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Sudden cardiac death(SCD) is a significant cause of death that accounts for more than

180,000 deaths in the US and 4 million deaths worldwide annually. SCDs are mainly caused

by irregular heartbeats called arrhythmias, which are caused by abnormal electrical activity

within the heart. Precision medicine, in the form of personalized computational cardiac

models of a patient’s heart, can suggest optimal therapies for cardiac arrhythmias. Prior

work has used finite element meshes derived from cardiac MRIs to simulate cardiac electrical

activity. In this study, I sought to augment this approach by developing a neural network to

learn the parameters that describe patient-specific cellular activity. The learned parameters

can be combined with a 3-D cardiac mesh to achieve more accurate simulations. I found

that all parameters except one could be predicted with low error using the current approach.

Thus, there exists a parameter subset that is well-predicted and could be used for initial

approaches to patient-specific modeling.
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Chapter 1

Introduction

Sudden cardiac death(SCD) accounts for 25% of 17 million cardiac deaths worldwide every

year[5]. Within the United States, SCD causes around 180,000 to 250,000 deaths annually[2].

SCDs are mainly caused by abnormal electrical activities in the heart, which can cause

irregular heartbeats called cardiac arrhythmias. An arrhythmic heart can malfunction and

fail to pump blood properly, leading to a life-threatening situation for the patient.

Precision medicine, an approach to medical care that takes into account the unique conditions

of individual patients, is a rapidly rising trend in the healthcare sector [13, 23]. One way

that precision medicine can be applied to the preemptive diagnosis and treatment of cardiac

arrhythmias is through constructing patient-specific computational cardiac models. Cardiac

models seek to simulate the electrophysiological activities in a patient’s heart in order to

detect abnormal electric signals that can cause arrhythmias.

Cardiac models first start at the cellular level, simulating the electrophysiological behavior

of a single cardiac cell, called a cardiomyocyte. Cardiomyocytes generate electrical activities

called action potentials, which are ”spikes” of voltages across cell membranes that propagate

throughout interconnected cardiomyocytes and cause a flow of current. When the total

activities of cardiomyocytes in a person’s heart are viewed on the organ scale, the collective

action potential propagation can be observed as a ”wave” of electrical activity across the

heart, which regulates the contraction and expansion of a heart.

Much like how numerous myocyotes are connected together to eventually form the full heart,

these single-cell simulations can be linked to form a 3-D simulation conducted at the organ

level. The 3-D simulations can model the electrophysiological behavior of a patient’s heart,
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and different experiments can be conducted to test for any abnormal electrical behavior that

might occur.

When applied to cardiology, precision medicine can help simulate a more realistic version

of the patient’s heart and increase chances of arrhythmia detection by creating patient-

specific cardiac models that incorporate the unique biological parameters of each patient.

Arevalo et al. (2016)[3] developed personalized 3-D cardiac models through creating a 3-D

finite element mesh(FEM) from cardiac MRI scans. By conducting cardiac simulations on

this personalized heart structure, they demonstrated that the method can predict future

arrhythmias better than existing clinical metrics. Giffard-Roisin et al. (2018)[7] used non-

invasive data to personalize cardiac models to predict model responses to different electrical

stimuli.

This study explored how precision medicine can further be applied to computational cardiac

models to improve the level of personalization to a patient. This was achieved in a two-

pronged approach.

First, I sought to develop a single-cell computational cardiac model that was personalized

to fit cellular characteristics of a patient with hypertrophic cardiomyopathy(HCM), a car-

diac disease that occurs frequently in young athletes[14] and is a leading cause of SCD in

young people[21]. This cardiac model is capable of capturing abnormal electrophysiological

behavior in HCM patients, and can be used in conjunction with the organ-level 3-D simu-

lation approach proposed by Arevalo et al. (2016). Their combined usage in a 3-D cardiac

simulation can achieve more accurate simulations that reflect the true electrophysiological

behavior of HCM patients’ hearts.

Second, I attempted to personalize key cardiac model parameters to match observable elec-

trophysiological data in clinical settings using machine learning, specifically neural networks.

