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NONBLOCKING MULTIRATE
NETWORKS

Riccardo Melen
Jonathan S. Turner

1. Introduction

In this paper we introduce a generalization of the classical theory of nonblocking
switching networks to model communications systems designed to carry connections
with a multiplicity of data rates. The theory of nonblocking networks was motivated
by the problem of designing telephone switching systems capable of connecting any
pair of idle terminals, under arbitrary traffic conditions. From the start, it was rec-
ognized that crossbar switches with N terminals and N? crosspoints could achieve
nonblocking behavior, only at a prohibitive cost in large systems. In 1953, Charles
Clos [6] published a seminal paper giving constructions for a class of nonblocking
networks with far fewer crosspoints, providing much of the initial impetus for the
theory that has since been developed by Benes [2,3], Pippenger [16] and many oth-
ers [1,5,8,11,12,13,14].

The original theory was developed to model electro-mechanical switching systems
in which both the external links connecting switches and the internal links within
them, were at any one time dedicated to a single telephone conversation. During
1960’s and 1970’ technological advances led to digital switching systems in which in-
formation was carried in a multiplexed format, with many conversations time-sharing
a single link. While this was a major technological change, its impact on the theory of
nonblocking networks was slight, because the new systems could be readily cast in the
existing model. The primary impact was that the the traditional complexity measure
of crosspoint count had a less direct relation to cost than in the older technology.

During the last ten years, there has been growing interest in communication sys-
tems that are capable of serving applications with widely varying characteristics. In
particular, such systems are being to designed to support connections with arbitrary
data rates, over a range from a few bits per second to hundreds of megabits per
second [7,10,19]. These systems also carry information in multiplexed format, but in
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2 Nonblocking Multirate Networks

contrast to earlier systems, each connection can consume an arbitrary fraction of the
bandwidth of the link carrying it. Typically, the information is carried in the form
of independent blocks, called packets which contain control information, identifying
which of many connections sharing a given link, the packet belongs to. One way to
operate such systems is to select for each connection, a path through the switching
system to be used by all packets belonging to that connection. When selecting a path
it is important to ensure that the available bandwidth on all selected links is sufficient
to carry the connection. This leads to a natural generalization of the classical theory
of nonblocking networks, which we explore in this paper. Note that such networks
can also be operated with packets from a given connection taking different paths;
reference [20] analyzes the worst-case loading in networks operated in this fashion.
The drawback of this approach is that it makes it possibile for packets in a given
connection to pass one another, causing them to arrive at their destination out of
sequence.

In Section 2, we define our model of nonblocking multirate networks in detail.
Section 3 contains results on strictly nonblocking networks, in particular showing
the conditions that must be placed on the networks of Clos and Cantor in order to
obtain nonblocking operation in the presence of multirate traffic. We also describe
two variants on the Clos and Cantor network that are wide-sense nonblocking in the
general environment. Section 4 gives results on rearrangeably nonblocking networks,
in particular deriving conditions for which the networks of Benes and Cantor are
rearrangeable.

