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Gene discovery and characterization is a long and labor-intensive process. Gene co-expression 

network analysis is a long-standing powerful approach that can strongly enrich signals within gene 

expression datasets to predict genes critical for many cellular functions. Leveraging this approach 

with a large number of transcriptome datasets does not yield a concomitant increase in network 

granularity. Independently generated datasets that describe gene expression in various tissues, 

developmental stages, times of day, and environments can carry conflicting co-expression signals. 

The gene expression responses of the model C3 grass Brachypodium distachyon to abiotic stress 

is characterized by a co-expression-based analysis, identifying 22 modules of genes, annotated 

with putative DNA regulatory elements and functional terms. A great deal of co-expression 

elasticity is found among the genes characterized therein. An algorithm, dGCNA, designed to 

determine statistically significant changes in gene-gene co-expression relationships is presented. 

The algorithm is demonstrated on the very well-characterized circadian system of Arabidopsis 

thaliana, and identifies potential strong signals of molecular interactions between a specific 



x 

 

transcription factor and putative target gene loci. Lastly, this network comparison approach based 

on edge-wise similarities is demonstrated on many pairwise comparisons of independent 

microarray datasets, to demonstrate the utility of fine-grained network comparison, rather than 

amassing as large a dataset as possible. This approach identifies a set of 182 gene loci which are 

differentially expressed under drought stress, change their co-expression strongly under loss of 

thermocycles or high-salinity stress, and are associated with cell-cycle and DNA replication 

functions. This set of genes provides excellent candidates for the generation of rhythmic growth 

under thermocycles in Brachypodium distachyon. 
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Introduction 
 

1.1 Cis-regulatory elements in plant cell signaling 
Cell signaling is one aspect of the complex system of communication that coordinates basic 

cellular activities and interactions of a cell with its environment. Transcriptional regulatory 

networks that drive organ and cell specific patterns of gene expression and mediate interactions 

with the environment represent one aspect of plant cell signaling. Fundamentally, the 

transcriptional regulation of gene expression in eukaryotes is mediated by recruitment of 

transcription factors (TFs) to cis-regulatory elements. Transcription factors interact with specific 

DNA elements, other transcription factors, and the basal transcriptional machinery to regulate the 

expression of target genes. In plants, transcriptional regulation is mediated by more than 1,500 TFs 

and each TF controls the expression of tens or even thousands of target genes in complex signaling 

networks [1,2]. Transcription factor binding sites (or 'cis-elements'; 'motifs') are the functional 

DNA elements that influence temporal and spatial transcriptional activity. Multiple cis-elements 

comprise cis-regulatory modules (CRMs), which integrate signals from multiple TFs resulting in 

combinatorial control, and highly specific patterns of gene expression. Therefore, identifying and 

understanding the functions of cis-elements, and their combinatorial role in CRMs, is essential for 

elucidating the mechanisms by which cells perceive and correctly respond to their environment, 

and participate in organism development and homeostasis. With the recent availability of several 

high-quality sequenced and annotated plant genomes, large public databases of global gene 

expression measurements, and easy access to expression profiling technologies for individual 

laboratories, there has been a surge of studies involving transcription factor binding sites and their 

role as components of a larger transcriptional network. This review discusses relevant recent 
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studies of plant cis-elements, focusing primarily on studies including prediction of cis-elements 

from high throughput expression profiling datasets and bioinformatics analysis of upstream 

sequences regulating co-expressed genes. 

1.1.1 Bioinformatic approaches to plant cis-element prediction 

Genome-wide expression profiling experiments have greatly facilitated cis-element prediction. To 

date, microarrays have been the most widely used platform used to measure steady state mRNA 

levels in plants. Groups of co-expressed genes are identified using microarrays, and assumed to be 

co-regulated. The presumed upstream regulatory regions of arbitrary length are then used to 

identify candidate DNA motifs. Multiple motifs that are over-represented in the promoters of a co-

expressed gene cluster may represent the same CRM, and therefore be acting in a combinatorial 

mode. There are several obvious limitations with this approach. The underlying assumption – that 

co-expressed genes are transcriptionally co-regulated – may not always be true. Microarray assays 

measure steady state transcript levels in a particular sample, not transcriptional activity per se. 

Most microarray-based transcript profiling experiments cannot distinguish between changes in 

transcript levels caused by post-transcriptional regulation (i.e. transcript stability) rather than cis-

element mediated transcriptional regulation. Most array assays are prone to ignore potential 

complications due to samples comprised of multiple tissue/cell types or changes in RNA content 

per cell. Moreover, the upstream regulatory sequences that are analyzed are arbitrary, and limited 

by the quality of the underlying genome sequence and its annotation. If a gene model is incorrectly 

annotated, the potential upstream regulatory sequence will be incorrect as well. Nevertheless, 

despite these potential limitations, in non-plant systems such as yeast many studies involving 

integration of data from transcript profiling, chromatin immunoprecipitation (ChIP) experiments, 

and genomic and computational transcription factor binding site predictions, have borne out the 
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strength of the co-expression/co-regulation assumption [3–9]. Moreover, as described below (see 

Case Studies), several studies in plants have illustrated the utility of co-expression-driven 

prediction of cis-elements as a means to begin deciphering transcriptional networks. 

1.1.2 Tools for plant cis-element prediction 

A number of algorithms and bioinformatics tools have been developed to identify potential cis-

elements in the regulatory sequences of co-expressed genes (reviewed in [10–12]). The 

fundamental assumptions underlying the computational approaches are that co-regulated genes 

should contain similar cis-elements in their upstream regulatory regions at statistically significant 

levels. Regardless of the exact algorithmic details, generically speaking, the computational 

approaches for identifying putative cis-elements estimate the probability of occurrences of short 

DNA motifs by comparing the observed number of occurrences of a particular motif in a set of 

sequences to the expected number of occurrences based on random sampling or statistical 

modeling of a background distribution [13–23]. Therefore each algorithm requires a background 

model to calculate the expected frequency for each motif. The composition of the sequences 

underlying the background model is critical because the various sequence features within a 

genome exhibit different base compositions. Moreover, as with gene prediction programs, 

background models must be generated on a species-by-species basis. At a minimum, this 

requires an available genome sequence and annotation. An overview of the available web-based 

tools for the identification and prediction of cis-elements in plants is provided in Table 1. It 

should be noted that there is a plethora of web-based tools for cis-element prediction that are not 

specific to plants, but generally applicable to plant studies - for example, MEME 

(http://meme.sdsc.edu) [24]. 
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Table 1. Selected web-based resources for cis-element bioinformatics 

* Type: D, Database; P, Prediction. 

1.1.3 Case studies elucidating functions of cis-elements in plant cell signaling 

In recent years, the rapid accumulation of genome-scale datasets – including genome sequences, 

genome annotations, gene-function predictions, and expression profiling experiments – has 

facilitated systems approaches aimed at discovery of cis-elements, and interrogating their roles in 

plant cell signaling. The proliferation of microarray experiments, in particular those designed for 

model plants with a high quality genome annotation such as Arabidopsis, provide whole genome 

catalogs of transcript levels. These microarray datasets represent different stages of development, 

Resource Type* URL References 

AGRIS D http://arabidopsis.med.ohio-state.edu/ [169] 

AtCOECis D, P http://bioinformatics.psb.ugent.be/ATCOECIS/ [36] 

Athamap D http://www.athamap.de/ [170] 

Athena D, P http://www.bioinformatics2.wsu.edu/cgi-

bin/Athena/cgi/home.pl 

[171] 

BAR 

Promomer 

P http://bar.utoronto.ca/ntools/cgi-bin/BAR_Promomer.cgi [23] 

DATF D http://datf.cbi.pku.edu.cn/ [172] 

DOOP D http://doop.abc.hu/ [173] 

ELEMENT P http://element.cgrb.oregonstate.edu [20,21] 

Improbizer P http://users.soe.ucsc.edu/~kent/improbizer/improbizer.html - 

MEME P http://meme.sdsc.edu/meme4_1/intro.html [174–176] 

MotifSampler P http://homes.esat.kuleuven.be/~thijs/Work/MotifSampler.h

tml 

[14,16] 

PLACE D http://www.dna.affrc.go.jp/PLACE/ [177] 

PlantCARE D http://bioinformatics.psb.ugent.be/webtools/plantcare/html/ [91] 

PlantPAN P, D http://plantpan.mbc.nctu.edu.tw/ [178] 

PlantProm 

DB 

D http://linux1.softberry.com/berry.phtml? 

topic=plantprom&group=data&subgroup=plantprom 

[179] 

Plant TF DB D http://planttfdb.cbi.pku.edu.cn/ [2] 

Plant 

Promoter DB 

D http://ppdb.gene.nagoya-u.ac.jp/cgi-bin/index.cgi [180] 

RSAT P http://rsat.ccb.sickkids.ca/ [181] 

TAIR pattern 

match 

P http://www.arabidopsis.org/cgi-bin/patmatch/nph-

patmatch.pl 

[182] 

Transfac D http://www.gene-regulation.com/pub/databases.html [183] 

WeederWeb P http://159.149.109.9/modtools/ [15,184] 

 



