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Cre recombinase recombines its DNA target, loxP sites, without help of accessory proteins or 

DNA repair systems. The simplicity of Cre-lox system has been widely utilized for genome 

editing, especially in mouse genetics. The goal of this dissertation is to 

construct Cre recombinase variants that will operate upon recombination target sites (RTs) 

present within the genome, instead of perturbing the genome by inserting wild-type RTs for 

subsequent genome engineering. In general, the desired RTs native to the genome are 

asymmetric. However, the loxP sequence is pseudo-palindromic, requiring a homotetrameric 

formation of Cre recombinase. As a first step, I broke the symmetry of Cre tetramer so that each 

Cre monomer could be arranged spatially to bind distinct RT half-sites. I designed an alternative 

protein-protein interface for Cre. Then, I separated the mutations into a pair of Cre monomers. I 

could then arrange the assembly of this pair of complementary Cre monomers to form a 

functional heterotetramer, even though neither monomer exhibits activity alone. When combined 

with other mutations that confer distinct DNA specificities, the monomers preferentially formed 

the desired complex and recombined asymmetric DNA sequences with greater fidelity. I’ve 

successfully found a pair of Cre monomers that do not work in isolation, but do when combined 
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together. This has been successfully demonstrated in vivo in E. coli, mouse ES cell cultures and 

mouse retinal explants. As the next step, I need to change the DNA specificity of Cre 

recombinase to recognize native genomic sites. Surprisingly, the DNA preferences of Cre 

recombinase have not been thoroughly characterized. The 34 bp RT site loxP contains two 

palindromic arm regions and an 8 bp spacer region. The arm region is recognized by Cre 

monomers while homology of the spacer region determines compatibility between RT sites. 

While the consensus sequence of loxP is known, I performed the first high-throughput studies to 

determine Cre’s sequence specificity in the arm region. I broke the 13 bp arm region into 3 

overlapping 5-6 bp small windows and used in vitro recombination and high-throughput 

sequencing data to generate logos for each window. I found that non-specific recombination can 

interfere with the analysis and careful selection of NaCl concentration is important for observing 

in vitro specificity. I have not only determined Cre’s sequence preferences, but also used similar 

methods to determine CreC2#4 (a Cre mutant) and VCre (a Cre homolog). In contrast to zinc 

finger and TAL effector domains, no modular decomposition of DNA specificity exists for Cre 

recombinase homologs. As a result, the RT specificity of Cre has previously been modified using 

directed evolution, a laborious approach. To accelerate the process, I used sequence information 

from homologs of Cre.  By searching across genomes of different bacteria species, I found 

hundreds of Cre homologs. Closely related homologs share similarity in both amino acid 

sequence and predicted RT DNA sequence. By comparing residues that differ between close 

homologs in the aligned regions where Cre contacts the switched base pairs, I found candidate 

possible mutations for a specificity switch. The change in specificity was validated by the high-

throughput sequencing assay. This demonstrates the feasibility of leveraging sequence alignment 
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data to alter the specificity of Cre recombinase, reducing the amount of effort needed to generate 

mutants with novel RT preferences.
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Chapter 1 

Introduction: 

Directed Evolution, Cre Recombinase and RMCE 
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Directed evolution of enzymes 

Directed evolution is a method used in enzyme engineering that utilizes features of 

natural selection to evolve proteins to achieve a specific goal. It consists of two iterative steps: 

variant library creation/amplification and selection (1). It has proved to be a powerful and 

broadly applicable tool for altering the activities of enzymes. Strategies for directed evolution 

usually focus on both sequence diversifications for library construction and selection for altered 

activity.  

The mutational sequence space of a full length protein is huge. Complete randomization 

of ten amino acids yields 1013 unique combinations. However, in vivo bacterial selections are 

limited by the transformation efficiency (at best 109 - 1011). Since exhaustive coverage of 

mutational space is impossible to achieve, directed evolution samples only a fraction of this large 

sequence space, with beneficial mutations accumulated successively in each round. Goeddel and 

co-workers first employed error-prone PCR to create random mutagenesis in vitro (2). By 

altering PCR conditions or using a proprietary mixtures of polymerases, mutation rates of 10-4 to 

10-3 per base are achievable, and biases for different modes of mutation (e.g. transitions versus 

transversions) can be reduced (3) (4). When specific residues responsible for binding or catalysis 

are known, a more targeted strategy may be used. Synthetic DNA oligonucleotides containing 

degenerate codons targeted to the residues of interest can achieve exhaustive mutation of 

important residues (5). After several rounds of accumulating beneficial mutations, the technique 

of DNA shuffling can be applied to access combinations of these mutations. In this approach, 

first described by Stemmer, a family of genes is treated with DNase. Fragments of a desired 

length are then gel purified, and used as primers to reassemble a chimeric gene in a PCR reaction 

(6). To provide greater control over fragment size, recent protocols leverage misincorporation of 
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dUTP during PCR. Fragments of the amplicons are generated by treatment with uracil 

deglycosylases and apurinic/apyrimidinic lyases, and the size of the fragments can be controlled 

by the rate of dUTP misincorporation (7). 

Effective selection strategies often link the desired enzymatic activity to the physical 

separation of the encoding DNA of the desired subpopulations of variants or to the survival of 

the organism expressing the enzyme. In binding affinity selections, protein library members are 

captured by an immobilized target together with their encoding DNA sequences. Phage display 

methods have broad applications in protein engineering and can serve as a successful example, 

where the protein library of interest is fused with phage coat proteins and expressed on the 

surface of the phage (8) (9). While non-binding phages are washed away, the bound phages then 

serve as the compartment to segregate the protein with the encoding DNA. The other strategy is 

to link the function of the enzyme to fitness survival of the organism. The most common practice 

is to evolve proteins by linking their activity to the expression of an antibiotic resistance gene. 

For example, Barbas and colleagues altered serine recombinases’ DNA specificities by using the 

recombinase activity to reassemble a beta-lactamase gene (10). In the above strategies, cells or 

phages were used as compartments, where the library size was limited by the transformation 

efficiency. Purely in vitro selections, utilizing cell-free translation reactions, can bypass this 

limitation. One straight forward approach is to use mRNA display or ribosome display, where 

the mRNA is linked to the protein during translation (11) (12). In another in vitro approach, the 

encoding DNA and proteins are trapped in aqueous droplets of water-oil emulsions. This 

approach is particularly useful to evolve enzymes that directly operate on DNA. Reported 

examples include nucleases, RNA and DNA polymerases or enzymes with activities that can be 

linked to a polymerase (13) (14) (15). 
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The Cre-lox system 

Cre recombinase is a 380 kDa protein originated from bacteriophage P1. It belongs to the 

λ integrase family, other examples of which include λ intergrase, Flp and more recently Vika, 

Scre, and VCre (16)-19). Cre recombines a specific 34 bp DNA recombination target (RT) site, 

the loxP sequence. LoxP site contains two palindromic 13 bp arm regions and an asymmetric 8 

bp spacer region (Figure 1.1)(17). Each arm region is recognized by a Cre monomer. While there 

is no direct contact between Cre and the spacer region, the homology of the spacer is required for 

efficient recombination between two RT sites (18).  

The recombination synaptic complex contains four Cre monomers, forming a 

homotetramer, and two loxP DNA sequances in an anti-parallel arrangement (Figure 1.2)(19). 

Cre cleaves and religates after position 14 of the top loxP strand and before position -14 of the 

bottom strand (Figure 1.1). During cleavage, residue Y324 is covalently linked to the 5’ 

phosphate of the cleaved nucleotide. The four-fold protein symmetry imposes a pseudo-

palindromic symmetry requirement on the RT site.  

Altering Cre’s DNA specificities 

Several high resolution Cre-DNA crystals structures are available and can serve as a 

guide to rational redesign of DNA specificity. The protein-DNA interface is complex, with both 

direct interactions between the protein side chains and the DNA bases, and indirect interactions 

mediated by water molecules. In contrast to zinc finger or TAL effector domains, there is no 

modular decomposition for the interface. The absence of any simple scheme for understanding 

Cre’s specificity for DNA makes the selection of specificity-altering mutations a significant 

challenge. 
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There have been several attempts to characterize the DNA sequence specificity of 

wil-type Cre recombinase. A sequencing study has been published for the specificity and 

compatibility of the loxP spacer region (20), but the specificity in the arm region was not 

characterized. In another study, a randomized library approach to identifying alternative lox sites 

showed some of Cre’s sequence preferences in vivo (21). Because of extreme sequence 

promiscuity observed using their experimental conditions, they were unable to obtain detailed 

sequence preferences. Before attempting to change Cre’s DNA specificity, it is important to fully 

characterize the protein-DNA interaction.  One promising approach is to couple a functional 

screen for recombinase activity against a randomized library with the massive throughput 

capabilities of next-generation sequencing. With a detailed position weight matrix for Cre 

specificity in hand, we can improve our ability to find candidate target site in the genome by 

taking into account which mismatches with the loxP sequence have the most effect on Cre’s 

recombinase activity. 

Directed evolution is a powerful tool for altering Cre’s DNA specificity. Buchholz and 

Stewart retargeted Cre to recombine a site from human chromosome 22, which they called the 

loxH site (22). In their approach, full length Cre recombinase was randomized by error-prone 

PCR. The loxH site has four changes in the arm region and a different spacer region. They used 

both positive and negative selection steps in vivo in bacterial cells. First, Cre mutants were 

evolved to recombine a loxP/loxH hybrid site for ten rounds. Then, Cre mutants were evolved 

for another ten rounds to efficiently recombine the full loxH site. However, the resulting mutants 

were still able to recombine loxP sites with significant activity. Therefore, they performed fifteen 

additional rounds of negative selection to evolve Cre against loxP sites, while retaining the 

ability to recombine loxH site. From the mutant library, a single clone (called Fre22) were 
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selected as the most specific mutant, with little activity for loxP and moderate activity for loxH. 

In a separate effort, Santoro and Schultz retargeted Cre to recombine loxM7 sites, which contain 

three changes from the loxP site (23). They used a focused mutational approach in which only 

five residues in the Cre protein (identified from the crystal structure) were randomized. They 

used GFP and RFP as reporter genes, and FACS sorting to separate functional clones. They also 

directly compared directed evolution using only positive selection with an approach that 

alternated rounds of positive and negative selection. They performed three rounds of positive 

selection alone on two libraries and five alternating rounds positive/negative selection on another 

two libraries. Mutants obtained from just positive selection were generally promiscuous in 

recombining both loxP and loxM7 sites, while mutants coming from alternating rounds of 

positive and negative selection exhibited much better specificity. A clone (named CreC2#4) was 

chosen as the most specific recombinase for loxM7 site. In a more recent approach, Buchholz 

and colleagues applied directed evolution to evolve Cre to target a sequence in the long-terminal 

repeat of the HIV-1 strain (named loxLTR) (24). This site has four changes in the left arm region, 

seven changes on the right, and has a different spacer region. The full length Cre sequence was 

randomized by error-prone PCR. They used an iterative positive selection strategy, sequentially 

targeting intermediate half-sites, separate symmetric half-sites, and the asymmetric full site. 

Surprisingly, although the two half sites have different sequences, they were able to obtain a Cre 

mutant that could recombine the asymmetric RT site after 126 rounds of directed evolution. The 

final Cre mutant, called Tre, successfully recombined the loxLTR sites in vivo, resulting in 

excision of the proviral HIV genome in cultured HeLa cells. 
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Symmetry of Cre recombinase tetramer 

After directed evolution, Cre variants with altered DNA specificity that could target 

distinct RT sites can be obtained. However, the tetrameric formation of Cre complex puts a 

symmetric requirement on the RT sites they recombine, and the variants could only have limited 

use if only pseudo-palindromic sites are considered. Cre mutants with specificities towards the 

two half-sites of asymmetric RT site can be used to recombine these sites, but any combination 

of the two half-sites in the genome will be recombined, generating off-target recombination. 

Carmi and colleagues used a mixture of wild-type Cre and a Cre variant (CreC2#4) that 

recombines loxM7 site to recombine chimeric asymmetric sites containing both loxP and loxM7 

half-sites (25). Their study not only demonstrated the promiscuity of mixture, it also showed 

application of wild type Cre or CreC2#4 alone could recombine these chimeric sites. Thus, by 

controlling the tetramer assembly, constructing separately mutatable Cre monomers that will 

function as obligate heterotetramer, but will be inactive in isolation is an attractive strategy for 

enhancing the specificity for RT site recognition. To address this issue, Baldwin and colleagues 

used a reciprocal small-to-large substitutions approach to create an alternative binding interface 

for Cre monomers (26). The redesigned pair of Cre monomers showed increased fidelity to 

recombine asymmetric sites, but one of the monomers showed reduced but clear activity in 

isolation. A pair of completely “orthogonal” Cre monomer is desirable for genomic applications. 

Recombination mediated cassette exchange (RMCE) 

There are several applications for Cre recombinase in genome editing. Recombination 

between two DNA molecules can drive either an insertion or a translocation event (Figure 2.1A).  

Recombination within one molecule generates either a deletion or an inversion event, depending 

on the relative orientations of the loxP sites (Figure 2.1B). One of the most common applications 
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of Cre recombinase is to generate conditional gene knockouts. By placing the expression of Cre 

recombinase under the control of promoters that are specific for particular developmental stages 

or tissues, a gene of interest that is flanked by loxP sites (floxed) can be excised from the 

genome (Figure 2.1A).  