2. Preliminaries

We start with some definitions. We define a network as a directed graph G = (V, E)
with a set of distinguished input nodes [ and output nodes O, where each input node
has one outgoing edge and no incoming edge and each output node has one incoming
edge and no outgoing edge. We consider only networks that can be divided into a
sequence of stages. We say that the input ports are in stage 0 and for : > 0, a node
v is in stage 7 if for all links (u, v), u is in stage ¢ — 1. A link (u,v) is said to be in
stage 1 if u is in stage 7. In the networks we consider, all output ports are in the same
stage, and no other nodes are in this stage. When we refer to a & stage network,
we generally neglect the stages containing the input and output ports. We refer to a
network with n input ports and m output ports as an (m,n)-network. We let X,
denote the network consisting of n input nodes, m output nodes and a single internal
node. In this network model, nodes correspond to the hardware devices that perform
the actual switching functions and the links to the interconnecting data paths. This
differs from the graph model traditionally used in the theory of switching networks,
which can be viewed as a dual to our model.
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When describing particular networks we will find it convenient to use a composi-
tion operation. We denote the composition of two networks ¥; and 13 by Y10¥;. The
composition operation yields a new network consisting of one or more copies of ¥}
connected to one or more copies of ¥, with a link joining each pair of subnetworks.
More precisely, if ¥; has n; outputs and Y3 has n, inputs, then ¥; o 3 is formed
by taking n, copies of ¥; numbered from 0 to ny — 1 followed by n; copies of Y3,
numbered from ¢ to 7, — 1. Then, for 0 <7< ny — 1, 0 < j < ng — 1, we join Yj(2)
to Y,(j) using a link connecting output port j of ¥;(7) to input port z of Y2(j). Next,
we remove the former input and output nodes that are now internal, identifying the
edges incident to them and finally, we renumber the input and output nodes of the
network as follows; if u was input port ¢ of Y3(j), it becomes input jny + ¢ in the
new network; similarly if v was output port 7 of ¥3(7), it becomes output jns + <.
We also allow composition of more than two networks; the composition Y3 0¥ 0¥3 18
obtained by letting Z; = ¥; o ¥2 and Z; = ¥ o Y3, then identifying the copies of 12
in Z; and Z,. This requires of course that the number of copies of 13 generated by
the two initial compositions be the same. Note this is not the same as (¥; 0 ¥3) o Ya.

A connection in a network is a triple (z,y,w) wherez € [,y € O and 0 Sw < 1.
We refer to w as the weight of the connection and it represents the bandwidth required
by the connection. A route is a path joining an input node to an output node, with
intermediate nodes in V — (I U O), together with a weight. A route r realizes a
connection (z,y,w), if z and y are the input and output nodes joined by r and the
weight of r equals w.

A set of connections is said to be compatible if for all nodes z € JTU O, the sum of
the weights of all connections involving z is < 1. A configuration for a network G 1s
a set of routes. The weight on an edge in a particular configuration is just the sum
of the weights of all routes including that edge. A configuration is compatible if for
all edges (u,v) € E, the weight on (u,v) is < 1. A set of connections is said to be
realizable if there is a compatible configuration that realizes that set of connections.
If we are attempting to add a connection (z,y,w) to an existing configuration, we say
that a node u is accessible from z if there is path from z to v, all of whose edges have
a weight of no more than 1 —w.

A network is said to be rearrangeably nonblocking (or simply rearrangeable) if
for every set C of compatible connections, there exists a compatible configuration
that realizes C. A network is strictly nonblocking if for compatible configuration I2,
realizing a set of connections C, and every connection ¢ compatible with C, there
exists a route  that realizes ¢ and is compatible with R. For strictly nonblocking
networks, one can choose routes arbitrarily and always be guaranteed that any new
connections can be satisfied without rearrangements. We say that a network is wide-
sense nonblocking if there exists a routing algorithm, for which the network never
blocks: that is, if we use the routing algorithm to select routes for each new connection
request, it is always possible to realize a new connection by adding a route to the
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Figure 1: Clos Network

current configuration.

Sometimes, improved performance can be obtained by placing constraints on the
traffic imposed on a network. We will consider two such constraints. First, we restrict
the weights of connections to the the interval [b, B]. We also limit the sum of the
weights of connections involving a node z in JUO to f. Notethat 0 <6< B << 1.
We say a network is strictly nonblocking for particular values of b, B and # if for all
sets of connections for which the connection weights are in [b, B] and the total port
weight is B, the network cannot block. The definitions of rearrangeably nonblocking
and wide-sense nonblocking networks are extended similarly. The practical effect of
a restriction on @ is to require that a network’s internal data paths operate at a
higher speed that the external transmission facilities connecting switching systems,
a common technique in the design of high speed systems. The reciprocal of § is
commonly referred to as the speed advaniage for a system.

Two particular choices of parameters are of special interest. We refer to the traffic
condition characterized by B = 8, b = 0 as unrestricted packet switching (UPS), and
the condition B = b = 3 = 1 as pure circuit switching {Cs). Since the CS case is
a special case of the multirate case, we can expect solutions to the general problem
to be at least as costly as the CS case and that theorems for the general case should
include known results for the CS case.