5 

 

organs, cell types, environmental conditions, and various other stimuli or treatments. Moreover, 

there has been a tremendous increase in the availability of so-called 'expression atlas' datasets in 

the public domain [21,25–27]. Here we briefly review several studies in recent years that have 

integrated expression and sequence data in order to identify cis-elements and information about 

their functions in plant cell signaling. Typically, differentially expressed genes were identified 

under some stimulus, treatment, or environmental condition, or by comparing different 

genotypes. The upstream regulatory regions of the differentially expressed genes were subjected 

to bioinformatic analyses to identify overrepresented cis-elements. Several studies have been 

focused on phytohormone signaling or stress response signaling. For example, analysis of 

upstream regulatory regions of genes coordinately regulated by treatments with auxin and 

brassinosteroid phytohormones revealed shared overrepresented cis-elements and novel crosstalk 

between phytohormone signaling pathways [19]. Analysis of promoters of Arabidopsis genes 

that were differentially expressed in plants treated with abscisic acid (ABA) or abiotic stresses 

(drought, cold, salt), identified a number of ACGT-containing ABA response elements (ABREs) 

and coupling elements [28]. In another study, microarrays were used to compare global gene 

expression responses of wild-type Arabidopsis plants and mutants defective in 'retrograde' 

signaling between the chloroplast and nuclear genomes [29]. Promoter analysis for genes de-

repressed in retrograde signaling mutants revealed an over-represented ACGT motif, the core of 

both the light-responsive G-box (CACGTG) and ABREs, thus demonstrating a new connection 

between phytohormone, sugar, and retrograde signaling. Walley and colleagues [30] sought to 

elucidate the molecular mechanisms by which stress signals are transduced in plants. Mechanical 

wounding of Arabidopsis leaves was used as a stress stimulus and microarray analysis identified 

hundreds of wound responsive genes. Bioinformatic analysis identified a novel over-represented 
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motif, CGCGTT, termed the Rapid Stress Response Element (RSRE), occurring in the promoters 

of genes upregulated during wounding stress. Subsequent experiments using luciferase reporter 

constructs and mutations in the RSRE motif demonstrated that the RSRE cis-element is 

sufficient to confer stress responsiveness in vivo. Using a microarray-driven approach Evrard et 

al.[31] identified FORCA - a hexameric cis-element that is conserved in clusters of Arabidopsis 

genes co-expressed in response to fungal pathogens and light treatments. It was proposed that the 

FORCA element integrates light- and defense-related signals in Arabidopsis and participates in 

the transcriptional adjustments to environmental changes.  

A few recent studies [21,32,33] have identified novel components of diurnal/circadian 

transcriptional networks. Most eukaryotes use daily light/dark cycles as timing cues to ensure 

that a wide variety of biological processes are phased to occur at the correct times of day. In one 

study, a bioinformatics pipeline for discovery of transcriptional networks was applied to 

microarray datasets interrogating the transcriptomes of Arabidopsis plants grown in different 

light, temperature, or circadian conditions. Mining the promoters of cycling genes identified 

three cis-acting modules controlling time of day expression: the morning elements, comprising 

the morning CRM (ME, CCACAC)/G-box (CACGTG); the evening elements, comprising the 

evening CRM (EE, AAATATCT)/GATA (GATA); and the midnight elements, comprising the 

midnight CRM (TBX, AAACCCT)/starch synthesis box (SBX, AAGCCC)/ protein box (PBX, 

ATGCCC). These three modules are conserved across distantly related species such as 

Arabidopsis, rice, poplar, and papaya [21,34] suggesting that diurnal and circadian signaling 

have shaped the evolution of plant transcriptional networks and allow plants to adapt to diverse 

and ever-changing daily environments. In another study [33] aimed at elucidating the 

interactions between light signaling, the circadian clock, and growth-promoting phytohormone 
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pathways in plant growth, a novel cis-element (HUD; CACATG) was over-represented in the 

promoters of plant hormone-associated genes that are co-expressed near dawn, the time of day 

when hypocotyl growth rate is maximal. The HUD element was shown to be sufficient to confer 

predicted diurnal and circadian expression patterns when used to drive expression of a luciferase 

reporter construct in vivo. 

To date, several attempts have been made to extend the general approaches described above to 

the large public Arabidopsis expression atlas datasets. For example, Walther et al. [35] used the 

large AtGenExpress database (http://www.arabidopsis.org/info/expression/ATGenExpress.jsp) to 

test their hypothesis that genes differentially expressed in response to several different stimuli 

should contain a greater number of distinct cis-elements in their upstream regions than genes that 

respond to relatively few stimuli. By combining differential gene expression patterns with an 

analysis of cis-elements in Arabidopsis promoters, they found a positive correlation between 

genes that respond to multiple stimuli and the density of cis-elements in their upstream regions. 

Perhaps not surprisingly, genes predicted to function in the regulation of transcription, stress 

responses, and signaling processes exhibited the greatest regulatory capacity. In another study 

Vandepoele and co-workers [36] integrated predictions of CRMs, previously known and 

potential novel cis-elements, and predictions of gene function (e.g. GO annotations) to annotate 

~9,100 clusters of co-expressed genes with potential cis-elements, including hundreds of 

evolutionarily conserved, but previously unknown, cis-elements. These annotations of over-

represented cis-elements in co-expressed gene clusters provide powerful new resources for 

elucidating the mechanisms underlying transcriptional control in plants and inferring functional 

information for Arabidopsis genes. 
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1.1.4 Distinguishing bona fide cis-elements from genomic 'noise' 

It remains challenging to distinguish potential cis-elements that serve as genuine transcription 

factor binding sites from genomic background noise. The canonical short palindromic 'G-box' 

(CACGTG) represents an illustrative example of such a challenge. The G-box is one of the best-

studied cis-elements, and has been shown to drive gene expression in plants in response to light 

[37]. Several studies have shown that the G-box is frequently over-represented in the promoter 

sequences of certain co-expressed genes or in intragenomic conserved noncoding sequences 

(CNSs). For example, Freeling et al. [38,39] analyzed 14,944 Arabidopsis CNSs and 

demonstrated that many known TF binding motifs, including the G-box, are overrepresented in 

these CNSs. In our own studies of circadian and diurnal regulation of gene expression in 

Arabidopsis [20,21] we found the G-box to be overrepresented in the promoters of several 

hundred genes whose diurnal expression peaked a few hours after dawn in short-day photoperiod 

conditions. However, like other relatively short DNA motifs, the G-box occurs in all regions of 

plant genomes (in 'promoters', intergenic regions, coding regions, introns etc.). The G-box occurs 

in approximately 29,000 locations in the Arabidopsis genome, and occurs more often in 

annotated genic regions than in intergenic regions. Obviously, it would be naïve to expect every 

occurrence of the G-box to function as a transcription factor-binding site in vivo, regardless of its 

sequence context. This problem is even more exaggerated in the case of shorter motifs such as 

the ubiquitous GATA element, which occurs on average several times in every potential 

upstream regulatory region. Recent approaches based on the new high throughput sequencing 

technologies will greatly facilitate efforts to identify the functional instances of predicted cis-

elements. Chromatin immunoprecipitation coupled with deep sequencing (ChIP-seq; [40,41]) 

can be used to identify individual transcription factor targets and whole-genome mappings of 

nucleosome locations can associate chromatin organization with transcriptional activity [42]. 
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Figure 1. Discovery of transcriptional regulatory networks.  

The elucidation of transcriptional regulatory networks is a holistic process involving both 

computational and experimental biology approaches that are interdependent and increasingly 

driven by high-throughput technologies. For example, cis-element discovery will be increasingly 

dependent on high-quality empirical genome annotations generated using advanced transcription 

unit assembly algorithms. Whole-genome expression profiling experiments and clustering of co-

expressed genes, again driven by technology improvements will exhibit greater spatiotemporal 

resolution and sensitivity. High-throughput one-hybrid screens will facilitate identification of 

putative transcription factors that interact with cis-elements and promoters of interest. Whole-

genome analyses of protein-DNA interactions, facilitated by HTS technologies, will identify in 

vivo transcription factor binding sites, chromatin modifications, and nucleosome positions, 

elucidating global regulatory networks.  

1.1.5 Conclusions and future directions 

The transcriptional control of gene expression depends on a balance between activating and 

repressing regulatory components in upstream regulatory regions. Cis-elements play a central 

role in gene regulation by integrating signals at the DNA level upstream of a target gene. Despite 

the fact that several recent studies have used high throughput genome scale datasets and 

bioinformatics approaches to elucidate cis-elements implicated in plant signaling, these are still 

the early days. We can reasonably expect that technological advances, such as 'digital gene 

expression' profiling (DGE; [43]) will make it possible to profile and map spatiotemporal gene 

expression more precisely, enabling finer clustering of co-expressed genes and better predictions 
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of cis-elements. Recent advances in high-throughput transcriptome sequencing will facilitate 

better genome annotations and precise empirical annotations of transcriptional start sites, which 

will in turn yield better predictions of regulatory regions. New approaches based on high 

throughput sequencing enable acquisition of high-resolution global protein-DNA interaction 

maps. These maps can identify genuine functional transcription factor binding sites in vivo. The 

integration of global mappings of transcription factor binding sites and dynamic remodeling of 

nucleosomes with global expression profiling and cis-element predictions will provide the 

foundation for systematic reconstructions of gene regulatory networks (Figure 1). Moreover, 

new functional genomics approaches have been developed for identification of transcription 

factors that interact with cis-elements of interest - such as the recently developed high-

throughput yeast-one-hybrid (Y1H) library screening system (“Promoter Hiking”) [44]. Classic 

molecular and genetic approaches can be coupled with these newer high-throughput methods and 

bioinformatics in a series of rational experimental steps after identification of a predicted cis-

element (Figure 2). Given that the vast majority of plant transcription factors remain unstudied 

and the cis-elements corresponding to most transcription factors are unknown, we can be certain 

there is still plenty of room for pioneers. 

