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Abstract of the Dissertation

Genetic Imputation: Accuracy to Application

by

Shelina Raynell Stancia Ramnarine

Doctor of Philosophy in Biology and Biomedical Sciences

Human and Statistical Genetics

Washington University in St. Louis, 2016

Professor Nancy Saccone, Chair

Genotype imputation, the process of inferring genotypes for untyped variants, is used to
identify and refine genetic association findings. This body of work focuses on assessing
imputation accuracy and uses imputed data to identify genetic contributors to mentholated
cigarette preference.

Inaccuracies in imputed data can distort the observed association between variants and
a disease. Many statistics are used to assess accuracy; some compare imputed to genotyped
data and others are calculated without reference to true genotypes. Prior work has shown that
the Imputation Quality Score (1QS), which is based on Cohen’s kappa statistic and compares
imputed genotype probabilities to true genotypes, appropriately adjusts for chance agreement;
however, it is not commonly used. To identify differences in accuracy assessment, we
compared 1QS with concordance rate, squared correlation, and accuracy measures built into
imputation programs. Genotypes from the 1000 Genomes reference populations (AFR N = 246
and EUR N = 379) were masked to match the typed single nucleotide polymorphism (SNP)

viii



coverage of several SNP arrays and were imputed with BEAGLE 3.3.2 and IMPUTE2 in regions
associated with smoking behaviors. Additional masking and imputation was conducted for
sequenced subjects from the Collaborative Genetic Study of Nicotine Dependence and the
Genetic Study of Nicotine Dependence in African Americans (N =1,481 African Americans and N
=1,480 European Americans). Our results offer further evidence that concordance rate inflates
accuracy estimates, particularly for rare and low frequency variants. For common variants,
squared correlation, BEAGLE R?, IMPUTE2 INFO, and 1QS produce similar assessments of
imputation accuracy. However, for rare and low frequency variants, compared to IQS, the other
statistics tend to be more liberal in their assessment of accuracy. IQS is important to consider
when evaluating imputation accuracy, particularly for rare and low frequency variants. This
work directly impacts the interpretation of association studies by improving our understanding
of accuracy assessments of imputed variants.

Mentholated cigarettes are addictive, widely available, and commonly used, particularly
by African American smokers. We aim to identify genetic variants that increase susceptibility to
mentholated cigarette use in hopes of gaining biological insights into risk that may ultimately
improve cessation efforts. We begin by pursuing hypothesis-driven candidate genes and regions
(TAS2R38, CHRNA5/A3/B4, CHRNB3/A6, and CYP2A6/A7) and extend to a genome-wide
approach. This study involves 1,365 African Americans and 2,206 European Americans (3,571
combined ancestry) nicotine dependent current smokers from The Collaborative Genetic Study
of Nicotine Dependence (COGEND) and Transdisciplinary Tobacco Use Research Center (UW-
TTURC). Analyses were conducted within each cohort, and meta-analysis was used to combine

results across studies and across ancestral groups. We identified some suggestively associated



variants, although none meet genome wide significance. This study represents a new,
important aspect to understanding menthol cigarette preference. Further work is necessary to

better understand this smoking behavior in efforts to improve cessation.



Chapter 1: Introduction

Genetic analyses attempt to identify and elucidate relationships between genetic
variants and phenotypes of interest. The identification of genetic factors, which are a
substantial component of disease risk, is important towards improving the prevention,
diagnosis, and treatment of disease (Manolio et al., 2009). Researchers first used
microsatellites in family-based linkage studies, obtained from large pedigrees, in efforts to
illuminate the genetic architecture of a specific phenotype. Changes in society have influenced
family sizes making family based studies challenging. Data from large pedigrees are still used
today but microsatellites have largely been replaced by single nucleotide polymorphisms
(SNPs). Linkage studies were the cornerstone of human genetics. However, these studies often
produced large associated regions which limit the ability to understand the biology of disease
(Manolio et al., 2009). Candidate gene studies, focused on specific regions and involved small
sample sizes, were the precursors to Genome Wide Association Analyses (GWAS) (Manolio et
al., 2009).

GWAS have dominated but their success has been debated in the field (Visscher, Brown,
McCarthy, & Yang, 2012). These studies offered great promise as they involved thousands of
unrelated individuals and millions of markers (Manolio et al., 2009). Some believe that GWAS
have been a success because hundreds of associated variants have been identified. Since most
of these variants are of modest effect, in aggregate do not account for a large proportion of the
heritability, and often are not clearly biologically related to common diseases, some
researchers consider GWAS a failure (Manolio, 2010; Manolio et al., 2009; Visscher et al., 2012).

Conversely, GWAS have provided many insights into the genetic architecture of Mendelian



disorders (Manolio et al., 2009). The common disease, common variant hypothesis and
commercial SNP arrays are two underlying components of GWAS (Manolio et al., 2009). The
common disease, common variant hypothesis is based on the idea that common diseases are
caused by many common variants all with modest effect, as they have survived evolutionary
selective pressures. Studies have shown that the aggregate effect of associated variants leave
missing heritability (Manolio et al., 2009). Researchers are now pursing rare variants amongst
other possibilities to gain a better understanding of disease. The common variant, rare disease
hypothesis dictates that common diseases are caused by rare variants with larger effects. SNP
arrays contain thousands or millions of SNPs and are believed to contain common variation in
the human genome (Manolio et al., 2009). These arrays typically only contain variants with a
minor allele frequency (MAF) greater than 5%, i.e. rare variants are excluded from traditional
GWAS.

Gene-environment interactions are another potential source of missing heritability
(Manolio et al., 2009). Phenotypes of interest, i.e. common human diseases or traits, are usually
influenced by both genotypic and phenotypic factors. The environment has become an inclusive
term representing all non-genetic factors: diet, exercise, even advertising, and other behaviors.

Linkage disequilibrium (LD) and population stratification make the identification of
casual variants illusive at times. Crossing over and other forms of recombination influence the
length of genomic regions that co-occur in populations, i.e. non-random allelic association or
linkage disequilibrium (Teo, Small, & Kwiatkowski, 2010). These regions vary in length in
different populations. Haplotypes are genetic markers that are present within a block marked

by linkage disequilibrium. Tag SNPs are selected for SNP arrays with the idea that they define



haplotypes. Population stratification is that idea that allele frequencies vary in different
populations due to ancestry. To this end, tag SNPs may not equally define haplotypes across
populations necessitating the use of a greater number of variants or different variants when

examining disease, hence the increased popularity of genetic imputation.

1.1 Imputation

Genotyping, or sequencing, is integral to analyzing variants for association with a trait;
however, there may be missing data. Since cost and time prevents the wide use of whole
genome sequencing in association studies and meta-analyses, imputation is a widely used tool
in providing additional variants for testing. Genotype imputation, a method for inferring
untyped genotypes, is an important tool for human genetic studies as it allows these inferred
loci to be tested for association with phenotypes (B. L. Browning & Browning, 2009; B. Howie,
Marchini, & Stephens, 2011; Li, Willer, Ding, Scheet, & Abecasis, 2010; Marchini & Howie, 2010;
Purcell et al., 2007). Imputation programs exploit correlations between between typed and
untyped genomic locations in haplotype blocks by matching similar haplotype patterns
between reference and study samples (B. L. Browning & Browning, 2009; B. Howie et al., 2011;
B. N. Howie, Donnelly, & Marchini, 2009; Marchini & Howie, 2010). Haplotype blocks are
created by a lack or recombination in genomic regions of linkage disequilibrium which are
regions which segregate together through inheritance. In association analyses, imputation can
be used as a fine mapping tool to refine the region of association. In meta-analysis, imputation
aligns multi-study data by extending each study's genotyping coverage to match a larger set (B.

L. Browning & Browning, 2009; B. Howie et al., 2011; Marchini & Howie, 2010).



Genotyping arrays are the cornerstone of genetic imputation. These arrays have
increased coverage over the years from thousands to millions of variants and are believed to
capture common variation in the human genome. However, linkage disequilibrium and
population stratification influence the ability of these variants to truly tag important

haplotypes.

1.1.1 Imputation in Diverse Populations

Although race has been considered in genetic studies the concept is related to historical,
social, and cultural influences (Garte, 2002). The differences in ancestry create linkage
disequilibrium patterns and allele frequencies which are important to consider in the
identification of biologically relevant disease determinants. Due to the historical focus on
European ancestry populations in genetic studies, many of the approaches to disease risk
identification and perceptions of specific causal variants may not be appropriate for all
populations. There has been an effort to expand genetic tools to better understand the genetic
architecture of disease in other populations. For example, companies have tried to optimize
SNP arrays to consider population stratification as more diverse populations are being studied.

The 1000 Genomes Project is the newest form of large efforts to examine human
disease in a variety of ancestral populations. The International HapMap, HapMap2 and
HapMap3 were precursors to this project. The genomes of individuals from a variety of
countries are contained in these studies: Yoruba from Ibadan, Nigeria; The CEU (Utah resides
with northern and western European ancestry from the CEPH collection); JPT + CBH (Japanese

from Tokyo, Japan and Chinese from Beijing, China) (Marchini & Howie, 2010). 1000 Genomes



has been expanded to include individuals from African Ancestry in Southwest US (ASW); Utah
residents (CEPH) with Northern and Western European ancestry (CEU); Luhya in Webuye, Kenya
(LWK); Yoruba in Ibadan, Nigeria (YRI); Iberian populations in Spain (IBS); Finnish from Finland
(FIN); Toscani in Italia (TSI); British from England and Scotland (GBR). These individuals have
been sequenced across their genomes which allow these data to be used as reference panels in
imputation as the representation of a variety of ancestries improves the ability to infer missing
genotypes.

Although more populations are being considered, imputation in African Americans
remains a challenge. Hancock et al demonstrates that the imputation quality of low frequency
variants is reduced when more closely related reference panels are considered (Hancock et al.,
2012). Furthermore, Nelson et al found that SNP arrays do not represent common variants in
African Americans as well as other groups since 75% of common variants are covered in all
groups except African Americans (Nelson et al., 2013). Several studies have examined the ability
of several reference panels, SNP arrays, and imputation programs to accurately infer imputed

data in African Americans (Chanda et al., 2012; Hancock et al., 2012; Nelson et al., 2013).

1.1.2 Imputation Accuracy

Due to the widespread use of imputed data and a desire to understand the true
relationship between genetic loci and a trait or disease of interest, it is important to assess true
accuracy of inferred genotypes. Since variants are inferred based on correlations with typed
variants, the genotype coverage of the SNP array used in imputation can influence accuracy.

Although the decision of which commercially available SNP arrays is best varies based on



ancestral population and SNP coverage, generally, the array with the most variants that best
tag haplotypes of interest should produce the best imputation quality scores. There are two

classes of statistics used for accuracy estimation: (1) statistics which use both genotyped and
imputed data and (2) statistics which use only imputed data for accuracy estimation. For the
former, one must first obtain both genotyped and imputed data.