3. Strictly Nonblocking Networks

A three stage Clos [6] network with N input and output ports is denoted by Cu i m,
where k& and m are parameters, and is defined as: Cnim = Xim © Xy vy © Xomike
A Clos network is depicted in Figure 1. The standard reasoning to determine the
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nonblocking condition (see [6]) can be extended in a straightforward manner, yielding
the following theorem.

THEOREM 3.1. The Clos network Cy i ts strictly nonblocking if

where s{w) = max {1 — w, b}.

Proof. Suppose we wish to add a connection (z,y,7) to an arbitrary configuration
C. Let u be the stage 1 node adjacent to = and note that the sum of the weights on
all edges out of u is at most B(k — 1) + (8 — v) = Sk — v. Consequently, the number
of edges out of u that carry a weight of more than (1 —«) is < [(Fk — v)/s{7)}, and
hence the number of inaccessible middle stage nodes is

< [ﬁk'—’)’J < max lﬁk—wJ < mf2

S0 | T | s(w)

That is, less than half the middle stage nodes are inaccessible from z. By a similar
argument, less than half the middle stage nodes are inaccessible from y, implying that
there is at least one middle stage node accessible to both. O

Let us examine some special cases of interest. If we let b = B = § =1, the effect
is to operate the network in €S mode and the theorem states that we get nonblocking
operation when m > 2k — 1 as is well-known. In the UPS case, the condition on m
becomes m > 2(8/(1 — 8))(k —1). So m = 2k — 1 is sufficient here also if 8 = 1/2.

Using Theorem 3.1, we can construct a wide-sense nonblocking network for unre-
stricted traffic by placing two Clos networks in parallel and segregating connections
in the two networks based on weight. In particular if we let m = 4k — 1, the network
X120 Cngmo Xp is wide-sense nonblocking if all connections with weight < 1/2
are routed through one of the Clos subnetworks and all the connections with weight
> 1/2 are routed through the other.

A k-ary Benes network [2], built from k x %k switching elements (where log; N
is an integer) can be defined recursively as follows: By = Xj; and By = Xip 0
By © Xig (see Figure 2). A k-ary Cantor network of multiplicity m is defined as
Kngm = X1m 0 By o Xp1. Note that this definition is expressed differently from
those given in [5,13], but we find it preferable as it shows clearly the close relationship
between these two structures. Figure 3 depicts a binary Cantor network of multiplicity
three with one of its Benes subnetworks highlighted. The next theorem captures the
condition on m required to make the Cantor network strictly nonblocking.
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Figure 3: Cantor Network

THEOREM 3.2. The Cantor network Ky m is strictly nonblocking if

B k-1
>0l g, N
m > 5B log, N

Proof. Suppose we wish to add a connection (z,y,w} to an arbitrary configuration.
Note that there are mN/k nodes in the middle stage of the network. We will show
that more than half of these nodes are accessible from z if m satisfies the inequality
in the statement of the theorem.

Define W; to be the set of all edges (u, v) in stage ¢, for which u is accessible from
z, but v is not. Define ); to be the sum of the weights on all edges in W; and note
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that A; > |[Wils(w). If we let A = logy N, then the number of middle stage nodes
(stage h + 1) that are not accessible from z is given by

h h
kh_t[I’V,‘ < —— kh_z)\{
2 IS T

=2
It is easily verified that
h

h

Z kh—t'Ai < (ﬁ _ w)kh_2 + Z kh—i (k'i-l . ki—‘z) ;8

i=2 i=2
To see this, note that each term in the summation on the left gives the weight used
for blocking at stage 7 weighted by £*~'. The terms in the summation on the right,
give an upper bound on the total weight of the traffic that could possibly block
connections from z at stage 7, similarly weighted by k"%, The initial term on the
right corresponds to the weight from input port = that is available for blocking. The
right side of the above mequality

- (55 (F) o (57) (et <5 (22) ()

