 0-ff12 -sah

force to state O (—I ’
component input to follow

component name
component input #2
signal to follow
signal name -

would put both the second input to the component ff1 and the signal a.h in a stuck-at-0
state. Wildcarding is not allowed for component inputs and outputs, but is supported for

signals.

6. Free command
free - *
free-o *
free signal ...

free -i component/inp ...

free -o component/outp ...
Free the specified signals, component inputs, or component outputs from their stuck-at
fault condition as established by the force command. This allows the simulator to set their
logical state. The *‘-i”’, “*-0’", and ‘‘-s’’ options work as in the force command. For
example,

free -0 notl/l

component output to follow <—‘ '
component name

component input #1 =

frees the first output of component notl from a previously specified stuck-at condition.
Specifying ‘‘*”’ as the argument frees all the component inputs or outputs that are
currently being forced. This is the only wildcarding allowed for component inputs and
outputs. Signal wildcarding is fully supported.
7. Halt command

halt time
Halt the simulation at the specified simulated time. This command allows the user to
regain control of the simulation at some predetermined simulated time.
8. Init command

init

init delmodel

init time

init delmodel time
Reinitialize the simulator state, setting all signals to “*x’” (undefined) except the primary
inputs. Delmodel must be one of “‘unit’’, ‘“fixed’’, or ““variable’’. If specified, it is used
as the delay model in further simulation. The initial delay model is unit delay. Time is

March 1988 -22- Isim2

used to set the resolution of the simulated time clock, the initial value of which is 1 ns.
This is the command that sets the fixed parameters described in the previous section. Note
that these parameters can only be changed when the simulator state is being reinitialized.
For example,

1sim2> init varxiable 100 ps

reinitializes the simulator, indicates the variable delay model is to be used, and specifies
the resolution of the simulated clock as 100 ps, or .1 ns.
9. Input command

input signal statelist

input signal statelist p

input signal statelist time

input signal statelist p time
Specify periodic input for signal. Statelist is the sequence of logical states for the signal to
traverse. A repetition factor may precede a state in the list if it is delimited by parentheses,
If the “‘p*” is given, the sequence of states is assumed to be repeating. This is the
mechanism used to specify periodic input waveforms, such as clock signals. Time is the
time associated with each state in the list, the default value is 1 ns. For example,

input phil (49)10(4900 p
input phi2 (49004910 p

signal name =

repetition factor
logical state =

logical state

repetition factor
logical state =

logical statc -=

indicate pericdic input -

A

Defines two periodic inputs on the signals phil and phi2, each with a period of 100 ns.
The signal phil is high for 49 ns and then low for 51 ns. The signal phi2 is low for 50 ns,
high for 49 ns, and then low for 1 ns. These two signals could then be used as a 10 Mz
two phase non-overlapping clock input. The signal must be a primary input, one of the
signals given in the environment specification of circ2.
10. Link command

link file

link file entrypoint ...
Dynamically link the specified file to Isim2 so that the entrypoints can be called using the
run command. If no entrypoints are specified, *‘_sim’’ is assumed.
11. Noerr command

noerr signal ...
noerr -c component ...

Ignore error messages concerning the given signals or components. The ‘‘-¢”’ signifies
that the identifiers to follow are components. It does not have to be immediately after the
noerr command, but may follow a list of signals. A ‘‘-s’’ option is also available, to

Isim?2 w23 March 1988

signify that the identifiers to follow are signals. This is to allow signals to follow
components on the command line. For example,

1sim2> noerr -c *

tums off error reporting for all components in the circuit; spike errors, setup time
violations, and hold time violations are not longer reported to the user when they occur.
12, Output command

output time

outpuf -t time

output off
Periodicaily output the logical state of watched signals. The period is set by the input
time. If the *‘-t” option is given, output is assumed to be going to the terminal and the
column headers are repeated every 24 lines. If the argument is *‘off’’, periodic output is
stopped.
13. Quiet command

quiet on

quiet off
Tum quiet mode on or off, depending on the argument given. Quiet mode determines
whether the commands executed as the result of a source command or the third argument
to Isim2 are echoed to the terminal. The initial value is off, echoing takes place. This
command is useful when using long indirect command files and it is annoying to watch all
the output that is generated.
14, Quit command

quit
Exit Isim2 and retumn to the operating system.
15, Read command
read file
Input a circuit description from file. The file should either be the output of the cire2 circuit
compiler, or the result of a previously executed save command.
16. Repterr command

repterr signal ...

repterr -c component ...
Report error messages concemning the given signals or components. This is the default
condition for every circuit location. The repterr command is provided to negate the affects
of a previously specified noerr command. The ‘‘-¢’’ and **-s’’ options work as in the noerr
command.
17. Run command

run

run enirypoint
Execute the code at the specified entrypoint. If the entrypoint is not given, “*_sim’’ is
used. It is assumed that the entrypoint was previously linked to Isim2 using the link
command.
18. Save command

save file

Retain the current state of the simulator in file. This file can later be input with the read
command to continue the simulation at the present point.

March 1988 -24- Isim?2

19. Set command

set state signal ...
set state -c component/outp ...