A cardiac single-cell model is a system of ordinary differential equations(ODEs) that describe

ionic currents that flow across the cell membrane, solving for the action potential(voltage)

that results from these currents. However, it is impossible to analytically calculate the ionic

current parameters from the action potential because the system of ODEs is an underdeter-

mined system of equations. This means that several different combinations of cardiac model
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parameters can produce the exact same action potential behavior, and it is impossible to an-

alytically determine which combination is the correct one. In light of this difficulty, machine

learning has been proposed as a way to estimate cardiac model parameters.

Sobie et al. (2010)[17] attempted to solve the underdetermined system of ODEs in a cardiac

model through least-squares regression, and found that augmenting the action potential data

with intracellular calcium concentration([Ca+]i) data could constrain the system of ODEs

to make better predictions. Neumann and Mansi (2020)[15] used regression approaches and

reinforced learning using Markov decision processes for model parameter estimation. More

recently, Jeong and Lim (2021)[10] also found that by using neural networks, they could

predict the types of ion channel parameters that were modified with high accuracy.

In this study, I first developed a computational cardiac model that can simulate abnormal

electrophysiological behavior of HCM patients’ cardiomyocytes that can lead to cardiac ar-

rhythmias. Then, I created a neural network-based machine learning approach to predict

cardiac model parameters with a novel data preprocessing and augmentation technique that

combines different approaches developed by authors in cardiology and machine learning.
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Chapter 2

Background

2.1 Hodgkin-Huxley Model

The first computational model of electrophysiological activities produced by a cell was de-

veloped by Hodgkin and Huxley (1952)[9], inspired by the giant squid axon. Their work

focused on modeling action potentials produced by the squid axon, which are voltage spikes

across the cell membrane of the axon. These action potentials affect the membrane voltages

of neighboring axons, and given a high enough spike, these axons are also triggered to pro-

duce a similar voltage spike. This chain of action potentials propagates across the network

of axons, causing an electrical current to flow through the axons and produce what we know

as electrical brain activity.

The Hodgkin-Huxley model is at its core a dynamic system of ordinary differential equa-

tions(ODEs) that describe the total ionic membrane current that flows across the cell mem-

brane, solving for the action potential(voltage) produced by the cell as a result of the ionic

currents. The basic premise of solving for voltage given the current is founded upon the

assumption that the electrophysiologal behavior of the cell can be modeled as a capacitative

circuit, where the cell membrane is a capacitor(Equation 2.1). Because the total membrane

current can be decomposed into individual ionic currents within the cell, this essentially

becomes a system of ODEs where each ODE describes each ionic current within the cell.

Note that there is a constant leak current across the membrane, denoted as Ileak.
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Finally, an ionic current for ion X can be written in a Hodgkin-Huxley formulation. The

formulation consists of the ionic current IX , the membrane capacitance Cm, a channel con-

ductance variable GX , several ”gating” variables m, n, and h between 0 and 1 that represent

the ”openness” and ”closedness” of the channel, and the Nernst potential EX which is the

equilibrium membrane potential(voltage) at which no ionic flow across the membrane oc-

curs. Here, Vm represents the membrane voltage that is being solved for in the system of

ODEs and will continuously be updated as the system is solved for every timestep dt. Some

examples of Hodgkin-Huxley ionic current formulations are shown in Equations 2.2 and 2.3.

Itot =
∑
X

IX = INa + IK + Ileak = Cm
dVm

dt
(2.1)

INa = GNa ·m3 · h · (Vm − ENa) (2.2)

IK = GK · n4 · (Vm − EK) (2.3)

2.2 Computational Cardiac Modeling

Cardiac cells, or cardiomyocytes, also produce electric signals via action potential propaga-

tion. The heart’s electric activity regulates the physical movements of the heart such that

it can beat smoothly and regularly. Computational cardiac models seek to simulate this

activity through application of the Hodgkin-Huxley model, and many famous models in the

field are based upon the Hodgkin-Huxley formulations of the ionic currents.

There is a large number of ionic currents involved in cardiac activity, and as such the system

of ionic current ODEs can become quite complex to solve compared to the basic system

introduced above. However, Equations 2.1 through 2.3 still serve as a base to understand

ionic equations introduced in the Methods section of this study.
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Chapter 3

Methods

3.1 Data Acquisition

3.1.1 Cardiac Model Formulation

The second version of the computational single-cell model developed by Ten-Tusscher et

al. (2006)[19] was used as the base model to simulate the electrophysiological activity of

cardiomyocytes and generate training/test data. To replicate the behavior of late sodium

currents(INaL) that play a large role in cardiac diseases such as hypertrophic cardiomyopa-

thy(HCM), the ionic equation describing INaL was manually added into the TT2 model using

a Hodgkin-Huxley current formulation described by Coppini et al. (2012)[6]. Equations 3.1

to 3.3 describe their approach.