Since genotyped data is usually unavailable at imputed loci, evaluations of imputation
accuracy that require true genotypes for comparison with imputed genotypes typically rely on
either masking variants, or using a leave-one-out approach in which one individual is imputed
using the remaining reference panel members. Researchers typically mask a percentage of
variants from a commercially available SNP array and use the imputed data to compare with
the genotyped data to provide some accuracy estimation (Chanda et al., 2012; Hancock et al.,
2012; Lin et al., 2010; Sung et al., 2012). This method is limited since the imputation quality
information does not inform general accuracy as it only applies to the masked variants. Duan et
al 2013 used MACH-Admix software to create a database of variants and their imputation
guality score using the leave-one-out method in which each person is removed individually
from the reference panel and imputed using the other individuals in the reference panel given
the genotype coverage of a commercially available SNP array. This method allows true
genotypes to be compared with imputed genotypes for each left-out individual, and produces
accuracy estimates of all variants except those on a SNP array. However, the imputation quality
produced by this method is a specific to the reference panel used; the quality score produced
may be higher or lower than the quality score for another study. Furthermore, this database

only provides quality information as measured by squared Pearson correlation coefficient.



1.1.2.1 Accuracy Based on Genotyped and Imputed Data

Several statistics compare genotyped and imputed data when assessing accuracy:
squared Pearson correlation coefficient (squared correlation), Imputation Quality Score (IQS),
concordance rate. Although these statistics can be calculated using the most likely genotypes
(best guess genotypes) or the posterior genotyped probabilities, it is preferable to use the
genotyped probabilities in their calculation as the discrete classification of each individual’s
genotype does not consider the probabilistic nature of imputation.

Concordance rate is the proportion of matching genotypes divided by the total
proportion of genotypes. Lin et al 2010 describes concordance rate as the gold standard for
imputation quality assessment. Concordance rate was found to inflate accuracy for rare and
low frequency variants due to chance concordance or chance agreement (Lin et al., 2010).
Chance agreement causes a decrease in accuracy as MAF increases (Lin et al., 2010). Due to
allele frequency, there is a low probability of the rare allele being present in the imputed
sample; therefore, when the major allele is assigned this inference would be “correct” by
chance. As the frequency of the allele decreases the accuracy rate increases e.g. 5% MAF is 90%
accuracy. This inflation is increasingly problematic given that studies are becoming more
interested in examining low frequency variants. IQS is based on Cohen’s Kappa Coefficient and
was introduced by Lin et al. 2010 to assess imputation accuracy. Squared correlation is the
squared Pearson correlation coefficient which refers to the linear relationship between two
variables (original and imputed dosage for each SNP). It estimates the ability of a linear model

to depict the relationship between two variables.



1.1.2.2 Accuracy Based Only on Imputed Data

There are several statistics which use only imputed data to assess accuracy. Imputation
efficiency is a measure of how confidently the imputation software was able to infer the
individual’s genotype. The efficiency is the number of individuals that have a probability greater
than 0.9 (Lin et al., 2010) using the posterior genotype probabilities file. For each SNP, the
number of people with a probability greater than 0.9 for one of the three genotype
probabilities was recorded. That number divided by the total number of people is the SNP
efficiency.

Of the statistics that use only imputed data, some are calculated by imputation software
programs: Beagle R?, Impute2 Info, and MACH r. Beagle R? or Allelic R? has good precision if
the genotype probabilities are accurately calculated (B. L. Browning & Browning, 2009);
however, these probabilities may not be accurately calculated for several reasons, e.g. poor LD

between genotyped and imputed variants.

1.2 Smoking Behaviors and Nicotine Dependence

Smoking represents a massive public health burden. Smoking related diseases are a
preventable cause of premature mortality particularly in youth and minorities resulting in
cancer, cardiovascular disease, and pulmonary disease accounting for 1 in 5 deaths in the U.S.
and 1 in 10 deaths worldwide (Benowitz, 2010). Population data have shown smoking rates to
be approximately 19% in European Americans and 18% in African Americans

(http://www.lung.org/stop-smoking/smoking-facts/tobacco-use-racial-and-ethnic.html).



There are several differences phenotypically in smoking behavior between African, and
European Americans. African Americans smoke fewer cigarettes per day (CPD) (Luo et al., 2008;
Okuyemi, Ebersole-Robinson, Nazir, & Ahluwalia, 2004; Stellman et al., 2003), start smoking
regularly at a later age (McCarthy et al., 1995), are more likely to attempt to quit (but fail at
quitting at higher rates) (Okuyemi et al., 2004), prefer to smoke menthol cigarettes (McCarthy
et al., 1995; Muscat, Richie, & Stellman, 2002) and experience more smoking related illnesses
(Okuyemi et al., 2004). Furthermore, differences in allele frequencies influence the genetic
architecture of nicotine dependence in these populations.

Understanding the similarities and differences in the genetic architecture of smoking
behavior in African and European Americans may lead to advances in the treatment and
prevention of nicotine dependence. Cross population comparisons of associated regions are
important to identifying signals that are unique to certain populations and others that are
consistent across populations. Some of these studies have demonstrated the use of imputation
to enhance the identification of signals in smoking associated regions (J. Z. Liu et al., 2010;
Tobacco and Genetics Consortium, 2010).

Several genetic loci have been identified for smoking behavior through genome-wide
association studies and meta-analyses (Bierut et al., 2007; J. Z. Liu et al., 2010; Saccone et al.,
2010; Scott F. Saccone et al., 2007; Thorgeirsson et al., 2010; Tobacco and Genetics Consortium,
2010). Some genetic loci are genome wide significant (GWS) in European American individuals
while others are suggestive in their association with smoking behavior in African Americans
(Chen et al., 2012; David et al., 2012; S. F. Saccone et al., 2007). These previously identified

variants are mostly contained in cholinergic nicotinic receptors on chromosomes 8 (CHRNB3-



CHRNA®), 15 (CHRNA5-CHRNA3-CHRNB4), and 19 (CYP2A6-CYP2A7) (Bierut et al., 2007; Chen et
al., 2014; Chen et al., 2012; David et al., 2012; Saccone et al., 2010; Scott F. Saccone et al., 2007;
Tobacco and Genetics Consortium, 2010). Genetic variants in CHRNA5 on chromosome 15 are
most strongly associated with smoking behavior (Chen et al., 2012; David et al., 2012; Rice et

al., 2012).

1.2.1 Measures of Nicotine Dependence

Nicotine dependence can be classified by the six questions known as the Fagerstréom test for
nicotine dependence (FTND) (Heatherton, Kozlowski, Frecker, & Fagerstrom, 1991). These
guestions are scored on a 10 point scale and nicotine dependent cases can be classified as
those with an FTND > 4 while controls can be classified as those with FTND <1. Using this
measure, 60% of current smokers are nicotine dependent (Bierut, 2010). The questions,

responses, and scoring are as follows:

Table 1: Fagerstrom Test for Nicotine Dependence Questions, Responses, Scores

Questions Responses Scores
Within 5 minutes 3
How soon after you wake up do you smoke your 6-30 minutes 2
first cigarette? 1-60 minutes 1
After 60 minutes 0
Do you find it difficult to refrain from smoking in
. . . Yes 1
places where it is forbidden (e.g., in church, at
. . No 0
the library, in cinema, etc)?
The first one in the morning 1
. . 5
Which cigarette would you hate most to give up? All others 0
10 or less 0
11-20 1
i ?
How many cigarettes per day do you smoke? 21-30 5
31 or more 3

10



Do you smoke more frequently during the first

. . Yes 1
hours after walking than during the rest of the No 0
day?
Do you smoke when you are so ill that you are in Yes 1
bed most of the day? No 0

Cigarettes-per-day (CPD) is also used as a measure of nicotine dependence (Heatherton et
al., 1991; Scott F. Saccone et al., 2007). Both CPD and FTND are necessary to examine since they
are both standard assessments of nicotine addiction (Luo et al., 2008). CPD is a continuous
measure of smoking behavior and a commonly available proxy for nicotine dependence in
studies not focused on smoking behavior. Additionally, CPD and FTND predict cotinine levels
(Luo et al., 2008). Both measures are also differentially associated with certain genetic variants
(Rice et al., 2012). While these measures are correlated, they are not identical especially in

African-Americans.

1.2.2 Mentholated Cigarettes

Mentholated cigarettes are popular and differently used by African and European
Americans. These cigarettes were first marked to be used when one had the cold or a cough,
which prevented the use of non-mentholated cigarettes (Gardiner, 2004). Advertising by brands
such as Kool gave the impression that the cigarettes were healthier (Gardiner, 2004). The
Federal Trade commission sued the company for false advertising but tobacco companies
continued to market mentholated cigarettes as healthier (Gardiner, 2004). One in four
cigarettes are classified as mentholated, containing menthol a component in peppermint oil

(TPSAC;(Giovino et al., 2004). These cigarettes generally contain more tar and nicotine than
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non-mentholated cigarettes (Gardiner, 2004; Muscat et al., 2002; Okuyemi et al., 2004). The
cooling effects of these cigarettes are believed to contribute to their popularity.

There are differences in smoking behavior of mentholated cigarette smokers. African
American menthol smokers have decreased quit rates compared to African American non-
menthol smokers (Okuyemi et al., 2004). Menthol smokers are more likely to be African
American, less educated, younger, and never married (Fagan et al., 2010; Okuyemi et al., 2004).
Although smoking rates in African and European American populations are similar, the National
Surveys on Drug Use and Health report that between 2004 and 2008 82.6% of Black/African
Americans and 23.8% of Whites smoked mentholated cigarettes (Office of Applied Studies).

Mentholated cigarettes have been marketed differently to African Americans. Gardiner
et al 2004 discusses the African Americanization of menthol cigarette use in the United States.
The migration of African Americans from rural areas to urban cities led tobacco companies to
begin to target this growing consumer market (Gardiner, 2004). The popularity of mentholated
cigarettes have been linked to their increased use in the African American community and the
rise and fall of some mentholated cigarette brands was predicated on their perception in this
community. Gardiner et al discusses a rumor that the K in Kool represented the Ku Klux Klan
which led to the decreased use of this brand by the African American community. The
sponsorship of Civil Rights efforts by tobacco companies and the perceived health benefits
further solidified the use of this product in the African American community (Gardiner, 2004).
During the civil rights movement menthols were smoked because of their association as being
the cigarette used by individuals who are brave, ambitious and daring (Gardiner, 2004).These

cigarettes were advertised on television and promoted by prominent figures in the African
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American community in magazines such as Ebony, a magazine targeting the African American
community (Gardiner, 2004). Mentholated cigarettes still remain in high use amongst African

Americans smokers.
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Chapter 2: When Does Choice of Accuracy Measure Alter Imputation Accuracy Assessments?