Set the logical state of the specified signals or component outputs to the given input state.
The signals are only set once and can be overridden at a later time by the simulator if the
signal specified is driven by one or more component outputs. The component outputs can
be overridden if the inputs to the component change state. Signals do not have to be
primary inputs as in the input command. For example,

1sim2> set % ena.h dl.h

sets the signals enah and d1.h to the x (undefined) state. If either of the two signals are
connected to the output of a component and the component changes state, the signal is not
forced to the undefined state, but instead will follow the component output. Component
outputs are numbered starting with 1, so the output of a gate with only a single output
would be specified by component/I. The ‘“-¢’’ signifies that the identifiers to follow are
component outputs. It does not have 1o be immediately after the state specification, but
may follow a list of signals. A *‘-s’’ option is also available, 1o signify that the identifiers
to follow are signals. This is to allow signals to follow component outputs on the
command line. Wildcarding is not allowed for component outputs, but is supported for
signals.

20. Setram command

setram comp addr data ...

Set the internal state of a RAM component. The internal state of component starting at
address addr is set to the value data. Additional data values are stored at subsequent
addresses in the RAM. Addresses and data values can be supplied in decimal or in hex.
Hex is indicated by prepending the number with a Ox (e.g., Ox1c = 28).

21. Sh command

sh

Invoke an interactive version of the shell. If the environment variable SHELL cannot be
found, /bin/csh is invoked. This command is useful only in the UNIX environment, and a
compile time switch is included to enable or disable the execution of sh.

22. Show command

show signal ...
show -c component ...

Output the logical state of the specified signals and/or components. The “*-¢’’ signifies
that the identifiers to follow are components. It does not have to be immediately after the
show command, but may follow a list of signals. A ‘‘-s*' option is also available, to
signify that the identifiers to follow are signals. This is to allow signals to follow
components on the command line.

23. Showram command

showram component
showram component addr
showram component addr addr

Query the contents of a RAM component. The internal state of component is displayed. If
addr is not supplied, the entire contents of the RAM are shown. If one addr is given, the
data at that address is shown, and if both addr’s are given, they are taken to be an address
range and data between the two addresses is shown. Any bit values not "0" or "1" cause
the entire word to be shown as undefined.

Isitn2 -25- March 1988

24. Source command
source file

Execute interactive commands from file. If the quit command is not present in the indirect
command file, return to interactive input on completion. The source command can be

nested.
25. Start command
start

Initiate the simulation. The simulation stops when the simulated time specified in a halt
command is encountered, or the event queue becomes empty, The simulation can be
interrupted with the interrupt signal in the UNIX environment. Usually this is a control-C
typed from the controlling terminal.
26. Status command

status
Output the status of all signals that are being traced, watched, or forced.
27. Step command

step

Single step the simulation. Perform one iteration of the simulation loop, processing one
event from the event qucue.
28. Time command

time
Output the current simulated time. Time is unitless if the current delay model is unit

delay, otherwise the units depend on the resolution of the simulated time clock.
29. Toggle command

toggle signal ...
For each signal specified, if its state is ‘1" set it to ““0"’ and if its state is *‘0’’ set it to
(11 1 ? 7'
30. Trace command

trace signal ...

Add the list of signals specified to those being traced. A traced signal causes an output
message to be generated whenever the logical state of the signal is modified.
31. Unalias command

unalias id

Remove id from the Iist of aliases.
32. Untrace command

untrace signal ...

Remove the list of signals from those being traced.
33. Unwatch command

unwatch signal ...

Remove the list of signals from those being watched.
34. Watch command

watch signal ...

Add the list of signals specified to those being watched. The logical state of watched
signals is output on a periodic basis under control of the output command. The position of

March 1988 -26- Isim2

a signal in the list of watched signals can be set by specifying a ‘‘-number’’ option before
the signal name. The default position is the end of the list.

4.4, Qutput Format

The output format is one of the major determining factors in deciding whether any
program is truly useful or is more of a hindrance than a help. With this in mind, several
options have been provided to give the user some flexibility in the quantity and format of
output available from the simulator.,

There are two techniques that can be used to follow the logical state of signals in the
circuit. The first technique, as demonstrated earlier, uses the watch and output commands
to control the periodic output of signals that are of interest. Figure 11 gives a more
illustrative example that demonstrates the rising and falling logical states along with the
previously seen high, low, and undefined states. Note that all of the logical states other
than high and low are printed in the center of the column and identified with the
appropriate symbol. The column headers are repeated every 24 lines because of the -t
option given in the output command, telling Isim2 that the output is to a terminal. This
insures that the column headers are on the terminal screen during the entire run. The
choice of a vertical orientation for the signal traces was based on two major considerations.
The first was the ability to output long printouts on continuous forms in an orderly manner.
If the standard output of the Isim2 program is redirected to a file or the printer, there is no
bias toward the output being limited to a 24 line by 80 column screen. Additional signals
can be watched, spreading the output across 132 columns, and the column headers will not
be repeated if the -t switch is left off of the output command. The second consideration
that motivated the vertical output format was a desire to maintain the portability of the
program from one terminal to the next. A horizontal scroll would require cursor
positioning capability on the part of the terminal that is not standard for all terminals. The
vertical format does not require any non-standard terminal capabilities,

The second technique that is used to follow the logical state of signals utilizes the
trace command. After a signal has been listed as being traced, every time that the state of
the signal changes an output statement is printed notifying the user that the change has
taken place. This technique is useful for keeping track of a large number of infrequently
changing signals when watching them all would cause wraparound on an output device
limited to 80 columns. A sample of the output generated by the trace command is given in
Figure 12. The same inputs are used to drive the circuit as in the periodic output example
earlier. The trace output is not nearly as easily readable as the periodic output, but can be
useful if a large number of signals are to be monitored.