Combining this with the first inequality above, we have that the number of inaccessible
middle stage nodes is

() (552 =5 (£52) < o

That is, fewer than half the middle stage nodes are inaccessible from z. By a similar
argument, fewer than half the middle stage nodes are inaccessible from y, meaning
that there exists an available route from z to y. O

COROLLARY 3.1. The Benes network By is strictly nonblocking if

2 k-1

o< o 5

Proof. Substitute 1 for m in the statement of the theorem and solve for g. O

‘When we apply the theorem to the CS case for k = 2, we find that the condition
on m reduces to m > log, N as is well known. For the UPS case with k = 2, we have
m > 2(8/(1 — B)) log, N; that is, we again need a speed advantage of two to match
the value of m needed in the CS case.

We can construct wide-sense nonblocking networks for B = 1 by increasing m.
We divide the connections into two subsets, with all connections of weight < 1/2
segregated from those with weight > 1/2. Applying Theorem 3.2 we find that m >
4((k —1)/k) log, N is sufficient to carry each portion of the traffic, giving a total of
8({(k —1)/k) log; N subnetworks.
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4. Rearrangeably Nonblocking Networks

As mentioned earlier, a k-ary Benes network [2], can be defined recursively as follows:
By = Xy and Byi = Xig 0 Byjig © Xk The Benes network is rearrangeable in
the Cs case [2] and efficient algorithms exist to reconfigure it [12,14]. In this section,
we show that under certain conditions, the Benes network can be rearrangeable for
multirate traffic as well. We start by reviewing a proof of rearrangeability for the cs
case, as we will be extending the technique for this case to the general environment.

Consider a set of connections C = {c1,..., ¢} for By, where ¢; = {@;, 9,1}
and there is at most one connection for each input and output port. The recursive
structure of the network allows us to decompose the routing problem into a set of
subproblems, corresponding to each of the stages in the recursion. The top level
problem consists of selecting for each connection, one of the k subnetworks Bk to
route through. Given a solution to the top level problem, we can solve the routing
problems for the k& subnetworks independently. We can solve the top level problem
most readily by reformulating it as a graph coloring problem. To do this, we define
the connection graph G¢ = (Vi, Ee) for C as follows.

Vo = {u5v;|0<7 < N/k}
Eo = {{ai/spsvium} 11 S 1< 7}
To solve the top level routing problem, we color the edges of G¢ with colors {0, ..., k—

1} so that no two edges with a common endpoint share the same color. The colors
assigned to the edges correspond to the subnetwork through which the connection
must be routed. Because G¢ is a bipartite multigraph with maximum vertex degree
k, it is always possible to find an appropriate coloring [4,9]. In brief, given a partial
coloring of G, we can color an uncolored edge {u,v} as follows. If there is a color
i € {0,...,k — 1} that is not already in use at both u and v, we use it. Otherwise,
we let 2 be any unused color at u and j be any unused color at v. We then find a
maximal alternating path from v; that is a longest path with edges colored 7 or j and
v as one of its endpoints. Because the graph is bipartite, the alternating path must
end at some vertex other than u or v. Then, we interchange the colors ¢ and j for all
edges on the path and use 7 to color the edge {u,v}.

To prove results for rearrangeablity in the presence of multirate traffic, we must
generalize the graph coloring methods used in the €S case. We define a connection
graph G for a set of connections C as previously, with the addition that each edge
is assigned a weight equal to that of the corresponding connection. We say that
a connection graph is (3, k)-permissible if the edges incident to each vertex can be
partitioned into %k groups whose weights sum to no more than 8. A legal (5, m)-
coloring of a connection graph is an assignment of colors in {0,...,m — 1} to each
edge so that at each vertex u, the sum of the weights of the edges of any given color
is no more than 3.
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Now, suppose we let Y = Y] o Y; o Y3, where Y; is a (k, m)-network, ¥, is an
(N/k, N/k)-network and Y5 is an (m, k)-network and also let 0 < f#; < > < 1. Then
if ¥;, Y2, Y3 are rearrangeable for connection sets with § < £y, Y is rearrangeable for
connection sets with 8 < By, if every (£, k)-permissible connection graph for ¥ has
a legal (f;,m) coloring.