2.1 Introduction

In genomic analyses high-quality data are crucial to accurate statistical inferences. Data
accuracy can typically be assessed by different methods and measures.

Genetic imputation provides an informative scenario for examining how the use of
different accuracy measures can influence the assessment of accuracy. Genotype imputation is
a valuable tool in association studies and meta-analyses. This process infers “in silico”
genotypes for untyped variants in a study sample by matching genotyped variants in the study
to corresponding haplotypes in a comprehensively genotyped reference panel (B. L. Browning &
Browning, 2009; S. R. Browning, 2006; B. Howie, Fuchsberger, Stephens, Marchini, & Abecasis,
2012; B. Howie et al., 2011; B. N. Howie et al., 2009; Li et al., 2010; E. Y. Liu, Li, Wang, & Li,
2013; Marchini & Howie, 2010). Therefore, imputation accuracy is influenced by haplotype
frequencies in the reference panel (Hancock et al., 2012; Sung et al., 2012) and the typed single
nucleotide polymorphism (SNP) coverage of the study sample (Johnson et al., 2013; Nelson et
al., 2013). Once untyped variants are inferred, statistics that measure imputation accuracy are
calculated to identify poorly imputed SNPs.

Imputation accuracy statistics can be classified into two types: (1) statistics that
compare imputed to genotyped data and (2) statistics produced without reference to true
genotypes. Concordance rate, squared correlation, and Imputation Quality Score (IQS) (Lin et
al., 2010) are examples of the first type. Because imputed SNPs usually do not have genotyped
data for comparison, statistics of the second type are usually provided by imputation programs

and are commonly relied upon in practice. However, a direct comparison of imputed and

14



genotyped data can be made possible by masking a percentage of variants that were genotyped
in the study sample (Chanda et al., 2012; Hancock et al., 2012; Shriner, Adeyemo, Chen, &
Rotimi, 2010).

Lin et al (2010) introduced IQS, which is based on Cohen’s kappa statistic for agreement
(Lin et al., 2010). Because of chance agreement, concordance rate, i.e. the proportion of
agreement, can lead to incorrect assessments of accuracy for rare and low frequency variants.
IQS adjusts for chance agreement (Lin et al., 2010). Furthermore, Lin et al. (2010) used
simulated data to show that requiring an IQS threshold > 0.9 removed all false positive
association signals, while concordance rate > 0.99 still resulted in many false positives. Despite
this evidence, IQS is not widely used in accuracy assessment.

This work builds upon previous studies by comparing 1QS with commonly used accuracy
measures - concordance rate, squared correlation, and built-in accuracy statistics - with the
goal of identifying situations in which the choice of accuracy measure leads to differing
assessments of accuracy. We compared imputed and genotyped data via masking, and used
African-ancestry and European-ancestry populations to evaluate imputation accuracy
in genomic regions associated with nicotine dependence and smoking behavior, some of which

have also been implicated in lung cancer and chronic obstructive pulmonary disease (COPD).

2.2 Methods
We examined differences and similarities in accuracy assessment as measured by 1QS, squared
correlation, concordance rate and built-in accuracy statistics using: (1) 1000 Genomes as the

sample and the reference, and (2) data from nicotine dependence studies as the sample and
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1000 Genomes as the reference. Below we describe both approaches, beginning with analyses

involving 1000 Genomes as the sample and the reference.

2.2.1 Masking and Imputation using 1000 Genomes Data

Because IQS adjusts for chance agreement (Lin et al., 2010), we used IQS as a
benchmark for accuracy estimation. Calculating 1QS, concordance rate, and squared correlation
requires genotyped data for comparison with imputed data. We created a study sample for
imputation by masking genotypes in the reference panel to mimic the typed SNP coverage of
commercially available SNP arrays (Affymetrix — Affy 500 and Affy 6 as well as lllumina — Duo,
Omni, and Quad matched by genomic position using Build 37.3/hg19). We used 1000 Genomes
African (AFR) and European (EUR) continental reference panels with 246 and 379 individuals
respectively (Table 2.1) (The 1000 Genomes Project Consortium, 2012). All data analyzed here
are de-identified, publicly available data from the 1000 Genomes (1000G) project, which
provides these data as a resource for the scientific community. Participants provided informed
consent to the 1000G Project for broad use and broad data release in databases (The 1000
Genomes Project Consortium, 2010, 2012). We also have Washington University Human
Research Protection Office approval for analyses of de-identified data.

The process of creating the study sample is described in Figure 2.1 and the numbers of
typed variants are presented in Table 2.2. Figure 2.1 illustrates several key characteristics of our
masking approach. The reference panel individuals were the same as the study sample
individuals. Our approach is expected to give an upper bound on accuracy because of the ideal

match between the reference panel and study sample; the “correct” haplotype for each
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individual being imputed is present in the reference. Using population-specific reference
panels (AFR and EUR) rather than a cosmopolitan reference panel maximizes the matching
between the reference panel and study sample. Also, this design allowed us to compare
accuracy estimates for variants not found on a SNP array. This sample data set was then

imputed and the results were used to calculate accuracy statistics.

2.2.2 Imputation Programs

BEAGLE (version 3.3.2) (B. L. Browning & Browning, 2009; S. R. Browning, 2006) and
IMPUTE2 (B. Howie et al., 2012; B. Howie et al., 2011; B. N. Howie et al., 2009) were used to
obtain imputed genotype probabilities. We obtained the BEAGLE R*and IMPUTE2 INFO
accuracy measures for each SNP; neither of these makes use of true genotypes. The BEAGLE
R?and IMPUTE2 INFO accuracy measures are well established (Chanda et al., 2012; Marchini &
Howie, 2010). BEAGLE R’ approximates the squared correlation between the most likely
genotype and the true unobserved allele dosage (B. L. Browning & Browning, 2009; S. R.
Browning, 2006). IMPUTE2 INFO considers allele frequency as well as the observed and
expected allele dosage (Chanda et al., 2012). We include their formulas for completeness, in
Equation 1 and 2, Here g,, represents the observed dosage, e, represents the expected allele
dosage, and 6 represents the sample allele frequency for sample n at a particular SNP, where n
ranges from 1 to N, the total number of individuals and 0 < 8 <1. Additionally, Z, represents the
genotype with the highest posterior probability from imputation, i.e. 0, 1, or 2 corresponding to
the number of copies of the coded allele. Finally, f,, = pn1 + 4pn2 Where p,,; represents the

imputed probability of the genotypic class k (0, 1, and 2) corresponding to the nth sample.
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Equation 2.IMPUTE2 INFO = 1 —

Imputed probabilities produced by BEAGLE and the corresponding accuracy statistics
showed variability, so we focus on these results. Analyses using IMPUTE2 were less informative
in this matched sample-reference setting; this program appears to identify the matching
individual in the reference and assign imputed data accordingly. The result was highly accurate
imputation in this special context. Since we aim to compare concordance rate, squared
correlation, and 1QS in efforts to identify scenarios where these statistics produce similar or
divergent conclusions regarding accuracy estimation, the variation produced by using BEAGLE

for imputation allows us to address our question of interest.

2.2.3 Statistics that Compare Genotyped and Imputed Data

The imputed genotype probabilities produced by BEAGLE and IMPUTE2 were used to
calculate concordance rate, squared correlation and IQS. These imputed genotype probabilities,
one for each genotype class (e.g. AA, AB, or BB), are transformed to dosage values by
multiplying by 0, 1 or 2 for each genotypic class. IQS is calculated from genotype probabilities
while squared correlation uses dosage values. Note that a specific dosage value can correspond

to multiple genotypic probabilities, but only one dosage value can result from a specific set of
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genotypic probabilities. Although the most likely (best guess) genotype for each variant can be
used to calculate these statistics, it is not recommended because the discrete classification of
each individual’s genotype does not consider the probabilistic nature of imputation (J. Zheng,
Li, Abecasis, & Scheet, 2011).

The incorporation of the genotypic classes into the IQS calculation is represented in
Table 2.1, where each cell is the sum of the genotype probabilities for each genotyped and
imputed genotypic class combination. The IQS calculation is demonstrated in Equation 3. 1QS
considers both the observed proportion of agreement (concordance rate or P, shown in
Equation 4) as well as chance agreement (P, in Equation 5). Concordance rate (P,) is the sum of
probabilities for each matching genotypic class divided by the total sum of all genotype
probabilities. Chance agreement is evaluated as the sum of the products of the marginal
frequencies. An IQS score of one indicates that the data matched perfectly, while a negative IQS
score indicates that the SNP was imputed worse than expected by chance (Lin et al., 2010).
Mathematically, the value of 1QS will always be less than or equal to the value of concordance
rate: PoP. < P, S0 Py — P < Po-PoP., hence (Po-P.)/(1-P¢) £ (Po-PoPc)/(1-P¢), which says that 1QS <
P, . Some statistics can be confounded with Hardy-Weinberg equilibrium (HWE) if they assume
HWE to calculate "expected" genotype counts (Shriner, 2013). IQS avoids this concern since it

uses imputed and experimentally determined genotypes.

Table 2.1: Calculating concordance (Po) and 1QS from imputed genotype probabilities and
actual genotypes. The table was created by summing over probabilities for all N individuals (n =

1 to N) in each cell with pj_, representing the probability that the nth individual has the
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imputed genotype i and actual genotype j, where 1 corresponds to AA, 2 corresponds to AB,

and 3 corresponds to BB. N; = number of individuals with AA actual genotype, N, = number of

individuals with AB actual genotype, N3 = number of individuals with BB actual genotype, and N

= number of total individuals.

Table 2: Calculating concordance (P0) and 1QS from imputed genotype probabilities and actual genotypes

Actual
AA AB BB Total
N N N 3 N
AA Z P11n Z P12.n Z P13.n Z Z P1j_n
n=1 n=1 n=1 j=1n=1
N N N 3 N
AB Z P21.n Z P22.n z P23.n Z Z P2jn
n=1 n=1 n=1 Jj=1n=1
N N N 3 N
Imputed BB Z P31n Z P32.n Z P33.n Z Z P3jn
n=1 n=1 n=1 J=1n=1
3 N
z z Pi1 n 3. & 3.
Total i=1 n=1 Z Z Pizn = N, Z Z Pizn = N; | N
i=1n=1 i=1n=1
=N,
Equation3. 105 = -2 L€
uation 3. =
1 S =7"Pp¢

Equation 4. Po

Equation 5. Pc =

_ Y= P11, t Y= P22, + =1 P33,

Ny * 213'=1 Yn=1 P1jn + No* 213'=1 Yh=1 P2jn + N3 * 213'=1 Th=1 P3jn
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Squared correlation is the square of the Pearson correlation coefficient between the imputed
and genotyped dosage for each SNP. This is calculated using Equations 6-11 where x; and y; are
the imputed and genotyped dosage values for the nth sample respectively. It represents the
proportion of the variability in the imputed data that can be explained by the least squared

regression model.