1.1.6 Publication Record and Author Contributions 

This work was previously published as [45]. Henry Priest wrote the manuscript with revisions and 

contributions from Sergei Filichkin and Todd Mockler. Written permission for use of this material 

has been obtained from Sergei Filichkin and Todd Mockler. 

 

 



11 

 

Figure 2. Possible experimental steps after an over-represented potential cis-element has 

been identified. Beginning with a predicted cis-element, the flowchart depicts a series of 

experimental steps that can be pursued to elucidate the function of the cis-element in 

transcriptional regulation. For example, recapitulation studies using intact and mutated versions 

of the predicted cis-element driving a reporter gene such as Luciferase can be used to validate its 

hypothesized function in vivo. One-hybrid screens (traditional or high-throughput) can be used 

to identify putative transcription factors that interact with the element of interest. After a 

transcription factor candidate is identified, molecular genetic analysis of mutants, and in planta 

over-expression and/or knockdown approaches can be used to functionally characterize the 

interacting transcription factor. Electrophoretic mobility shift assays (EMSA) can be used to 

confirm protein:DNA interactions in vitro. For example, expression-profiling approaches can be 

used to characterize molecular phenotypes in a transcription factor mutant, including mis-

regulation of target genes. Finally, global analysis of protein-DNA interactions, for example 

using ChIP-seq, can be used to identify the in vivo transcription factor binding sites. 
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Analysis of global gene expression in 

Brachypodium distachyon reveals extensive 

network plasticity in response to abiotic stress 

2.1 Introduction 
Plants are sessile organisms that have evolved an exceptional ability to perceive, respond, and 

adapt to their environment. Environmental stresses are a major limiting factor in agricultural 

productivity [46,47], as plant growth is severely affected by environmental conditions such as cold, 

high-salinity, drought, and heat [48,49]. In comparison to Arabidopsis thaliana and Oryza sativa, 

relatively little is known about how many agriculturally important cereals (e.g., wheat, corn, 

barley) respond to abiotic stresses [50–53]. The stress-induced transcriptomic responses of plants 

reveal the molecular mechanisms underlying the abiotic stress response. An understanding of these 

mechanisms will allow researchers to improve stress tolerance of food crops to enhance 

agricultural productivity under imperfect growing conditions to ensure the world’s long-term food 

security [54–56]. 

The abiotic stress response occurs in two stages, an initial sensory/activation stage followed by a 

physiological stage during which the plant responds to the perceived stress [48,57,58]. Once a 

stress cue is perceived, secondary messengers such as calcium and inositol phosphates [59] and 

reactive oxygen species (ROS) are produced. The increase in Ca2+ is sensed by various calcium-

binding proteins that initiate phosphorylation cascades that subsequently activate transcription 

factors [60,61]. Transcription factors in turn activate expression of stress responsive genes. This 

begins the second phase and elicits physiological changes necessary to survive the particular 

environmental stress (reviewed in [58]). The genes expressed and subsequent physiological 
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changes induced during the second phase are dependent upon the particular abiotic stress 

encountered. These changes can include modifications to cell membrane components – resulting 

in changes in membrane fluidity [62], stomatal closure [63], decreased photosynthetic activity 

[64,65], and increased production of heat shock proteins (HSPs) or dehydrin cryoprotectants [48].  

Previous work in monocot stress responses has been completed in rice (Oryza sativa ssp. japonica 

cv. ‘Nipponbare’ and ssp. indica cv. ‘Minghui 63’). Expression levels of 20,500 transcriptional 

units in rice callus treated with abscisic acid (ABA) and gibberellin were evaluated using 

oligonucleotide arrays [66]. A more comprehensive approach using a microarray querying 36,926 

genes was used to profile expression responses of rice to drought and high-salinity stresses in three 

tissues [51]. Recently, profiling of transcriptional responses to cold stresses in winter barley was 

performed using a microarray-based approach [67], and the transcriptional responses of three 

wheat cultivars to cold stress was explored in a separate study using microarray-based approaches 

[68]. 

Here, we present a genome-wide survey of Brachypodium transcript-level gene expression 

responses to four abiotic stresses: heat, high salinity, drought, and cold. We found significant 

differences in responses of the Brachypodium transcriptome to the four abiotic stresses in terms of 

timing and magnitude. We were able to identify 22 modules, 10 of which defined clear biological 

processes. As expected from studies of other plant model systems, photosynthesis, cell cycle and 

cell wall expression modules were down-regulated under abiotic stress. We found that the modules 

up-regulated by salt and drought fell into unique gene ontology (GO) categories, whereas cold and 

heat up-regulated transcription factor (TF) expression and expression of genes involved in 

stabilizing protein folding, respectively. The response of Brachypodium to heat, high salinity, 

drought, and cold stress was profiled over twenty-four hours after the onset of stress conditions. 
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This study represents a significant development in genomics resources for Brachypodium, a close 

relative of many agriculturally and economically important cereal crop species.  

2.1.1 Publication Record and Author Contributions 

This work was previously published as [69]. The experiment was conceived and designed by Todd 

Mockler, Todd Michael, and Sam Fox. Tissue collection and RNA preparation was completed by 

Sam Fox and Jessica Murray. Henry Priest conceived and executed all analyses. Henry Priest, Sam 

Fox, Erik Rowley, and Todd Mockler wrote the manuscript. Written permission for use of this 

material has been obtained from all authors. 

2.2 Results 

2.2.1 Overall Differential Expression Analysis 

Drought, high-salinity, cold, and heat are four important abiotic stresses that adversely affect the 

productivity of plants. We surveyed Brachypodium transcript-level gene expression responses to 

these stresses using the Affymetrix Brachypodium Genome Array (BradiAR1b520742). This 

microarray queries all annotated genes in the Brachypodium genome with multiple individual 

probes targeting each gene. The response of Brachypodium to heat, high salinity, drought, and cold 

stress was profiled in an asymmetric time-course over the twenty-four hours immediately 

following onset of stress conditions. This allowed us to monitor the transcriptional responses of 

the plant to stress rather than endogenous circadian or diurnal rhythms. Biological triplicate 

samples were taken from control and stressed plants at each time point.  

Overall, 3,105 genes were significantly up-regulated and 6,763 genes were significantly down-

regulated in response to at least one abiotic stress. In response to cold, heat, salt, and drought 

stresses 40, 1,621, 1,137, and 5,790 genes were significantly down-regulated, respectively. In 
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contrast, 447, 458, 1,565, and 2,290 genes were significantly up-regulated in response to cold, 

heat, salt, and drought stress, respectively. 

Figure 3. Differential expression of Brachypodium distachyon genes in response to stress. 

A. Numbers of genes up-regulated (light grey bars) and down-regulated (dark grey) are shown as 

a function of time in hours after stress onset. B. Heatmap of expression differences between 

control and indicated stress arrays. Similar expression profiles are clustered in the dendrogram. 

Positive (green) and negative (red) differences between stress and control arrays are shown for 

all genes called as differentially expressed by SAM analysis. Columns are time points. 

Expression values are saturated at +/- 4 RMA, for display purposes. C. Venn diagram showing 

overlap of up-regulated genes in response to the four assayed abiotic stresses: cold (blue), heat 

(yellow), drought (purple) and salt (green). Area of overlaps is not proportional to the overlap. 

The numbers of genes in each region of the diagram are indicated. D. Venn diagram depicting 

intersections of sets of down-regulated genes in response to the four assayed abiotic stresses 
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The overall number of genes differentially expressed in each stress condition increased over time 

(Figure 3A); the directionality of differential expression differed strikingly with the type of stress. 

The cold stress response consisted almost entirely of up-regulated genes; very few genes were 

down-regulated at twenty-four hours (Figure 3A, top left). In contrast, the response to heat stress 

was primarily down regulation (Figure 3A, bottom left). Up-regulation of certain genes in 

response to heat stress response was observed after 1 hour, but no significant differential 

expression was observed at 2 hours after onset of stress. After 10 and 24 hours of heat treatment, 

more than 1,000 genes were down-regulated. Between 1,000 and 2,000 genes were up-regulated 

at all time points of drought treatment (Figure 3A, top right). Down-regulation of genes was low 

in the early phases of drought response and increased drastically as the treatment continued beyond 

2 hours. More than 2,500 genes were differentially expressed 5, 10, and 24 hours after drought 

onset. Early in the response to salt stress, only up-regulation of genes was observed. At 5 hours 

post-onset, down-regulation was observed in conjunction with up-regulation with neither as 

dominant as was seen in the other three stresses (Figure 3A, bottom right).  

Drought and salt stresses yielded the most similar patterns of variance, whereas the cold and heat 

stress responses differed strongly from each of the other two stresses and from each other. 

Similarities were observed in the heatmap depicting hierarchical clustering of the expression data 

(Figure 3B) in which the Robust Multi-array Average (RMA) [70] expression value differences 

between mRNA abundances in control and stress-treated plants are plotted for all stress conditions. 