Insertional integration using native loxP sites is difficult because the final product 

contains two direct-repeat loxP sites, and is therefore susceptible to excision in the presence of 

the recombinases required to accomplish the integration (Figure 2.1A). One solution, first 

described in plants, is to utilize pairs of mutant RT sites (27). The crucial property for such a pair 

of sites is that each harbors a suboptimal half-site sequence on the left and right flanks, 

respectively. After recombination, one of the resulting RT sites contains both suboptimal 

half-sites, yielding a nonfunctional RT. Using this approach, the lox66/lox71 pair of mutant RT 

sites was later used to integrate into mouse embryonic stem cells (28). For the mutant RT sites, 

16% of the insertions were targeted in their best conditions, while for wild type lox, the number 

was < 0.5%. This also implies that 84% of the insertions were random. The next advance came 

from Sauer and colleagues, which they called the method double-lox replacement, or 

reciprocal/segmental replacement, which was later named RMCE (29). The DNA fragment of 

interest (cassette) was flanked by incompatible heterologous RT sites. The idea leveraged off of 

the observation that lox site variants that differed in their spacer regions could not recombine 

with each other. By using heterologous lox sites, double crossovers could be accomplished with 

Cre that exchanged similarly bounded genetic intervals between different DNA molecules 

(Figure 1.3). They tested the introduction of a cassette harboring a selectable marker.  Of the 

clones that become resistant to the selective drug, 75% had the insertion at the correct genome 

locus. This compares well to the 16% for the previous single integration effort. They also 
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analyzed the efficiency when no selectable markers were used. Cytometry indicated that 10% of 

the cells took up DNA. 96 of cells that took up DNA were analyzed, and two had the correct 

integration. Another group also reported results using double recombinations, introducing the 

term RMCE (30). When they tried RMCE without selection, ~1% of the cells that survived 

transfection had undergone RMCE. They got efficiencies of 4% and 16% for two different loci if 

only cells that took up DNA (as determined by cotransfection with a fluorescent reporter) were 

considered. When additional drug selection was performed, they got efficiencies of 10% and 

50%.  

This RMCE approach has several advantages over traditional Cre-mediated insertion. 

First, unlike Cre-mediated insertion, the recombination product is not susceptible to excision. 

Additional exogenous template vectors are added to push the reaction equilibrium towards gene 

conversion, so the efficiency of genome modification is higher with RMCE. Second, less 

cytotoxicity can be achieved because less Cre protein is required than for insertional integration. 

Third, the exchange boundaries are better defined in RMCE, making the integration more precise 

than Cre-mediated insertion. 

Advantages of RMCE over double-stranded break (DSB) stimulated 

homology-directed repair (HDR) 

DSB inducing agents, such as TALEN effectors, CRISPR/Cas, and zinc-finger nucleases 

(ZFNs) have emerged as attractive tools for genome engineering. The modular DNA binding 

domain of TALENs and ZFNs makes it easy to change their DNA specificities (31) (32). The 

Cas9 nuclease can be targeted to any site with a protospacer adjacent motif (PAM) sequence 

without the need to change the protein sequence (33). Loss of function mutants are generated 
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when the DSB is repaired by non-homologous end-joing (NHEJ) and gene conversion mutants 

are generated by HDR, when repair templates are exogenously provided (34). 

DSB is efficient in generating local mutations or loss-of-function mutants, but not very 

efficient to operate on whole gene replacement. DSB stimulated gene conversion efficiency is 

highest close to the cleavage site. Efficiency for incorporation of altered bases falls to 25% of its 

peak value at distances of only 100 bp (35).  As an example, IL2Rγ is a target locus for gene 

therapy that causes X linked SCID (http://genome.nhgri.nih.gov/scid/index.shtml) (36).  The 

cDNA is over 1 kb, and the gene itself is over 4 kb. Efficient targeting of all mutations for this 

locus would require dozens of double strand inducers. Each must be characterized and subjected 

to rigorous testing before application as a therapy. In contrast, 4 kbp is well within the efficient 

distance scale for Cre recombinase (30, 37, 38). Thus, a single combination of locus bracketing 

recombinases can be studied thoroughly and applied to all of the mutations, justifying the greater 

effort required to engineer a novel Cre recombinase compared to the inherently modular ZFNs, 

TALENs and CRESPER/Cas systems.  

There are several other advantages of RMCE over DSB-induced HDR for genome 

modification. First, RMCE does not depend on the host cell’s relative preference for HDR over 

NHEJ. Second, illegitimate integrations generated by undesired RMCE modifications can be 

identified by rapid inverse PCR techniques, while NHEJ healed DSBs can be difficult to identify. 

Finally, different technologies for genome modification (ZFNs, TALENs and RMCE) have been 

developed to different stages of maturity. Until all of these technologies are fully characterized 

and the relative merits determined, it is important to pursue all reasonable approaches. 

http://genome.nhgri.nih.gov/scid/index.shtml)
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Focus of the dissertation 

The ultimate goal of this research is to engineer Cre recombinase to operate upon native 

genomic sequences. Chapter 2 describes a method to recombine asymmetric sites. Chapter 3 

describes a method called ‘Rec-Seq’ to characterize DNA specificities of recombinases, and also 

discusses using bioinformatics to accelerate retargeting of recombinases.  

The quaternary structure of the Cre complex creates a challenge for retargeting genomic 

RT sites. The four-fold symmetry of the synaptic complex imposes a pseudo-palindromic 

symmetry upon the RT site. In chapter 2, I redesigned the monomer-monomer interface for Cre 

recombinase using a combination of computational and rational design. I then assembled the 

complex to form an obligate heterotetramer. When combined with mutants with distinct DNA 

specificities, the heterotetramer recombined asymmetric sites with greater fidelity. The 

‘orthogonal’ pair of Cre monomers were validated in both mammalian cell cultures and tissues. 

As many recombinases originate from bacteriophages, the preferred RT sequence of 

some recombinases can be identified in the bacterial genome close to the encoding gene (39). 

However, just identifying the preferred RT sequence is not enough to fully characterize the DNA 

specificity of a recombinase. It is important to know the relative binding preferences for other 

sequences existing in the genome. In recent studies, the DNA binding specificities of 

transcription factors (TFs) have been determined via high-throughput sequencing of the bound 

subset of randomized DNA binding sites (40). In contrast to TFs, tyrosine recombinases exhibit 

their specificity in an enzymatic reaction in which two RT sites are cleaved and religated, 

making it a more challenging problem. In chapter 3, I have established a method called ‘Rec-Seq’ 

that utilizes recombination rather than binding as an enrichment method to characterize the DNA 
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specificity of recombinases. By analyzing the sequence alignment of Cre homologs, I have also 

managed to change the DNA specificity of Cre recombinase, using Rec-Seq as the confirmatory 

technology for the altered specificity. 

Finally, chapter 4 concludes this dissertation and proposes future research in engineering 

recombinases.  
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Figure 1.1 34 bp loxP DNA sequence 

The pseudo-palindromic 34 bp loxP DNA sequence contains two symmetrical 13 bp arm 

(colored in grey) region and an asymmetrical 8 bp spacer region (colored in green). The blue 

arrows indicate the cleavage point introduced by Cre recombinase. 
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Figure 1.2 Synaptic complex of Cre homotetramer 

A structural view of the Cre tetramer in complex of two loxP DNA sequence taken from PDB 

structure 1KBU. Cre monomers are colored in cyan and DNA is colored in orange. 
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Figure 1.3 Schemes of RMCE 

RMCE utilizes two incompatible RT sites (colored in orange and green) to define the boundaries 

of the cassette of interest in the genome (colored in blue) and replace it with the exogenously 

provided template (colored in yellow). Unlike traditional Cre induced integration, the resulting 

exchange product is not susceptible to excision. 
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Chapter 2 

 Redesign of the Monomer-monomer Interface of Cre Recombinase Yields an Obligate 

Heterotetrameric Complex 

This Chapter has been published: 

Zhang, C, CA Myers, Z Qi, RD Mitra, JC Corbo, and JJ Havranek. 2015. Redesign of the 

monomer-monomer interface of Cre recombinase yields an obligate heterotetrameric complex. 

Nucleic Acids Res 43, no. 18: 9076-9085. 

The author contributions are the following: James Havranek and Chi Zhang did the protein 

design. Chi Zhang cloned, purified and tested the mutants in vitro. Connie Myers and Joseph 

Corbo designed and performed the mouse retinal explant assay. Zongtai Qi and Robi Mitra 

designed and performed the mouse ES cell culture assay. The manuscript was written and 

revised primarily by Chi Zhang and James Havranek. 
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ABSTRACT 

Cre recombinase catalyzes the cleavage and religation of DNA at loxP sites. The enzyme is a 

homotetramer in its functional state, and the symmetry of the protein complex enforces a 

pseudo-palindromic symmetry upon the loxP sequence. The Cre-lox system is a powerful tool 

for many researchers, particularly those working in mouse genetics.  However, broader 

application of the system is limited by the fixed sequence preferences of Cre, which are 

determined by both the direct DNA contacts and the homotetrameric arrangement of the Cre 

monomers. As a first step towards achieving recombination at arbitrary asymmetric target sites, 

we have broken the symmetry of the Cre tetramer assembly. Using a combination of 

computational and rational protein design, we have engineered an alternative interface between 

Cre monomers that is functional yet incompatible with the wild-type interface. Wild-type and 

engineered interface halves can be mixed to create two distinct Cre mutants, neither of which are 

functional in isolation, but which can form an active heterotetramer when combined. When these 

distinct mutants possess different DNA specificities, control over complex assembly directly 

discourages recombination at unwanted half-site combinations, enhancing the specificity of 

asymmetric site recombination. The engineered Cre mutants exhibit this assembly pattern in a 

variety of contexts, including mammalian cells. The availability of obligate heterotetrameric 

mutants opens the door to the controlled assembly of Cre monomers whose DNA specificities 

may be altered independently. 

INTRODUCTION 

Cre recombinase forms a tetrameric complex that splices DNA molecules containing the 

34-bp recombination target (RT) site loxP (1), recombining two DNA molecules in trans to 

accomplish an insertion or translocation event, or in cis to achieve either gene excision or 
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inversion, depending on the relative orientation of the loxP sites (Figure 2.1). Cre recombinase 

has been used to generate conditional gene knockouts, where a gene of interest is flanked by 

loxP sites (‘floxed’) (2). Expression of Cre recombinase under the control of promoters that are 

specific for particular tissues or developmental stages abrogates gene function by physical 

excision from the genome. The utility of this system depends on the functional autonomy of Cre 

recombinase: the enzyme requires no other factors to splice DNA, and is capable of modifying 

genomes in non-replicating cells, where the efficacy of gene conversion via double-strand break 

(DSB) induced homologous recombination is expected to be low (3, 4). 

Another application for Cre recombinase is recombination-mediated cassette exchange 

(RMCE) (5), also known as double-reciprocal crossover (6, 7) or double-lox replacement (8, 9). 

In this approach, (reviewed in ref. (10)) recombination between DNA molecules that share two 

neighboring heterologous RT sites accomplishes the exchange of the bounded genetic interval 

(the cassette) between the sites (Figure 2.1C). This has been demonstrated using both Flp and 

Cre recombinase with heterologous RT variants (5, 8), as well as simultaneously with Cre and 

the Flp recombinases (11). Although RMCE has so far only been demonstrated with wild-type 

recombinase proteins and RT sites, the approach has many attractive features as a tool for 

genome engineering. First, it has a higher efficiency for gene conversion than does Cre-mediated 

insertion, as it does not require survival of insertional events that are susceptible to reversal by 

excision (8). Second, the cassettes that are exchanged are precisely demarcated, yielding truly 

‘scarless’ genomic surgery. Third, the process requires less Cre protein than recombinational 

insertion, resulting in less cytotoxicity(8). Finally, the autonomy of Cre as a recombinase 

suggests that RMCE could prove to be effective in terminally differentiated cells, in contrast to 

strategies for gene conversion that rely upon homology directed repair. 
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One impediment to broader use of Cre recombinase is the inflexibility of the binding site 

specificity. In contrast to DNA binding proteins whose specificity derives from the assembly of 

small recognition modules such as zinc finger or TAL effector domains, Cre recombinase 

interacts with DNA through large interfaces that defy a modular decomposition. Nevertheless, 

altered RT specificities have been elicited in mutant Cre recombinases using directed evolution 

(12-14). 

The quaternary structure of the Cre complex creates a second challenge for engineering 

novel RT specificities. The four-fold symmetry in the functional protein complex imposes a 

pseudo-palindromic symmetry upon the RT site. The loxP site consists of two 13 bp palindromic 

half-sites separated by an asymmetric 8 bp spacer that gives loxP its direction. The utility of 

targeting Cre mutants to altered RT sites is severely compromised if only pseudo-palindromic 

sites may be considered. This limitation has been addressed by using directed evolution to 

generate mutant homotetrameric complexes that can operate on asymmetric sites (14, 15). 

However, requiring a single Cre mutant to operate on two different half-sites is likely to result in 

promiscuous enzymes. Separate Cre mutants with specificities towards the two half-sites of an 

asymmetric RT site may be able to recombine these sites, but the lack of control over assembly 

of the complex allows for any combination of these half-sites as potential sites for recombination 

(16). Some of these combinations will be undesired, generating off-target recombination events 

and exacerbating the cytotoxicity of Cre recombinase (17). 