There is no restriction on the number of signals that can be watched or traced. The
usefulness of the periodic output is seriously degraded, however, if enough signals are
watched to cause the output lines to wrap around. There is no reason why some signals
could not be watched while others are traced.

5. PROGRAMMING INTERFACE

In addition to the interactive interface, Isim2 supports a programming interface
designed to allow the generation of test vectors and running of the simulation in an
automated fashion, The additional code supplied by the user is linked into Isim2 at run
time using the link interactive command and is initiated with the ran command.

There are three header files that are needed when writing code to be linked to Isim2,
they are ““types.h”, “macros.h’’, and *‘Isim.ext.h’’. The calls available are as follows:
1. Sntor

Isim2 w27 March 1988

% lsim2 circuit.ls

Simulator state input from file circuit.ls
0 units.

Current simulated time
lsim2> init variable

lsim2> set 0 a.h

lsim2>
1sim2>
lsim2>
lsim2>
lsim2>
a.h
b.h
di.l
di.h
clk.h
dout.h
dout.l
lsim2>
lsim2>

Lo Jdoyn s W oB
tr

I N R T B R N Ry S
H O woom-donl s Wk o

input b.h (28)0rrrr(28)1ffff p
input clk.h (16}0(8)1{8)0 p

watch a.h b.h di.1 di.h clk.h dout.h dout.l

output -t 1 ns
status
halt 64 ns
start

[0 10 |
[0 10 |
[0 10 |
e 10 |
(e {10 |
(@6 [0 |
{0 10 |
10 [0]
0 {0 |
[0 10 |
[0 10 |
¢ 10 |
¢ 10 |
10 |0 |
io0 [0 |
0 10 |
[0 10 |
[0 10 |
10 10 |
¢ 10 |
¢ 10 |
10 [0 |

[

MoK oMK OM NN OKNK M XN

MoW oM MM OK KON ON M KN

o

1]

1j0
110
110
1|0
1i¢0
110
1j0

1 0 8 I

MoK oK Moo

4
b4
x

L

10
|0
10
{0
i0
10
[0
|10
|0
|0
[0
[0
10
10
0
Y
|

(watched)
{(watched)
{watched)
{(watched)
{watched)
{watched)
(watched)

143
(o3

I
[
I
|
I
I
i
|
I
I
!
I
[
I
|

!
1]
1]
1]
1]
1]

i
|
[
I
|
I
I
I
I
!
i
!
[
I
I
I
I
I
I
!
I
1] !

Pod M MMM M MMM MK OK KON OMOM NN MM K
I I T T

~J

(1)
(2)
{3)
(4
{5)
(6)
(7)

f
I
I
!
[
[
I
[
I
i
f
[
I
I
I
[
I
I
I
!
'
f

Figure 11. Periodic output

March 1988

Isim2

ns
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
ns
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
5%
60
61
62
63

[0
[0
10
0
10
[0
|0
|0
|0
[0
[0
[0
0
10
0
1o
|0
|0
|0
10
[0
10

10
[0
10
0
|0
10
10
[0
|0
|0
10
[0
i0
0
|0
10
|0
|10
[0
10

[

M H B H

1}

1]

1]

1]0
1i0
110
110
110
1i0
110
110
110
2

110
110
10
1i0
110
110
li0
110
110
110
110
110
1|0
1|0
1i0
1i0
£ 10
£ 10
£ 10
£ 10

H th Fh th

3

1[0
1|0
110
lio0
1i0
16
1[0
1|0

4

|
|
[0
|0
10
|0
|0
|0
|0
|0
10
i0
10
[0
[0
|0
10
10
|0
RY
| O
10
4

r |0
r |0
r |0
110
14
1|
1y
1}
1
1]
1]
1
110
110
110
110
110
110
110
1[0

" H H AR K

Simulation halted at time

lsim2>

5

110

1]0
i0
0
[0
|0
|0
10
I0
[0
|0
|0
10
10
i0
0
o
|0
|0
10
|0
10

i
0]
|0
1|0
110
110
110

6

= 64 ns.

Figure 11. Periodic output (cont)

Isim2

229

March 1988

% 1sim2 circuit.ls

Simulator state input from file clrcuit.ls
Current simulated time = 0 units.