The overall similarity between the salt and drought stress responses can also be seen in this 

heatmap and is also reflected in the principal component analysis (PCA) results (Supplemental 

Figure 1).  
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A large number of genes are differentially expressed only under drought stress (purple ovals, 

Figure 3C and Figure 3D). In response to drought treatment, 1,039 genes were up-regulated and 

4,494 were down-regulated. Only about half of the genes differentially expressed in the heat 

treatment were also responsive to drought (1,088 of 2,079 genes responsive to heat were also 

responsive to drought). Further, 44.7% of all genes differentially expressed in response to heat 

stress were unique to that response (930 of 2,079, compare yellow to purple ovals in Figure 3C 

and Figure 3D). Only about 25% of genes differentially expressed upon salt treatment were 

independent of the drought response (687 of 2,702), and even fewer were unique to salt (507 of 

2,702, 18.8%; compare green to purple ovals in Figure 3C and Figure 3D). The response to 

extended cold treatment had strong overlap with the drought response as well. Only 206 genes 

were responsive to cold stress and not to drought treatment (206 of 487, 42.3%), and 161 genes 

(of 487 differentially regulated by cold relative to unstressed plants) were uniquely regulated by 

cold stress (compare blue to purple ovals, Figure 3C and Figure 3D). From these analyses, the 

complex nature of the timing of gene regulation in response to stresses (Figure 3), the differences 

in intensities of differential expression in response to stresses (Figure 3B), and the extensive 

overlap among genes regulated during stress responses (Figure 3C and Figure 3D) are apparent. 

2.2.2 Network Analysis of Stress Response in Brachypodium 

In order to further analyze the systematic transcriptional responses of Brachypodium to abiotic 

stresses, we performed weighted gene co-expression network analysis (WGCNA) on data 

collected on the 9,496 differentially expressed genes using the WGCNA package in R [25]. Gene 

modules are composed of genes that share similar profiles and have high correlations with each 

other. The weighted interaction network is shown in Figure 4. Nodes (genes) are connected by 

edges (co-expression relationships). The connection between two nodes was determined by the 
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correlation between the expression levels of the genes those nodes represent across all 

experiments used in the analysis.  

Figure 4. Weighted gene co-expression network of Brachypodium stress responsive genes. 
Major network modules are labeled by proximal numbers, which are identical to those listed in 

Tables 1, 2, and 3. Tight node grouping indicates mutually strong edges and therefore high 

adjacency. All adjacency values plotted are greater than 0.45. 

This analysis resulted in a network that grouped 6,399 genes into 22 modules, the most strongly 

interconnected of which are shown in Figure 4. The expression profile of each module is shown 

in Figure 5 as the average difference in RMA expression level between treatment and control 

arrays. The modular response of Brachypodium to abiotic stress was dominated by expression 

changes in response to the drought stress (Figure 5). Differential expression of modules in 

response to stress was determined by a requirement that an average expression profile must differ 

from that of the control by one RMA-normalized expression value at one time point under the 

given stress. Using this criterion, only one module was not responsive to drought stress (module 

21; Figure 5, lower left). Nineteen of the 22 modules were either stress-specific in their response 

or responded to only one other stress in addition to drought stress. The remaining three modules 
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are module 16, module 02, and module 07, which were all down-regulated in response to heat, 

high salinity, and drought stresses. No module was responsive to all four abiotic stresses. Lists of 

genes in each of the 22 modules may be found in Supplemental File 1. 
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Figure 5. Expression profiles of modules as a function of time in each stress condition. Shaded 

area around lines indicates standard error. Values plotted are the average point-by-point RMA 

expression value differences between control and stress arrays for the member genes of the 
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module. N indicates the cardinality of the module in question. Color overlays indicate stress, from 

left to right: cold (blue), drought (brown), heat (red), and salt (grey).  

 

2.2.3 Functional Annotation and Promoter Analysis 

The combination of the functional annotations of the genes that comprise these modules with 

their expression profiles shed light on how the plant responds to abiotic stress conditions. Co-

regulation is undoubtedly achieved through a combination of transcriptional and post-

transcriptional regulation. The grouping of genes facilitated direct analysis of promoters to 

identify condition-specific over-represented cis-regulatory DNA elements. To assign functions to 

the modules, the module gene lists were analyzed using AgriGO 

(http://bioinfo.cau.edu.cn/agriGO/analysis.php) [26]. We also analyzed 500 nucleotides from the 

promoter regions of each of the genes in each module using the Element software package to 

identify over-represented DNA elements [27]. 
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The module-wise enrichment of GO terms and DNA sequences contained in promoters is shown 

in Table 2. There was a moderate correlation between the number of genes in the module with 

both the number of GO terms and with the number of DNA sequence elements found to be 

enriched within that module (Pearson’s r: 0.616 and 0.755, respectively). This general correlation 

between module size and enrichment discovery is expected; however, there were exceptions to 

this general trend. For example, module 05 is ranked fifth in module size, with 640 member 

genes, but was not enriched for any GO terms (Table 2), although most (585) genes were 

associated with at least one GO term. Eleven modules were not enriched for any GO terms, and 

twelve were not uniquely enriched for any GO terms. The modules with no GO-term enrichment 

Module N Undefined Genes Unique GO terms Total GO terms Unique DNA Elements Total DNA Elements

Module 01 1114 96 20 81 60 235

Module 02 966 70 59 75 299 441

Module 03 961 74 27 53 56 208

Module 04 725 39 55 101 323 504

Module 05 640 52 0 0 90 225

Module 06 367 18 11 13 107 151

Module 07 350 18 54 110 97 145

Module 08 226 22 0 0 5 24

Module 09 198 15 1 7 12 45

Module 10 156 6 0 15 190 354

Module 11 134 5 3 4 0 8

Module 12 110 2 0 0 32 69

Module 13 101 7 0 0 8 50

Module 14 64 4 0 0 9 37

Module 15 52 0 0 0 4 12

Module 16 42 1 1 2 3 17

Module 17 42 0 0 0 8 13

Module 18 38 2 4 25 1 15

Module 19 37 3 0 0 1 26

Module 20 26 4 0 0 0 0

Module 21 25 2 0 0 6 12

Module 22 25 1 0 0 1 1

Table 2. Module membership and functional and regulatory enrichment. 
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varied in size from the minimum size (N=25) to 640 members (module 05) (Table 2, column 

‘N’). Upon examination of the GO-terms enriched in each particular module, a pattern of 

enrichment was often apparent. A selection of the GO-terms enriched in each module, along with 

the relevant statistics, is shown in Table 3. AgriGO output for all 22 modules may be found in 

Supplemental File 2.  
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Table 3. Specific GO terms uniquely enriched in a selection of network modules. 

 

Even in small modules with the minimum number of genes and no GO-term enrichment, we 

found over-representation of certain DNA sequences in member gene promoter sequences. Only 

Module GO-term Description FDR

GO:0004812 aminoacyl-tRNA synthetase activity 1.90E-05

GO:0006418 tRNA aminoacylation for protein translation 8.80E-06

GO:0006800 oxygen and reactive oxygen species metabolic process 0.022

GO:0005525 GTP binding 0.039

GO:0016875 ligase activity, forming carbon-oxygen bonds 1.90E-05

GO:0007049 cell cycle 0.0059

GO:0006260 DNA replication 3.30E-05

GO:0034728 nucleosome organization 0.00045

GO:0009832 plant-type cell wall biogenesis 0.00063

GO:0000271 polysaccharide biosynthetic process 0.016

GO:0003899 DNA-directed RNA polymerase activity 7.80E-07

GO:0006281 DNA repair 0.00082

GO:0033279 Ribosomal subunit 3.40E-13

GO:0006364 rRNA processing 1.60E-09

GO:0008026 ATP-dependent helicase activity 0.00091

GO:0031072 heat shock protein binding 0.0012

GO:0006457 protein folding 2.00E-21

GO:0009408 response to heat 4.40E-19

GO:0050896 response to stimulus 4.70E-04

GO:0010035 response to inorganic substance 0.0043

GO:0015979 Photosynthesis 3.20E-45

GO:0033014 Tetrapyrrole biosynthetic process 1.90E-10

GO:0006091 generation of precursor metabolites and energy 2.60E-21

GO:0009765 photosynthesis, light harvesting 2.90E-18

GO:0010114 response to red light 1.90E-06

Module 09 GO:0009415 response to water 0.0094

GO:0009072 aromatic amino acid family metabolic process 0.0062

GO:0022804 active transmembrane transporter activity 0.038

GO:0006351 transcription, DNA-dependent 0.0018

GO:0016070 RNA metabolic process 0.0076

GO:0065007 biological regulation 0.0084

Module 16 GO:0016740 transferase activity 0.0088

Module 18

Module 11

Module 06

Module 04

Module 02

Module 01

Module 07
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module 20 was not enriched for any GO terms and had no over-represented DNA elements 

(Table 2). The over-representation of short regions of DNA sequence in the promoters of 

module member genes may provide insight into the transcriptional circuitry that mediates the 

regulation of the module. Twenty-one modules had at least one significantly over-represented 

DNA element (FDR-corrected p-value <0.01). Only two modules had no unique significantly 

over-represented DNA elements (Table 2, modules 11 and 20). Nine of the 22 modules had at 

least 32 unique elements over-represented in the promoters of their member genes (Table 2, 

column ‘Unique DNA Elements’). Especially in conjunction with the functional annotation of 

modules via GO-term enrichment, the specific DNA elements which were uniquely enriched 

show how the transcriptomic responses of Brachypodium to abiotic stress compare to other plant 

systems (Table 4). In total, 1,312 elements of 5 to 8 nucleotides long were uniquely associated 

with specific modules. Element output pertaining to significant DNA motifs can be found in 

http://www.danforthcenter.org/hpriest/Supplemental_File_2.xlsx 

Supplemental File 3. 
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Table 4. Specific short DNA sequences found to be statistically enriched in the promoters of 

module member genes. 