Our first use of the coloring method is in the analysis of By We apply it in a
recursive fashion. At each stage of the recursion, the value of § may be slightly larger
than at the preceding stage. The key to limiting the growth of § is the algorithm
used for coloring the edges of the connection graph at each stage. We describe that
algorithm next.

Let Go = (V, E¢) be an arbitrary connection graph. For each vertex u, let C,
be the set of edges involving u. Next, number the edges in C, from zero, in non-
increasing order of their weight and let C% C C, comprise the edges with indices in
the range {ik,...,(: + 1}k — 1} for 7 > 0. Our coloring algorithm assigns unique
colors to edges in each subset Ci. In particular, given a partial coloring of Gg, we
color an uncolored edge {u,v} belonging to C: and CJ as follows. If there is a color
a € {0,...,k —1} that is not already in use within C: and C, we use it. Otherwise,
we let a; be any unused color within Ci and a; be any unused color within Ci. We
then find a maximal constrained alternating path from v; that is a longest path with
edges colored a; or a; with v as one of its endpoints and such that for every interior
vertex w on the path, the path edges incident to w belong to a common set CR.
Because the graph is bipartite, the last edge cannot be a member of either C? or C?.
Given the path, we interchange the colors a; and a, for all edges on the path and
use a1 to color the edge {u,v}. We refer to this as the CAP (constrained alternating
path) algorithm. We can route a set of connections throught By by applying CAP
recursively. Our first theorem gives conditions under which this routing is guaranteed
not to exceed the capacity of any link in the network.

THEOREM 4.1. The CAP algorithm successfully routes all sets of connections for By

for which
-1

k=1 (B/B) logu(N /1)

< |1+

Proof. Let G be any (5, k)-permissible connection graph with maximum edge weight
B and §; <1- B(k—1)/k. We start by showing that thhe CAP algorithm produces
a legal (8;, k)-coloring for some §; < 81 + B{k —1)/k.

Let u be any vertex in G¢. Since each color is used at most once for each subset
C? of the edges at u, the largest weight that can be associated with any one color at
u is bounded by the sum of the weights of the heaviest edges in C? for all 7. Because
the edges were assigned to the C? in non-increasing order of weight, the total weight
of like-colored edges at u is at most B+ (kf — B)/k = 1 — Bk —1)/k.
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Given this, if we route a set of connections through By by recursive application
of the CAP algorithm, we will succeed if

B+ (ﬁ-{—l) Blog,(N/E) <1

or equivalently, 8 < [1 4 ((k — 1)/k)(B/8) log,(N/E) . O

As an example, if N = 2%, k = 4 and B = §, it suffices to have § < 0.16. We can
improve on this result by modifying the CAP algorithm. Because the basic algorithm
treats each stage in the recursion completely independently, it can in the worst-
case concentrate traffic unnecessarily. The algorithm we consider next attempts to
balance the traffic between subnetworks when constructing a coloring. We describe
the algorithm only for the case of k¥ = 2, although extension to higher values is
possible,

Let G¢ be a connection graph for Bygy. G comprises vertices ug, ..., Uny2)—1
corresponding to nodes in stage one of By, and vertices vy, . . ., ¥(ny2)—1 corresponding
to nodes in stage 2(log, N — 1). We have an edge from u; to v; corresponding to each
connection to be routed between the corresponding nodes of Byo. We note that for
0 € 1 < N/4, the nodes corresponding to ug; and uazi41 have the same successors in
stage two of By,. Similarly, the nodes in By, corresponding to vy; and vy have
common predecessors. We say such vertex pairs are related.