SSE

Equation 6. RZ =1-
SSyy

N
Equation7.  SS,, = Z i — y)?

n=1

Equation8.  SSE =SS, — Bn(SSy,)

N
Equation 9. SSyy = Z i — ¥ (x — x)

n=1

SSxy
T SSyx

Equation 10. B,

N
Equation 11.  SSy, = Z (xj — %)?

n=1

2.2.4 Evaluating Accuracy Across MAF and LD

Imputation accuracy is influenced by a variant’s minor allele frequency (MAF) and
linkage disequilibrium (LD) with genotyped variants (measured by pairwise squared correlation
r’). We examined imputation accuracy in relation to these properties. The MAFs used here
were based on the allele frequencies found in the genotyped data. We will use the terminology
“rare” to denote variants with MAF < 1%; and “low frequency” to refer to variants with 1% <

MAF < 5%. For each imputed SNP, the genotyped SNP in the region with the highest LD was
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used to define the maximum r’p with a genotyped SNP (denoted by max rp). PLINK was used
to generate the LD values (Purcell et al., 2007). Bins for maximum r’,p and MAF were defined in
0.01 increments (Lin et al., 2010). For each bin, the mean and one standard deviation of the

values produced by each accuracy statistic were calculated.

2.2.5 Examining Regions Associated with Nicotine Dependence

We examined the imputation accuracy of two genomic regions known to be associated
with nicotine dependence and smoking behavior. These regions were the nicotinic receptor
subunit gene clusters on chromosome 15 (CHRNA5-CHRNA3-CHRNB4) and chromosome 8
(CHRNB3-CHRNAG®) (Bierut et al., 2007; J. Z. Liu et al., 2010; Saccone et al., 2010; S. F. Saccone et
al., 2007; Thorgeirsson et al., 2010; Tobacco and Genetics Consortium, 2010). These signals
were identified through genome-wide association studies (GWAS) and meta-analyses for
smoking behavior, with the chromosome 15 region being the most significantly associated. We
imputed 3Mb on each chromosome: 2Mb regions used for analysis plus two 500Kb flanking
buffer regions according to Build 37.3/hg19. We focused our analyses on polymorphic variants

with dbSNP identifiers in each 2MB region.

2.2.6 Masking and Imputation in a Real Data Application using a Nicotine Dependence Sample
A comparison of accuracy statistics was also conducted using nicotine dependence data
as the study samples (N=1,481 African Americans and N=1,480 European Americans who were

sequenced) and 1000 Genomes as the reference. The study sample was masked and imputed
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separately by race. This analysis provided a more conventional imputation scenario for
comparison with the patterns found in the 1000 Genomes analyses.

The sequenced subjects in this applied analysis were from the Collaborative Genetic
Study of Nicotine Dependence (COGEND) and the Genetic Study of Nicotine Dependence in
African Americans (AAND). These studies are cross-sectional and contain extensive smoking
behavior phenotypes in African Americans and European Americans (Bierut et al., 2007). These
individuals were between the ages of 25-44 years old and were assessed for dependence as
measured by the Fagerstrom Test for Nicotine Dependence (FTND) and cigarettes-per-day
(CPD) (Luo et al., 2008). The study protocol was approved by the appropriate Institutional
Review Boards and written informed consent was obtained from all subjects.

Center for Inherited Disease Research (CIDR) performed next-generation targeted
sequencing on genomic regions previously associated with smoking behaviors, using COGEND
and AAND DNA samples derived from blood. Genotypic data that passed initial quality control
at CIDR were released to the Quality Assurance/Quality Control analysis team at the University
of Washington Genetics Coordinating Center. These data had mean on-target coverage of 180X
with more than 96% of on-target bases containing a depth greater than 20X. A total of 1,481
African Americans and 1,480 European Americans were used in the analysis.

These sequencing data were masked to match the typed SNP coverage of the Omni 2.5
SNP array in a 500kb region on chromosome 15. The cosmopolitan reference panel, composed
of individuals from a variety of ancestries, was used for imputation since it has been shown to
produce the best accuracy estimates (Hancock et al., 2012). The imputation was performed

using BEAGLE and IMPUTE2 to evaluate whether observed trends in accuracy were consistent
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across imputation programs. The imputed probabilities were compared to the masked
sequencing data and accuracy statistics were calculated. We focused our analyses on

polymorphic variants.

2.3 Results

We compared IQS with squared correlation, concordance rate, and BEAGLE R?to
examine changes in accuracy assessment using 1000 Genomes as the study sample in Figs. 2-5.
IQS is our benchmark because it adjusts for chance agreement, in contrast to concordance rate
which inflates assessments of accuracy (Lin et al., 2010). We focus here on the results for the
AFR reference population using Omni 2.5M typed coverage on chromosome 15 (13,442
imputed SNPs). We emphasize Omni 2.5 because it has the greatest genotype SNP coverage in

the region (Table 2.4).

2.3.1 Results for 1000 Genomes Imputation with Matching Reference

Results produced using BEAGLE and the AFR reference population are shown. Results
for different chromosomal regions and populations were similar and are shown in Figure 2.12-
2.14.

To help interpret results that are displayed by MAF and max r’ip bin, S1 Fig. shows the
number of imputed variants in each MAF bin in panel A and max r’.o bin in panel B. This figure
indicates that most of the imputed variants were rare and low frequency variants. There were
6,480 (48.21%) rare and low frequency rsID SNPs in the AFR population. The bins ranged in size

from 7 variants (0.49 > MAF < 0.50) to 2,371 variants (0.01 > MAF < 0.02).
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2.3.2 Concordance Rate and BEAGLE R’ Inflate Assessments of Accuracy for Rare Variants

Results show that the choice of statistic is important when examining the imputation
accuracy of rare and low frequency variants. Figure 2.2 displays the mean accuracy and one
standard deviation in each MAF bin, after imputing from Omni 2.5M coverage. IQS (Panel A)
and squared correlation (Panel B) produced similar means and standard deviations in each
bin, though this does not necessarily represent similarity of values for particular SNPs. For rare
and low frequency variants, both concordance rate (Panel C) and BEAGLE R? (Panel D) produce
inflated assessments of accuracy. The higher concordance rate and BEAGLE R’ values could
mislead a researcher into assuming that these variants were imputed well, and that accuracy is
best measured using concordance rate and BEAGLE R%. 1QS and squared correlation also show
low accuracy for rare variants using other SNP array coverages (Figure 2.8).

A MAF bin can have a wide range in accuracy values. Figure 2.2 shows variability within
MAF bins across all MAF values. Standard deviations for 1QS, squared correlation and BEAGLE R?
can be sizeable for both rare and common variants (panels A, B and D); concordance rate does

not reflect this as it classifies most variants as well imputed (panel C).

2.3.3 Rare and Low Frequency Variants can be Well Tagged but Poorly Imputed

We examined max r’p, the maximum LD r? between imputed and genotyped SNPs, to
understand the relationship between typed SNP coverage and imputation accuracy as
measured by these accuracy statistics. Figure 2.3 displays the mean accuracy and one standard

deviation in each max r’p bin, after imputing from Omni 2.5M coverage, additional arrays are
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in S3 Fig. Mean accuracy tends to increase with increasing max rzLD, as expected. For low to
moderate max rZLD, we observed substantial variability in 1QS as well as squared correlation and
BEAGLE R? values; however, at high max r’io, the variability decreases. 1QS and squared
correlation show a surprisingly wide standard deviation for variants in the highest max r’1p bin
(0.99 < max rZLD < 1) as well as the max rZLD bin 0.5 < max rzLD <£0.51. Upon investigation, we
found that the variability was due to rare variants: after limiting to SNPs with MAF > 5%, these
standard deviations were comparable to those of the other bins, Figure 2.10 This pattern
suggests that even rare variants that are well tagged (as measured by max r’.5) can be poorly

imputed.

2.3.4 Concordance Classifies Most Variants as Well Imputed

Concordance differs from IQS, squared correlation, and BEAGLE R%in that it indiscriminately
classifies most variants as well imputed, across MAF (Figure 2.2) and r’p bins (Figure 2.3). The
results in Figure 2.2 and 2.3 support prior concerns regarding concordance rate (Lin et al., 2010)

and led us to focus the rest of our evaluation on 1QS, squared correlation, and BEAGLE R’

2.3.5 For Rare Variants, 1QS and Squared Correlation Produce Different Assessments of
Accuracy

Although squared correlation and 1QS appeared similar overall in their assessment of
imputation accuracy when examined using means and standard deviations by bin (Figure 2.2
and 2.3), further investigation showed that on an individual SNP level, these statistics produce

divergent assessments of accuracy for rare and low frequency variants. We compared accuracy
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estimates produced by IQS and squared correlation in Figure 2.4 for each SNP. Panel A shows
results for all variants, and panel B displays results for variants with MAF > 5%. A comparison of
these panels is useful to identify divergent trends for common variants versus rare and low-
frequency variants. For most SNPs, |QS and squared correlation produced similar assessments
of accuracy as seen by the many observations on and near the y=x line in panels A and B. This is
consistent with the accuracy patterns observed for IQS and squared correlation in Figure 2.2 —
2.3. However, discrepancies in accuracy assessment do occur, with squared correlation
generally being more liberal in assigning high accuracy compared to IQS. This is indicated by the
sparseness of observations above the y=x line in panels A and B. The points below the y=x line
indicate SNPs for which squared correlation values were higher than IQS. Panel B shows that
widely discrepant values for IQS and squared correlation are attributable to rare and low
frequency SNPs: filtering out SNPs with MAF < 5% removes the widely discrepant observations.
To further examine trends in the discrepancies between these statistics, we subtracted
squared correlation from IQS for each variant and displayed this result across all MAF values
in Figure 2.11 Thus negative differences denote that squared correlation was greater than 1QS
(i.e. squared correlation more liberal) while positive differences indicate that IQS was greater
than squared correlation. Large discrepancies occur over all MAF values with squared

correlation tending to be higher than IQS, especially for SNPs with higher MAFs.

2.3.6 For Common Variants, 1QS and BEAGLE R? Provide Similar Assessments of Accuracy
For common variants, BEAGLE R produces a similar assessment of imputation accuracy

as 1QS, but BEAGLE R’ can differ dramatically from squared correlation. In Figure 2.5, we
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compared BEAGLE R? to IQS (panels A and C) and squared correlation to BEAGLE R? (panels B
and D). For many variants, squared correlation and BEAGLE R? differ in accuracy assessment as
seen by the variants above the y=x line in panel B. Although most of these variants are rare,
there are still many common variants for which this trend is true (panel D). Large differences

between 1QS and BEAGLE R? occur mostly when rare variants are examined.