 

Module DNA Element Number of Hits Number of Promoters FDR

TTAAAAA 346 267 4.94E-08

TTTAAAA 301 197 1.71E-07

CTCGTC 423 342 3.52E-05

ACGTGGGC 139 120 6.03E-05

CGGCC 380 299 4.80E-05

CAACGGTC 57 48 3.79E-17

AACGGCT 90 79 1.02E-09

AGCCGTTG 47 39 2.43E-09

CCAACGG 121 104 2.43E-08

CAACGGC 115 98 5.38E-05

AAACCCT 311 248 2.02E-69

AGCCCAA 161 134 1.86E-14

AGGCCCA 211 169 1.02E-28

AAGCCCAT 57 50 2.57E-11

GCCCAAC 115 100 1.86E-08

ACAAAA 550 345 2.00E-05

CAATA 617 368 7.05E-08

ACAATA 197 151 4.04E-05

ACAATAA 80 71 6.02E-06

AATAA 1078 463 1.71E-05

GAACCTTC 33 30 3.47E-15

CTAGAAG 55 46 9.78E-11

CTTCCAGA 28 26 3.98E-10

AAGCTTC 61 40 1.01E-07

GAAGCTTC 20 20 1.04E-06

ACGTGGC 69 55 4.83E-12

CCACGTC 59 53 1.39E-07

GACGTGGC 25 21 5.88E-06

CACGTGGC 26 20 1.27E-06

CCTATC 92 81 1.12E-09

GGGATA 83 78 7.11E-07

AGATAA 126 105 0.00026

ACGTAT 50 32 3.91E-05

ACGTATA 23 14 1.14E-05

ACACGTA 31 28 1.38E-06

CACGTAC 36 28 1.29E-05

CGTAA 118 83 0.000276

CGATCG 47 35 0.00227

CCGATCG 28 18 0.00049

ATCGC 122 83 0.00424

GTACGTA 27 13 6.08E-06

GTACAC 41 36 1.44E-05

ACGTACG 27 14 2.08E-05

Module 04

Module 02

Module 01

Module 12

Module 09

Module 10

Module 07

Module 06

Module 05
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2.2.4 Unknown Module Members 

The lists of genes in modules were searched for genes which were identified as lacking useful 

descriptive annotations or as encoding proteins of unknown function. In all, 3,492 of 26,552 genes 

in the Brachypodium annotation version 1.2 were identified as lacking functional descriptions. In 

addition to those genes which are of interest due to the combination of their functional annotation 

and expression profile, genes without functional descriptions can be implicated in specific roles in 

abiotic stress, even if their function is unknown. The population of genes which are both unknown 

and members of modules are shown in Table 2. 

2.2.5 Network Plasticity 

Plasticity of gene regulatory circuits is an expected property of biological systems. There are 

multiple methods by which the expression relationship between a regulator gene and a target gene 

may change in response to varying conditions. The regulatory relationship between such gene pairs 

may change as a result of chromatin rearrangement or DNA methylation [71,72], both of which 

have been shown to be responsive to stress in plant species [73,74]. It is also conceivable that the 

abundance of the mRNA encoding a particular regulator could be detached from the target 

expression levels by protein modifications that alter either the activity or degradation rate of the 

protein in question [75,76]. The expectation that a transcription factor and target gene pair which 

interacts will generate correlated expression measurements may not reflect biological reality in all 

cases. 
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Figure 6 Scatterplot of transcription factor/target gene correlations. The x- and y-coordinates 

of any single pair of genes is determined by their correlation in the indicated subset. Colors are 

determined by the number of pairs that fell at a particular point according to the scale shown. 

Dashed lines indicate the minimum difference required before a TF-TG pair’s correlations were 

considered significantly different between conditions. A. The correlations of TF-TG pairs in a 

random subset of data is compared against the correlations of those pairs in the drought assays. B. 

The correlations of TF-TG pairs in the salt stress and drought stress datasets are plotted. Large 

amounts of scatter are observed, in contrast to limited scatter in random samples, indicating that 

when compared across conditions, TF-TG correlations can be highly plastic. 

 

Figure 6 shows heatmap-scatterplots of transcription factor/target gene (TF-TG) pairs in 

correlation space. TF-TG pairs are plotted according to their pairwise correlations in each of the 

shown conditions. Transcription factor/target gene pairs are defined as all possible pairings of 

genes differentially expressed in the two conditions of interest. Transcription factors are defined 

via a combination of sequence homology and InterProScan results (see Methods) [77]. The x-

coordinate of a TF-TG pair is determined by the pairwise Pearson's correlation between that TF-

TG pair in the indicated subset of stress data. The y-coordinate of that TF-TG pair is determined 
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by the pairwise Pearson's correlation of that pair in the subset of stress data drawn from the drought 

experiment. The heatmap value is determined by the total number of TF-TG pairings with any 

particular combination of correlations. Figure 6A shows the distribution of pairwise TF-TG 

correlation changes between a random subset of the stress data and the subset of data drawn from 

the drought experiment, as an indication of what would be expected based on random changes of 

expression patterns. Figure 6B shows the distribution of pairwise TF-TG correlation changes 

between salt and drought stress data subsets. 

In the salt-drought comparison, 146 TFs and 1910 non-TF genes were differentially expressed 

under both stress conditions. Based on the calculated threshold of Δr = 0.97 for the salt and drought 

comparison (see Methods), 27,916 of 276,950 TF-TG pairings (10.1%, Table 5) showed 

significant differential correlation across conditions, indicating possible plasticity in the 

relationship between the TF and TG of the pair (Figure 6B, top right and bottom left). The 

remaining 249,034 gene pairings showed less than significant changes in correlation across 

conditions. Figure 6A shows a representative distribution of correlation changes between gene 

pairs populated by a random permutation of the same data underlying Figure 6B. In distributions 

created by random permutation, an average of 1368.1 gene pairs per permutation were found to 

have significant changes in correlation based on the threshold of Δr = 0.97 for the same salt-

drought comparison, corresponding to the targeted maximum FDR of 0.05 or less (Table 5). In all 

pairwise stress condition comparisons, between 0.9% and 24.9% of gene pairings were found to 

have potentially plastic relationships (salt/heat and salt/cold, respectively, Table 5).  
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2.2.6 Stress Responsive Modules in Brachypodium Transcriptional Circuitry 

The motivations behind linking groups of genes to specific expression profiles in response to stress 

are multifold. First, modules represent regulatory relationships, indicating how Brachypodium 

reacts in a transcriptional and post-transcriptional manner to abiotic stresses. Second, the 

expression profiles themselves allow interrogation of the transcriptional regulatory circuitry that 

allows Brachypodium to achieve steady-state levels of stress-responsive transcripts at the 

appropriate time. This provides links between specific sequences present in the upstream regions 

of genes, key regulators (e.g. transcription factors), and traits of agricultural and economic interest. 

Of all differentially expressed genes, 3,097 (32.6%) were not associated with a module. Different 

applications of stress, stress treatment severity, temporal distribution of sampling, and temporal 

density of sampling may enable association of many of these genes with these or other modules to 

more completely describe the stress response system of Brachypodium. Here, four abiotic stress 

treatments were used: heat, drought, high-salinity, and cold. We did not examine abiotic stresses 

such as high intensity light, UV, or chemical inducers of reactive oxygen species (ROS). With data 

on additional stresses, we will be able to associate more genes with over-arching modes of stress 

response.  

Stress A Stress B Gene Pairings Plastic Pairs Average False Positives FDR Δr cutoff

Drought Salt 276,950 27,916 (10.1%) 1368.1 0.049 0.97

Drought Cold 16,665 2,921 (17.5%) 144.9 0.049 0.96

Drought Heat 70,434 4,890 (6.9%) 239.9 0.049 0.98

Salt Heat 26,562 241 (0.9%) 11.9 0.049 1.35

Salt Cold 8,132 2,027 (24.9%) 94.8 0.047 0.94

Heat Cold 522 128 (24.5%) 6 0.047 0.88

Table 5. Putative network plasticity present between all pairwise conditional 

comparisons. 

 



31 

 

2.2.7 Conserved Abiotic Stress Responses 

Photosynthesis. Several sub-systems in plants are affected by multiple stresses. Photosynthetic 

activity (either capacity or efficiency) is known to be down-regulated or depressed upon heat stress 

[78], drought stress [79], salt stress [65], and cold stress [64]. One of the modules we identified, 

module 07 (Figure 5, top left), is comprised of 350 genes that are very strongly enriched for genes 

annotated with GO-categories related to photosynthesis, chlorophyll biosynthesis, light response 

and harvesting, and the chloroplast (Table 3, 

http://www.danforthcenter.org/hpriest/Supplemental_File_1.xlsx 

Supplemental File 2). For example, of the 143 genes in Brachypodium annotated with 

GO:0015979 ‘Photosynthesis’, 50 are present in this module (a significant enrichment with FDR-

corrected p-value of 3.2 x 10-45). This module was down-regulated in drought, heat, and salt 

stresses (Figure 5). This indicates that under abiotic stress Brachypodium down-regulates 

photosynthesis as observed in several other plant systems [64,65,78,79]. As these genes associated 

with photosynthesis are affected by several stresses in a coordinated manner, these stresses likely 

modulate a common transcriptional circuit.  