INaL = GNaL ·m3
L · hL · (Vm − ENa) (3.1)

hL =
1

1 + exp [Vm+91
6.1

]
(3.2)

Itot = (INa + INaL) + IKr + IKs + . . . = Cm
dVm

dt
(3.3)

Equation 3.1 shows the Hodgkin-Huxley formulation of the late sodium current, and Equa-

tion 3.2 describes a separate equation for the gating variable hL. Then, Equation 3.3 incor-

porates INaL into the system of ODEs that describe the Hodgkin-Huxley model and solve

for Vm, the action potential voltage. In Equation 3.3, many other ionic equations besides
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INaL are present, but omitted for clarity. GNaL = 0.085 mS/µF is the conductance of the

ion channel associated with INaL, and mL is identical to the gating variable of m used to

calculate the rapid sodium current INa introduced in the Background section. The gating

variables m and mL are values between 0 and 1. ENa is the sodium Nernst potential(given

constant), and Cm = 0.185 µF/cm2 is the membrane capacitance.

A subset of parameters that control ionic currents in the TT2 model are presented in Table

3.1. To offset the model imbalance caused by the addition of INaL, the TT2 model parameters

GKr and GGKs, and the additional parameter GNaL used by Coppini et al. (2012), were

accordingly adjusted to produce physiologically realistic action potentials and intracellular

calcium transients. Their modifications are shown in Appendix A.

Then, to capture the level of physiological variability across different individuals, the param-

eters listed in Table 3.1 were varied by multiplier modifiers using a grid range. A multiplier

grid of [×0.1,×0.5,×1.0,×1.5,×2.0] was used for all parameters except GNaL, where a mul-

tiplier grid of [×0.1,×0.5,×1.0, . . . ,×5.0] was used to capture a larger variability of GNaL

in HCM. A starting multiplier value of ×0.1 was chosen to avoid total parameter knockouts

that could lead to wildly unphysiological behavior. This approach was utilized by Jeong

and Lim (2021) to generate training data for their neural network, and provided a means to

normalize the wildly differing scales of the parameters while providing a efficient framework

to conduct different TT2 simulations.

Table 3.1: Modified Parameter Subset of TT2 Model

Parameter Definition Value
GNaL Late Na+ Current Conductance 0.034 mS/µF
GKr Rapid Rectifier K+ Channel Conductance 0.19125 mS/µF
GKs Slow Rectifier K+ Channel Conductance 0.49 mS/µF
Gto Transient Outward K+ Channel Conductance 0.294 mS/µF
GK1 Inward Rectifier K+ Channel Conductance 5.405 mS/µF
GCaL L-Type Ca+ Channel Conductance 3.98E-5 cm3/µF·s
kNaCa Max Na-Ca Exchange Current 1000 µA/µF
Vmaxup Max Sarcoplasmic Reticulum Ca+ Uptake Current 6.375E-3 mM/ms
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3.1.2 Data Generation and Sampling

Parameter multipliers were sampled in a uniformly random method from their respective

grids to form 20,000 unique multiplier combinations. Each multiplier combination was ap-

plied to the TT2 model to vary simulations across repeated runs. Each run was conducted

under a simulation protocol, where the protocol first simulated 40 ”beats” of a cardiomy-

ocyte to run the dynamic ODE system to steady-state using the new parameter multipliers.

Then, over an additional two beats, the action potential and intracellular calcium transient

behavior of the model were recorded. The frequency of the beats was set to 1 Hz, outputting

2000 ms long timeseries data for both AP and [Ca+]i data.

The simulations were conducted using the open-source cardiology simulation package open-

CARP [16], and a single-machine multi-processor system with 48 CPUs was utilized to

accelerate data generation. After each simulation, the resulting action potential was ana-

lyzed using openCARP’s built in AP detection function and any data not showing any APs

were discarded. About 900 simulations were discarded to form a total dataset of ∼ 19, 000

simulations.