Let a and b be any pair of related vertices in G¢. The idea behind the modified
coloring algorithm is to balance the coloring at a and b so that the total weight asso-
ciated with each color is more balanced, thus limiting the concentration of traffic in
one subnetwork. The technique used to balance the coloring is to constrain it so that
when appropriate, the edges of largest weight at @ and b are assigned different colors,
and hence the corresponding connections are routed through distinct subnetworks.
For any vertex v in Gg, let wp(v) = wi(v) = -+ - be the weights of the edges defined
at v, let Wo(v) = Sispwa, Wi(v) = Tisgwaipr and W(v) = Wo(v) + Wi(v). Also,
let z(v) = Wo(v) — Wi (v). -

The modified CAP algorithm proceeds as follows. For each pair of related vertices
a and bin Gg, if z(a) + z(b) > B, add a dummy node z to G¢ with edges of weight
two connecting it to a and b. We then color this modified graph as in the original CAP
algorithm and on completion we simply ignore the added nodes and edges. The effect
of adding the dummy node is to constrain the coloring at a and b so that the edges
of maximum weight are assigned distinct colors. We apply this procedure recursively
except that in the last step of the recursion we use the original CAP algorithm.

THEOREM 4.2. The modified CAP algorithm successfully routes all sets of conneclions
for Bnga for which

-1

8 < [1+(B/8)logy N
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Proof. Let a and b be related vertices with wg(a) 2 wo(b). Let z; = max{W(a), W(b)}
and let z; be the total weight on edges colored 0 at @ and b. If z(e) + z(b) < B, no
dummy vertex is added and we have that

29 < Wola) + Wo(b) < (21 +2(a))/2+ (21 + 2(8))/2 £ z + B/2
Similarly, if z(a) + 2(b) > B, a dummy vertex is added and we have that
23 < wola) + Wala) + Wi(h) < wola) + (21 — z(a))/2 + (21 — 2(8))/2 < ;1 + B/2

Thus, the total weight on a node in stage 7 is at most 28+ (i — 1}B/2. In particular,
this holds for 7 = log, N — 1. Also note that for a link (u,v) in stage j < log, N — 2,
the maximum weight is at most B plus half the weight on w. For a link (u, v) in stage
log, N — 1, the weight is at most B/2 plus the maximum weight at w, since in this
last step the original CAP algorithm was used. Consequently, no link carries a weight
greater than 8+ (B/4)log, N. O

Theorem 4.2 implies for example that if § = B = 0.2, a binary Benes network
with 2'€ ports is rearrangeable. Theorem 4.1, on the other hand gives rearrangeability
in this case only if 2 is limited to about 0.118. It turns out that we can obtain a still
stronger result by exploiting some additional properties of the original CAP algorithm.

THEOREM 4.3. The CAP algorithm successfully routes all sets of connections for By
for which

B < [max {2, —n|B/BJ}]}
where A = 2 + Inlog, (N/k).

So, for example if k = 4, N = 2'® and #/B = 2, we can have § = 0.3. The proof of
Theorem 4.3 requires the following lemmas.

LEMMA 4.1. Letr be any positive integer. If a set of connections for By is routed by
repeated applications of the CAP algorithm, no link will carry more than r connections

of weight > B/(r + 1).

Proof By induction; the condition is true by definition for the external links. If the
assertion holds at a given level of recursion, the connection graph for the next stage
will have at most rk edges of weight greater than 8/(r + 1) at any given node u.
These edges are all contained in C2 U --- U CI71, implying that the CAP algorithm
will use a single color for at most r of them. O

If £ is a link in Bny, we define S7 to be the set of links £’ in stage j for which
there is a path from £ to £. If a given set of connections uses a link £, we refer to
one connection of maximum weight as the primary connection on £ and all others as
secondary connections. We note that if the CAP algorithm is used to route a set of
connections through By, then if there are r + 1 connections of weight > w on a link
£ = (u,v), there are at least 1 + kr connections of weight > w on the links entering w.
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LEMMA 4.2. Let 0 <12 < log,(N/E), let £ be a stage i link in By carrying connec-
tions routed by the CAP algorithm and let the connections weights be wo 2 wy 2 -+ 2
wy. For 0 <t<h and 0 < s < min {3,1}, there are at least (t — s + 1)k* + sk*!