2.3.7 Results are Similar in Different Genomic Regions and Populations

Figure 2.2-2.5 displayed results for the AFR reference population and Omni 2.5M typed
coverage in the chromosome 15 region. Results similar to those described above were also
observed using the AFR reference on chromosome 8 (Figure 2.12) as well as using the EUR
reference panel for chromosomes 15 and 8 (Figure 2.13 and 2.14. respectively). In particular,
low 1QS values do occur for rare variants that have high squared correlation or high BEAGLE R

The number of variants for each imputation subset can be found in Table 2.4.

2.3.8 Results are Consistent in Application to Nicotine Dependence Study Sample

Figure 2.6 shows results produced using African American individuals from the nicotine
dependence data as the study sample and a 1000 Genomes cosmopolitan reference panel
imputed using BEAGLE. These data show discrepancies in accuracy assessment between
statistics. If IQS and squared correlation are compared, squared correlation tends to be similar
or higher (i.e. more liberal) than IQS. In the applied scenario, we observed some variants with
high 1QS and low squared correlation (Figure 2.6, panel A, upper left quadrant), which was not

observed for the upper bound values from the 1000 Genomes analysis (Figure 2.4, panel A);
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however, these discrepancies are few, and mostly among rare and low frequency variants (see
Figure 2.6, panel D). When comparing 1QS to Beagle R?, the applied scenario showed IQS to be

similar to or less than Beagle R? (Figure 2.6, panel B), which recapitulates patterns seen in 1000
Genomes (Figure 2.5, panel A).

In European Americans, from the nicotine dependence data, we also observed these
same patterns as in African Americans, with squared correlation’s more liberal assignment of
accuracy as compared to IQS, Figure 2.15 These results were also consistent using IMPUTE2
with African American and European American study samples, Figure 2.16 and 2.17.
respectively. This confirms that these patterns are not limited to specific populations,

chromosomes, or imputation programs.

2.4 Discussion

Genotype imputation is used to improve the density of genomic coverage and increase
power by combining datasets (Winkler et al., 2014), in efforts to identify and refine genetic
variants associated with disease. We investigated how assessment of imputation accuracy
changes when concordance rate, squared correlation and BEAGLE R are compared to 1QS,
focusing on two genomic regions associated with smoking behavior.

Results showed that the choice of accuracy statistic matters for rare variants more than
for common variants. This is important given that researchers are increasingly interested in
imputing rare and low frequency variants (E. Y. Liu et al., 2012; H.-F. Zheng, Ladouceur,

Greenwood, & Richards, 2012; H.-F. Zheng et al., 2015). While it has been recognized that rare
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variants are more difficult to impute accurately, our work here goes further by highlighting that
choice of accuracy measure has an important role.

For common variants, squared correlation, IMPUTE2, and BEAGLE R? produce similar
assessments of imputation accuracy as compared to IQS. For rare and low frequency variants,
we observed varying assessments of accuracy compared to IQS. Our results also showed that
discrepancies between IQS and squared correlation are most likely to occur at rare and low
frequency variants, where squared correlation is more liberal in assigning higher accuracy as
compared to IQS. An evaluation of nicotine dependence samples also showed discrepancies
between IQS and squared correlation. We recommend calculating 1QS to confirm imputation
accuracy, especially for rare or low frequency variants.

The variability observed within a MAF or max rZLD bin is a reminder that not all variants
that share the same MAF or max r’ value can be imputed with the same level of accuracy. This
is consistent with the expectation that the inference of untyped variants depends on haplotype
block structure and not simply the pairwise relationships between the genotyped and untyped
variants. For rare variants, high LD with a genotyped SNP may not guarantee high imputation
accuracy. Still, overall, a high max r?,p usually implies high accuracy, as we observed increasing
mean accuracy along with decreasing variability within max rZLD bins as max rZLD increases.

We applied this approach to genomic regions associated with our phenotype of interest,
smoking behavior using an upper bound scenario and a nicotine dependence sample. Thus, one
limitation is that rather than comprehensively examining the genome, we focused only on
selected genomic regions. Furthermore we focused on certain populations (European and

African ancestry). Nevertheless, different regions (on chromosome 8 and 15), different
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imputation programs, and different populations showed similar overall patterns, suggesting
that our observations are relevant throughout the genome and across multiple populations.

In our masking process using only the 1000 Genomes reference data, the reference
panel individuals were the same as the study sample individuals, and our masked SNPs are not
limited to a SNP array, making our approach different from the two most common masking
processes. One common masking method removes the genotypes for a portion of markers (e.g.
10%) found amongst the typed variants on a study sample SNP array. This method can provide
accuracy comparisons only for SNPs on the array. Our approach is able to provide accuracy
assessments for SNPs not on the array.

Another commonly used masking method is the “leave-one-out” masking of a
comprehensively genotyped reference panel, in which one individual is imputed using the
remaining reference panel members. Our study design differed from the leave-one-out method
since all individuals in the reference panel and study sample were the same. Our approach was
expected to give an upper bound on accuracy because of the ideal match between the
reference and study sample; the “correct” genotype for each individual at each variant was
present in the reference panel.

Our results provide further evidence that concordance rate inflates accuracy estimates
particularly for rare and low frequency variants (Asimit & Zeggini, 2010; Lin et al., 2010). These
observations highlight a need to account for chance agreement not only when assessing
imputation accuracy, but also more broadly in other situations for which concordance is
traditionally used to assess accuracy, such as checking genotype agreement across duplicate

samples (Rogers, Beck, & Tintle, 2014; Truong, 2015). Concordance rate will always produce a
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value greater than or equal to IQS due to their mathematical relationship (see Methods for
proof).

IQS is important to consider, as it is designed to identify variants for which imputation
accuracy is better than can be expected by chance; accordingly, other measures were generally
more liberal in assigning high accuracy. Our analyses indicate that especially for rare and low
frequency variants, IQS may be important to avoid overly liberal assessments of imputation
quality. In practice, IQS can be computed by the leave-one-out method. Databases that provide
per-SNP "imputability," such as that created by Duan et al. (Duan, Liu, Croteau-Chonka, Mohlke,
& Li, 2013), would have increased usefulness if they included IQS values. As imputation
methodology continues to develop and reference panels become more comprehensive, we
expect that imputation will become increasingly accurate. However, it will be important to take
chance agreement into account when assessing this accuracy, and IQS provides a means to do

SO.
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Table 2.2: Sub-populations in the BEAGLE and IMPUTE2 AFR and EUR reference panels.

Table 3: Sub-populations in the BEAGLE and IMPUTE2 AFR and EUR reference panels

AFR: 246 individuals EUR: 379 individuals
61 African Ancestry in Southwest US 85 Utah residents (CEPH) with Northern and Western
(ASW) European ancestry (CEU)
97 Luhya in Webuye, Kenya (LWK) 89 British from England and Scotland (GBR)
88 Yoruba in Ibadan, Nigeria (YRI) 98 Toscani in Italia (TSI)
93 Finnish from Finland (FIN)
14 Iberian populations in Spain (IBS)
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Table 2.3: Numbers of SNPs in the 1000 Genomes study samples. Study sample variants were
those found on each commercially available SNP array for the 2 MB chromosomal regions of
interest. Only variants with dbSNP identifiers are listed in the number of variants in the

reference panel column.

Table 4: Numbers of SNPs in the 1000 Genomes study samples

Number of Genotyped SNPs in Each Region
Chromosome (2)?:/: Affy 500 Affy 6 Duo Quad
8 1669 255 531 960 611
15 2740 555 1105 1231 1970
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Table 2.4: Polymorphic, imputed SNPs used in the comparison of accuracy measures. These
variants were found in the 2 MB chromosomal regions of interest using 1000 Genomes as the

study sample and were imputed using Omni 2.5 coverage.

Table 5: Polymorphic, imputed SNPs used in the comparison of accuracy measures

AFR EUR
Chr 8 10,149 6,753
Chr 15 12,290 8,464
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Figure 2.1: General process for creating the study sample for imputation. The reference panel
was masked to mimic a commercial SNP array, resulting in a study sample which contains the

same individuals as the reference panel.
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Figure 1: General process for creating the study sample for imputation
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Figure 2.2: 1QS, squared correlation, concordance rate, and BEAGLE R2 are shown in MAF
bins. Mean accuracy of SNPs in each MAF bin (defined by 0.01 increments with N=13,442
variants total) is denoted by the red dots and the bars indicate one standard deviation (above
and below the mean). These results are produced by using the 1000 Genomes AFR reference

population as the study sample with Omni 2.5M typed coverage on chromosome 15.
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Figure 2: 1QS, squared correlation, concordance rate, and BEAGLE R2 in MAF bins
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Figure 2.3: 1QS, squared correlation, concordance rate, and BEAGLE R2 are shown in max r2LD

bins. Mean accuracy of SNPs in each MAF bin (defined by 0.01 increments with N=13,442

variants total) is denoted by the red dots and the bars indicate one standard deviation (above

and below the mean). These results were produced by using the 1000 Genomes AFR reference

population as the study sample with Omni 2.5M typed coverage on chromosome 15.
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Figure 2.4: Scatterplots of squared correlation and IQS. Data for all 13,442 variants are

displayed in panel A, while the results for variants with MAF>5% (N = 6,480) are found in panel

B. The line y = x is denoted in red.
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Figure 2.5: Scatterplots of 1QS, squared correlation, and BEAGLE R2. Panels A and B display all

13,442 variants, and panels C and D display variants with MAF>5% (N = 6,480). The line y = x is

denoted in red.
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Figure 5: Scatterplots of 1QS, squared correlation, and BEAGLE R2
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Figure 2.6: Scatterplots of 1QS, squared correlation, and BEAGLE R2 using the cosmopolitan

reference panel and the African American nicotine dependence study sample for

chromosome 15. Data for all 1,545 variants are displayed in panel A, B, and C while the results

for variants with MAF>5% (N = 631) are found in panel D, E, and F. These results were

generated using Omni SNP coverage. The line y = x is denoted in red.
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Figure 6: Scatterplots of IQS, squared correlation, and BEAGLE R2 using nicotine dependence samples
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Figure 2.7: Mean numbers of polymorphic variants in each MAF (panel A) and max r2LD

(panel B) bin. These results are for the AFR population on chromosome 15 (13,442 imputed

SNPs).
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Figure 7: Mean numbers of polymorphic variants in each MAF and max r2LD bin
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Average accuracy of all SNPs according to 0.01 incremental MAF bins for each

Figure 2.8

accuracy measure using several typed SNP array coverages. These results were produced by

using the 1000 Genomes AFR reference populations as the study samples for chromosome 15.
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Figure 2.9: Average accuracy of all SNPs in 0.01 incremental max r2LD bins for each accuracy
measure using several typed SNP array coverages. These results were produced by using the

1000 Genomes AFR reference population as the study sample for chromosome 15.
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Figure 9: Average accuracy of all SNPs in 0.01 incremental max r2LD bins for each accuracy measure using several typed SNP
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Figure 2.10: Accuracy scores produced by IQS, squared correlation, concordance rate and
Beagle R2 for SNPs with MAF > 5% (N=6,480 SNPs) in max r2LD bins. Bins are defined by 0.01
increments. Mean accuracy is denoted by the red dots and the bars indicate one standard
deviation (above and below the mean). These results were produced by using 1000 Genomes
AFR reference population as the study sample with Omni 2.5M typed coverage on chromosome

15.
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Figure 10: Accuracy scores produced by 1QS, squared correlation, concordance rate and Beagle R2 for SNPs with MAF > 5% in
max r2LD bins
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Figure 2.11: Relationship between squared correlation and 1QS by MAF. Squared correlation
was subtracted from 1QS for variants on chromosome 15 in the 1000 Genomes AFR reference
population (N= 13,442 variants) as the study sample. Negative values indicate that the squared
correlation score was higher while the positive values indicate that the 1QS value was higher.