3.2 Machine Learning Model Design

3.2.1 Input and Output

Following suggestions made by Sobie et al. (2010) to add another factor of differentiation

between timeseries AP data, the [Ca+]i data from each simulation was combined with the

AP data to produce a multivariate timeseries(MTS) data type as the input variable. The

objective was to predict the parameter multiplier combinations that produced this data. The

decision to predict the multipliers instead of the raw parameter values themselves ensured

that the loss function would optimize equally for all parameters across a common scale and

accurately quantify the overall model prediction performance.
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Thus, the machine learning algorithm was formulated as a supervised vector regression model

with MTS AP and [Ca+]i data as the input, the predicted multiplier combination as the

output, and the actual multiplier combination as the target vector.

3.2.2 Data Preprocessing and Augmentation

To standardize the AP and [Ca+]i data, the ”default” behaviors of AP and [Ca+]i were

subtracted over the dataset according to the method prescribed by Jeong and Lim (2021).

The ”default” data was simply the unmodified TT2 simulation results. The ”subtracted”

timeseries data were then transformed into 398×398 RGB images using the Gramian Angular

Field(GAF) encoding map proposed by Wang and Oates (2014)[20], such that the data could

be trained on a convolutional neural network. After encoding, this produced two images(AP

and [Ca+]i) for each simulation. In order to augment the AP data with [Ca+]i data as

suggested by Sobie et al. (2010), the AP image was stacked on top of the [Ca+]i image

to create a single 796 × 398 rectangular image, using the method described by Yang et al.

(2019)[22]. The resulting dataset consisted of 19,000 796 × 398 RGB images for the input,

and target vectors of length 8 representing the multiplier combinations for each image. A

sample approach demonstrating the transformation step is shown in Figure 3.1.

Figure 3.1: Data Preprocessing/Augmentation Step of a Simulation
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3.2.3 Neural Network Formulation

A convolutional neural network was used to train with the image data. The architecture

consisted of 6 convolutional layers with max pooling layers in between. Each convolutional

layer had a padded stride length of 3 with varying filter sizes, and the ReLu activation

function was used for every layer. For the max pooling layers, a pooling size of 2 was used.

A flattening layer was placed between the last convolutional layer and the output layer to

enable dense connections, and a rescaling layer was added after the input layer to normalize

the image’s RGB values between 0 and 1. For more details, a full diagram of the architecture

can be found in Appendix B. The Python packages Tensorflow[1] and Keras[4] were used to

implement the convolutional neural network.

3.2.4 Training and Evaluation

The train/test split ratio was set to 7:3 and resulted in 13376 images for training and 5733

images for testing. After randomly shuffling the data, the training and test images were

segregated into separate directories to prevent data leakage. Basic hyperparameter tuning

was performed with the entire training set by manually adjusting the number of neurons and

layers, optimizer type, learning rate, batch size, activation function, convolution filter size,

and number of training epochs. Given the manual nature of the hyperparameter tuning, a

separate validation set was not constructed in this study. Based on the tuning results, the

Adam optimizer and a learning rate of 0.004 was chosen, with a data batch size of 32. The

neural network was trained for 200 epochs at the start, and epoch numbers were decreased

for consecutive runs if model convergence was observed. To differentiate between random

effects and true model performance as much as possible, the network was re-trained multiple

times with different weight initializations and stochastic optimization.

The mean-squared error(MSE) metric was chosen as the loss function and monitored during

training and evaluation. The evaluation step also tracked the model’s predictions on indi-

vidual values of a benchmark combination in order to observe the prediction error on a more

granular level. The benchmark data, which are the simulation results for a TT2 simulation

with default settings, are shown in Figure 3.2 with the preprocessing results. The prediction
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results for the benchmark data were used to reconstruct a TT2 simulation, and the simula-

tion results were compared to the benchmark simulation to observe the differences, discussed

later in the Results section.

Figure 3.2: Benchmark Data Used for Evaluation

From start to finish, the machine learning workflow consisted of generating unique multi-

plier combinations for model parameters, conducting the corresponding TT2 simulations,

preprocessing the simulation data, training the convolutional neural network, and finally the

reconstruction of benchmark data using the predicted values at the end of training. This

workflow is visualized in Figure 3.3.
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Figure 3.3: Machine Learning Workflow
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Chapter 4

Results

4.1 Preliminary Results

Initial attempts to develop and improve the neural network was based on a small dataset

of around 5,000 GAF-encoded images. These images originally included multipliers with a

value of 0 in order to simulate extremely low levels of these parameters. It was later found

that the 0 value multipliers caused the simulation to generate physiologically unrealistic

data, negatively influencing the training process and causing the test MSE to remain high.