Eight genes in module 07 were found to be unannotated (see methods) – these loci were 

investigated further using the comprehensive Phytozome database (phytozome.net) [80]. This 

search revealed that these loci do not have functional annotations in Brachypodium, nor do their 

best homologs in other monocot species have functional annotations either. The co-expression of 

these genes with the other genes in module 07 indicates that they likely have some role in 

mediating either photosynthesis, or the regulatory response of photosynthesis-related genes to 

abiotic stresses in Brachypodium. The function of each of these loci must be elucidated by 

molecular and genetic analysis. 
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The ABRE (ACGT-containing abscisic acid response element) is a known cis-regulatory motif in 

Arabidopsis thaliana that contains an ACGT core and is responsive to drought [81]. This sequence 

was found in the promoter regions of many genes in the photosynthesis module (module 07), the 

water-response module (module 09, Table 3) and a transcription factor enriched module (module 

10, Table 3, http://www.danforthcenter.org/hpriest/Supplemental_File_1.xlsx 

Supplemental File 2). Notably, even though the photosynthesis module and the signaling module 

(module 03) share highly similar expression profiles, this core sequence was not significantly 

enriched in the promoters of genes in the signaling module. The photosynthesis module is down-

regulated under drought stress, whereas modules 09 and 10 are up-regulated under the same stress 

(Figure 5). Thirteen variations of the ABRE (including the ACGT core with differing flanking 

regions) were found in the photosynthesis module (Table 4, 

http://www.danforthcenter.org/hpriest/Supplemental_File_1.xlsx 

Supplemental File 2). Negative regulation of the photosynthesis module by the ABRE in response 

to drought stress was expected based on previous studies [82–84].  Forms of the ABRE were also 

over-represented in the promoters of genes in modules 11, 12, 13, 14, 15, and 19. These modules 

were not found to be over-represented for any GO-terms. However, these modules were up-

regulated by both salt and drought stresses. The functional roles of these modules remain to be 

explored.  

The photosynthesis module (Figure 4, Table 3) is strongly enriched for genes related to 

photosynthesis and was severely down-regulated in drought and moderately down-regulated in 

heat and salt stresses. These genes were not down-regulated in cold stress, but the overall 

depression of photosynthesis-related genes appears to be conserved in Brachypodium (Figure 5, 
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top left). The relative strength of the stress conditions applied no doubt plays a role in the relative 

levels of regulation observed for this module.  

Plant growth. Plant growth is severely affected by environmental conditions such as cold, high-

salinity, drought, and heat [48,49]. Module 02 (Figure 4) is characterized by an expression profile 

similar to the photosynthesis module (module 07), though it shows larger negative changes in 

expression under both salt and heat stress treatments. Module 02 is enriched for genes annotated 

with GO-terms related to DNA replication, chromatin and nucleosome assembly, the cell cycle, 

and cell wall biogenesis (Table 3, http://www.danforthcenter.org/hpriest/Supplemental_File_1.xlsx 

Supplemental File 2). The down-regulation of these genes suggests that an early response of 

Brachypodium to abiotic stresses is to suppress cell growth, DNA replication, and the cell cycle. 

Similar to those genes in module 07, no functional annotation could be attributed to 77 loci in 

module 02, though they are differentially expressed in response to abiotic stress, and co-express 

with the rest of the genes of module 02. Given that these genes are co-expressed with the rest of 

the genes in module 02, it is likely that they play some role in the functions that are associated 

with their module, such as the cell cycle, DNA replication, or cell wall biogenesis. The specific 

functions of each of these genes must be described in follow up molecular and genetic experiments. 

The Mitosis-Specific Activator (MSA) motif includes the core sequence ‘AACGG’ and is 

associated with G2/mitosis specific genes in Arabidopsis [85]. AtMYB3R4 has been shown to 

directly bind to this motif in vitro [85]. Module 02 is enriched for GO categories related to DNA 

replication, microtubule-based processes, chromatin, and nucleosome assembly. Thus, the 'cell-

cycle' module is down-regulated under stress, indicating a suppression of these systems, which 

may result in a lengthened G2 phase and a slowed cell cycle. The promoters of the cell-cycle 
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module are heavily enriched with the ‘AACGG’ core of the MSA motif, as well as its reverse 

complement (Table 4). Notably, the sequence ‘AACGG’ was found 907 times in 540 of the 966 

gene promoters in this module (FDR-corrected p-value = 0.00043). Six distinct 8-nucleotide 

sequences containing this core were found 275 times (all six with FDR-corrected p-value <3.94 x 

10-5, Table 4). This core was also enriched in module 10; we observed this sequence 168 times in 

95 of the 156 promoters (FDR-corrected p-value = 

0.001,http://www.danforthcenter.org/hpriest/Supplemental_File_2.xlsx 

Supplemental File 3). Small plant stature and decreased yield are a major consequence of abiotic 

stress in plants [48,49]. A decrease in expression of genes activated by the MSA motif could 

conceivably result in a much slower or completely suspended cell cycle in the G2 phase. 

Arabidopsis plants deficient in TFs associated with the MSA showed pleiotropic dwarfism and 

other developmental and growth defects [85]. The putative ortholog of AtMYB3R4, Bradi2g31887, 

is a member of the signaling module (module 03). The signaling module is also enriched for 

microtubule related GO-terms, as well as many signaling-related GO-terms. However, none of the 

unique significantly enriched DNA sequence elements present in the promoters of module 03 

contain the MSA core nor is the MSA core itself enriched in gene promoters from this module 

(Table 4, http://www.danforthcenter.org/hpriest/Supplemental_File_2.xlsx 

Supplemental File 3). Elucidation of the relationship between the MSA and TFs such as that 

encoded by Bradi2g31887 that may bind the MSA and suppression of the cell cycle by down-

regulation of MSA-controlled genes will require further study. 

Calcium-mediated stress response. Calcium receptors and calcium-binding proteins are important 

components of plant abiotic stress response. Calcium levels increase early in the cellular response 
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to cold stress [86], and a link exists between calcium binding proteins and the cold-response CBF 

pathway in Arabidopsis. A model was recently proposed linking an increase in cellular Ca2+ levels 

with positive transcriptional control of CBF/DREB loci in Arabidopsis [61]. Calcium levels also 

play a key role in drought and salt stress responses. AtCBL1 is an Arabidopsis calcium sensor that 

is up-regulated in response to salt, drought, and cold stresses [87]. Evidence suggests that calcium 

sensing plays a role in heat-stress response in monocot species as well [88–90]. 

Using homology to other model systems combined with annotation via InterProScan, 359 genes 

were associated with GO:0005509 (‘calcium ion binding’) or were associated with the phrase 

‘calcium binding’. Expression data for these genes was hierarchically clustered and plotted in a 

heatmap (Supplemental Figure 2) that shows the expression of calcium ion binding genes in 

Brachypodium in response to the four assayed stresses. The expression levels of calcium ion 

binding loci were strongly affected by abiotic stress and were highly-correlated in drought and salt 

responses, although were independent in heat and cold stress responses. Principal component 

analysis of the expression data of the 359 genes annotated with GO:0005509 (Supplemental 

Figure 3) revealed that trends in expression of the 359 genes were highly similar to the trends in 

expression of differentially expressed genes overall. The first principal component was the 

strongest factor in later hours of drought and salt stress and explained 65.44% of the total variance 

of the expression data associated with the 359 putative calcium ion binding loci. 

Of the 359 putative calcium ion binding loci, 88 genes were part of a module. This is significantly 

fewer than would be expected by chance alone (average expected overlap: 242 genes, Z-score -

18.1). Sixteen of the 22 modules contained at least one putative calcium-binding locus. No module 

was enriched for GO:0005509 ('calcium ion binding'). The large distribution of calcium responses 

to abiotic stress (Supplemental Figure 2) indicate that there are multiple regulatory pathways that 
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trigger calcium ion binding protein expression and that these loci play a role in mediating the 

response of Brachypodium to the four assayed stresses. Further, their significant under-

representation among modular loci suggests that the response of individual differentially expressed 

calcium loci does not conform to the major modes of stress response. The regulatory circuits that 

control calcium ion binding loci appear to be specific to these individual genes. Prior studies 

provided evidence that calcium ion levels, calcium ion binding protein levels, and abiotic stress 

responses are linked in multiple plant systems [61,87,90]. Our analysis confirms that calcium ion 

sensing and calcium ion binding loci are responsive to abiotic stress in Brachypodium. We found 

no evidence of a centralized calcium response system.  

Novel and uncharacterized modules. Module 05 is down-regulated under drought stress but not 

differentially expressed under any of the other three stresses. Module 05 was not enriched for any 

GO terms (Table 2). Of the 640 genes in the module, 585 genes were annotated with at least one 

GO-term. The promoter regions of the genes in this module were enriched for 225 specific 

conserved motifs; of these, 90 are uniquely enriched in module 05 (Table 2). These include the 

core CAATA (FDR-corrected p-value 7.05x10-8) and the variant ACAAAA (FDR-corrected p-

value 2x10-5). The PlantCARE [91] database lists the core CAATA as part of an Auxin Response 

Element (ARE) in Glycine max. 

Like module 05, module 08 is down-regulated only in drought. This module has 226 member genes 

and is not enriched for any GO terms. Twenty-four DNA sequence motifs were significantly 

enriched in promoters of module 08. Uniquely significant motifs included TCCTTCA, CCCGAC, 

and CCGAAA. These motifs are similar to the CRT/DRE DNA TF-binding site, RCCGAC 

[92,93]. Conserved cis-acting elements similar to those found in the promoters of modules 05 and 

08 have been observed in other species, lending weight to the hypothesis that these DNA sequences 
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could be responsible for driving the module-wise expression profiles observed here. No enriched 

functional terms could be associated with modules 05 and 08. An extended examination of gene 

expression responses to abiotic stress – especially stretching into the days after stress onset – may 

reveal the functional roles these modules play. 