 A similar technical challenge has been overcome in the design of zinc finger nucleases 

(ZFNs). ZFNs are DSB agents that achieve their sequence specificity by concatenating multiple 

zinc finger modules, each of which recognizes 3-4 base pairs. The cleavage activity is provided 

by the dimeric FokI nuclease. FokI monomers are genetically fused to zinc finger arrays, and two 
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such constructs that converge upon a DNA site reconstitute a functional nuclease dimer, inducing 

a DSB. The development of obligate heterodimer FokI mutants has increased target specificity 

and reduced cytotoxicity in this system (18). Under this approach, the ZFNs that co-locate on 

desired cleavage sites must contribute two distinct FokI monomers; misassembly of two copies 

of the same ZFN at an off-target site cannot reconstitute a functional nuclease. Constructing a 

functional Cre complex from distinguishable and separately mutatable monomers is an attractive 

strategy for enhancing the specificity of RT site recognition. An earlier effort to generate 

heterotetramer Cre mutants succeeded in forming a novel functional interface, but one of the two 

mutants retained significant activity as a homotetramer (19). 

In this manuscript we describe the engineering of Cre mutants that are inactive in 

isolation, but are functional as a (ABAB) heterotetramer when both mutants are present. We use 

a combination of computational and rational design to select mutations that are predicted to form 

a novel interface between Cre monomers that is functional, but whose halves are incompatible 

with their wild-type counterparts. We show that the negative engineering goal (incompatibility 

with wild-type) is more difficult to achieve than the positive goal (full functionality), requiring 

three iterations of mutation. The obligate heterotetrameric assembly of the pair of mutants is 

demonstrated in vitro and in vivo, notably in mammalian cells. We hope that the availability of 

these mutants enables the specific and reliable targeting of Cre to asymmetric RT sites. 
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MATERIALS AND METHODS 

Computational modeling and design 

We selected the 2.2 Å crystal structure of a Cre-loxP Holliday junction as a template for 

computational design (PDB code: 1KBU (20)). The protein design capabilities of Rosetta3 (21) 

were used to select amino acids to form an alternative interface between Cre monomers. Amino 

acid positions 25, 29, 32, 33, 35 from chain A and 69, 72, 76, 119, 123 from chain B were 

chosen by eye for redesign because they form multiple interactions across the largest region of 

contact between monomers, but do not participate in the protein-DNA interface (Figure 2.2). At 

each of these positions, the calculation permitted mutation to a subset of amino acids including 

positive, negative or non-polar amino acids (AVMLDERK). The redesign calculation used the 

standard RosettaDesign fixed backbone algorithm. Sidechain rotamers were built using a 

backbone-dependent rotamer library (22). Extra rotamers sampling additional values for the  χ1 

and χ2 side chain torsion angles were included in the design calculation (command line options –

ex1, -ex2 in Rosetta). A scoring function using a softened form of the Lennard-Jones potential 

(soft_rep_design) was used (23) to evaluate the interactions between the rotamers and the fixed 

backbone, and between rotamers at different positions. The combinatorial search through 

conformational space was accomplished using a Monte Carlo method with Metropolis 

acceptance criteria. 

Gene construction and protein expression 

A gene encoding wild-type Cre recombinase with an N-terminal Met-His7 tag was 

constructed from 100bp overlapping oligonucleotides ordered from Integrated DNA technologies 
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(IDT) and cloned into the pET42a vector. Cre mutants were generated by site-directed 

mutagenesis. Proteins were expressed in BL21(DE3) star cells at 30°C using the autoinduction 

protocol of Studier (24). Details of the purification strategy are given in the Supplemental 

Materials.  

In vitro recombinase activity assay 

Two direct loxP repeats or other variants of loxP/M7 sites separated by a ~0.5 kb spacer 

were cloned between the XbaI and SphI sites of the pBAD33 plasmid. The 0.7 kb DNA substrate 

for in vitro recombination assays was generated by PCR amplification with pBAD-forward and 

pBAD-reverse primers. 1µg of the DNA substrate was incubated with 1 µM Cre in 10 µL of 

50 mM Tris-HCl, pH 7.8, 50 mM NaCl and 10 mM MgCl2 for 12 hours at 37° C. Total amount 

of protein used is the same across all in vitro assays. Reactions were stopped by incubation at 

98° C for 20 minutes. Reactions were analyzed on 2% agarose gels and visualized by staining 

with GelGreen nucleic acid stain (Biotium). 

Cell culture and transfection 

The plasmid pGL4.23 (GenBank accession number: DQ904455) containing a multiple 

cloning site (MCS) for insertion of a response element of interest upstream of a minimal 

promoter and a gene encoding luc2 was purchased from Promega. The original minimal 

promoter in pGL4.23 was replaced with the haemoglobin beta (HBB) gene minimal promoter 

144bp upstream of the HBB transcription start site. The HBB minimal promoter has only the 

basic components for transcription (i.e. TATA box and GC box) and was amplified by PCR from 

mouse genomic DNA. The coding sequence of luc2 in PGL4.23 gene was replaced with different 
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mutants of Cre recombinase using Gibson assembly. The enhancer candidates (CMV and SP1 

enhancers) were then cloned into the MCS upstream of the minimal promoter. The engineered 

plasmids were isolated using standard molecular biology techniques and were confirmed by 

Sanger sequencing. 

Ai14 mouse embryonic stem (ES) cells were engineered by targeted insertion of a 

construct containing the CAG promoter, followed by a floxed stop cassette-controlled red 

fluorescent marker gene (tdTomato) (Figure 2.4A) (25). The Ai14 mouse ES cells were cultured 

in complete media consisting of Dulbecco's modified eagle media (DMEM; Gibco) 

supplemented with 10% new born calf serum, 10% fetal bovine serum (FBS; Gibco), and 0.3 

mM of each of the following nucleosides: adenosine, guanosine, cytosine, thymidine, and uridine 

(Sigma-Aldrich). To maintain their undifferentiated state, the cells were also cultured in flasks 

coated with a 0.1% gelatin solution (Sigma-Aldrich) in the presence of 1000 U/mL leukemia 

inhibitory factor (LIF; Chemicon) and 20 mM β-mercaptoethanol (BME; Invitrogen).  

Plasmids used for transfection of cells were prepared using EndoFree Plasmid Maxi Kits 

(Qiagen). About 2 x 105 Ai14 ESCs were plated in one well of a six-well plate one day prior to 

transfection with complete medium plus LIF in feeder free conditions. The cells were then 

transfected at 70% confluence by Lipofectamine 2000 (Invitrogen). For each transfection 

experiment, a total of 1 μg of plasmid DNA and 8 μL of Lipofectamine 2000 reagent were mixed 

following the manufacturer’s protocol, and incubated at room temperature for 5 minutes before 

adding to the culture medium. The medium was replaced with fresh ESC medium plus LIF the 

following day and cells were cultured for another day before harvested for fluorescence activated 

cell sorting (FACS). 
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Flow cytometry 

Upon reaching approximately 100% confluence, the cells were trypsinized from the plate 

and were suspended in Hank’s Balanced Salt Solution (HBSS) supplemented with 2 mM EDTA, 

washed once with PBS, and resuspended in 500 μl PBS. Cellular fluorescence was analyzed on 

an iCyt Reflection HAPS2 cell sorter at the Washington University Siteman Flow Cytometry 

Core. Cells were treated with propidium iodide (2 µg/ml) prior to sorting to counter-select dead 

cells. The gate was set relative to cells transfected with plasmids lacking red fluorescent protein 

genes (negative controls) to eliminate nonspecific background reporting. A minimum of 7000 

total live single cells was analyzed from each FACS and post-sort analysis was performed with 

FlowJo software to obtain the percentage of RFP positive cells. 

Recombinase assay in mouse retinal explants  

Electroporations and explant cultures were performed as previously described (26). 

Retinal explants were electroporated in a chamber containing 0.5 µg/mL each of supercoiled 

DNA encoding a gene for Nrl-eGFP as a control for electroporation efficiency, a reporter 

construct for Cre activity comprised of DsRed preceded by a floxed stop codon, and a gene 

encoding either wild-type or engineered Cre under control of the Nrl promoter (27). Three 

replicates were performed for each electroporation. Quantification of fluorescence in retinal 

explants was accomplished using the ImageJ program (http://rsbweb.nih.gov/ij/) using a 

previously described protocol (28). 

http://rsbweb.nih.gov/ij/
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RESULTS 

Computational redesign of a non-native but functional protein-protein interface between 

Cre recombinase monomers 

We desired an engineered protein interface between Cre recombinase monomers that 

could form a functional complex, yet be incompatible with the wild-type interface. The two sides 

of such an interface could then be mixed with the other sides of the wild-type interface to yield 

two distinct Cre mutants. These mutants, by virtue of possessing incompatible interfaces, could 

not form functional homotetrameric complexes, but could be combined to form a functional 

heterotetramer (Figure 2.1D). We selected the 2.2 Å crystal structure of a Cre-loxP Holliday 

junction (PDB code: 1KBU) (20) as our template for computational design. We then selected the 

largest monomer-monomer interface patch for redesign, focusing on residues that did not 

participate in any contacts with DNA (cyan oval on left side of Figure 2.2A). We used the 

Rosetta molecular modeling program to redesign five residues on each side of the interface (see 

Methods), although in some cases (two of ten) the wild-type amino acid was retained by the 

design calculation. The set of mutations that constitute the redesigned interface are the combined 

A1 and B1 mutations given in Table 2.1. When evaluated with the Rosetta full atom scoring 

function, the redesigned interface is 2.8 Rosetta units (RU) worse than the wild-type interface. 

Although the redesigned sequence was selected without regard for destabilizing mixed 

engineered/wild-type interfaces, models for the Cre-A1 and Cre-B1 homotetramer interfaces 

were predicted to be 9.8 and 20.49 RU worse than wild-type, respectively. Inspection of 

individual terms shows that the Cre-A1 and Cre-B1 models contain interface residues with side 

chains in strained conformations, presumably due to lack of favorable interactions. 
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We tested the redesigned interface by generating pairs of Cre mutants such that each 

mutant possesses one side of the interface, with the other side fixed as wild-type. We assayed 

members of each pair for recombinase activity in vitro both individually and in combination 

(Figure 2.3). While the combined pair of redesigned mutants was active (Cre-A1+Cre-B1 in 

Figure 2.3B; see Table 2.1 for mutations), one of the mutants (Cre-A1) was active individually, 

indicating that this hybrid redesign/wild-type interface was functionally compatible, in violation 

of our negative engineering goal (Figure 2.1D). 

Iterative rounds of rational design enhance the formation of (ABAB) complexes 

 We attempted to find another region of contact between monomers in the Cre complex 

that we could mutate in an attempt to further destabilize homotetrameric Cre-A1 complexes. 

Visual inspection of the Cre crystal structure revealed a salt bridge between Glu308 and Arg337 

(Figure 2.2C) that we hypothesized could be inverted to obtain additional specificity for the 

heterotetramic complex (Figure 2.2E). We therefore further mutated Cre-A1 (adding R337E) to 

yield Cre-A2, and mutated Cre-B1 (adding E308R) to yield Cre-B2. Thus, homotetrameric 

complexes of Cre-A2 would place two glutamate residues at 308 and 337 in close proximity, and 

Cre-B2 would likewise pair two arginine residues, yielding unfavorable electrostatic repulsion in 

either case. Our in vitro recombinase assay showed that the Cre-A2+Cre-B2 combination 

exhibited robust recombinase activity. However, while its activity is reduced relative to Cre-A1, 

the Cre-A2 monomer was still capable of forming a functional homotetrameric complex (Figure 

2.3B). 

 We selected a polar interaction between monomers as the final site for mutagenesis. We 

hypothesized that a replacement interaction consisting of hydrophobic residues would be 
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incompatible with the pre-existing polar interaction. Structural modeling suggested that the 

mutation E123L and Q35L could create a tight packing interaction between leucine residues 

across the monomer-monomer interface, but that interfaces combining a polar residue from the 

wild-type interface with either leucine from the engineered interface would be energetically 

unfavorable. 

In vitro assays indicated that the E123L mutation did indeed penalize formation of 

functional homotetrameric complexes, but that the Q35L mutation unexpectedly facilitated 

homotetramer formation in the previously inactive B2 mutant (data not shown). Consequently, 

we applied the E123L mutation to Cre-A2 to create Cre-A3. This mutation successfully disrupted 

formation of Cre-A2 homotetramers while preserving activity in the Cre-A3+Cre-B2 

heterotetramer (Figure 2.3B). The improvement in specificity appears to come from selective 

destabilization of the Cre-A3 homotetramer with limited destabilization of the heterotetramer.  

The reactivation of Cre-B1 by the Q35L mutation is especially puzzling, as the distance between 

the alpha carbon of position 35 and that of the nearest mutated position from Cre-B1 (position 76) 

is roughly 13 Å, suggesting that this mutation cannot directly alleviate the interface deficiencies 

introduced by the Cre-B1 mutations. This mutation may allow for a subtle rearrangement of the 

charged side chains at the interface that yields a functional complex through a mechanism that 

requires introduction of modes of relaxation that are not captured by our model. 

 To test whether our round 1 mutations are essential to enforce heterotetramer formation, 

we generated Cre mutants with only round 2 and round 3 mutations. The salt-bridge swap from 

round 2 alone yields two Cre mutants with reduced but clear activity (data not shown). We 

combined round 2 and round 3 mutations to create Cre-E123L-E308R and Cre-E123L-R337E. In 

vitro assays indicated that these mutants do not form an obligate heterotetrameric pair 
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(Supplemental Figure 2.1A). We conclude that the combined effects of mutations from all three 

rounds are necessary to achieve our design goal. 