Preliminary training results with this data showed a steady convergence to a training MSE

around 0.4 and a test MSE around 2.0 after 100 epochs of training.

Since the MSE had limited interpretability outside the optimization loss, some sample images

and corresponding multiplier combinations were chosen to roughly monitor the training

prediction errors for each multiplier. This provided meaningful insights into the model

performance by showing a breakdown of the underlying contributors to the test MSE. During

the initial stage, the first image of the test set was picked as the benchmark data, and the

test errors on each value of the corresponding multiplier combination were roughly monitored

through screen outputs while training the model.

When observing the predictions of the model on the benchmark data throughout training,

a subset of parameters(GNaL, kNaCa, Vmaxup) were consistently unable to be predicted well

and had significantly large prediction errors which impacted the overall test MSE. Moreover,

the erroneous predictions steadily remained at their levels, signifying that the model had
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converged to a stationary point during optimization of the loss function and would not

improve further.

Attempts to escape the stationary point using different optimizing functions and learning

rates were unsuccessful. The learning rate was increased on Adam, RMSprop, and Nesterov

momentum accelerated stochastic gradient descent(SGD) optimizers. Only Adam and Nes-

terov momentum SGD succeeded in converging with larger learning rates, while RMSprop

exhibited exploding gradient behavior and ran into undefined number issues(NaNs). How-

ever, even with larger learning rates in Adam and Nesterov momentum SGD, and increased

momentum in the Nesterov momentum SGD optimizer, the model consistently failed to es-

cape the convergent region. The Adam optimizer showed slightly faster convergence than

Nesterov moementum SGD, and was chosen as the default optimzer for the model.

As the next step, more convolutional layers and max pooling layers were added into the

model to increase the complexity of the architecture. This was because the training error

plateaued after several epochs and did not decrease over time as expected, which implied that

the model was incapable of overfitting to the training data. While the increased complexity

resulted in a faster model convergence, the test MSE still converged to similarly large levels

close to 2.0, signifying that the model architecture was not the main cause.

The large test MSE slightly decreased after increasing the dataset size to 19,000 images,

averaging around 1.5 in multiple runs. At this point, the amount of GPU memory became

a limiting factor and led to memory exhaustion if there were too many layers in the model

or if the training batch size was too large.

4.2 Final Training and Test Results

A re-evaluation of the dataset found that the 0 multiplier values in the multiplier combina-

tions, which were meant to simulate extremely low values of the corresponding parameters,

caused unrealistic physiological behavior within the TT2 model and prevented the neural

network from giving accurate predictions on physiologically realistic data. These 0 values

were replaced with a multiplier value of 0.1 to simulate low values of these parameters while
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preventing total knockout. The dataset was regenerated using these new multiplier grids,

with a size of around 19,000.

Using this new constrained dataset, the test MSE significantly decreased by approximately

50% from around 1.5 to around 0.75. With the network architecture described in the Methods

section, the model converged within one epoch of training and did not deviate with additional

epochs. Based on previous experience, the Adam optimizer and a learning rate of 0.004 was

chosen, with a data batch size of 32. The plot of the training and test results are shown in

Figure 4.1.

Figure 4.1: Training and Test Error Metrics

Since the dataset was totally regenerated, a new benchmark image needed to be picked from

the test data to evaluate the model’s performance on each parameter multiplier. Instead of

the somewhat rough method of randomly selecting a sample from the test data, one piece of

sample data was fixed for evaluation. The ”default” simulation data, a TT2 simulation with

”default”, unchanged values, was used for this purpose. The default data has previously

been visualized in Figure 3.2. It was ensured that the ”default” benchmark data was not

present in both the training and test sets to prevent any data leakage.

The prediction results at the end of the third epoch for the benchmakr data are listed

in tabular format in Table 4.1. The prediction error progression for three epochs on the

benchmark data is also shown in Figure 4.2. All parameter multipliers except that of GNaL
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were predicted with squared errors on the order of magnitude of 10−2 or smaller. The

absolute errors were on the same order of magnitude excepting that of GNaL. The GNaL

multiplier had square and absolute error magnitudes on the order of 1.