The red line indicates the line y = 0.
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Figure 11: Relationship between squared correlation and 1QS by MAF
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Figure 2.12: Scatterplots of I1QS, squared correlation, and BEAGLE R2 using the 1000 Genomes AFR

reference panel as the study sample for chromosome 8. Data for all 10,937 variants are displayed in

panel A, B, and C while the results for variants with MAF>5% (N = 4,533) are found in panel D, E, and F.

These results were generated using Omni SNP coverage. The line y = x is denoted in red.
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Figure 12: Scatterplots of 1QS, squared correlation, and BEAGLE R2 using the 1000 Genomes AFR reference panel as the study
sample for chromosome 8
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Figure 2.13: Scatterplots of 1QS, squared correlation, and BEAGLE R2 using the 1000 Genomes
EUR reference panel as the study sample for chromosome 15. Data for all 9,401 variants are

displayed in panel A, B, and C while the results for variants with MAF>5% (N = 4,627) are found in panel

D, E, and F. These results were produced by using Omni SNP coverage. The line y = x is denoted in red.
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Figure 13: Scatterplots of I1QS, squared correlation, and BEAGLE R2 using the 1000 Genomes EUR reference panel as the study
sample for chromosome 15
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Figure 2.14: Scatterplots of 1QS, squared correlation, and BEAGLE R2 using the 1000 Genomes
EUR reference panel as the study sample for chromosome 8. Data for all 7,401 variants are

displayed in panel A, B, and C while the results for variants with MAF>5% (N = 1,903) are found
in panel D, E, and F. These results were produced by using Omni SNP coverage. The liney = x is

denoted in red.
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Figure 14: Scatterplots of 1QS, squared correlation, and BEAGLE R2 using the 1000 Genomes EUR reference panel as the study
sample for chromosome 8
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Figure 2.15: Scatterplots of 1QS, squared correlation, and BEAGLE R2 using the cosmopolitan
reference panel and the European American nicotine dependence study sample for
chromosome 15. Data for all 1,170 variants are displayed in panel A, B, and C while the results
for variants with MAF>5% (N = 387) are found in panel D, E, and F. These results were produced

by using Omni SNP coverage. The line y = x is denoted in red.
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Figure 15: Scatterplots of I1QS, squared correlation, and BEAGLE R2 using the European American nicotine dependence study
sample for chromosome 15

50



Figure 2.16: Scatterplots of 1QS, squared correlation, and IMPUTE2 INFO using the

cosmopolitan reference panel and the African American nicotine dependence study sample

for chromosome 15. Data for all 1,878 variants are displayed in panel A, B, and C while the results for

variants with MAF>5% (N = 475) are found in panel D, E, and F. These results were generated using Omni

SNP coverage. The line y = x is denoted in red.
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Figure 16: Scatterplots of 1QS, squared correlation, and IMPUTE2 INFO using the African American nicotine dependence study
sample for chromosome 15
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Figure 2.17: Scatterplots of 1QS, squared correlation, and IMPUTE2 INFO using the

cosmopolitan reference panel and the European American nicotine dependence study sample

for chromosome 15. Data for all 1,253 variants are displayed in panel A, B, and C while the results for

variants with MAF>5% (N = 259) are found in panel D, E, and F. These results were generated using Omni

SNP coverage. The line y = x is denoted in red.
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Chapter 3: Assessing Genetic Influences on Mentholated Cigarette Preference in Nicotine

Dependent Smokers

3.1 Introduction

Cigarette smoking remains the single greatest preventable cause of premature death in
the US and world-wide (Benowitz, 2010). Mentholated cigarettes are widely available, with one
in four cigarettes technically classified as mentholated (TPSAC;(Giovino et al., 2004).
Furthermore, mentholated cigarette use varies between African American and European
American smokers, with much higher rates in African Americans: 70% compared to 30%
(Gardiner, 2004). Most studies of mentholated cigarette use are focused on the influence of
social, demographic, or advertising factors. However, since genetic studies have been highly
successful in identifying genetic contributions to nicotine dependence and smoking heaviness
(Bierut et al., 2007; David et al., 2012; Scott F. Saccone et al., 2007; Tobacco and Genetics
Consortium, 2010), we will investigate potential genetic influences on mentholated cigarette
use.

Hypothesis driven candidate regions related to taste, nicotine dependence and nicotine
metabolism may be associated with mentholated cigarette preference. The TAS2R38 gene is a
bitter taste receptor which accounts for 85% of the variability in bitter taste (TPSAC;(Mangold,
Payne, Ma, Chen, & Li, 2008)). Variants in this gene can be used to classify individuals as tasters
or non-tasters (Kim, Breslin, Reed, & Drayna, 2004; Mangold et al., 2008). Previous work has
also shown that tasters are less likely to become heavy smokers (TPSAC;(Mangold et al., 2008)).
Furthermore, non-tasters were associated with increased susceptibility to nicotine dependence

(Mangold et al., 2008). However, the relationship between genetic variants in this gene and
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mentholated cigarette use is unknown. The genetic variants most strongly associated with
nicotine dependence are located in nicotinic receptors (Bierut, 2010; Bierut et al., 2007; Chen et
al., 2014; Chen et al., 2012; S. F. Saccone et al., 2007). We aim to examine variants in nicotinic
receptors especially those previously associated with nicotine dependence: CHRNA5/A3/B4 and
CHRNB3/A6.

CYP2A6 is associated with nicotine dependence (Chen et al., 2014) and is one of the key
genes involved in nicotine metabolism (Benowitz, 2010). In humans, most nicotine, about 75%,
is converted to cotinine through CYP2A6 with 33 to 40% of the cotinine then converted to
trans-3-hydroxycotinine which is excreted by the liver (Benowitz, 2010). African Americans
covert nicotine to cotinine and metabolize cotinine more slowly than European Americans
(Benowitz, Herrera, & Jacob, 2004; Benowitz et al., 1999). African Americans have higher
concentrations of serum cotinine, a metabolite of nicotine, than whites (MacDougall, Fandrick,
Zhang, Serafin, & Cashman, 2003; Pérez-Stable, Herrera, Jacob, & Benowitz, 1998). Menthol has
been shown to slow the oxidation of nicotine to cotinine (Benowitz et al., 2004; MacDougall et
al., 2003). These factors may work in aggregate in African American smokers; to this end,
testing genetic variants in CYP2A6 for association with mentholated cigarette use may elucidate
this relationship.

We will use data for African Americans (N = 1,365) and European Americans (N = 2,206)
in attempts to identify genetic variants that increase susceptibility to mentholated cigarette
use. We begin in hypothesis driven candidate regions then expand to genome-wide analyses.
These analyses will identify variants that are consistent or unique in African Americans and

European Americans.
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3.2 Methods

Several cohorts were used in these analyses: The Collaborative Genetic Study of Nicotine
Dependence (COGEND) and Transdisciplinary Tobacco Use Research Center (UW-TTURC). We
focus our analyses on nicotine dependent current smokers, since these individuals are at
highest risk for health consequences. Nicotine dependent cases are defined as smokers with

Fagerstrom Test for Nicotine Dependence (FTND) >= 4.

3.2.1 The Collaborative Genetic Study of Nicotine Dependence (COGEND)
3.2.1.1 Part 1

COGEND is a cross-sectional study of extensive smoking behavior phenotypes in African
Americans and European Americans (Bierut et al., 2007) from Saint Louis, Missouri Detroit,
Michigan, and Minneapolis, Minnesota. The study protocol was approved by the Institutional
Review Boards at each site. All participants provided informed consent. Participants were
recruited from 2002-2007. These individuals were between the ages of 25-44 years old and
were assessed for dependence as measured by FTND and Cigarettes-per-day (CPD) (Luo et al.,
2008). COGEND subjects were ascertained based on having smoked at least 100 cigarettes
lifetime. Eligibility was based on FTND score, with nicotine dependent cases and non-
dependent smoking controls defined by a FTND of 0 or 1. Mentholated cigarette use was
measured by the question “Do you usually smoke mentholated cigarettes?”

From COGEND, there were 1,406 participants genotyped on the lllumina Human1M-Duo

BeadChip and 1,480 COGEND participants genotyped on the lllumina HumanOmni2.5 BeadChip
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(Laurie et al., 2010). PLINK was used for all SNP-level and participant-level QC steps (Purcell et
al., 2007). In each subset, genotyped SNPs with call rate>97% and Hardy Weinberg equilibrium
(HWE) P>1x10™ were retained using PLINK. This sample was imputed using only the genotyped
SNPs in the intersection of two arrays to avoid bias in the association results (Johnson et al.,
2013).

For imputation, there were 605,735 genotyped SNPs which passed initial SNP-level QC
and were imputed using IMPUTE2 (B. Howie et al., 2012; B. Howie et al., 2011; Marchini &
Howie, 2010). The imputation was performed on each ethnic group separately using 1,933 EAs
(1,000 ND cases and 933 controls) and 704 AAs (459 ND cases and 245 controls) using the 1000

Genomes ALL reference panel.

3.2.1.2 Part 2

COGEND was expanded and additional recruitment was approved by the Institutional
Review Board at Washington University prior to enrolling participants. All participants provided
informed consent. Participants were recruited from the St. Louis metropolitan area from 2011-
2014. The inclusion criteria remained the same for this additional recruitment. Mentholated
cigarette use was measured by the question “Do you usually smoke mentholated cigarettes?”

This second part of COGEND was genotyped using a custom lllumina array combining
the coverage of the lllumina HumanOmniExpress and the lllumina Exome arrays. The cleaned,
analysis ready dataset of 2514 subjects and 950,847 variants required call rate > 98% for
variants and = 99% for subjects. Gender and race/ethnicity checks were performed using

Plink(Purcell et al., 2007) and Eigenstrat (Price et al., 2006), and sample-chromosome
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combinations with chromosomal anomalies were removed. Filters were imposed for Hardy
Weinberg equilibrium p-value < 10 x 10 in controls.

Imputation was performed by first pre-phasing with SHAPEIT (B. Howie et al., 2012) and
then imputing with IMPUTE2. The 1000 Genomes ALL reference panel was used, following the

same protocols as for COGEND Part 1.