Heterotetrameric mutations can be combined with DNA specificity altering mutations to 

enhance target site specificity 

 We hypothesized that the ability to control the assembly of functional Cre complexes 

would lead to higher fidelity recognition of asymmetric RT sites if used in combination with 

recombinases with different DNA specificities. Directed evolution has already been exploited to 

generate mutants of Cre recombinase that can utilize altered RT sites. A mutant (termed 

Cre-C2#4) with five amino acid mutations relative to wild-type has been shown to recombine an 

alternate RT site termed loxM7 (13). The monomer-monomer interface mutations from Cre-A3 

and Cre-B2 were applied separately to the Cre-C2#4 mutant. If the proteins with different DNA 

specificities exhibit the expected ABAB heterotetrameric pattern assembly, they should only 

recombine DNA half-sites with a specific spatial arrangement, yielding enhanced target 

specificity.  

To this end, we designed DNA substrates harboring direct repeats of six different 

loxP/M7 hybrid RT sites as a rigorous test of specificity (Figure 2.3C). We expect that a mixture 

of wild-type Cre and Cre-C2#4 (both of which lack our obligate heterotetrameric mutations) 

could recombine all of the six RT sites, as the individual monomers can combine in any manner 

dictated by the sequences of the RT half-sites. In contrast, a combination of the designed Cre-

A3-C2#4 and Cre-B2 recombinases, or similarly the Cre-A3 and Cre-B2-C2#4 recombinases, 

would specifically recombine the LM-LM site, but not the other five RT sites (Figure 2.3C). This 



34 
 

would imply that heterotetrameric Cre mutants will have less off-target activity when used for 

genome editing. 

 In vitro assays confirmed that the heterotetrameric Cre is more specific in recombining 

different arrangement of loxP/M7 sites (Figure 2.3D). Cre-C2#4 is slightly promiscuous, and can 

recombine loxP sites when incubated with DNA substrate for a long period of time ((13), 

Supplemental Figure 2.2B). The observed partial activity of the two designed pairs on LL-ML 

site (lane 2 in the middle and right gels of Figure 2.3D) is most likely the result of promiscuity of 

Cre-C2#4’s DNA specificity. It is also interesting to note that, because the four Cre monomers 

work cooperatively to recombine the DNA target, wild-type Cre and Cre-C2#4 homotetramers 

recombined most of the loxP/M7 hybrid sites on their own ((29), Supplemental Figure 2.1B). 

The specificity shown here by the two designed pairs provides strong evidence that our mutant 

recombinases indeed form an ABAB heterotetrameric complex. 

Obligate heterotetramer formation is preserved in mammalian cells 

 We envision RMCE in mammalian cells as the target application for our 

heterotetramer-forming Cre mutants. We employed two reporter systems to determine whether 

the engineered proteins satisfy our design goals in mammalian cells. First, we assayed the 

recombinase activity of the Cre mutants in a mouse ES cell reporter line by flow cytometry. We 

inserted a gene for the tandem dimer tomato (tdTomato) fluorescent protein downstream of a 

floxed stop codon at the rosa26 locus (Figure 2.4A). Constructs encoding genes for the Cre 

mutants driven by the haemoglobin beta (HBB) minimal gene promoter, either alone or in 

combination with one of two enhancers (see Methods), were transfected into the reporter line, 
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and the cells expressing tdTomato were quantified by flow cytometry (Figure 2.4B, 

Supplemental Table 2.1).  

Similar to the in vitro results, we observed the Cre-A2+Cre-B2 combination to be 

functional, while the Cre-A2 mutant retains significant activity as a homotetramer. Combining 

Cre-A3 with Cre-B2 yielded a suitable obligate heterotetrameric pair, retaining roughly 40% of 

wild type Cre activity. Neither the Cre-A3 nor the Cre-B2 mutants exhibited appreciable activity 

alone.  

We also evaluated the activity of the Cre mutants in mouse retinal explants. Dissected 

newborn mouse retinas were electroporated with a construct expressing GFP under the control of 

the rod photoreceptor-specific Nrl promoter (27) (as a loading control), Cre mutants under the 

control of the same Nrl promoter, and a floxed tdTomato reporter construct. After eight days in 

explant culture, the retinas were harvested, and imaged. The appearance of the flat-mounted 

retinas under epifluorescent illumination is shown in Figure 2.5. GFP fluorescence indicates 

areas of successful electroporation, and red fluorescence reports recombinase activity. Wild-type 

Cre shows robust activity, with all green cells also exhibiting red fluorescence (Figure 2.5A). 

The Cre-A3 and Cre-B2 mutants alone show very little activity (Figure 2.5B,C), while 

combining the two restores robust activity (Figure 2.5D). Quantification confirms that Cre-A3 

and Cre-B2 form an obligate heterotetrameric pair in photoreceptor cells (Figure 2.5E). 

DISCUSSION 

 We sought to engineer a pair of mutants of Cre recombinase that form an obligate ABAB 

heterotetrameric complex. The Cre-A3 and Cre-B2 mutants are the result of an iterative process 

of computational and rational protein engineering. We have shown that the two mutants are 
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inactive in isolation, but are functional when combined. Furthermore, we have shown that when 

additional mutations are used to confer an altered DNA specificity upon either one of the 

mutants, the arrangements of half-sites that are recombined are consistent with the formation of 

an ABAB complex. Although our attempts to confirm the composition of the functional complex 

directly via crystallography were unsuccessful, our data are strongly suggestive that we have 

succeeded in our goal. 

 Engineering a novel interface for Cre recombinase monomers that is incompatible with 

the wild-type interface involves two distinct requirements, one positive and one negative. The 

positive requirement is that the novel interface must give rise to a functional tetrameric complex. 

The negative requirement is that any combination of wild-type and engineered monomer surfaces 

must be functionally incompatible. We found that the negative engineering goal was more 

difficult to achieve. We were able to generate a novel functional interface using straightforward 

computational protein design. However, the mutations on one side of the interface (the Cre-A1 

mutations) were still compatible with the wild-type residues on the other side. We found that 

additional rounds of rational design were required to reduce the residual activity of 

homotetrameric complexes.  

A previous effort to create a heterotetrameric Cre complex identified concerted 

small-to-large and large-to-small hydrophobic mutations in an expression library that 

combinatorially mutagenized three tightly coupled residues (19).  The engineered interface was 

functional, but one of the mutant surfaces retained significant activity in complex with the 

complementary wild-type surface. Perhaps unsurprisingly, a small-to-large mutation was 

incompatible with the wild-type surface, presumably due to steric clash. However, large-to-small 

mutations exhibited reduced activity relative to wild-type, likely a consequence of creating a 
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cavity that destabilized, but did not destroy, the integrity of the interface. Although our mutations 

were selected to drive heterotetramer formation primarily based upon electrostatics rather that 

sterics, we ascribe our elimination of homotetramer activity to the increased number of residues 

and contact regions that we altered rather than the nature of the interactions that were altered or 

introduced. 

Researchers have successfully demonstrated a different strategy for partitioning Cre 

recombinase into two variants that are only active when combined. It has been shown that Cre 

recombinase can be split into N- and C-terminal fragments (split-Cre) that can reconstitute a 

functional complex when co-expressed in vivo by virtue of coiled coil dimerization tags 

appended to each fragment (30). The motivation for this approach was to place the split-Cre 

fragments under different promoters, yielding enhanced control over the cell types in which 

functional Cre complexes are present and resulting in highly specific conditional gene regulation. 

However, this approach to splitting Cre is not suitable for our purpose of combining monomers 

with different DNA specificities. Each split-Cre complex retains specificity for the loxP RT site. 

Even if specificities of the DNA-contacting regions are altered, the assembly of N and 

C-terminal fragments is uncontrolled, allowing for multiple combinations of half-site RT site 

specificities (16), and making this decomposition unsuitable for targeting asymmetric sites with 

high specificity. 

 CRISPR-based systems have emerged as an attractive tool for genome engineering due to 

the ease with which the Cas9 nuclease can be redirected to arbitrary targets (31-33). 

CRISPR/Cas technology represents the logical conclusion of modular DSB inducing agents, as 

the Cas9 nuclease can be targeted to any site that contains a protospacer adjacent motif (PAM) 

sequence (typically 3-5 bases in length) without mutating the protein itself. In cell culture, this 
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activity can drive the efficient generation of loss-of-function mutants when the DSB is repaired 

by non-homologous end-joining, or gene conversion when homology-directed repair occurs in 

the presence of an exogenously provided repair template (34). Given these features of 

CRISPR/Cas systems, what role can mutants of Cre recombinase play in genome engineering 

applications? 

Gene conversion by RMCE possesses advantages over DSB-induced gene conversion 

that are unique to enzymatically autonomous recombinases. A crucial advantage is that no other 

cofactors or endogenous cellular machinery are necessary. In particular, this avenue for genome 

editing does not rely upon the homology-directed DNA repair (HDR) system. The balance 

between DNA repair via HDR and via non-homologous end-joining (NHEJ) is highly dependent 

on cell type, and HDR itself is not a significant route for DNA repair in cells that are not 

replicating (3, 4). Thus, RMCE approaches may prove to be the only effective route to gene 

conversion for postmitotic cells, where DSB-induced HDR performs poorly. Furthermore, 

DSB-stimulated gene conversion is efficient over a relatively short range (~100 bp) (35). In 

contrast, cassette-mediated exchange is capable of correcting any mutation that falls within the 

RT site boundaries. Using RMCE, genetic intervals of >100kb of DNA have been exchanged, 

with the size of the interval limited by the size of the donor construct, and not by the method 

itself (36). 

 The disadvantage of targeting mutant recombinases to endogenous sites in a genome is 

the difficulty with which recombinase DNA specificity is altered. While directed evolution has 

proven to be successful in generating novel RT specificities, the compatibility of DNA 

specificity altering mutations with our interface mutations is a concern. Our results show that in 

at least one case (loxM7) the mutations that alter DNA specificity are compatible with our 
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mutations for controlling tetramer assembly. With respect to obtaining novel specificity Cre 

mutants, there is no realistic hope for any retargeting strategy that can rival the speed and ease of 

retargeting in CRISPR/Cas systems. We anticipate that endogenous site RMCE will be useful 

when a particular genomic locus is of sufficient interest to merit the effort required to obtain 

mutant recombinases whose RT specificities bracket the locus, or when there is a need to 

repeatedly exchange the DNA within the genetic interval. This may be the case when a locus 

harbors a large number of disease-associated polymorphisms that span several kb, or when a 

‘promoter bashing’ experimental approach is desired in an endogenous context.  

 We have presented an obligate heterotetrameric pair of Cre recombinase mutants. We 

have demonstrated that this pair can be used to form functional complexes that can recognize 

asymmetric RT sites. However, to realize the RMCE approach with maximal control over Cre 

complex formation, we will require a second pair of recombinase monomers to target the second 

asymmetric RT site that brackets the genetic cassette. This may be accomplished by engineering 

two additional Cre monomers that form a second obligate heterotetramer that is incompatible 

with the mutants we have described here. As this involves a large number of positive and 

negative constraints on monomer association, we suggest that an easier approach will be to use 

the knowledge of interacting residues we have identified in this study to direct rational redesign 

of the interface of a Cre homolog (37-39). Although no crystal structures are available for close 

homologs of Cre, sequence homology between recombinases has been recognized that could 

assist in generating obligate heterotetrameric mutants (37, 40). We are currently investigating the 

feasibility of this approach. 
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Cre mutant Mutations 

Cre-A1 K25R, D29R, R32E, D33L, Q35R 

Cre-B1 E69D, R72K, L76E 

Cre-A2 Cre-A1 + R337E 

Cre-B2 Cre-B1 + E308R 

Cre-A3 Cre-A2 + E123L 

Cre-B3 Cre-B2 + E123L 

 

Table 2.1. Mutations for each round of protein engineering. 
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Figure 2.1. Genomic applications of Cre recombinase. 

Depending on the number and relative orientation of the loxP sites, Cre recombinase can perform 

deletion, inversion, insertion or exchange of genetic content. (A) Direct repeats of the loxP site 

can be recombined to excise the intervening genetic interval (downward arrow). This reaction is 
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also catalyzed in the reverse direction, yielding a genetic insertion (upward arrow). For 

thermodynamic reasons, the excision reaction is favored, and insertion events occur with low 

frequency. (B) Inverted loxP repeats can be recombined to yield an inversion of the bracketed 

DNA. (C) Recombination at pairs of distinct RT sites gives rise to exchange of the intervening 

genetic ‘cassette’. (D) Cre recombinase is a homotetramer in its functional complex (wt Cre), 

imparting a preference for a symmetric RT as a consequence. As a first step to achieving 

recombination at asymmetric sites, we desire an orthogonal engineered interface between Cre 

monomers (eng Cre). We seek to construct a novel homotetramer Cre mutant with 

monomer-monomer interfaces that, while functional, are incompatible with the wild-type protein. 

Combining wild-type and engineered half-interfaces gives rise to two distinct mutants that 

cannot form functional complexes (mutants A and B). Combining the two mutants (denoted by 

‘M’) can reconstitute a functional heterotetrameric complex, which contains two wild-type and 

two engineered interfaces.  
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Figure 2.2. Mutated positions in the monomer-monomer interface. 