Table 4.1: Prediction Results of Benchmark Data at End of Last(Third) Epoch

Multipliers Target Predicted Sq. Err. Abs. Err.
GNaL 1.00 2.2511 1.5653 1.2511
GKr 1.00 1.0141 1.9950E-04 0.0141
GKs 1.00 1.0415 1.7240E-03 0.0415
Gto 1.00 0.9169 6.8946E-03 0.0830
GK1 1.00 0.9080 8.4562E-03 0.0919
GCaL 1.00 0.9764 5.5403E-04 0.0235
kNaCa 1.00 0.8437 2.4422E-02 0.1562
Vmaxup 1.00 0.8997 1.0049E-02 0.1002

Figure 4.2: Squared and Absolute Error on Default Data Prediction
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Reconstructing the benchmark TT2 simulation based on the predicted results shown in Table

4.1 is shown in Figure 4.3. Due to persisting prediction errors in the GNaL multiplier, the

reconstructed simulation does not fully match the default simulation.

Figure 4.3: Default Data and Reconstructed Data From Model Predictions
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Chapter 5

Discussion

The choice to use a neural network to predict ionic channel parameters was founded upon the

work done by Jeong and Lim (2021), who used a basic artifical neural network consisting of

three densely connected layers to predict the type of ion channel parameter that was modified,

given only the AP data as the input. Their data was generated using the parameter multiplier

combination approach, and was normalized with the ”subtraction” method of subtracting

the default AP data from their experimental data for normalization.

While their approach was successful as a single-variable classification model, converting

their classification model into a vector regression model to predict eight continuous values

proved to be an entirely different problem. The main issue was that I was trying to solve

an underdetermined system of ODEs, meaning that with only AP data as the input, I

had no guarantee that my obtained predictions would be a unique solution to the system.

To attempt to yield unique predictions, I augmented the AP data with [Ca+]i data while

training. The idea that [Ca+]i data could sufficiently constrain the system of ODEs to yield

a unique solution was suggested by Sobie et al. (2010).

However, this still left the problem of training a neural network with multivariate timeseries

data. An initial brute-force approach to concatenate the raw [Ca+]i data to the AP data for

training did not perform well. To overcome this limitation, I borrowed the Gramian Angular

Field image encoding method that could encode timeseries data into 2-D RGB images. This

enabled me to train my data on a convolutional neural network, as well as easily augment

the AP data with [Ca+]i data for training.

18



Re-generating the dataset after replacing the 0 multiplier values proved to be the key factor

in improving the prediction performance of the neural network. During the development

stage of the model, I discovered that the model architecture and hyperparameters did not

influence the performance significantly. The quality of the dataset was the most important

contributor to increasing the predictive performance, as is widely acknowledged by the data

science community.

An interesting behavior in Figure 4.1 is that the training MSE is quite higher than the

training MAE. While truncated on the plot, the training MSE starts around 2.4. One might

expect that the MSE should reflect a squared value of the MAE, and find this behavior

surprising. However, this is only true when dealing with a scalar value. When calculating

MSE and MAE with vectors, the square and mean operations are conducted element-wise,

meaning that the resulting MSE will no longer be an exact square of the MAE.

Another behavior that initially seems concerning is the relatively high training error com-

pared to the test error. When training, one will normally observe initially high training and

test errors which decrease as the training progresses - it is quite unusual to see a test error

that is actually lower than the training error. On further investigation into this effect, I

found that the model was actually fitting to the data so rapidly that the training errors con-

verged within one epoch. However, because Tensorflow reports the average of the training

errors for each epoch, the training errors look relatively high for Epoch 1, and thus leads to

the abnormal-looking plots with higher training errors.

Given the rapid convergence of the model within one epoch shown in Figure 4.1, I felt that

more insights could be gained by reporting the prediction performance by each batch within

an epoch, instead of reporting by epochs. Figure 4.2 thus shows training progression across

three epochs by batch numbers. There were approximately 400 batches in one epoch, which

are also labeled in the figure.