connections of weight > w, on the links in S5,

Proof. The proof is by induction on s. When s = 0, the lemma asserts that there are
t+1 connections of weight > w; which is trivially true. Assume then that the lemma
holds for s — 1; that is, there exist (f — s +2)k*"* 4 (s — 1)k*~% connections of weight
> w; on the links in 5; - *+1 Because S}t = k*~%, by the pigeon-hole principle, at
least (f — s+ 1)k*"1 4 (s — 1)k*"? of these are secondary connections. This implies
that there are at least

FT ks + )T 4 (s — DETY] = (F- s+ 1R 4 sk

connections of weight > w; in 5;7°. O

Proof of Theorem 4.8. Consider an arbitrary set of connections {for By satisfying
the bound on 3 given in the theorem, and assume that the CAP algorithm is used
to route the connections. Let £ be any link in stage 7, where 1 < log,(N/E), and let
the weights of the connections on £ be wg > - -+ > wy. Let r be the positive integer
defined by B/(r+1) < B < B/r (equivalently, r = |8/B]). By Lemma 4.2, S? carries
connections with a total weight of at least

Wo + kw1 '+' k2w2 4+ e k’_lw;_l “'," ]Ct(&.‘{ + A o wh)

Since the total weight on SY is at most Sk7, we have

—1 I
gkt > Zkfwj + k' ij
=0 J=d

From this and Lemma 4.1, we have that

logi(N/K) 1

ij—}—ZwJ-{-yw <Br+ﬁ}:——+ﬁ<og+g S 5

=0 Jj=r J-—T‘ j=r+i

If |8/B] > log,(N/E), the summation vanishes and we have that the weight on { is
< 28. Otherwise, the weight is bounded by

< 8(2 + Inlog,(N/k)/r) = B (A - 1n|§/B))

So, if B satisfies the bound in the statement of the theorem, the weight on £ is no more
than one. By a similar argument, the weight on any link in stage j for j > log, /V is
at most one. O

We now turn our attention to the Cantor network and give conditions for rear-
rangeability in that case.
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THEOREM 4.4. Let € > 0 and |B/B] < log,(N/k). Knxm is rearrangeable if
m > [(1+e)(A=1n[F/B])] + 2 (2 + log, A + log,(B/c))
where A = 2+ Inlog,(N/k) and ¢ =1~ BA/(1 + €)(A — In{B/B]).

The proof of Theorem 4.4 requires several lemmas.

LEMMA 4.3. Let a,r be > 1 with r and ar integers. By, is rearrangeable for sets
of connections with weights w that satisfy f/{ar +1) < w < B/r and a < /-1,

Proof. By Lemma 4.2, if By, is routed using the CAP algorithm, no link contains
more than ar connections. The sum of the weights of the connections on any given
link is

gr(é>+ 4 + - +——~-6+ﬁ2<6(1~rlna) G

r r41 i=rbl

LEMMA 4.4. Let a,r be > 1 with r and ar integers. Ky is rearrangeable for
sets of connections with weights w that satisfy B/(ar +1) < w < B/r and o <

exp {m - 1].

Proof. The connections can be distributed among the m Benes subnetworks using
the CAP algorithm; the resulting maximum port weight on the subnetworks is

g B moD_prim=1)

m mr mr

By Lemma 4.3, each subnetwork can be successfully routed if

rm '
<exp |mm——— 7| < 381 0O
a < exp B tm=1) <e

LEMMA 4.5. Kpjm s rearrangeable if m 2 2(2 + log,(B/b)).

Proof. Define h,1 by letting
8

Sh+1

/3

and < b <

B
<B< g

2|

By Lemma 4.4, two of the Benes subnetworks are sufficient to route connections with
weights in the interval (2-U+18,2798] for any ;7 > 0. For & < j < ¢ then, we
devote two subnetworks for the connections with weights in (2-4+13,2-98]. The
total number of subnetworks required is at most

9(i— h+1) € 2(2 + logy(B/b)) < m 0
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LEMMA 4.6. Ky m is rearrangeable if

(8 — B)X B

W o)l w2

1-Bx -~ B
where A = 2 + Inlog (N/k).