1sim2> init wvariable

Isim2> set 0 a.h

1sim2> input b.h (28)0rrrr(28)1f£fff p
1sim2> input clk.h (16)0(8)1¢(8)0 p

lsim2> trace dout.h dout.l

1simZ2> status
dout.h

dout.l

1sim2> halt 64 ns
lsim2> start

x®x (traced)
X (traced)

Signal dout.h modified from x to 0 at time = 22 ns.
Signal dout.l modified from z teo 1 at time = 22 ns.
Signal dout.h modified from 0 to r at time = 52 ns.
Signal dout.1l modified from 1 to £ at time = 52 ns.
Signal dout.h modified from r to 1 at time = 54 ns.
Signal dout.l modified from £ to 0 at time = 54 ns.
Simulation halted at time = 64 ns.
1sim2>
Figure 12. Trace output
struct signaltype *sntor(name)
char *name;
Given a signal name, sntor returns a pointer to the signal record or NULL if it cannot find
the signal.
2. Trace
int trace(signal)
struct signaltype *signal;

Given a signal pointer, trace enables the tracing of the signal. TRUE is returned if
successful, FALSE is returned if the signal cannot be found or is already being traced.
3. Untrace
int untrace(signal)
struct signaltype *signal;
Given a signal pointer, untrace disables the tracing of the signal. TRUE is returned if
successful, FALSE is returmned if the signal cannot be found or is not currently being

traced.
4. Set
int set(signal,state,time)
struct signaltype *signal;
int state,time;

March 1988 -30- Isim2

Given a signal pointer, a state, and a time, set schedules an event to set the signal to the
state at the given time. The state must be from a list of provided states. The time is in
picoseconds. If there is no problem with the input, the scheduling takes place and TRUE is
retumed, otherwise FALSE is returned.
5. Start

struct signaltype *start()
Start initiates the simulation. It returns a pointer to a signal that indicates which traced
signal changed its value. NULL is retumed when the simulation terminated due to a
HALTRUN event or an empty event queue.
6. Halt

int halt(time)

int time;

Given a time, halt schedules a HALTRUN event for the given time. If the input time is
less than the current time, FALSE is retumed. Otherwise, TRUE is returned.
7. Cont

struct signaltype *cont(time)

int time;

Cont combines the halt and start calls info one entry point. A HALTRUN event is
scheduled for crtime+time and the simulation is initiated. Cont returns a pointer to a
signal that indicates which traced signal changed its value. NULL is returned when the
simulation terminated due to a HALTRUN event or an empty event queue.

8. Force_s
int force_s(signal,state)
struct signaltype *signal;
int state;

Given a signal pointer and a state, force_s establishes a stuck-at condition on the signal.
The state must be from a list of provided states.
9. Force i
int force_i{comp,conn,state)
struct comptype *comp;
int conn,state;

Given a component pointer, input connection, and a state, force_i establishes a stuck-at
condition on the component input. The state must be from a Iist of provided states,
10. Force o
int force_o{comp,cornn,state)
struct comptype *comp;
int conn,state;
Given a component pointer, output connection, and a state, force_o establishes a stuck-at
condition on the component output. The state must be from a list of provided states.
11. Free_s
int free_s(signal)
struct signaltype *signal;
Given a signal pointer, free_s eliminates any stuck-at conditions that existed on the signal.
12, Free i

Isim2 -31- March 1988

int free_i(comp,conn)
struct comptype *comp;
int conn;
Given a component pointer and input connection, free_i eliminates any stuck-at conditions
that existed on the component input.

13. Free o
int free_o(comp,conn)
struct comptype *comp;
int conn;

Given a component pointer and output connection, free_o eliminates any stuck-at
conditions that existed on the component output.
14. Command

int command({str)
char *str;

Command allows the programmer to use any of the interactive commands by providing a
text string containing the command. TRUE is retumed if the command is a valid
command. FALSE is returned otherwise.

6. DEBUGGING TOOLS
As a help in debugging both the connectivity of circuits and the operation of the
simulator itself, the /sread state debugger is available. When invoked with the following
format,
% lsread circuit.ls

the circuit description specified is read in and a human readable version is output to stdout.
Included in this description is the connectivity of the circuit, the state of each signal and
component, the event queue, and the trace list (the list of items being traced, watched, or
forced).

In addition to Isread, a utility called Iscnt is available. When called as follows,
% lscnt circuit.ls
a count of all the component types present in the circuit is output to the standard output.

March 1988 -32- Isim2

The available components are:

Isim2

and
pins:
shi:

dec:
param:

Delay Suffixes:

Default Delay:
Bugs:

or
pins:
sht;

de:
param;

Delay Suffixes:

Default Delay:
Bugs:

nand
pins:
sht:

de:
param:

Delay Suffixes:

Default Delay:
Bugs:

Appendix A

Component Types Available with Lsim2

AND gate

Inputs: variable (default 2)
Outputs: 1

unused

default strong high and low
unused

unused

(1,1,1$1,1,15$0,0,0 $0,00ns
None known

OR gate

Inputs: variable (default 2)
Qutputs: 1

unused

default strong high and low
unused

unused

(1,1,1$1,1,1 $0,0,0 $ 0,0,0)ns
None known

NAND gate

Inputs: variable (defaulr 2)
Outputs: 1

unused

default strong high and low
unused
unused
(1,1,1$1,1,1 $0,0,0 $ 0,0,0)ns
None known

-33.