(A) The arrangement of Cre monomers on a loxP Holliday junction. The nucleic acid is shown as 

grey spheres, and each Cre monomer is rendered in a separate color. The largest area of contact 
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is indicated with a cyan oval on a side view of the complex (left side), and likewise the salt 

bridge that was inverted, shown in a bottom view (right side). (B) A set of interacting residues 

across the monomer-monomer interface was selected by eye for computational redesign 

(positions 25, 29, 32, 33, 35, 69, 72, 76, 119, and 123). The experimentally determined 

conformations of the sidechains at these positions are shown (PDB code: 1KBU ) (20)). In a 

third round and rational design, positions 35 and 123 were mutated to hydrophobic residues. (C) 

A putative salt bridge between a glutamate at position 308 and an arginine at position 337 is 

observed in the wild-type crystal structure. (D) The predicted model of the monomer-monomer 

interface after computational redesign is shown. The amino acids at positions 29 and 32 switch 

their electrostatic charge relative to wild-type, position 33 switches from charged to hydrophobic, 

and positions 76 and 35 switch from uncharged to charged amino acids. (E) A putative model for 

the charge swap at positions 308 and 337 preserves a salt bridge, but with a change in polarity.  
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Figure 2.3. In vitro recombination assay of Cre mutants. 

(A) In vitro recombinase assay. A 0.7 kb linear DNA substrate with direct repeats of the loxP site 

(orange triangles) is incubated with wild-type or mutant Cre recombinase. The activity of 

functional Cre complexes results in production of a 0.5 kb circular product and a 0.2 kb linear 

product through intra-molecular excision. (B) In vitro assay results. Lane 1: DNA substrate alone; 

lane 2: wild-type Cre; lanes 3-5: 1st round redesigned Cre mutants Cre-A1, Cre-B1 and a mixture 

of the two (CreA1+CreB1); lanes 6-8: 2nd round redesigned Cre mutants Cre-A2, Cre-B2 and a 

mixture of the two (Cre-A2+Cre-B2); lanes 9-10: 3rd round mutant Cre-A3 and a mixture of 

Cre-A3+Cre-B2. All Cre-B mutants are inactive in isolation. Cre-A mutants progressively lose 

homotetramer activity through the three rounds of design. (C) In vitro substrates for asymmetric 
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recombination target site experiments. RT half-sites in the linear DNA substrate described in 

panel (A) were systematically varied to incorporate the M7 sequence (13). LoxP and M7 

half-sites are rendered as green and red boxes, and abbreviated by the letters L and M, 

respectively. Combinations ranged from entirely loxP (LL-LL, the same as in panel (A)) to 

entirely M7 (MM-MM), including hybrid RT sites situated as both direct (LM-LM) and inverted 

(LM-ML) repeats. (D) The effect of controlled assembly of heterotetrameric Cre complexes. 

Each of the mixed loxP/M7 substrates was incubated with a pair of recombinases, one with 

mutations that recognize the M7 RT halfsite (Cre-C2#4) and the other with preference for the 

loxP half-site. In the left panel, the two proteins have no additional mutations to control complex 

formation. In the middle and right panels, recombinases with different RT specificities are 

combined with the Cre-A3 and Cre-B2 mutations, with both possible combinations tested. The 

restriction of permissible substrates by the Cre-A3 and Cre-B2 mutations are consistent with a 

requirement for an (ABAB) heterotetramer to achieve recombinase activity. 
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Figure 2.4. Cre mutant pair recapitulates requirement for heterotetramer formation in 

mouse ES cell cultures. 

(A) Diagram of the Cre-reporter cell line. The Cre-reporter cassette was inserted into the Rosa26 

locus, in the intron between endogenous exons 1 and 2. In the cassette, a red-fluorescent protein 

(RFP) is preceded by a floxed stop codon and followed by the woodchuck post-transcriptional 

regulatory element (WPRE). (B) Plasmids with the hbb minimal promoter driving expression of 
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different Cre variants either alone or augmented with the CMV or SP1 enhancers were co-

transfected into Ai14 mouse embryonic stem (ES) cells containing a fluorescent reporter cassette. 

The same total amount of DNA was used for all transfections, and 3 independent transfections 

were performed for each Cre variant. The percent of RFP positive cells was measured by flow 

cytometry. A total of 7000 cells were sorted after each transfection. The average number of RFP 

positive cells for each Cre variant or combination of variants is shown. For Cre-B2, Cre-A3, and 

Cre-A3, cell counts were less than five (out of 7000) for all promoter constructs (Supplemental 

Table 2.1).  
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Figure 2.5. Engineered Cre mutants retain preference for heterotetrameric complex in 

mouse retinal cells. 

Dissected newborn mouse retinas (with lens in place) were electroporated with constructs 

encoding: (1) Nrl-eGFP as a control for electroporation efficiency, (2) a reporter construct for 

Cre activity comprised of DsRed preceded by a floxed stop codon, and (3) a gene encoding 

either wild-type (panel A) or engineered Cre (Panels B-D) under control of the Nrl promoter. 

The left side of each panel shows the fluorescence from the green channel, which indicates cells 

that were successfully electroporated. Fluorescence from the red channel results from removal of 

the floxed stop codon, indicating Cre activity. The lens shows some autofluorescence which is 

apparent as a central circular region of red fluorescence in B, C, and D. (E) Quantification of 

activity of electroporated constructs relative to wild-type Cre.  
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Chapter 3 

Rec-Seq: A High-Throughput Specificity Assay for Recombinases 

 

This Chapter is adapted from a manuscript in preparation for publication. 
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ABSTRACT 

Cre recombinase is a member of the integrase family of site-specific DNA recombinases. 

The recognition site for Cre is the 34 base pair loxP sequence. However, the specificity of Cre is 

similar to a transcription factor in that it is tolerant of modest substitutions relative to the loxP 

sequence. We have developed a high-throughput assay (Rec-Seq) for characterizing the DNA 

specificity of recombinase activity. The assay employs a library of synthetic DNA substrates in 

which one of the four participating half sites has been fully or partially randomized. The library 

is incubated with purified recombinase and functionally tolerated members of the library are 

isolated by their altered size. We demonstrate the utility of the assay by characterizing the 

specificity of the wild-type Cre and VCre recombinases and their relative tolerance to base 

substitutions across their recognition sequences. We next apply the assay to evaluate the change 

in DNA specificity resulting from the directed evolution of Cre recombinase towards an altered 

DNA site. Finally, we utilize sequence analysis of recombinase homologs to predict the change 

in DNA site specificity due to an amino acid mutation, and use Rec-Seq to validate the predicted 

specificity determinant. 

INTRODUCTION 

Cre recombinase recognizes the 34 bp loxP recombination target (RT) sequence, and 

catalyzes a recombination reaction between two copies of loxP. The loxP sequence possesses 

pseudo-palindromic symmetry: inverted repeats of a 13 bp arm region are separated by an 

asymmetric 8 bp spacer region (1). Cre’s site specificity is predominantly exhibited in the 

recognition of the loxP arm regions. The enzyme is tolerant of many spacer region sequences, 

although recombination of two RT sites is dependent on the strong similarity, if not identity, 

between their spacer regions (2). 
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The Cre-loxP system requires no other cellular cofactors for robust activity, and has been 

employed for a number of genome engineering tasks. The most common is the creation of a 

conditional gene knock-out, in which a gene of interest is flanked by loxP sites, leading to loss of 

the gene in cells expressing Cre (3). The reversibility of this excision reaction can be exploited to 

achieve gene insertions, albeit at low efficiency (4). Pairs of loxP variants have been identified 

that could accomplish this insertion more efficiently (5). A more recent use of recombinases for 

genome manipulation is recombinase mediated cassette exchange (RMCE). In the RMCE 

approach, the genetic interval between heterologous RT sites can be exchanged from a donor 

DNA molecule to an acceptor. This has been demonstrated using several different 

recombinase-RT sequence pairs (6, 7). Recently, there has been increased interest in obtaining 

recombinase mutants with altered DNA specificity capable of recognizing sequences already 

present in human genomes (8-10).  

The discovery or engineering of recombinases with new RT specificities is of significant 

interest as a way to expand the utility of recombinase-based applications. Other than the 

Cre-loxP system, the most studied recombinase-RT pair is Flp-FRT, derived from the 2 µ 

plasmid of yeast. More recently, a number of Cre homologs have been reported, including the 

VCre-VloxP, SCre-SloxP, and Vika-vox systems. Many more homologs can be readily identified 

through searches of sequence databases, and in some cases their RT sequences can be predicted 

by analysis of the genomic context surrounding the recombinase gene body (11). Each newly 

identified RT sequence increases the likelihood that a given genetic locus harbors a subsequence 

similar to the DNA specificity of a known recombinase. 
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Directed evolution is a powerful tool for altering Cre’s DNA specificity. Buchholz and 

Stewart retargeted Cre to recombine a site from human chromosome 22 called loxH (9). The 

loxH site has four changes in the arm region and a different spacer region. They first randomized 

full length Cre recombinase by error-prone PCR. They used both positive and negative selection 

steps in vivo in bacterial cells. First, Cre mutants were evolved to recombine a loxP/loxH hybrid 

site for ten rounds. Then, Cre mutants were evolved for another ten rounds to efficiently 

recombine loxH full site. However, the resulting mutants were still able to recombine loxP sites 

with significant activity. Therefore, they performed fifteen additional rounds of negative 

selection to discourage Cre activity against loxP sites, while retaining the ability to recombine 

loxH sites. From the mutant library, a single clone called Fre22 was selected as the most specific 

mutant, with no activity for loxP and moderate activity for loxH. Another group used similar 

techniques to evolve the Flp recombinase towards a site in the human genome (8). Buchholz and 

colleagues also used directed evolution to evolve Cre to target a sequence in the long-terminal 

repeat of the HIV-1 strain (named loxLTR) (10). This asymmetric site has four changes in the left 

arm region and seven changes in the right, and has a different spacer region. The full length Cre 

sequence was randomized by error-prone PCR. They used an iterative positive selection strategy, 

sequentially targeting intermediate half-sites, separate symmetric half-sites, and finally the full 

asymmetric site. Surprisingly, although the two half-sites have different sequences, they were 

able to obtain a Cre mutant that could recombine the asymmetric RT site after 126 rounds of 

directed evolution. The final Cre mutant (called Tre) successfully recombined the loxLTR sites 

in vivo, resulting in excision of the proviral HIV genome in cultured cells (10). 

Using a different strategy, Santoro and Schultz retargeted Cre to recombine loxM7 sites, 

which contain three substitutions to each arm region of the loxP site (12). They used a focused 
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mutational approach in which only five residues in the Cre protein (identified from the crystal 

structure) were randomized. They used GFP and RFP as reporter genes, and FACS sorting to 

separate functional clones.. They also directly compared directed evolution using only positive 

selection with an approach that incorporated negative selections in the later rounds. They 

performed three rounds of positive selection on two libraries and five alternating rounds 

positive/negative selection on another two libraries. Mutants obtained from just positive selection 

were generally promiscuous in recombining both loxP and loxM7 sites, while mutant coming 

from alternating rounds of positive and negative selection exhibited much better specificity. A 

clone (named CreC2#4) was chosen as the most specific recombinase for the loxM7 site.  

A current weakness of directed evolution applied to selection of novel recombinase 

specificities is that there is no assay for assessing the specificity of the resultant mutants across a 

full RT half-site. The selections or screens used to identify recombinases with activity towards a 

desired novel RT site only report on the activity of the recombinase against a single site. Often, a 

negative selection is applied by screening the mutant library for activity against the relevant 

wild-type RT site for the recombinase used as the starting point for evolution. In one directed 

evolution effort, it was subsequently discovered that although a mutant with activity against the 

desired novel RT site had indeed been obtained, the mutant actually had a stronger preference for 

an entirely different RT site (8). This underscores the necessity to take into account not just the 

desired activity, but also activity against all other possible substrates when assessing the 

specificity of recombinases. This is a daunting task in the context of mammalian cells. 

A sequencing study had been published for loxP spacer region specificity and 

compatibility (13), but the specificity in the arm region have not been thoroughly characterized. 

A previous randomized library approach to identifying alternative lox sites showed some Cre’s 
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sequence preferences in vivo (14), but did not yield highly specific data because Cre recombinase 

was highly promiscuous in their experimental settings. In this manuscript, we overcame the 

promiscuity issue by adjusting salt concentrations in vitro, and used high-throughput sequencing 

to determine Cre’s DNA specificity. 

In this manuscript we describe a high-throughput assay for the specificity of DNA 

recombinases that we have named Rec-Seq. Using this assay we have characterized the 

specificity of the arm region of Cre recombinase. We also present the experimentally determined 

specificity for the VCre recombinase, a homolog of Cre with a different recombination target site 

sequence. We furthermore assess the specificity of a Cre mutant that has been obtained by 

directed evolution to exhibit altered DNA specificity in a subset of the arm region (12), giving a 

clearer evaluation of the nature of the specificity change. Finally, we demonstrate how the simple 

consideration of amino acid-base correspondences between members of the tyrosine recombinase 

family can uncover specificity determinants in protein alignments. We validate the utility of this 

method for identifying specificity-altering mutations by characterizing the changes in specificity 

that result from the identified amino acid mutation. 

MATERIALS AND METHODS 

Molecular cloning, expression, and purification of recombinases 

Genes encoding N-terminal His7-tagged recombinase were cloned into a pET42a vector 

using standard molecular biology techniques. Proteins were expressed in ArcticExpress cells 

(Agilent Genomics) at 20°C for 48 hours using the autoinduction protocol of Studier (15). 

Recombinases were purified using a HisTrapTM HP column (Amersham) following protocols 
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described previously (16). Protein concentrations were determined by UV absorbance using an 

extinction coefficient at 280nm of 49 mM-1cm-1 for Cre and 51 mM-1cm-1 for VCre. After 

purification, the proteins were stored at 4° C. 