Proof. We distribute the traffic among the m Benes subnetworks using the CAP
algorithm. The resulting maximum port weight is ' where
-1 - B

g<fymlp_pyf

m m m

By Theorem 4.3, the maximum weight on any link is at most

BB 0
—= <

B'{A—|f[/B|y< Bx+
Proof of Theorem 4.4. Let B’ = ¢/\. By Lemma 4.5, all the traffic with weight > B’

can be handled using
_ 2(2 + log, A + log, B/e)
of the Benes subnetworks. By Lemma 4.6, the remaining traffic can be carried using

(f: :g?\/\ _ fi’\_‘; < [(1+)(A —n[8/B])]

subnetworks. O

Theorem 4.4 holds when |8/ B| < log,(N/k). When this condition does not hold,
Ky pm is rearrangeable with m between one and three, depending on the value of
B. In particular, if # < 1/2, m = 1 is sufficient using Theorem 4.1. If (1/2) < § £
1—1/(21og,(N/k)), m = 2 is sufficient since in this case the traffic can be split among
the two subnetworks so that each experience a maximum port weight of at most 1/2.

The graph coloring methods used to route connections for By, can also be applied
to networks that “expand” at each level of recursion. Let Cf, ., = Xp and for
N=1F,t>1,let Chpm = Xiym © Crypvyp © Ximp- The following theorem gives
conditions under which C} . .. is rearrangeable.

THEOREM 4.5. Cj ., ts rearrangeable if
m—-1B1—1/4]""

B< 1+ =T

where v = m/k and ¢ = log,(N/k).
‘Proof. We use the CAP algorithm to route the connections. If we let 3; be the largest
resulting weight on a link in stage 7 for 1 < 7 < log,(N/k), we have

m=—1_1—{1/7)
B <1 O
i m 1—-1/y —

B<B+=B 5 1+ T =1B < (Bo/v)
T m

So, for example, Ci; j 51—y 1s rearrangeable if B <1/2.
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5. Closing Remarks

In recent years, there has been a growing interest in switching systems capable of
carrying general multirate traffic, in order to be able to support a wide range of appli-
cations including voice, data and video. A variety of research teams have constructed
high speed switching systems of moderate size [7,10,19,21], but little consideration
has yet been given to the problem of constructing very large switching systems using
such modules as building blocks. The theory we have developed here is a first step
to understanding the blocking behavior of such systems.

In this paper, we have introduced what we feel is an important research topic
and have given some fundamental results. There are several directions in which our
work may be extended. While we have good constructions for strictly nonblocking
networks, we expect that our results for rearrangeably nonblocking networks can
be improved. In particular, we suspect that the Benes network can be operated in a
rearrangeable fashion with just a constant speed advantage. Another interesting topic
is nonblocking networks for multipoint connections. While this has been considered
for space-division networks [1,8,11,17], it has not been studied for networks supporting
multirate traffic. Another area to consider is determination of blocking probability for
multirate networks. We expect this to be highly dependent on the particular choice
of routing algorithm.
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Abstract

The object of the shortest common superstring problem (SGs) is to find the shortest possible
string that contains every string in a given set as substrings. As the problem is NP-complete,
approximation algorithms are of interest. The value of an approximate solution to SCS is
normally taken to be its length, and we seek algorithms that make the length as small
as possible. A different measure is given by the sum of the overlaps between consecutive
strings in a candidate solution. When considering this measure, the object is to find sclutions
that make it as large as possible. These two measures offer different ways of viewing the
problem. While the two viewpoints are equivalent with respect to optimal solutions, they
differ with respect to approximate solutions. We describe several approximation algorithms
that produce solutions that are always within a factor of two of optimum with respect to
the overlap measure. We also describe an efficient implementation of one of these, using
McCreight’s compact suffix tree construction algorithm. The worst-case running time is
O(mlogn) for small alphabets, where m is the sum of the lengths of all the strings in the
set and n is the number of strings. For large alphabets, the algorithm can be implemented
in O(mlogm) time by using Sleator and Tarjan’s lexicographic splay tree data structure.
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