March 1988

nor
pins:
sht;

dc:
param;

Delay Suffixes:

Default Delay:
Bugs:

Xor
pins:
sht:

dc:
param;

Delay Suffixes:

Default Delay:
Bugs:

not
pins:
sht:

de:
param;

Delay Suffixes:

Default Delay:
Bugs:

March 1988

NOR gate

Inputs: variable (default 2)
Outputs: 1

unused

default strong high and low
unused

umsed

(1,1,1$1,1,1$0,0,0 $ 0,0,0)ns
None known

exclusive OR gate

Inputs: 2

Qutputs: 1

unused

default strong high and low
unused

unused

(1,1,1$1,1,1 $0,0,0 $ 0,0,0)ns
None known

NOT gate

Inputs: 1

Outputs: 1

unused

default strong high and low
unused

unused

(1,1,1$1,1,1$0,0,0 $ 0,0,0ns
None known

34-

Isim2

Isim2

buff
pins:
sht:

dc:
param:

Delay Suffixes:

Default Delay:
Bugs:

dff
pins:
sht:

dc:
param:

Delay Suffixes:

Default Delay:
Note:

Bugs:

etdff
pins:
sht:

de:
param:

Delay Suffixes:

Default Delay:
Note:
Bugs:

non-inverting buffer

Inputs: 1

Outputs: 1

unused

default strong high and low
unused

unmused

(1,1,1$ 1,1,1 $0,0,0 $ 0,0,0)ns
None known

level sensitive D flip flop

Inputs: 2 (1=clock,2=data)
Outputs: 2 (1=true,2 = complemented)
default st=0ns, he=0ns

default strong high and low

unused

unused

(1,1,1$1,1,1$0,0,0 $0,00)ns

Output follows input when clock is high,
input is latched when clock goes low.
None known

positive edge triggered D flip flop

Inpuis: 2 (1 =clock,2=data)
Outputs: 2 (1=1true, 2= complemented)
default hr=0ns, st=0ns

default strong high and low

unused

unused

(1,1,1$1,1,1 $0,0,0 $ 0,0,0)ns
Input is latched when clock goes high.
None known

-35-

March 1988

rsff RS flip flop

pins: Inputs: 2 (1=set,2=reset)
Outputs: 2 (1 =true,2 = complemented)

sht: default s¢=0ns, ht=0ns

dc: default strong high and low

param; unused

Delay Suffixes: unused

Default Delay: (1,1,1$1,1,1 $0.,0,0 $ 0,0,0)ns

Bugs: None known

ivid JK flip flop

pins: Inputs: 3(1=clock,2=71,3=K)
Outputs: 2 (1 =true,2 = complemented)

sht: default he=0ns, st=0ns

de: default strong high and low

param; unused

Delay Suffixes: unused

Default Delay: (1,1,1$1,1,1$0,00 $0,0,0)ns

Note: Input is latched when clock goes high.

Bugs: None known

Jjkrsft JK flip flop w/ set reset

pins: Inputs: S(=clock,2=J,3=K,4=set,5=reset)
Outputs: 2 (1 =true, 2 = complemented)

sht: default ht=Ons , st=0Ons

de: default strong high and low

paran; unused

Delay Suffixes: unused

Default Delay: (1,1,1$1,1,1 $0,0,0 $0,0,0)ns

Note: JK inputs are latched when clock goes high,
RS inputs are asynchronous.

Bugs: None known

March 1988 «36~ Isim2

passtran
pins:
sht:

dc:
param:

Delay Suffixes:

Default Delay:
Note:

Bugs:

pptran
pins:
sht:

dc:
param:

Delay Suffixes:

Default Delay:
Note:

Bugs:

n channel bidirectional pass transistor

Inputs: 2 (1= gate , 2 =source)
Outputs: 1 (drain)

unused

function of input signal

unused

unused

00,0$00,08%1,1,1$1,1,1)ns

Input #2 and output #1 are treated the same,

both are actually ifo connections.

This is not an inertial gate, spike errors are not checked.
None known

p channel bidirectional pass transistor

Inputs: 2 (1= gate ,2=source)
Outputs: 1 (drain)

unused

function of input signal

unused

unused

©,00%$000%$1,1,18%1,1,1)ns

Input #2 and output #1 are treated the same,

both are acmally ifo connections.

This is not an inertial gate, spike errors are not checked.
None known

-37- March 1988

unptran
pins:

sht;
de:
param;

Delay Suffixes:

Default Delay:
Note:

Bugs:

upptiran
pins:
sht:

dc:
param:

Delay Suffixes:

Default Delay:
Note:

Bugs:

March 1988

n channel unidirectional pass transistor

Inputs: 2 (1=gate, 2 = source)
Outputs: 1 (drain)

unused

function of input signal

unused

unsed

(0,0,030,00%$1,1,1%1,1,I)ns

This component will not help detect sneak paths,
it is unidirectional only.

None known

p channel unidirectional pass transistor

Inputs: 2 (1=gate , 2 = source)
Outputs: 1 (drain)

unused

function of input signal

unused

unused

0.0,0%$00,0%$1,1,1%1,1,1)ns

This component will not help detect sneak paths,
it is uynidirectional only.

None known

-38-

Isim2

Isim2

resistor
pins:
sht:

dc:
param:

Delay Suffixes:

Default Delay:
Note:

Bugs:

linedelay
pins:
sht:

de:
param:

Delay Suffixes:

Defaunlt Delay:
Note:
Bugs:

arbiter
pins:
sht:

de:
param:

Delay Suffixes:

Default Delay:
Bugs:

resistor

Inputs: 1
Outputs: 1

unused

default weak high and low

unused

unused

1,1,1$1,1,1$0,0,0 $ 0,0,0ns

Input and output are treated the same,

both are actually ifo connections.