3.2.1.3 Part 3

COGEND was extended with new recruitment that also included assessment of exhaled
carbon monoxide level as a biomarker of smoking. Institutional Review Board approval was
obtained at Washington-- University prior to enrolling participants, and all participants provided
informed consent. Participants were recruited from the St. Louis metropolitan area between
2014 and 2015. All participants were current smokers as demonstrated by an exhaled carbon
monoxide level > 7 parts per million and self-reported smoking on > 15 days during the past
month. Participants were required to have smoked 100 cigarettes lifetime and be between the
ages of 25-44 years.

Participants provided saliva samples for genetic analysis using 23andMe DNA collection
kits. 23andMe is a privately held personal genomics and biotechnology company that produces
high quality genetic data in CLIA-certified laboratories. The success rate of genotyping
submitted saliva samples was 97%. In addition to data cleaning performed by 23andMe, we
performed additional checks including individual sample quality, SNP quality, Hardy-Weinberg
Equilibrium (HWE), duplicates, and relatedness across participants. We required at least a 98%

call rate across all SNPs for a sample to be included in analyses. At a SNP level, we required at
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least a 98% call rate for each SNP in the sample. Relatedness across participants was examined
to make sure that our participants were independent. Setting thresholds of per sample call rate
of 98%, minor allele frequency of 1% or greater, and HWE p value more than 10"%, we had a
final SNP set of 488,487 variants with a mean call rate of 99.89% per sample and average
99.79% call rate per SNP.

Imputation was performed using the same protocols as COGEND Parts 1 and 2. SHAPEIT

was used for pre-phasing and IMPUTE?2 for imputation, with the 1000 Genomes ALL panel.

3.2.2 University of Wisconsin Transdisciplinary Tobacco Use Research Center (UW-TTURC)

A randomized placebo-controlled smoking cessation trial was conducted at University of
Wisconsin Transdisciplinary Tobacco Use Research Center (UW-TTURC) with individuals aged 18
years or older who smoked 10 or more CPD and were motivated to quit smoking. This study
was approved by the University of Wisconsin-Madison IRB. Mentholated cigarette use was
measured in UW-TTURC using the question "Do you smoke menthol cigarettes?"

The Center for Inherited Disease Research at Johns Hopkins University performed the
genotyping of the UW-TTURC sample using the lllumina Omni2.5 microarray and the GENEVA
Coordinating Center at the University of Washington led the data cleaning.

Imputation was performed for all autosomes and X chromosome using IMPUTE2
software with reference panels from the 1000 Genomes Project with reference to the February
2012 release of the 1000 Genomes ALL haplotype panel release version 3 (available at

http://mathgen.stats.ox.ac.uk/impute/data download 1000G phasel integrated.html). The
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imputation was conducted separately by race. The study genotypes were pre-phased across

whole chromosomes using the SHAPEIT2 program.

3.2.3 Statistical Analyses

We report results for imputed and genotyped variants present in all population specific
analyses and have MAF 2 1% as well as an Info score > 0.3 as reported from IMPUTE?2.
Furthermore, this study focused on the nicotine dependent current smokers for whom
mentholated cigarette use was available. In the African American analyses, there were
14,445,263 variants in COGEND Part 1; 13,588,781 variants in COGEND Part 2; 14,268,121
variants in COGEND Part 3; and 14,189,019 variants in UW-TTURC. In the European American
analyses, there were 8,045,217 variants in COGEND Part 1; 7,204,743 variants in the COGEND
Part 2; 8,016,251 variants in COGEND Part 3; and 8,025,424 variants in UW-TTURC.

Logistic regression was used to test genetic variants for association with mentholated
cigarette use (yes or no), in hypothesis-driven candidate regions as well as genome-wide. These
analyses were conducted in PLINK (Purcell et al., 2007). For each cohort, the data were subset
by race. Age, sex and the first two principal components were included as covariates in the
individual study analyses. A meta-analysis, stratified by race, was also conducted to identify
variants most strongly associated in each ancestral population: 1,365 African Americans and
13,460,165 variants as compared to 2,206 European Americans and 14,016,119 variants. We
also conducted a meta-analysis that combined both races. The African, and European American
combined meta-analysis consisted of 3,571 individuals and 6,281,925 variants. Manhattan and

QQ plots were generated using R using the ggman package (Turner, 2014).
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3.2.4 Hypothesis-driven Candidate Regions

There are three variants that define the haplotypes in the taste receptor, TAS2R38:
rs713598, rs1726866, and rs10246969 (Mangold et al., 2008; Wang et al., 2007). This gene is
located on chromosome 7. Of these three variants, rs1726866 distinguishes the taster
haplotype from the non-taster haplotype.

We focused on specific genomic regions associated with nicotine dependence, smoking
behavior, and nicotine metabolism: nicotinic receptor subunit gene clusters on chromosome
8p11 (CHRNB3-CHRNAG6), chromosome 1525 (CHRNA5-CHRNA3-CHRNB4), and chromosome
19q13 (CYP2A6-CYP2A7) (Bierut et al., 2007; David et al., 2012; S. F. Saccone et al., 2007;
Tobacco and Genetics Consortium, 2010). We examined the relationship between all variants in
these receptors and mentholated cigarette use. Additionally, within these gene clusters, we
examined specific variants previously associated with nicotine dependence, including the

CYP2A6 gene because of the potential relationship of menthol use and nicotine metabolism.

3.2.5 Power Analysis

Power for Genetic Association Analyses (PGA) was used to estimate power to detect a
genetic effect for a range of allele frequencies and effect sizes (Menashe, Rosenberg, & Chen,
2008). We estimated power for each of the race specific analyses as well as the combined race
analysis. The African Americans power analysis contained 1,365 individuals of which 1,305 were
cases. There were 2,206 European Americans of which 737 were cases. The combined analysis

contained 3,571 individuals of which 2,042 were cases. Since most of the African Americans
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were cases (that is, menthol cigarette users), there were only a limited number of controls for

comparison, thus limiting the interpretation and power of African-American-only analyses.

3.3 Results

Here we present the preliminary results.

Table 3.1 contains demographic information about the COGEND and UW-TTURC
cohorts. Overall, these studies are fairly similar in demographics. Table 1 shows that
mentholated cigarette use is 90-97% in African Americans as compared to 30-39% in European
Americans. This influences the case-control ratio in these samples. Because so few African
American smokers are non-menthol smokers, conclusions about the influence of genetic
variants on mentholated cigarette use are most appropriate in the European American or
combined ancestry analyses. Mentholated cigarette use amongst African Americans in these
studies is higher than in population samples while the 30% mentholated cigarette use in
European Americans is consistent with population samples (Gardiner, 2004). The percentage of
females varies in each study. This is of note since there have been studies showing an effect of
sex on mentholated cigarette use in which women were shown to smoke mentholated
cigarettes at a higher rate than men (TPSAC).

Figure 3.1 displays several power analyses. We estimated the effect size (relative risk
(RR)) that is detectable with 80% power at a genome-wide significance level of 5 x 10, We
assumed an additive (1df) model and a range of allele frequencies. The prevalence varies based
on which group is being examined: African Americans 0.70, European Americans 0.30, and

combined ancestry 0.453 which is a weighted prevalence. Power varies by population group

61



and is most challenging for lower allele frequencies. For an allele with frequency 0.05, in the
full, combined ancestry sample, we have power to detect a locus with RR = 1.4 (Figure 3.1,
Combined Ancestry); in the two ancestry specific samples, we can detect down to RR = 1.68 in
European Americans and only RR = 2.15 in African Americans (Figure 3.1). Thus in the combined
sample, we have good power to detect common alleles with effect sizes similar to those
reported in other GWAS. For rarer alleles, the combined ancestry sample retains some power
to detect strong effects (RR = 1.9 for an allele frequency of 0.01). But in the ancestry specific
samples, power decreases sharply for lower allele frequencies; for a 0.01 frequency allele, we
can detect an RR of only 2.5 in European Americans and RR = 4.5 in African Americans (Figure
3.1). This study is under powered to detect rare variants with low effects.

A manhattan and QQ plot for the combined ancestry analysis is shown in Figure 3.2 and
Figure 3.3 respectively. From these figures, we see no inflation (Figure 3.3) and suggestive
signals on chromosome 7 and 12 (Figure 3.2). These suggestive signals can be seen in the
European American meta-analysis on chromosome 7 and 12 in Figure 3.4 and Figure 3.5
respectively as well as in the African American meta-analysis in Figures 3.6 and 3.7 respectively.
All figures only depict variants with MAF > 0.01%.

Manhattan and QQ plots for European Americans in each analysis are depicted in
Figures 3.8-15. The QQ plots for European American analyses (Figure 3.8, 3.10, 3.15, and 3.14)
show no inflation that would be indicative of false positives. In fact, they indicate some
deflation of p-values compared to expected; this would be consistent with the fact that the set
of SNPs tested (genotyped and imputed) includes a fair amount of correlation/redundancy.

Manhattan plots for European American analyses (Figure 3.9, 3.11, 3.13, and 3.15) show no
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genome wide significant associations. The QQ plot for the African American meta-analysis can

be found in Figure 3.16. This plot shows little inflation.

3.4 Discussion

Smoking is a major public health burden as it causes cancer and cardiovascular disease
amongst other illnesses (Fagan et al., 2010). There are several differences in smoking patterns
between mentholated and non-mentholated cigarette smokers. Menthol smokers are more
likely to be African American, less educated, younger, and never married (Fagan et al., 2010;
Okuyemi et al., 2004). Interestingly, several studies have found that mentholated cigarette
smokers smoke less cigarettes per day than non-mentholated cigarette smokers (Fagan et al.,
2010). Additionally, mentholated cigarettes may be more harmful than non-mentholated
cigarettes since they generally contain more nicotine and tar (Gardiner, 2004; Muscat et al.,
2002; Okuyemi et al., 2004), can contain more carcinogenic components (McCarthy et al.,
1995), and absorb higher levels of carcinogens (Muscat et al., 2002). To this end, identifying
genetic variants that contribute to mentholated cigarette use has the potential to aid in
attempts to improve smoking cessation and ultimately reduce mortality.

We conducted ancestry specific meta-analyses in addition to our combined races
analysis. We identified several suggestive signals on chromosome 7 and 12. QQ plots for each
European American analysis shows deflation which is evidence that there may not be false
positives. This study is well powered to detect common variants but under powered to detect

rare variants with low effects.
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Mentholated cigarettes were first marked to be used when one had the cold or a cough
and were perceived to be healthier (Gardiner, 2004). Mentholated cigarettes have historically
been marketed differently to African Americans and this began with the migration of African
Americans from rural areas to urban cities (Gardiner, 2004). The sponsorship of Civil Rights
efforts by tobacco companies and the perceived health benefits further solidified the use of this
product in the African American community (Gardiner, 2004). Mentholated cigarettes still
remain in high use amongst African Americans smokers. Many studies have examined the
influence of mentholated cigarettes in lung cancer risk as a disparity exists in lung cancer
between African and European Americans. However, not casual associations have been
identified.