Library preparation for Illumina sequencing 

Primers and library sequences are described in supplemental materials and Supplemental 

Table 3.1. The substrate libraries were generated by PCR amplification of pBAD33 vector’s 

multiple cloning site, with the Library-forward and Library-reverse primers. 700ng of the 

substrate libraries were incubated with 3 µM recombinase protein in 10 µL of 50 mM Tris-HCl, 

pH 7.8, and 10 mM MgCl2 for 20 hours at 37° C. NaCl conditions for each assay are described in 

Supplemental Table 3.1. The reactions were stopped at 98° C for 10 minutes, and then diluted to 

50 µL. The mixtures were digested the XbaI restriction enzyme (NEB) to prevent PCR 

amplification of the 824 bp substrate in the next step, ensuring that only the 97 bp recombination 

product can be amplified (Figure 3.1). The selection sequencing libraries were generated by PCR 

with primers pair Selected-sequencing-forward and Sequencing-reverse, using 5 µL of the above 

digested mixture as template. The background sequencing libraries were generated with primers 

pair Unselected-sequencing-forward and Sequencing- reverse, using 1 µL substrate libraries as 

template. Both libraries were amplified by Q5® DNA polymerase (New England Biolabs) using 

two-step protocol, 30 cycles, 15 s extension time. 

High-throughput sequencing data analysis 

For each individual sequence, the enrichment over background is calculated as:  
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𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ𝑚𝑚𝑚𝑚𝐸𝐸𝑚𝑚(𝑠𝑠𝑚𝑚𝑠𝑠) =
𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠

𝑁𝑁𝑏𝑏𝑏𝑏
𝑠𝑠𝑠𝑠𝑠𝑠

𝑁𝑁𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠

𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠
 

where 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑁𝑁𝑏𝑏𝑏𝑏

𝑠𝑠𝑠𝑠𝑠𝑠 are the number of occurrences of the individual sequence in the 

selected and background libraries, respectively, and 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠  and 𝑁𝑁𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠  are the total number of 

sequence counts in the selected and background libraries. For the 4N, 5N and 6N libraries, 

sequences with enrichment of less than 2.5 were discarded. For the 9N libraries, sequences with 

enrichment of less than 8 were discarded. Sequence logos were generated by Weblogo3 (17) 

using enrichment data as input. 

Identification of Cre homologs and prediction of their RT sites  

We identified homologs of Cre recombinase by performing a PSI-BLAST search of the 

wild-type Cre sequence against the NCBI set of non-redundant protein sequences, using the 

default settings (18). For homologs that were close but not identical in sequence identity (30-45% 

identical), we downloaded the complete genome or shotgun sequencing contig containing the 

coding region for the protein. We wrote a simple computer program to analyze the sequencing 

files and identify 34 bp sequences with pseudo-palindromic symmetry. The outer 13 bp flanks 

were compared for inverted repeats. The 8 bp spacer regions were ignored. A user-specified 

number of mismatches between the putative arm regions were allowed. We had two 

requirements for a sequence to qualify as an RT prediction. First, we allowed at most one 

deviation from inverted symmetry in the arm regions. Second, the putative RT sequence had to 

be located within 2 kbp of the coding region for the homologous gene. 
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RESULTS 

A high-throughput assay of recombinase DNA specificity 

Assessing the DNA specificity of a recombinase involves identifying not just the 

preferred RT sequence, but also the relative impact of base substitutions throughout the RT site. 

The DNA binding specificities of transcription factors (TFs) have been determined via 

high-throughput sequencing of the bound subset of randomized DNA binding sites (19). In 

contrast, tyrosine recombinases exhibit their specificity in an enzymatic reaction in which two 

RT sites are cleaved and religated. We have established an in vitro assay to determine the DNA 

specificity of Cre recombinase using the successful completion of the DNA splicing reaction as a 

selection method (Figure 3.1). We generate a library of linear DNA substrates (824 bp) for 

recombination by PCR. The RT sites are incorporated into the PCR primers, allowing for ready 

substitution of the half-site sequences and different choices of randomized bases. The library is 

incubated with purified recombinase to initiate the reaction. Successful recombination results in 

a small 97 bp linear product containing the functionally competent members of the randomized 

library, and a 727 bp circular product. The reaction mixture is then digested by XbaI to prevent 

PCR amplification of unreacted substrate in the following step. The 97 bp product is 

subsequently amplified by PCR to generate the selected sample, and a background sample for 

comparison is generated by PCR amplification of the unreacted 824 bp substrate. Both the 

background and selected library samples are subjected to high-throughtput sequencing. 

We have tested various library designs and conditions for Cre variants and homologs 

(Supplemental Table 3.1). We observed no recombination when Cre was incubated with a library 

in which the entire 13 bp half-site was randomized (13N library), and low sequence specificity 
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with a library in which the outermost nine bases were randomized (9N library)(Supplemental 

Figure 3.1A). The low activity was likely the result of the high complexity of the 13N library, 

and the low sequence specificity was likely the result of non-specific recombination driven by 

the cooperativity of the Cre complex. As has been shown previously, Cre monomers assemble 

cooperatively to form a functional tetrameric complex (14) (16). When the three non-randomized 

RT half-sites are the preferred loxP sequence, we observed promiscuous recombination of the 9N 

library. We then tried to reduce the cooperativity by mutating the half-site next to the 9N library 

to the loxM7 sequence (12)}, hypothesizing that the reduced affinity of Cre for this half-site 

would reduce the overall cooperativity for the reaction. In line with this expectation, we observed 

increased specificity from the 9N library that is consistent with the expected loxP sequence 

(Figure 3.2).  

For experiments with recombinases other than Cre, we do not have known weak RT sites 

analogous to loxM7. Furthermore, we would like to use native RT sites when possible. We found 

that we could obtain higher specificity profiles when randomized libraries with lower complexity 

were used, even without changing the loxP sequence at the non-randomized half-sites. Therefore, 

for subsequent specificity assays, we broke the 13 bp arm region into overlapping windows of 5-

6 bp, performing independent experiments randomizing one window at a time. 

NaCl concentration has a large effect on observed in vitro specificity 

One obstacle that prevented us from observing highly specific recombination is the 

cooperativity of DNA binding in Cre tetramers. At pH 7.8, Cre forms tetramers and are more 

active but less soluble at low salt conditions (<300 mM NaCl) but remains mostly monomeric 

formations at 700mM NaCl (20). Most previous in vitro recombinations were reported in low 
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salt conditions (~50 mM NaCl) (12) (13, 21). We proposed that at higher NaCl concentration, 

Cre’s interaction between monomers would be compromised, so that Cre would become less 

cooperative, and the reactivity of the library members would be less dependent on the sequences 

of the non-randomized half-sites. 

We sequenced the recombination product from the randomized substrate library shown in 

Figure 3.2 after incubation in 4 different salt conditions: 120 mM, 170 mM, 200 mM and 210 

mM (Figure 3.2, Supplemental Table 3.1). As expected, Cre’s specificity increased with the salt 

concentration. However, there was no detectable recombination product for this library when we 

raised the NaCl concentration above 210 mM (Supplemental Table 3.1). In order to obtain highly 

specific recombination, we tried to raise the salt concentrations as high as possible while still 

permitting detectable activity in all following assays. Unfortunately, the optimal salt conditions 

to use are dependent on both the recombinase and the substrate sequences. Therefore we 

empirically identified the concentration to use for each assay (Supplemental Table 3.1). 

Sequence specificity for Cre variants and homologs 

We applied the window approach to assess the DNA specificity of wild-type Cre 

recombinase throughout the full loxP arm region (Figure 3.3). The location of the randomized 

windows relative to the arm region sequence are indicated, and sequence logos for each of these 

experiments are shown. We also tested the sequence preference of Cre within a window that 

included the first base pair of the spacer region (Supplemental Figure 3.1D). Cre makes a single-

stranded break after the 1st base on the top strand and before the 8th base on the bottom strand in 

the spacer region. Homology is required for the intervening 6 bp sequence for strand exchange. 

We attempted to test the specificity of the spacer by randomizing half of the bases in this region, 
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but did not observe any recombinant product (Supplemental Table 3.1). In all the reported 

windows in the arm region, the consensus loxP sequence was the most enriched sequence. For 

the first base pair of the spacer region, Cre showed a strong preference against cytosine 

(Supplemental Figure 3.1D). Although the overlapping bases between different windows show 

preferences for the same bases, the relative information contents can be quite different. We 

attribute the discrepancies to the differences in the substrate and salt conditions between assays. 

The discrepancies prevent us from combining the overlapping windows to show a single logo for 

the full half-site. Therefore, we report the results for each window independently in this 

manuscript. 

In recent years, Cre homologs targeting different RT sites have been found. Such 

additional homologs are particularly useful in RMCE applications, where two recombinases can 

be used simultaneously for genome cassette exchanges (22). We set out to determine detailed 

sequence specificities for the VCre recombinase (23). VCre recombines VloxP sites (Table 3.1) 

and the purified protein was active in our in vitro assays (Figure 3.4, Supplemental Figure 3.1C). 

In the absence of other detailed studies, we assumed that the 34 bp VloxP site possesses the same 

structure as loxP, containing two 13 bp arm regions and an 8 bp spacer region. Interestingly, the 

two arm regions of VloxP site are not strictly inverted repeats containing a mismatch at position 

9. Results detailing the sequence specificity of VCre using three randomized windows over the 

arm region are shown in Firgue 4. By comparing the logos between Cre and VCre, we found that 

the two recombinases showed strong sequence preferences at different positions. Cre showed 

strong preference at position 2, 7, 8, 11, 12 and 13, while VCre showed strong preference at 

position 1, 3, 6, 7, 12, 13, suggesting the possibility of slightly different DNA binding modes. 
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VCre showed the least sequence preference at position 9, consistent with this being the position 

of the mismatch between the arm regions in VloxP. 

Probing the sequence specificity of an evolved recombinase 

The ability of directed evolution to generate recombinases that can operate on novel RT 

sites has been demonstrated repeatedly. However, the process can be time consuming and 

laborious, especially if the desired RT site is significantly different from any known wild-type 

RT sequence. To accelerate the process of retargeting recombinases, we propose to use sequence 

analysis of homologs of Cre. PSI-BLAST searches of bacterial genomes using Cre recombinase 

as a starting template identify hundreds of Cre homologs. Using custom software to scan the 

surrounding genomic context for the open reading frames of these homologs, we are able in 

many cases to predict their RT sequences. Closely related homologs share similarity in both 

amino acid sequence and predicted RT DNA sequence. Using the crystal structure of Cre bound 

to loxP (PDB code: 1KBU (24)), we are able to infer determinants of specificity by inspecting 

coordinated amino acid and base changes that map to interacting regions of the structure. As a 

demonstration, we picked a group of Cre homologs with predicted RT sites that switched from 

loxP to loxTA at position 8 and 9 (Figure 3.6). In the Cre-loxP structure, these bases are 

contacted by an alpha helix. Inspection of a multiple sequence alignment of the residues in this 

helix suggested the R259P mutation as a good candidate (Figure 3.6C). 

We expressed and purified the Cre R259P mutant to assess the validity of the putative 

R259P specificity determinant. First, we performed in vitro activity assays with Cre and Cre259P 

on the loxP and loxTA sequences (Figure 3.7A,B). The assays showed that Cre and Cre259P can 

recombine both loxP and loxTA, and there was no observable difference in specificity between 
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Cre and Cre259P. This indicates that the R259P mutation does not have enough of an effect on 

specificity to prevent recombination at loxP sites. We used Rec-Seq to look for more subtle 

changes in specificity. We designed a 4 bp randomized library centered on the base substitutions 

in loxTA relative to loxP and used high-throughtput sequencing to examine Cre259P’s DNA 

specificity in greater detail (Figure 3.7C-E). The resulting logo shows there is indeed a 

specificity switch caused by Cre259P. We tried additional mutations suggested by the sequence 

alignment at positions 258, 263 and 266, but did not observe increased specificity for any (data 

not shown). Although Cre259P does not result in a strict change in specificity, the ready 

availability of this mutation makes the search for loxP-like sequences more tolerant at these 

positions, and the Cre259P mutant can be used as an alternate starting point for directed 

evolution if the desired RT site matches loxTA better than loxP. We expect that the wealth of 

sequence data for recombinase homologs can be ‘mined’ to identify many more specificity 

determinants that can be helpful in this regard as well. 

DISCUSSION 

Cre recombinase and related homologous recombinases are attractive tools for genome 

engineering. Here, we have presented a high-throughput method to study the DNA specificity of 

recombinases. In some instances the native RT sequences of Cre homologs are not difficult to 

identify. The RT sites are assumed to adopt a loxP-like structure, usually located close to the 

genes that encode the recombinases in the genome (11). However, characterizing the DNA 

specificity of recombinases involves more than just knowing the native RT sequences. These 

recombinases may recombine other RT sites with relatively high efficiency, generating off-target 

activity. Furthermore, if we want to engineer the recombinases to retarget other RT sites, it will 
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be advantageous to know at which RT positions the recombinases are tolerant of substitutions, 

and are subsequently easier to retarget. 