This is not an inertial gate, spike errors are not checked
None known

line delay component

Inputs: 1
OQutputs: 1

unused

function of input signal
unused

unused

(151:1 $ ly]-,]- $ UsO’O $ OsOsO)nS
This is not an inertial gate, spike errors are not checked
None known

arbiter component

Inputs: 2

Outputs: 2

unused

default strong high and low
unused

unused

(1,1,1$1,1,1$0,0,0 $ 0,0,0)ns
Variable delay not tested. Spike errors might be
erroneously reported.

-39- March 1988

alu Arithmetic / Logic Unit

pins: Inputs: variable (2*width +7)
Outputs: variable (width)
sht: unused
dc: default strong high and lIow
param; md output enable mode (0 — 7)
wid data path width (< log, MAXINT)
Sz unused
msc unused
clkopt unused
clropt unused
Delay Suffixes: eo output enable delay
do data in to data out delay
fo function in to data out delay
co carry in to data out delay
mo mode in to data out delay
de data in to carry out delay
fc function in to carry out delay
cc carry in to carry out delay
mc mode in to carry out delay
Default Delay: (1,1,1$1,1,1 $0,0,0 $ 0,0,0)n1s
Note: See appendix B for output enable mode explanation.
MAXINT is the largest representable integer on the computer in use.
Bugs: None known
Function Code Operation
Logic mode Arithmetic mode
0 F=A F =A plus C,
1 F=A+B F=A+B plus C,
2 F =AB F =A+B plus C,
3 F=0 F =minus 1(2's comp) plus C,,
4 F=AB F =A plus AB plus C,
5 F=B F =(A +B)plus AB plus C,
6 F=AxorB | F=A minus B minus 1plus C,
7 F=AB F =AB minus 1 plus C,
8 F=A+B F =A plus AB plus C,
9 F=AxorB | F=A plus B plus C,
10 F =B F =(A +B)plus AB plus C,
11 F =AB F =AB minus 1 plus C,
12 F=1 F =A plus A" plus C,
13 F=A+B F =(A +B)plus A plus C,
14 F=A+B F =(A +B)plus A plus C,
15 F=A F =A minus 1plus C,

* (left shifted).
ALU Functions and Codes.

March 1988 -40- Isim2

Isim2

Output Enable (0)
Mode (1}

S0(2)

31(3)

82 (4)

S3(%)

G (6}

A0 (T}

BO(11) —

Al (8)
B1(12)
A2 (9)
B2 (13)
A3 (10)
B3 (14)

L=

ALU4

0..15)C0
ML (0...15)C

31

o o wlo vl =l g «

41-

1G] Crra

0} FO
(1) F1
@) F2

@)E3

my_alu = (alu,pins=(15,5),param=(md=0,wid=4,sz=0,msc=0));

March 1988

buffer
pins:
shit:

de:
param:

Delay Suffixes:

Default Delay:
Note:

Bugs:

Output Enable () -~ Ny

DIO (1)
DII (2)
DI2 (3)
DI3 (4)
DI4 (5)
DI5 (6)
DI6 (7)
DI7 (8)

generic buffer/driver

Inputs: variable (width + 1)
Qutputs: variable (width)

unused

default strong high and low

md output enable mode (0 — 7)
wid data path width (< MAXINT)
sz unused

msc unused

clkopt unused

clropt unused

unused

(1,1,1$1,1,1$0,0,0 $ 0,0,0)ns

See appendix B for output enable mode explanation.

MAXINT is the largest representable integer on the computer in use.
None known

BUFFER

1

N (0)DOO
b (1)DO1
b (2)DO2
B (3) DO3
e (4) DO4
S (5)DOS
P (6) DO6
N (7)DOT

d|d|ajd|{d|(a|d]|aQ

my_buffer = (buffer,pins=(9,8),param=(md=7,wid=8));

March 1988

42 Isim2

cmp magnitude comparator

pins: Inputs: variable (2*widih + 1)
Qutputs: 3
sht: unused
dc: default strong high and low
param: md output enable mode (0 - 7)
wid data path width (< log, MAXINT)
Sz unused
mse unused
clkopt unused
clropt unused
Delay Suffixes: €0 outpuf enable delay
do data in to data out delay
Default Delay: (1,1,1$1,1,1$0,0,0 $ 0,0,0)ns
Note: See appendix B for output enable mode explanation.
MAXINT is the largest representable integer on the computer in use.
Bugs: None known
COMP4
Output Enable (0) EN A=B (0) equal
A>B (1) greaterthan
A<B {2) less than
1 [
X0 (1) A0
Yo (5) BO
X1(2) AL
Y1 (6) Bl
X2(3) Az
Y2 (7) B2
X3 (4) a3
Y3 (8) B3

my_cmp = (cmp,pins=(9,3),param=(md=0,wid=4,sz=0,msc=0));

Isim?2 -43- March 1988

cntr
pins:

sht:
de:
param:

Delay Suffixes:

Default Delay:
Note:

Bugs:

March 1988

generic up/down counter

Inputs: variable (width + 6 or width +7)
Quiputs: variable (width +2)
default hf = Ons, st =0ns

default strong high and low

med output enable mode (0 — 7)

wid data path width (<log, MAXINT)

SZ count modulus (< MAXINT)

msc type ll load_polarity (O=active high, 1=active low)