2.3 Discussion 
This study provides insight into the regulatory responses of Brachypodium to four abiotic stresses. 

Application of the Brachypodium genome-scanning tiling array resulted in deep profiling of the 

transcriptional response to abiotic stress. The data and analysis provided here will be an excellent 

resource for researchers utilizing Brachypodium as a model system, as will the web-based 

resources provided for community use. 

2.3.1 Conserved Modular Responses 

Previous studies in rice observed a high overlap between gene sets differentially expressed in 

response to drought and high salinity stresses [6]. Our work captures a similar response in 

Brachypodium, with roughly 75% of the genes differentially expressed in response to salt also 

differentially expressed in response to drought. Similarities in overall pattern and variance of the 

responses to drought and high-salinity are also seen in the Principal Component Analysis  (PCA). 

Many systematic responses to abiotic stress in Brachypodium could be characterized on the 

modular level – these responses are coordinated in independent stresses. This is reflected in the 

very strong enrichment of photosynthesis-related genes in module 07 (Table 3), and the expression 

pattern of the same module in response to drought, heat, and high-salinity stress (Figure 5). The 

well-characterized behavior of photosynthesis systems in response to stresses [19,20,35,36], 

combined with the distinct co-expression profile of module 07 lends further weight to the 

hypothesis that this response is a coherent systematic response mediated by an underlying gene 
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regulatory network. Strong similarity between regulatory motifs (Table 4) found to be enriched in 

promoters of stress-responsive genes in Brachypodium to those identified in stress experiments in 

Arabidopsis [38,42] suggests that similar circuits are present in Brachypodium. Similar coherency 

of response was observed for genes related to the cell cycle, as well as conservation of upstream 

regulatory sequences related to mitosis. 

In contrast to the clear coherency of transcriptional regulation of the photosynthetic system, no 

such coherency was observed for genes related to calcium signaling and binding. Calcium ion 

binding related loci were sequestered out of modules at a highly significant level (Z-score = -18.1, 

two-tailed p-value < 1e-6), which indicates that unlike more coherently regulated systems, calcium 

ion binding does not co-express strongly with other genes. Taken in conjunction with the 

knowledge that calcium-ion binding loci are important for plant abiotic stress response [16], this 

indicates that the transcript-level expression of these loci simply is not in line with the major modes 

of plant stress response captured in these experiments. 

2.3.2 Network Plasticity 

Analysis of differential correlations for transcription factor/target gene pairs in various conditions 

revealed a high degree of plasticity in these relationships. The proportion of potentially plastic 

relationships varied greatly depending on the conditions compared. Neither the conditional 

comparison with the lowest ratio of potentially plastic gene pair relationships (salt/heat, 241 plastic 

TF-TG pairs, Table 5) nor the comparison with the highest ratio of potentially plastic relationships 

(salt/cold, 2,027 plastic TF-TG pairs, Table 5) were the comparison with the most extreme number 

of total possible pairings. Of particular interest is the great diversity of differential correlations 

between salt and drought stresses. There are a large segment of gene pairs that experience very 

large changes in correlation. More than 11,000 genes pairings had large negative correlations under 
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drought stress and very large positive correlations under salt stress (top right, Figure 6B). 

Conversely, more than 16,000 gene pairings had large positive correlations under drought stress 

and large negative correlations under salt stress (bottom left, Figure 6B). Comparisons between 

the differential correlations observed between salt and drought stresses and the differential 

correlations observed between random subsets of the stress data indicate that the differential 

correlations between salt and drought stresses are unlikely to arise by chance (Figure 6A). 

The basic underlying assumption of gene co-expression network analysis is that two genes, when 

co-expressed, can be expected to be reliably co-expressed if there is a biological relationship 

between them. The stronger the biological relationship between two genes – either due to genuine 

co-regulation or from necessary co-expression borne of functional relatedness, the higher the 

correlation in expression between the two genes. The relationships between transcription 

factor/target gene pairs across conditions are plastic due to dependence on DNA methylation and 

chromatin modification status, among many other factors. This highlights the importance of 

inclusion of epigenomic data in any large genomic discovery endeavor.  

Because of the possible relationship between TF loci and their target genes, we queried the module 

membership of the TF loci population, to determine if they were preferentially included or 

excluded from modules. Similar to the exclusion of calcium ion binding loci from modules, the 

exclusion of TF loci from modules would indicate that they are more selectively regulated in 

response to abiotic stress than the loci which are identified to be module members. Of 600 TF loci 

which are differentially expressed in response to stress, 369 are members of modules. This is 

significantly fewer TFs than would be expected by chance alone (determined by permutation test, 

404.5 loci expected, Z=-3.195, two-tailed p-value=0.0014). As modules are built on co-expression 

across many conditions, and it appears the gene co-expression correlations may be plastic, the 
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expectation that TF-TG relationships are consistent across conditions may be incorrect, and the 

de-enrichment of TFs in modules may reflect that. 

In addition to the sequestration of TFs out of modules – which may reflect the plasticity of their 

relationships to modular genes – genes which are distinctly lacking plastic relationships are of 

great interest. On the hypothesis that gene co-expression plasticity stems from changes in the 

underlying biochemical relationship between loci, genes which lack plastic relationships may lack 

the requisite biochemical changes in regulatory relationships, and may have stable regulatory 

circuits. Of the 2,752 genes which were considered in the plasticity analysis, 220 genes never 

showed any plastic relationships to any TF (7.9%). Put another way – the correlation changes 

across conditions between these genes and the TFs to which they were correlated was always 

below the significance threshold.  Of these 220 genes, 29 were found to be un-annotated. The list 

of genes which had no plastic relationships also included Bradi1g42630 annotated as a 

phosphofructokinse, a locus down-regulated in drought, salt and heat stress, which was a member 

of module 02. This gene was highly homologous to AT1G76550, an Arabidopsis 

phosphofructokinase. A member of this family in Arabidopsis was identified as one of a group of 

genes which influence plant growth and biomass [94]. 

A second non-plastic gene is Bradi5g11640, which is differentially expressed in response to 

drought and heat stresses. This gene is highly homologous to AT1G65960 a glutamate 

decarboxylase which was found to have its enzymatic activity increase in response to treatment by 

calcium and calmodulin in combination, indicating that the Arabidopsis locus encodes a 

calmodulin binding protein [95]. The specific role of this locus in Brachypodium remains to be 

elucidated by further molecular experiments.  
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Sources of gene co-expression plasticity can stem from either the regulator or the target locus. Loci 

which have particularly stable relationships may represent a group of loci which remain highly 

accessible to the transcriptional machinery during the four assayed stresses. While this group of 

220 genes may be hypothesized to be a ‘core’ group of stress reactive genes, these genes were not 

enriched for any particular GO term or category. 

Based on the dataset used here, we cannot assign cause to the large changes in expression 

correlation across conditions. It is clear that a full understanding of the abiotic stress response of 

Brachypodium requires epigenomic analysis. With increasing throughput and decreasing costs, 

full integration of multi-type sequence data waits only on development of novel bioinformatic 

methods that can take full advantage of rich datasets. The high degree of plasticity observed in the 

stress response of Brachypodium also has implications for whole-genome gene co-expression 

network reconstruction. Current state-of-the-art software packages, such as WGCNA [96], may be 

made even more powerful by accounting for the changing relationship between gene pairs across 

conditions in meta-data enhanced expression datasets. Adopting a ‘regulator-target’ dichotomous 

view of genes – as is common in applications designed for smaller networks – may further improve 

large network reconstruction efforts. 

Weighted gene co-expression analysis of the Brachypodium transcriptome under normal growth 

and four abiotic stress conditions identified 22 modules of genes. Over-expression, knock-down, 

and knock-out experiments will elucidate the roles of these genes in abiotic stress responses and 

may guide genetic approaches that confer stress tolerance in economically important grasses. This 

research provides insight into how this model crop system responds to abiotic stresses. Homology 

between Brachypodium and agricultural target species will allow the identification of stress-
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responsive target genes in cereal and biofuel feedstock crops, enabling improved stress tolerance 

in plants critical to serving the needs of society.  

We have identified numerous potential transcription factor binding site sequences that are 

associated with specific expression profiles under abiotic stresses. In addition to correlating these 

motifs to specific gene expression profiles, we have linked these DNA sequence motifs to specific 

endogenous plant systems. These candidate cis-regulatory sequences may represent key 

components of the transcriptional circuitries that define the plant's gene regulatory networks. 

Systems and synthetic biology approaches may take advantage of these circuits to place genes of 

interest under the control of existing stress response pathways to achieve desirable phenotypes of 

stress tolerance in agriculturally or economically important crops. 

2.3.3 Web Resources 

All microarray datasets are accessible through the Brachypodium web genome browser 

(http://jbrowse.brachypodium.org). The module membership lists, AgriGo GO-enrichment 

analysis output, and Element promoter content analysis output may be found as supplemental files 

and are available for download on the Brachypodium.org FTP website 

(ftp://brachypodium.org/brachypodium.org/Stress/). All individual gene RMA expression stress 

response profiles for each assayed stress condition may be viewed at the Mockler Lab’s plant stress 

response web portal (http://stress.mocklerlab.org/). 