 

The Rec-Seq method we have established reports on in vitro recombination of 

randomized DNA substrate libraries. A previous randomized library approach showed Cre can 

be quite promiscuous in vivo (14). In their in vivo study, when three out of four arm region were 

kept constant loxP sequence, Cre can recombine randomized arm regions even when 12 out of 13 

bases are different from loxP. The promiscuity with respect to the randomized region is not 

entirely surprising, given the strong cooperativity of Cre. However, this feature of Cre makes it a 

difficult task to accurately assess its DNA specificity. We have addressed this issue in vitro in 

two ways. First, we have intentionally introduced suboptimal sequences(loxM7 for Cre) in the 

constant arm regions to reduce binding in the unrandomized half-sites. However, for proteins 

other than Cre, we will not have sufficient knowledge to design suboptimal, yet still functional, 

sites. We have explored a second, more general approach in which the salt concentration is tuned 

to weaken the protein-DNA interactions. This leads to a stronger requirement for recognition 

between the recombinase and the randomized region of the substrate, yielding results that exhibit 

stronger specificity. Drawbacks of in vitro recombination in the Rec-Seq method include the 

effort required to obtain purified protein, and the inability to study interesting recombinase 

variants with known in vivo activity, but with insufficient activity in vitro to extract meaningful 

results. We are exploring the possibility of creating an in vivo version of Rec-Seq that overcomes 

the previously observed problem of high cooperativity. 
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We have adopted a window/tiling approach to characterizing the specificity of 

recombinases. Assaying the entire arm regions requires high complexity libraries that contain 

mostly inactive members, and in our case, did not generate detectable recombination product 

(Supplemental Table 3.1). The windowed approach is particularly suitable for situations where 

evaluating the specificity of a recombinase for a subset of the arm region is the goal. This is the 

case for our sequence-based approach to identifying specificity-altering mutations targeting a 

pair of bases. It is also appropriate for validating recombinase variants coming from directed 

evolution to target novel RT specificities. When the desired RT has quite a few mismatches to 

the native RT sequences, specificity alteration is often achieved in a series of intermediate steps, 

each of which focuses on the specificity switch on only a few base pairs, making it suitable for 

validation using a window approach (9, 10). The caveat of the windowed approach is that the 

recombination of each randomized window may be context dependent, and the windows may not 

be able to be stitched together for presentation of the specificity of a full arm region.  

 

Retargeting recombinases to novel RT sites is a laborious process involving many rounds 

of directed evolution. In a recent effort, Buchholz and colleagues applied a total of 126 rounds of 

directed evolution to evolve Cre to target long-terminal repeat of HIV-1 strain (10). Although, 

the ease of retargeting recombinases will never approach that of CRISPR/Cas systems, the 

unique capabilities of this family of proteins justify efforts to accelerate the retargeting process. 

The Rec-Seq method can be very useful in this regard. First, we can use Rec-Seq to identify the 

bases in the RT sequence for a recombinase that are less difficult to change. Second, with the 

help of sequence alignment of Cre homologs, we can identify possible candidate mutations for 

altering specificities. We can then validate these candidate mutations individually using Rec-Seq 
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to build a database of mutations and their corresponding changes of RT site specificities. By 

gathering the positions on the RT sequence that are relatively easy to alter and the database of 

specificity altering mutations, we can screen for DNA elements in a genomic interval to find 

those targets for which retargeting is most likely to be successful. By prudent selection of RT 

targets and incorporation of a small number of previously characterized mutations, the burden 

placed upon and hopefully the experimental effort required for the directed evolution process can 

be reduced. . Third, Rec-Seq can serve as a criterion for when the cycles of directed evolution 

selections can be terminated. Finally, in past efforts, recombinases have been evolved for one 

sequence, but exhibited even stronger activity for another (8). Rec-Seq could identify this 

problem before efforts are expended in cell culture experiments. 
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LoxP ATAACTTCGTATA GCATACAT TATACGAAGTTAT 

LoxM7 ATAACTCTATATA GCATACAT TATATAGAGTTAT 

LoxTA ATAACTTTATATA GCATACAT TATATAAAGTTAT 

VloxP TCAATTTCCGAGA ATGACAGT TCTCAGAAATTGA 

 

Table 3.1 34 bp full recombinase target sites 
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Figure 3.1 Randomized library construction and in vitro assay for recombinase specificity. 

An 824 bp DNA substrate containing a direct repeat of two target sites is generated by 

PCR. The asymmetric spacer region is represented as an orange triangle. Three out of the four 

half-sites are kept constant (green), while one arm region contains randomized libraries (blue). 

The library is incubated with purified recombinase at 37℃ overnight. After recombination, the 

substrate is resolved into a 97 bp small linear product containing the primer sites and a 727 bp 

circular product. Recombined members of the library are amplified by PCR with primers 2 & 3 

(black arrows) for subsequent sequencing. For comparison, a background library is generated by 

PCR using primers 1 & 2, and the starting 824 bp substrate as template. 
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Figure 3.2 Recombinase specificity as a function of salt concentration 

Wild-type Cre protein was incubated with a substrate library comprised of a loxP RT site 

(green boxes) and an RT site with a loxM7 half-site (yellow box) and a loxP half-site with the 
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outer nine bases randomized (blue box). The reaction was performed in different NaCl 

concentrations. The sequence was read from a reverse primer, indicated by the arrow above. The 

results are reported with the outermost position (1) shown on the left, and the innermost (9) 

shown on the right. The corresponding region of the loxP arm region is shown with the 

randomized portion underlined. Results are shown for experiments including NaCl 

concentrations of: (A) 120mM, (B) 170mM, (C) 200mM and (D) 210mM. 
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Figure 3.3 Sequence preferences of wild-type Cre recombinase in the arm region 

The results of three tiled Rec-Seq experiments that cover the loxP arm region are 

presented. Sequence logos depicting the enrichments at each position are aligned with the 

corresponding randomized windows of the loxP arm region (denoted by black bars). At each 

position, the most enriched base agrees with the loxP sequence, although the relative tolerance 

for alternate bases varies greatly across the arm region. 
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Figure 3.4 Sequence preference of Vcre recombinase in the arm region 

The results of three tiled Rec-Seq experiments assaying the specificity of the VCre 

recombinase over the arm region of VloxP are shown. The substrate library (top) includes the 

VloxP sequence for the spacer, 3 unrandomized arm regions, and a randomized arm region, with 

the location of the sequencing primer annealing region denoted with a black arrow. Sequence 

logos depicting the enrichments at each position are aligned with the corresponding randomized 

windows of the VloxP arm region (denoted by black bars). The Rec-Seq results for VCre at each 

position confirm that the most enriched base agrees with the VloxP sequence. Position 9 of VloxP 
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is a mismatch between the two arm regions of VloxP, with T and C bases present in the left and 

right arm regions. We find this position to have very little specificity (note the low information 

content for position 9 in the 5-10 position library). 
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Figure 3.5 Sequence preferences of CreC2#4 recombinase in the arm region 

Rec-Seq experiment results are presented as sequence logos for the CreC2#4 altered 

specificity mutant. The substrate library consisted of three loxM7 arm regions and one arm 

region that randomized bases in a loxM7 background in three windows. This mutant was 

selected to recombine the sequence of CTA at positions 7-9 of the arm region. The results show 

that specificity was indeed switched at positions 8 and 9, but that specificity is lost at position 7. 
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Figure 3.6 Identification of a specificity determinant via sequence comparison of 

recombinase homologs. 

(A) An alignment of the known and predicted arm region sequences for Cre recombinase 

and close homologs are shown, with the source organisms noted. Each homolog recognizes an 

RT with the sequence TA at positions 8 and 9 (shown in green). The loxTA arm region is an 

altered loxP sequence with only these two base substitutions. (B) The model for the Cre-loxP 

complex (PDB code: 1KBU (24)) is shown, with positions 8 and 9 of the arm region rendered in 

green. Residues 256-279 of the protein (rendered in magenta) are in close proximity to these 

bases. (C) An alignment of the amino acids for each of the Cre homologs in the range of residues 

256-279 (Cre numbering) is shown. The consistent difference between the homologs and Cre 

itself is an arginine to proline substitution at position 259.  We use Cre259P to denote a Cre 
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variant with this single mutation. (D) A structural model of the region of interaction between 

CreR259P and loxTA was predicted using the Rosetta design program. The substituted proline 

residue (rendered as spheres and colored magenta) is predicted to make hydrophobic interactions 

with the methyl groups of the thymine bases at positions 7 and 8, and on the opposite strand from 

position 9 (shown in yellow). 
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Figure 3.7 Validation of R259P specificity determinant by Rec-seq 

(A) In vitro assay for recombinase activity. The substrate for the assay is a linear DNA 

molecule harboring direct repeats of either the loxP or loxTA RT. Recombination results in 

generation of smaller circular and linear products. (B) Both wild-type and Cre259P recombinases 

were incubated with substrates containing both loxP and loxTA repeats in the presence of 

120mM NaCl. We observe activity for each combination, indicating that DNA sequence 

preferences are too subtle to observe with a bulk assay such as this. (C) The results from a Rec-

Seq experiment are shown in logo form for the window covering positions 7-10 of loxP (these 
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columns were extracted from the 6 bp window experiments shown in Fig. 3). (D) An alignment 

of loxP with loxTA is shown, with the differing bases colored red, and with black bars indicating 

the positions shown in the sequence logos. (E) A sequence logo for the results of a Rec-Seq 

experiment randomizing the four bases at positions 7-10 for loxTA is shown. The most enriched 

sequence corresponds to loxTA, indicating that the R259P mutation results in the desired switch 

in specificity. 
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Chapter 4  

Conclusions and Future Directions 
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Design of recombinases for asymmetric sites 

The tetrameric protein complex of Cre recombinase imposes a symmetric constraint on 

the RT sites it recombines. As a result, the utility of recombinase mutants with altered DNA 

specificity is limited if the pool of potential genomic targets must satisfy this constraint. A pair 

of ‘orthogonal’ recombinases with independently altered DNA specificities can overcome this 

challenge, allowing for the recombination of asymmetric sites. In chapter 2, I used both 

computational and rational design to construct a pair of obligate heterotetrameric Cre monomers: 

these mutants are active when combined together, but inactive in isolation. I found it relatively 

easy to reconstruct the protein-protein interface to find a pair of monomers that could work 

together. However, it is much harder to completely “knockout” the activity of the monomers in 

isolation. In chapter 2, I found that three successive rounds of design were necessary to achieve a 

completely orthogonal pair of Cre recombinases. 

Prospects for additional heterotetrameric recombinase pairs 

Recombinase-mediated cassette exchange (RMCE) at native loci is a promising strategy 

to precisely replace defined intervals in the genome with any sequence provided in a DNA 

template. During the cassette exchange, there are two distinct recombination crossover events, 

requiring two sets of orthogonal recombinases. For maximal specificity, we require a second pair 

of obligate heterotetramer recombinase mutants. One possible way to finding such a second pair 

of recombinases is to redesign another novel interface for Cre monomers and demand that it to 

be incompatible with both the wild-type interface and the redesigned Cre-A3/Cre-B2 interface. 

Considering that I found the negative elements of interface design to be more difficult to satisfy 

than the positive elements, this approach seems difficult to achieve. Another strategy is to 

engineer homolgous DNA recombinases that will not cross-react with Cre. A group of 
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researchers have used both Cre and Flp to demonstrate RMCE (1). They found that Flp is not as 

efficient as Cre in vivo, and that a careful balance of the proteins are needed to optimize cassette 

exchange efficiency. 

Several new Cre homologs have been found by screening bacterial genomes.  Examples 

include Vika, SCre and VCre (2, 3). They share around 30% sequence identity to Cre and 

recombine distinct RT sites. It is likely that they will not cross react with each other, making 

them ideal candidates to engineer for RMCE. The caveat is that these recombinases are less well 

studied. In particular, there are no crystal structures available for these homologs. Therefore, 

interface design for these proteins relies on guessing the contacting residues by mapping their 

protein sequence onto Cre’s crystal structure. Using this strategy, I have tried to engineer the 

protein interfaces of Vika and VCre recombinase. For Vika recombinase, I used rational design 

and introduced “charged swaps” into the interface. I found a pair of mutations (R33D and E72R) 

and an in vivo assay showed that they were active when combined together.  However, one of the 

mutants has reduced but clear activity in isolation. Additional mutations are needed to engineer a 

completely orthogonal pair. For VCre, more aggressive measures were taken.  I have tried 

exchanging pairs of interacting alpha-helical elements of secondary structure between VCre and 

a close homolog. The resultant VCre variants were non-functional and additional mutations to 

other residues that intact with the helix are required to rescue the activity. 

A future approach to overcome the limited success of sequence-based methods may 

involve crystallographic efforts to obtain experimentally determined structures for VCre, Vika, 

or other recombinases. This would allow for the application of the structure-based strategies that 

I used successfully with Cre recombinase. The availability of many recombinase homologs, with 

associated predictions for RT sites, will allow us to select recombinases that target diverse RT 
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sequences for structural characterization, which would simultaneously expand the genomic 

sequences we can target for cassette exchange. 

Rec-Seq is a powerful tool to study the DNA specificity of recombinases 

Using recombinases in genome editing not only requires the knowledge of their native 

RT sites, but also requires a quantitative understanding of base preferences at all of the positions 

in the RT site. In chapter 3, I described a method call ‘Rec-Seq’ to fully characterize the DNA 

specificity in the arm region using high-throughput sequencing.  This assay is also crucial for 

testing and validating recombinase variants obtained from directed evolution.  

A possible future direction for Rec-Seq would be to adapt the method for in vivo 

recombination.  As described in Chapter 3, the recombination step was performed in vitro. 