I load_type (O=asychronous , 1=synchronous)
clkopt clock_polarity (O=active high, 1=active low)
e
I elocks (1 or 2)
clropt count_cnable_polarity (O=active high, 1=active low)
Il clear_polarity (O=active high, 1=active low)
it clear_type (O=asynchronous , 1=synchronous)

eo output enable delay

mo mode in to data out delay
mc mode in to carry out delay
ko clock in to data out delay
ke clock in 1o carry out delay
kb clock in to borrow out delay
co clear in to data out delay

cc clear in to carry out delay
cb clear in to borrow out delay
lo 1oad in to data out delay

Ic load in to carry out delay
b load in to borrow out delay

(1,1,1$1,1,1 $0,0,0 $ 0,0,0)ns

See appendix B for output enable mode explanation.,

I is used to denote concatenation.

MAXINT is the largest representable integer on the compuier in use.
None known

-44- Isim2

CNTR4
Output Enable (0) EN
Count Enable (1) M1
Clear (2) =0 ACT=0 {4) Borrow
Load (3) M2 S0 (5) Canry
Count Mode (4) M3
[
Clock (5) _1_la+fa.4- |J
DIO (8) | 2D (0) DOO
bIl (7} —————{ 2> (1)DO1
DIZ (8) 2D (2)DO2
DI3 (%) D (3)DO3

my_cntr = (cntr,pins=(10,6),param=(md=0,wid=4,sz=16,msc=000,clkopt=000,clropt=000));

dec decoder/demultiplexer
pins: Inputs: variable (log, functional_size + width + 1)
OQutputs: variable (width* log, functional _size)
sht: unused
dc: default strong high and low
param; md output enable mode (0 — 7)
wid data path width (< log, MAXINT)
SZ functional size (number of select lines) (< MAXINT)
msc type (O=decoder , 1=demultiplexer)
clkopt unused
clropt unused
Delay Suffixes: eo output enable delay
do data in to data out delay
S0 select in to data out delay
Defauit Delay: (1,1,1$1,1,1 $0,0,0 $ 0,0,00ns
Note: See appendix B for output enable mode explanation.
MAXINT is the largest representable integer on the computer in use.
Bugs: None known

Isim2 -45- March 1988

Cutput Enable (0)

a(l)
b (2)
c(3)

my_dec = (dec,pins=(4,8),param=(md=0,wid=1,sz=3,msc=0));

Output Enable (0)
SelecO (1)
Select] (2)

DI0 ¢3)

DIl (4

D2 5)

my_demux = (dec,pins=(6,12),param=(md=0,wid=3,sz2=2,msc=1));

March 1988

BIN/OCT

—

L - LV R L -

DMUX

wmn—oup—-oww—aol

©) é
(1e
@f
sz
@h
(5)i
©)j
Mk

{0) DOO
(1) DOO1
(2) DO
(3) DO03
(5) DO10
(6)DO11
(7)DO12
(8) DO13
(9) DO20
(10) DO21
(11) D022
(12) DO23

Isim?2

mux multiplexer

pins: Inputs: variable (width*functional_size + log, functional_size + 1)
Outputs: variable (width)
shi: unused
dc: default strong high and low
param: md output enable mode (0 - 7)
wid data path width (< log, MAXINT)
SZ functional size (number of select lines) (< MAXINT)
msc output rails (1 or 2)
clkopt unused
clropt unused
Delay Suffixes: €0 output enable delay
do data in to data out delay
$0 select in to data out delay
Default Delay: (1,1,1$1,1,1$0,0,0 $0,0,0)ns
Note: See appendix B for output enable mode explanation.
MAXINT is the largest representable integer on the computer in use.
Bugs: None known
MUX2:1
Qutput Enable (0} EN
Select0 (1) 0 } M2
DICO (2) A L
9
DII0 (4) 1 v ©yboo
DIOI (3 0
Di11 8 1 v (Dot

my_mux = (mux,pins=(6,2),param=(md=1,wid=2,sz=1,msc=1));

MUX2:1
Qutput Enable (C) EN
Seleatl (1) o } M%
DI0O (2) o v 0)yDO0O
D10 (4) 1 v p— (2) DOO0I
DI01 (3) 0 v) DO10
DI11 (5) 1 v (3)DOI1I

my_mux = (mux,pins=(6,4),param=(md=1,wid=2,sz=1,msc=2));

Isim2 w47 March 1988

pla
pins:
sht:

de:
param:

Delay Suffixes:

Default Delay:
Note:

Bugs:

Cutput Enable (0)

A1)
B (2)
c@

programmable logic array

Inputs; variable (input width + 1)
Outpats: variable (output width)
unused

default strong high and low

md output enable mode (0—7)
wid input_width (< MAXINT)
SZ output_width (< MAXINT)
mse terms (£ MAXINT)

clkopt unused

clropt unused

€0 output enable delay

do data in to data out delay

(1,1,1$1,1,1 $0,0,0 $ 0,0,0)n8

See appendix B for output enable mode explanation.