This study adds to the current literature by examining genetic determinants of
mentholated cigarette use in large diverse samples over a large quantity of variants. This
examination of genetic influences represents a new, important aspect to understanding
menthol cigarette preference. Ultimately, to more fully understand menthol cigarette
preference and its health consequences, research combining socioeconomic, genetic, and

environmental determinants is needed.
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Table 3.1: Demographics of Current Nicotine Dependent Smokers

Table 6: Demographics of Current Nicotine Dependent Smokers

African  Americans (N=1,365) European Americans (N=2,206)

COGEND COGEND COGEND UW- COGEND COGEND COGEND

UW-TTURC
Part 1 Part 2 Part 3 TTURC Part 1 Part 2 Part 3
(N=845)

(N=437) (N=286) (N=517) (N=125) (N=952) (N=228) (N =181)
Females N (%) | 275 (62.93) | 143 (50.00) | 169 (32.69) | 86 (68.80) | 507 (53.26) | 131 (57.46) | 55 (30.39) | 484 (57.28)
Age Mean £ SD | 36.45+5.95 | 34.7245.75 | 33.9945.58 | 47.30+9.55 | 36.95+5.33 | 34.16+5.84 | 34.12+5.44 | 45.70+11.07
Menthol N (%) | 412 (94.28) | 277 (96.85) | 503 (97.29) | 113 (90.40) | 282 (29.62) | 72(31.58) | 70 (38.67) | 313 (37.04)
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Figure 3.1. Power Analyses. Detectable effect at 80% power for genome-wide screen (alpha=5x10"®) under an additive model. In all

analyses LD D’ = 1.0 and EDF = 1.
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Figure 18: Power Analyses
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Figure 3.2. Manhattan plot of association results predicting mentholated cigarette use in the Combined Ancestry Analysis
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Figure 19: Manhattan Plot Combined Ancestry Analysis
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Figure 3.3. QQ plot of association results predicting mentholated cigarette use in the Combined Ancestry Analysis
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Figure 20: QQ Plot Combined Ancestry Analysis
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Figure 3.4. Chromosome 7 plot of association results predicting mentholated cigarette use in European American Meta-Analysis
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Figure 21: Chromosome 7 European American Meta-Analysis
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Figure 3.5. Chromosome 12 plot of association results predicting mentholated cigarette use in European American Meta-Analysis
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Figure 22: Chromosome 12 European American Meta-Analysis
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Figure 3.6. Chromosome 7 plot of association results predicting mentholated cigarette use in African American Meta-Analysis
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Figure 23: Chromosome 7 African American Meta-Analysis
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Figure 3.7. Chromosome 12 plot of association results predicting mentholated cigarette use in African American Meta-Analysis
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Figure 24: Chromosome 12 African American Meta-Analysis
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Figure 3.8. QQ plot of association results predicting mentholated cigarette use in COGEND Part 1 European Americans
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Figure 25: QQ Plot COGEND Part 1 EA Analysis
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Figure 3.9. Manhattan plot of association results predicting mentholated cigarette use in COGEND Part 1 European Americans
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Figure 26: Manhattan Plot COGEND Part 1 EA Analysis
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Figure 3.10. QQ plot of association results predicting mentholated cigarette use in COGEND Part 2 European Americans
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Figure 27: QQ Plot COGEND Part 2 EA Analysis
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Figure 3.11. Manhattan plot of association results predicting mentholated cigarette use in COGEND Part 2 European Americans
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Figure 28: Manhattan Plot COGEND Part 2 EA Analysis
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Figure 3.12. QQ plot of association results predicting mentholated cigarette use in COGEND Part 3 European Americans
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Figure 29: QQ Plot COGEND Part 3 EA Analysis
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Figure 3.13. Manhattan plot of association results predicting mentholated cigarette use in COGEND Part 3 European Americans
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Figure 30: Manhattan Plot COGEND Part 3 EA Analysis
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Figure 3.14. QQ plot of association results predicting mentholated cigarette use in UW-TTURC European Americans
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Figure 31: QQ Plot UW-TTURC EA Analysis
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Figure 3.15. Manhattan plot of association results predicting mentholated cigarette use in UW-TTURC European Americans
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Figure 32: Manhattan Plot UW-TTURC EA Analysis
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Figure 3.16. QQ plot of association results predicting mentholated cigarette use in African American Meta-Analysis
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Figure 33: QQ Plot of AA Meta-Analysis
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Chapter 4: Conclusions and Future Directions

This work considers imputation by examining imputation accuracy and using imputed
data in a meta analysis. Chapter 3 of this work is in preparation for publication and Chapter 2 of

this work has been published, see CV for citation.

4.1 Future Directions

As society and research changes, there are several areas which warrant study:
imputation, genomic analyses in diverse populations, nicotine dependence in diverse
populations, and electronic cigarettes. Imputation may be used for different purposes in the
future. Genomic analyses in diverse populations need to be expanded and electronic cigarettes
are changing smoking behaviors and nicotine dependence. These are discussed in subsequent

sections.

4.1.1 Imputation

Although the cost of whole genome sequencing is decreasing, imputation will still be used in
many analyses to come. However, as the field moves towards better understanding rare variants, the
imputation quality of these data will be more important to consider. It has also been suggested that
imputation can be used in scenarios of low sequencing coverage. While there are many uses for
imputation, the limitations of reference panels and SNP arrays regarding diverse populations remain a

concern.
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4.1.2 Genomic Analyses in Diverse Populations

There is a disparity in the effort placed to understand European populations as
compared to other populations. Bustamante et al 2011 reports that 96% of subjects in all GWAS
studies were people of European descent. This commentary also expresses concern that this
trend will likely continue in whole genome sequencing analyses (Bustamante, De La Vega, &
Burchard, 2011). This disparity is of note as medical genomics and personalized medicine are
becoming the standard of care. It was believed that findings from understanding European
populations would be generalizable to other ancestries (Bustamante et al., 2011). However, in
the case of rare variants, this may not the case. In particular, population-specific rare variants
have been associated with various diseases, including nicotine dependence, that are not
observed in other population groups (Olfson et al., 2015). Furthermore, studying genomic
diversity in these populations is equitable and important irrespective of the implications in
European populations.

Rare variants are usually population specific (Bustamante et al., 2011). Linkage
disequilibrium contributes to population stratification. GWAS is predicated on the idea that the
associated marker is casual or is linked to the causal variant. Since linkage disequilibrium
patterns differ across populations, the relationship between the associated and casual marker
may change depending on which population is being considered. African populations tend to
contain greater genetic diversity and less linkage disequilibrium than other populations
(Bustamante et al., 2011; Teo et al., 2010). Many researchers believe that the rare variants hold
a significant proportion of the missing heritability in genomic analyses. Furthermore, the study

of rare variants is increasingly important to treatment and pharmacological effects.
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Factors that hinder the investigation and understanding of disease etiology in diverse
populations include lack of expansive reference data and study designs that do not consider
environmental factors in each population. Although 1000 Genomes created a large catalogue of
genomic diversity, many other populations have not been sequenced. This lack of reference
data hinders the study of disease in such populations. While studies need to consider the
influence of environmental factors on disease in diverse populations (poverty, unequal access
to care, lifestyle, and health-related cultural practices (Rotimi & Jorde, 2010)) other factors such
as racism and internalization of negative racial bias are also paramount when examining some
diseases. Chae et 2014 found accelerated biological aging amongst African American men due
to racial discrimination and internalization of negative racial bias (Chae et al., 2014). With the
advent of personalized medicine, more work is needed in the development of protocols to
integrate cultural, socioeconomic, psychosocial, environmental and genetic factors in efforts to
truly understand disease. A bias towards European populations exists and will persist unless

major changes occur.

4.1.3 Nicotine Dependence in Diverse Populations

This bias towards studying European Americans persists in nicotine dependence studies
(Bierut, 2010). The genetic variant most strongly associated with nicotine dependence is
rs16969968 (Bierut, 2010; Tobacco and Genetics Consortium, 2010). This variant differs in allele
frequency in European and African populations (Bierut, 2010). However, recently important
strides have been made with several genetic investigations of nicotine dependence and other

smoking behaviors in African Americans (Chen et al., 2012; David et al., 2012; Saccone et al.,
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2010) and Asians (Chen et al., 2012). Understanding the genetic architecture of nicotine

dependence in a variety of populations is an ongoing area of research.

4.1.4 Cessation, Nicotine Replacement, and Electronic Cigarettes

Nicotine replacement therapies (NRT) have been embraced as they positively influence
cessation (Cahn & Siegel, 2011). Varenicline, buproprion, and NRT are the three main
pharmacological approaches to smoking cessation (Bierut, 2010). Smoking cessation efforts are
important as they are believed to decrease mortality and smoking related diseases/illnesses.

Recently, electronic cigarettes have gained in popularity. Electronic cigarettes are
generally not considered to be a part of cessation efforts since they closely mimic the act of
smoking (Cahn & Siegel, 2011). Electronic cigarettes were first created in 2003 (Odum, O’Dell, &
Schepers, 2012) and introduced to the American markets in 2007; these products have been
heavily marketed and purchased through the internet grossing millions of dollars (Noel, Rees, &
Connolly, 2011). These battery powered devices vaporize a nicotine solution and avoid
combustion (Cahn & Siegel, 2011).

Many believe that these products are safer than tobacco cigarettes (Cahn & Siegel,
2011; Etter, 2010; Trtchounian, Williams, & Talbot, 2010). The safety of these products cannot
be comprehensively examined due to the wide variety in brands (Noel et al., 2011; Trtchounian
et al., 2010). These products are banned in Australia, Brazil, Canada, Denmark, and Switzerland
(Etter, 2010). Furthermore, there is variability in the amount of nicotine present in these

products (Odum et al., 2012; Trtchounian et al., 2010). These products are often used for
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smoking cessation although they are not FDA approved for this purpose (Odum et al., 2012). It

is yet to be determined if electronic cigarettes are harmless and should not be regulated.

4.2 Summary

There are several important frontiers still to be explored regarding genetic influences on
nicotine dependence and cessation, as discussed above. The work in this thesis has bridged
some of the knowledge gaps to enable future work. In Chapter 2, we provided new
understanding of how to assess imputation accuracy, which is being used in large-scale genetic
studies of smoking and addictions. In addition, this work on imputation accuracy focused on
imputation in African ancestry populations and thus should aid future genetic studies of
understudied African Americans. Chapter 3 also addresses the need for genetic study in diverse
populations by focusing on a smoking phenotype, menthol cigarette use, that is particularly
prevalent in the minority population of African Americans. Our use of both European Americans
and African Americans together affirms the value of diverse population cohorts in genetic

studies.
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