Compared to in vivo methods, in vitro recombination has several advantages. First, the 

randomized library size is not limited by bacterial transformation. As long as there is detectable 

product, there is no limit on how many positions can be randomized at the same time. Second, 

Cre’s strong cooperative binding of the RT site (which has hindered previous specificity assays) 

can be reduced by adjusting the NaCl concentration. It is difficult to change the conditions 

similarly in vivo. On the other hand, recombination in vitro requires a time consuming protein 

purification step, and some recombinases do not express well or are not sufficiently active in 

vitro. As a result, I could not use Rec-Seq to test several recombinases of significant interest. For 

example, the wild-type Vika recombinase does not express well, and the engineered Fre22 and 

Tre recombinases have prohibitively weak activity in our in vitro assay, although they exhibit 

activity in bacterial or mammalian cells. Thus, it would be advantageous to develop a Rec-Seq 

method in vivo. The in vitro DNA substrate used in chapter 3 can be cloned into a pBAD33 
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vector where the corresponding recombinases express under the control of arabinose induction. 

After transformation and arabinose induction in E. coli, I can perform a miniprep, use similar 

procedures to PCR amplify the recombined product and send the amplified DNA to Illumina 

sequencing. By controlling the recombinase expression with arabinose levels, this proposed in 

vivo method can be used to detect recombinases that have little activity in vitro. One drawback of 

this in vivo method is that the recombinases, especially wild-type Cre, may be too promiscuous 

to yield highly specific recombination product. It is necessary to tune the arabinose level and 

modify the substrate sequence to obtain optimal recombination specificity. 

Accelerating the retargeting of recombinases  

Compared to the ease with which the CRISPR/Cas system can be retargeted, altering the 

RT site specificity of recombinases is a laborious process, involving many rounds of directed 

evolution. In a recent effort, Buchholz and colleagues applied a total of 126 rounds of directed 

evolution to evolve Cre to target long-terminal repeat of HIV-1 strain (4). The number of rounds 

of directed evolution could be reduced if the starting protein could be made more compatible 

with the target RT site by rational methods. In chapter 3, I used sequence alignment information 

from Cre homologs to find candidate mutations that can change the DNA specificity of Cre. I 

then validated a candidate mutation using Rec-Seq and confirmed the specificity switch. From 

the sequence alignment, I could build a database of mutations and their corresponding changes of 

RT site specificities.  

Rec-Seq could also improve selection of site for cassette exchange in the human genome. 

In Chapter 3, I used Rec-Seq to identify the specificity of recombinases at each position of the 

RT sequence. The combination of knowing the positions on the RT sequence that are difficult to 
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alter and the database of specificity altering mutations can guide the selection of which DNA 

elements within a given genomic interval are the best candidates to target with a recombinase. As 

a demonstration, we searched the sequences upstream and downstream of Huntington’s disease 

genome locus to do RMCE and found candidate target sites. We identified sites in the regions 

upstream and downstream of the huntingtin locus that we predict could be targeted by the VCre 

and Cre recombinases, respectively.  Early directed evolution results using these recombinases 

suggest that these sites can indeed be targeted. 

Rec-Seq can also serve as a test for when the cycle of directed evolution selections can be 

terminated. Rec-Seq can distinguish recombinases that are specific from those that are 

promiscuous within a given window along the arm region. In reported work, a recombinase that 

was evolved for one sequence exhibited even stronger activity for a different, off-target RT site 

(5). Rec-Seq could catch this lack of desired specificity before extensive efforts are expended in 

cell culture experiments. 
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Supplemental Methods 

Protein purification of Cre recombinase variants.   

Proteins were expressed in BL21(DE3) star cells at 25°C using the autoinduction protocol of 

Studier (1).  The cells were harvested by centrifugation after 48 hours. The cell paste was 

resuspended in 25 mL buffer A (0.7 M NaCl, 50 mM Tris-HCl pH 7.8, 5 mM Imidazole), lysed 

by sonication on ice, and separated from cellular debris by centrifugation. The filtered 

supernatant was applied to a HisTrapTM HP column (Amersham) and washed with 30 mL Buffer 

A. The column was then washed with 20 mL 15% buffer B (0.7 M NaCl, 50 mM Tris-HCl pH 

7.8, 500 mM Imidazole). Cre was eluted with a linear gradient from 15% buffer B to 100% 

buffer B, with the elution peak starting at roughly 20% buffer B. Approximately 10 mL of the 

eluted protein was collected and dialyzed overnight at 4°C against 5 L dialysis buffer (0.7 M 

NaCl, 50 mM Tris-HCl pH 7.8). The protein concentration was then determined by UV 

absorbance using an extinction coefficient at 280nm of 49 mM-1cm-1. The protein retained 

activity for months when stored at 4° C. 
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  Replicate 
  1st 2nd 3rd 

total # of cells sorted 

           

7000 7000 7000 

Cre‐A1 
hbb 414 378 391 

hbb+cmv 3852 3528 3687 
hbb+sp1 3750 3419 3501 

Cre‐B1 
hbb 97 102 85 

hbb+cmv 1237 1258 1120 
hbb+sp1 1150 1080 1202 

A1+B1 
hbb 1117 1212 1324 

hbb+cmv 5866 6029 6358 
hbb+sp1 5702 6121 5987 

Cre‐A2 
hbb 47 52 41 

hbb+cmv 1127 1116 1052 
hbb+sp1 1053 1002 1119 

Cre‐B2 
hbb 0 0 1 

hbb+cmv 2 2 4 
hbb+sp1 2 1 3 

A2+B2 
hbb 573 528 607 

hbb+cmv 3180 3409 3698 
hbb+sp1 3221 3336 3593 

Cre‐A3 
hbb 0 0 1 

hbb+cmv 0 1 1 
hbb+sp1 1 0 0 

A3+B2 
hbb 256 233 284 

hbb+cmv 1598 1652 1701 
hbb+sp1 1503 1527 1606 

WT 
hbb 372 391 408 

hbb+cmv 3914 4223 4312 
hbb+sp1 3815 3799 4021 

 

Supplemental Table 2.1.  Cell sorting data from mouse ES cells 

Plasmids with the hbb minimal promoter alone or with either the cmv and sp1 enhancers driving 

different cre variants were co-transfected into Ai14 mouse embryonic stem (ES) cells containing 

a reporter cassette with tdTomato preceded by a floxed stop codon. The same total amount of 

DNA was used for all transfections, and 3 independent transfections were performed for each 

Cre variant. The number of tdTomato positive cells was measured by flow cytometry.  
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Supplemental Figure 2.1  

(A) In vitro assay results for Cre mutant pairs lacking computationally designed mutations. 

Linear DNA substrate (0.7 kb) with direct loxP repeats was incubated with Cre mutants. Lane 1: 

Cre-E123L/E308R; lane 2: Cre-E123L/R337E; lane 3: A 1:1 mixture of above two Cre mutants.  

The E123L/E308R mutations are insufficient to eliminate activity in this monomer, indicating 

that additional mutations are necessary to achieve the goal of obligate heterotetramers.  (B) In 

vitro assay results for Cre proteins with wild-type monomer-monomer interfaces. Wild-type Cre 

and Cre-C2#4 were assayed for recombination activity against six loxP/M7 hybrid RT sites. The 

left panel: wild-type Cre recombined robustly on all six RT sites except for all M7 site. The right 

panel: Cre-C2#4 recombined all six RT sites, although with diminished activity with increased 

number of loxP half-sites. 
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Supplemental Figure 2.2.  

Representative raw data from flow sorting experiments. Each point shows the fluorescence in the 

red channel (tdTomato) versus green channel (FITC).  The cell-only and dummy plasmid 

experiments exhibit roughly identical autofluorescence.  The gating for identifying RFP-positive 

is the region of each plot labeled ‘P4’. 
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 Protein Left Target Right Target(reverse complement) NaCl(mM) Result 

1 CreWT LoxP-LoxP NNNNNNNNNNNNN GCATACAT TATACGAAGTTAT 120 No recombination 

2 CreWT LoxP-LoxP NNNNNNNNNTATA GCATACAT TATATAGAGTTAT 120 Figure 3.2A 

3 CreWT LoxP-LoxP NNNNNNNNNTATA GCATACAT TATATAGAGTTAT 170 Figure 3.2B 

4 CreWT LoxP-LoxP NNNNNNNNNTATA GCATACAT TATATAGAGTTAT 200 Figure 3.2C 

5 CreWT LoxP-LoxP NNNNNNNNNTATA GCATACAT TATATAGAGTTAT 210 Figure 3.2D 

6 CreWT LoxP-LoxP NNNNNNNNNTATA GCATACAT TATATAGAGTTAT 220 No recombination 

7 CreWT LoxP-LoxP NNNNNNNNNTATA GCATACAT TATACGAAGTTAT 460 Supplemental figure 3.1A 

8 CreWT LoxP-loxM7 NNNNNNNNNTATA GCATACAT TATACGAAGTTAT 420 Supplemental figure 3.1B 

9 CreWT LoxP-LoxP NNNNNNTCGTATA GCATACAT TATACGAAGTTAT 490 Figure 3.3 

10 CreWT LoxP-LoxP ATAANNNNNNATA GCATACAT TATACGAAGTTAT 490 Figure 3.3 

11 CreWT LoxP-LoxP ATAACTTNNNNNN GCATACAT TATACGAAGTTAT 120 No recombination 

12 CreWT LoxP-LoxP ATAACTTCNNNNN GCATACAT TATACGAAGTTAT 470 Figure 3.3 

13 CreWT LoxP-LoxP ATAACTTCGNNNN NCATACAT TATACGAAGTTAT 500 Supplemental figure 3.1D 

14 CreWT LoxP-LoxP ATAACTTCGTATN NNNNACAT TATACGAAGTTAT 120 No recombination 

15 CreC2#4 LoxM7-LoxM7 NNNNNNNNNTATA GCATACAT TATATAGAGTTAT 370 Non-specific 

16 CreC2#4 LoxM7-LoxM7 NNNNNNNNNTATA GCATACAT TATACGAAGTTAT 340 Non-specific 

17 CreC2#4 LoxM7-LoxM7 NNNNNNCTATATA GCATACAT TATATAGAGTTAT 370 Figure 3.5 

18 CreC2#4 LoxM7-LoxM7 ATAANNNNNNATA GCATACAT TATATAGAGTTAT 420 Figure 3.5 

19 CreC2#4 LoxM7-LoxM7 ATAACTCTNNNNN GCATACAT TATATAGAGTTAT 280 Figure 3.5 

20 Cre259P LoxTA-LoxTA ATAACNNNNNNTA GCATACAT TATATAAAGTTAT 120 No recombination 

21 Cre259P LoxTA-LoxTA ATAACTNNNNATA GCATACAT TATATAAAGTTAT 120 Figure 3.7D 

22 VCre Vlox-Vlox NNNNNNNNNGAGA ACTGTCAT TCTCGGAAATTGA 300 Supplemental figure 3.1C 

23 VCre Vlox-Vlox NNNNNNTCTGAGA ACTGTCAT TCTCGGAAATTGA 300 Figure 3.4 

24 VCre Vlox-Vlox TCAANNNNNNAGA ACTGTCAT TCTCGGAAATTGA 300 Figure 3.4 

25 VCre Vlox-Vlox TCAATTTCNNNNN ACTGTCAT TCTCGGAAATTGA 300 Figure 3.4 

26 VCre Vlox-Vlox TCAATTTCNNNGA NCTGTCAT TCTCGGAAATTGA 70 No recombination 

Supplemental Table 3.1 Summary of recombination experiments.  

Each line corresponds to a single recombination experiment, as described in Figure 1 of 

the manuscript. The first column indicates the recombinase or recombinase mutant used in the 
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experiment. The second column gives the sequence of the (constant) recombinase target (RT) 

site on the ‘left-hand’ side of the DNA substrate, where each half-site of the RT sequence is 

indicated, as in some cases an asymmetric RT sequence was used. The third column gives the 

sequence of the ‘right-hand’ RT site on the substrate, with randomized positions denoted by ‘N’. 

The fourth column indicates the salt concentration used in the experiment. The fifth column 

indicates the result of the experiment. ‘No recombination’ denotes experiments where no 

recombinant product was observed. ‘Non-specific’ denotes experiments without a clear product 

of the expected size. Otherwise, the figure that presents the results of successful experiments is 

reported. 
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Supplemental figure 3.1 Extended library assays for the Cre and VCre recombinases.  

(A)-(C) Results from recombination specificity assays with high complexity libraries that 

randomize the outer nine bases of the RT sequence are presented. (A) Results for wild-type Cre 

recombinase with the indicated DNA substrate, in which all non-random half-sites were the loxP 

sequence. (B) Results for wild-type Cre recombinase where one of the half-sites consisted of the 

loxM7 sequence. (C) Results for the VCre recombinase where all non-random half-sites are the 

cognate VloxP sequence.  

(D) Results from wild-type Cre specificity assays that randomizes four bases in the arm 

region and one base in the spacer region of the RT sequence are presented. All non-random half-

sites are the loxP sequence.  
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Primers for library generation (See Supplemental Table 1 for RT site 

sequence) 

Library-forward 

cccgcgaaattaatacgactcactatagggg-RT-site-ccaattgtccatattgcatcagac 

Library-reverse 

gggttatgctagttattgctcagcggtggcag-RT-site-with-randomized-

library–caacagataaaacgaaaggcccag 

Primers for Illumina sequencing preparation 

Selected-sequencing-forward 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTcccgcg

aaattaatacgactcactatagggg 

Sequencing-reverse 

CAAGCAGAAGACGGCATACGAGAT-index-

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTgggttatgctagttattgctcag 

Unselected-sequencing-forward 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTgccgta
gcgccgatggtagtgtggggtctccc 
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