Product of input_width and terms and the product of

output_width and terms must also each be less than MAXINT
MAXINT is the largest representable integer on the computer in use.
None known

PLA
EN
1 [
ow
X
@Y
))

my_pla = (pla,pins=(4,5),param=(md=0,wid=3,sz=4,msc=5));

mask = (PLA,W = 1C+ A*B, X = A*IC, Y = B*C, Z = |A*!B),

March 1988

AIBICIWIX|Y|Z
(0|01 0101
01011 0O 0clo]1
0} 110 1 0] 00
oO| 1|1} 60 0| 1|0
1 10]0| 1 1101
1101140 0101
11110 1 11010
1|11 1 0]1]0
Truth Table for my_pia.
~48- Isim2

ram static RAM/ROM

pins: Inputs: variable (log, size + 3 + width or log, size + 1)
Outputs: variable (width)
sht; default st = Ons, st =Ons
dc: default strong high and low
param: md output enable mode (0 — 7)
wid data path width (< MAXINT)
SZ memory size (number of address lines) (< log, MAXINT)
msc type (0=ROM , 1=RAM)

Il chip_select_polarity (O=active high, 1=active low)
Il write_enable_polarity (O=active high, 1=active low)

clkopt unused

clropt unused
Delay Suffixes: eo output enable delay

do data in to data out delay

ao address in to data out delay

co chip select in to data out delay
Default Delay: (1,1,1$1,1,1 $0,0,0 $ 0,0,0)ns
Note: See appendix B for output enable mode explanation.

I is used to denote concatenation.
MAXINT is the largest representable integer on the computer in use.

Bugs: None known
RAM256X 4
Cutput Enable () EN
Chip Select (1) c1
Write Enable (2} c2
A0 (3) 0
Al (4)
A2(5)
A3 (6) Wl
Ad (D 255
A5 (8)
A6(9)
AT (10) 7
1 [
DI (1) ————] A.12D Al @ Bo0
Dil (12) A12D Al ———— (13 D01
D12 (13) A12D Al {2) D02
DI3 (14) Al2D Al (3) DO3

my_ram = (ram,pins=(15,4),param=(md=0,wid=4,5z=8,msc=100));

Isim2 -49- March 19388

reg
pins:
sht;
dc:
param:
Delay Suffixes:
Default Delay:
Note:
Bugs:
Output Enable (0)
Clock (1)
Clear (2)
Load Enable (3)
DIO (4)
DI1 (5)
DIZ (6)
o3
D4 (8)
DI5 (9)
DI6 (10)
DI7 (11)

|

generic register component

Inputs: variable (width + 5 or width + 6)
Outputs: variable (see note)
default it = Ons, st =0ns
default strong high and low
md output enable mode (0 — 7)
wid data path width (< log, MAXINT)
SZ shift depth (< MAXINT)
msc type (1=shift register , O=register flatch)
Il outconfig (see note) Il inconfig (see note)
clkopt clock_polarity (O=active high, 1=active low)

It clock_type (O=level sensitive, 1=edge triggered)
Il clocks (1 or 2)

clropt clear_polarity (O=active high, 1=active low)
Il clear_type (O=asynchronous , 1=synchronous)
eo output enable delay
do data in to data out delay
mo mode control in to data out delay
co clock active to data out delay

(1,1,1$1,1,1 $0,0,0 $ 0,0,0)ns

See appendix B for output enable mode explanation.

Il is used to denote concatenation.

inconfig and outconfig take values between 0 and 3.

0 — parallel inputs (outputs)

1 — right serial inputs (outputs) only

2 — left serial inputs (outputs) only

3 — right and left serial inputs (outputs) only

MAXINT is the largest representable integer on the computer in use.
None known

REGS

EN

™ c1

CT=0

M2

1 [
112D e DO (0)
12D ———— DO1 (1)
12D F——— D02 (2)
12D —— D03 (3)
1.2D D04 (4)
12D DO5(5)
12D —s— D06 (6)

———— DO7(7)

my_reg = (reg,pins=(12,8),param=(md=0,wid=8,sz=0,msc=000,clkopt=011,clropt=00));

March 1988

-59- Isim2

Isim2

OCutput Enable (0)
Clock (1)

Clear (2)

Mode0 (3)

Model (4)

DIOO (5)
DICIL (6)

Do)
DIt (8)

my_sh_reg = (reg,pins=(12,8),param=(md=0,wid=2,sz=8,msc=103,clkopt=011,clropt=00));

SRG
EN

> C4 1312

CT=d

(@ DOOO

(1) DOOI

(2 D010

{(3HDon

{4y D020

(5) DO21

(6) D030
(6) D031

(7) DO40
(8) DO41

(9) BO50
(10) DO51

| (11)DOS0
(12) DO61

234D
234D

{13y D070

(14) DO71

-51-

March 1988

Appendix B

QOutput Enable Modes

All of the MSI type components in the Isim2 library have as an option a selectable output enable
mode. There are a total of eight modes avaliable identified by the values 0 through 7. For each
of the modes, a simple buffer will be shown to illustrate the meaning of the mode. In addition,
a truth table will be presented to further clarify the operation of the output enable input.

en | in || out

EN —EN
IN — OUT

— OO0

Mode 0. Active High Control / Active High Output.

EN -—-EN

Mode 1. Active High Control / Active High Tri-state Output.

EN —EN
N p— OUT

Mode 2. Active High Control / Active Low Qutput.

March 19388 -52- Isim2

	LSIM2 User's Manual
	Recommended Citation

	tmp.1460750766.pdf.6Q3oh