One aspect that needs to be kept in mind when viewing Figure 4.2 is that these are prediction

results for only a single piece of simulation data, which is the default simulation data. I made

the choice to limit the analysis to a single datapoint because of the ability it provided to

explore the data in-depth instead of being limited to averaged values. Given the relatively

low levels of the test MSE, and that the GNaL multiplier was consistently mispredicted
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across repeated training of the model with randomized weights and stochastic optimization,

I judged that this analysis was representative of the model’s performance as a whole.

The inability of the neural network to accurately predict the multiplier for GNaL likely

comes from the fact that I used a larger grid multiplier range([×0.1,×0.5,×1.0, . . . ,×5.0])

compared to the rest of the parameter multiplier grid ranges([×0.1,×0.5,×1.0,×1.5,×2.0]).

Since I uniformly sampled from these grids simultaneously, the multiplier grid for GNaL was

not thoroughly explored as the grids for the remaining parameters. This means that the

model did not have the opportunity to fully learn the behavior of altered GNaL compared

to the other parameters. This is evidenced by the large amount of continuous fluctuations in

the error per batch of the GNaL multiplier in Figure 4.2. All parameter multipliers except the

GNaL multiplier can be predicted with error levels close to 0 and show relatively little signs of

fluctuation. However, while the prediction error is centered around 2.2 for the squared error

per batch and 1.5 for the absolute error per batch, the GNaL multiplier prediction continues

to fluctuate across training.

Figure 4.3 shows that while the reconstructed data generated with 4.1 does not completely

match the true data in magnitude. The mismatch aligns with my expectations of a larger

GNaL in the TT2 model, which prolongs the AP duration and also increases [Ca+]i levels.

Even with the relatively large prediction error for the GNaL multiplier, however, the over-

all effect in the reconstructed data is smaller than expected, and the morphology of the

reconstructed data is well preserved compared to the true data.
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Chapter 6

Conclusion

This study sought to establish an inter-disciplinary approach to apply precision medicine

to cardiology by proposing a machine learning workflow to personalize single-cell cardiac

models. I first developed a new cardiac model based on the work of Coppini et al. (2012)

to capture abnormal electrophysiological behavior of HCM cardiomyocytes. Then, I utilized

data generation and preprocessing approaches from Jeong and Lim (2021), the data aug-

mentation method with [Ca+]i suggested by Sobie et al. (2010), the Gramian Angular Field

image encoder developed by Wang and Oates (2014) to transform my data into images, and

finally the training methodology suggested by Yang et al. (2019) to simultaneously train a

convolutional neural network with multiple input GAF images. Through combining the ap-

proaches outlined in these works, I was able to synthesize a novel data preprocessing method

for a convolutional neural network and demonstrated that it could predict most parameters

in a modified Ten-Tusscher cardiac model.

Immediate future work lies in effectively predicting the elusive GNaL multiplier with a low

error level. One immediate solution is to generate more datapoints to compensate for the

lack of data exploration in the larger multiplier grid range. Another solution is to introduce

constrained optimization into the model to ensure the neural network always predicts pa-

rameter multiplier values within a physiologically realistic range. Experimentally obtained

parameter values found in literature could be used to establish lower and upper bounds dur-

ing optimization. The constrained optimization approach seems especially promising, given

the significant decrease of the test MSE after preventing 0 value multipliers from occurring

within the dataset.
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Even after the predictive power of the model is sufficiently increased, the model still needs to

be trained with real-world data to have clinical impacts. This process will require navigating

around noisy data and active prevention of overfitting to the noise. Various methods such as

dropout and L1, L2 regularization can be applied to avoid overfitting. This is not to men-

tion overcoming the difficulty of obtaining actual patient data in the first place. Currently,

a cardiac tissue digesting pipeline is being developed to provide a steady flow of human

cardiomyocytes for data recording, where a sophisticated microscope can provide simultane-

ous recordings of action potential and intracellular calcium transient levels for robust data

acquisition. Much work remains before truly being able to deploy this machine learning

framework in a clinically meaningful setting.
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Appendices

Appendix A

Table A.1: TT2 Model Parameters and Modifications

Parameter Original Changed
GNaL 0.085 mS/µF 0.034 mS/µF

(added from Coppini et al. (2012))
GKr 0.153 mS/µF 0.19125 mS/µF
GKs 0.392 mS/µF 0.49 mS/µF
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Appendix B

Figure B.1: Convolutional Neural Network Architecture
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