2.4 Conclusions 
The results achieved here represent an excellent characterization of the abiotic stress response of 

Brachypodium distachyon to high soil salinity, high temperature, low temperature, and drought. 

However, the results shown in section 2.2.5 and Figure 6 represent a key failing of the analysis 

presented here. The application of WGCNA to the set of all microarrays essentially ignores all 

http://stress.mocklerlab.org/
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those expression similarities which occur only in certain subsets of the dataset. The analysis 

above identifies modules which are responsive to stress. Most of the modules are responsive to 

more than one stress, and a small minority are stress specific. This is an artifact of the analysis 

design – gene pairs which are co-expressed only in one abiotic stress condition will not have a 

strong enough similarity when their expression patterns across all four abiotic stress conditions 

are analyzed as a whole.  

The most proper approach to a dataset such as this would be to identify stress-specific gene co-

expression networks, to compare those networks to identify those gene relationships that change 

in a significant manner. In addition to that analysis, the analysis above is also necessary, but also 

subnetworks which allow for all possible combinations of two and three abiotic stresses in 

conjunction (i.e., high salinity and low-temperature together, high salinity, drought, and heat, but 

not chilling, etc.). A rigorous method for network comparison, and an illustration of the edge sets 

identified by such an approach, is the topic of the next chapter. 

2.5 Methods 

2.5.1 Experimental Growth Conditions and Tissue Sampling 

Brachypodium distachyon control plants were grown at 22 °C with 16 hours light and 8 hours dark 

in a controlled environment growth room. Abiotic stress conditions included cold, heat, salt, and 

drought. All treatments were conducted with a light intensity of 200 µmol photons m-2s-1. For the 

heat experiments, Brachypodium plants were placed in a Conviron PGR 15 growth chamber at 42 

°C. Cold treatments were conducted in a walk-in cold room maintained at 4 °C. Salt stress (soil 

saturation with 500 mM NaCl) and drought (simulated by removing plants from soil and placing 

them on paper towels to desiccate) treatments were conducted under the same light and 

temperature as the control samples. Three-week-old Brachypodium plants were placed under the 
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respective conditions two hours after dawn (10 a.m.). Leaves and stems (total above ground 

tissues) from individual plants were collected at 1, 2, 5, 10, and 24 hours after exposure to the 

abiotic stress. 

2.5.2 RNA Preparation, Labeled cDNA Synthesis, and Microarray 

Hybridization 

Leaf tissues were pulverized in liquid nitrogen, total cellular RNA was extracted using the RNA 

Plant reagent (Invitrogen), and RNA was treated with RNase-free DNase essentially as described 

in [97]. DNase-treated RNA integrity analysis, preparation of labeled target cDNA from 

Brachypodium leaf total RNA, Affymetrix microarray hybridizations, chip scanning, quality 

control, image processing, and data extraction were performed essentially as described in [98]. 

One array – heat-stress hour 5 replicate ‘C’ – did not pass quality control and was discarded. 

2.5.3 Mapping of Probes 

Probes on the Affymetrix BradiAR1b520742 array were mapped to the Bd21 v1.0 assembly using 

the Burrows-Wheeler Aligner (BWA) [99]. The Bd21 Brachypodium Array contains 6,503,526 

non-control probes. Of these, 99.81% (6,491,341 probes) map to a single location in the genome. 

Most of the probes (6,491,341) match their target sequences unambiguously with no mismatches 

in alignment. Only 12,183 probes align with mismatches. All probe sequences represented on the 

array are entirely distinct from each other. For the probe-set level analysis, probes were associated 

with annotated genic features. Probes that associated with a single gene’s exonic features were 

collected into strand-specific probe-sets. Only those probe sets associated with the forward strand 

of a target gene were retained for analysis in differential expression or network prediction. If a 

probe was associated with exonic features of two genes (if two genes overlap, for instance), that 

probe was not assigned to any probe set. If a probe was associated with both intronic and exonic 

features (if a gene has multiple transcripts, or a probe spanned an exon/intron boundary), the probe 
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was not assigned to a probe set. In the 47,960 genic probe sets, each gene was detected by, on 

average, 31.5 probes. The median number of probes per set was 22. 

2.5.4 Microarray Data Analysis 

Probeset level expression values were obtained utilizing the Robust Multi-array Average [70] 

technique via the Affymetrix Power Tools (APT) software package 

(http://www.affymetrix.com/partners_programs/programs/developer/tools/powertools.affx). 

Probe set summarization and expression estimates for each gene were conducted using the apt-

probeset-summarize tool (version 1.15.0) from Affymetrix. Data manipulations were performed 

using Perl scripts. From the resulting signal intensities, differentially expressed genes were 

calculated using the Significance Analysis of Microarrays (SAM) [100]  R package in conjunction 

with Microsoft Excel.  

SAM uses permutations of repeated measurements to estimate the percentage of genes that are 

identified by chance, representing the false discovery rate. SAM was run with default settings, 

using 100 permutations, using the ‘two class unpaired’ response type. The S0 factor was estimated 

automatically and no fold-change cutoff was applied at the time of differential expression calling. 

The Delta value was selected such that the median false-discovery rate was below 0.01. In every 

case, control and stress RMA expression values were compared in a pairwise fashion within a 

single stress and time point combination. 

2.5.5 Heatmap and Principal Component Analysis 

Heatmap and Principal Component Analysis (PCA) analyses were conducted in R. RMA 

expression differences between the average expression value per stress time point per treatment 

were set to saturate at a difference of 4 RMA (such that the maximum value reported in the heatmap 

was +/- 4 RMA). These expression differences were graphed using the 'heatmap.2' function of the 
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gplots package of R. For principal component analysis, the average RMA expression value of each 

stress time-point, without the above saturation, was used as input for the 'PCA' function of the R 

package 'factominer' (http://factominer.free.fr/) [101]. 

2.5.6 GO Analysis and Transcription Factor Annotation 

Over-represented GO terms were identified using the AgriGO: GO analysis toolkit 

(http://bioinfo.cau.edu.cn/agriGO/) [102]. Analysis was done by comparing the number of GO 

terms in the test sample to the number of GO terms within a background reference. Over-

represented GO terms had a FDR corrected P-value of less than 0.05 and more than 5 mapping 

entries with a particular GO term. GO-terms were assigned to genes based first on InterProScan 

[77] results for the entire predicted proteome of the Brachypodium distachyon MIPS version 1.2 

annotation [103]. Approximately 40% of genes did not have any GO-terms associated with them. 

Gene products from this set that had high-quality BLASTP matches to Arabidopsis thaliana gene 

products were assigned the same set of GO terms that their Arabidopsis homolog possessed. The 

list of putative Brachypodium transcription factors was obtained from gene annotation queries and 

BLASTP comparisons to rice (Oryza sativa) transcription factors obtained from Plant 

Transcription Factor Database (http://plntfdb.bio.uni-potsdam.de/v3.0/) [104]. 

2.5.7 Network Analysis 

Normalized RMA expression values for 9,496 differentially expressed genes were loaded into the 

R package WGCNA [96]. An adjacency matrix was calculated using B=23. Distance metrics 

between profiles were calculated using the TOMdist function using an un-signed TOM type. 

Hierarchical tree solution was calculated using the flashClust [105] function with the ‘method’ 

option set to ‘average’. Modules were called using the moduleNumber function, cutHeight=0.91, 

and minimum module size was set to 25. Module colors were set using labels2colors. These 

http://factominer.free.fr/
http://bioinfo.cau.edu.cn/agriGO/
http://plntfdb.bio.uni-potsdam.de/v3.0/
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modules were merged, using mergeCloseModules, a cut height of 0.1, iteration set to ‘true’, and 

enabling re-labeling. Final module colors and numbers were set as a result of this merging. 

Modules were exported for visualization in Cytoscape [106] using the 

“exportNetworkToCytoscape” function in the WGCNA R package and an adjacency threshold of 

0.35. Once imported to Cytoscape, edges were filtered for a minimum value of 0.45, and the final 

network layout was obtained using the “Force Directed” in-built Cytoscape layout method. 

Cytoscape-layout and edge filtering caused some modules to not be connected by edges. These 

were not included in final Cytoscape layout; however, their mutual connectivities in the adjacency 

matrix served to allow WGCNA to call them as modules so they were analyzed as such for 

AgriGO-mediated GO enrichment and for Element-mediated promoter analysis. Only those 

modules that were graphed in Cytoscape as being interconnected with edges above the 0.45 cutoff 

were included in the final figures.  

2.5.8 Promoter Analysis  

Genes were grouped based on module membership. Based on the MIPS version 1.2 Brachypodium 

distachyon annotation, the 500 nucleotides directly upstream of each gene was extracted from the 

Brachypodium genome. The promoters for the genes in each module were analyzed on a module-

by-module basis using Element [21]. The set of all predicted promoters in the genome were 

analyzed using the ‘bground’ command using all possible 5 to 8 nucleotide sequences as the set 

for analysis. This formed the set of background motif occurrence statistics against which module 

groupings of promoters were compared. Motif occurrences in module sets of genes were then 

compared against the background set. Motifs shorter than 5 nucleotides in length are expected to 

fall into one of two categories – background false-discoveries or true-positives that will be 

contained within larger, also significant motifs. Transcription factor binding sites longer than 8 
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nucleotides in length are expected to either overlap or be multi-partite motifs, both of which will 

generate significant sub-motifs in this analysis. In some cases, for specific examples, membership 

lists from two modules were combined for analysis by Element. Element was run using default 

cutoffs for significance (FDR<0.01), on 16 processors (‘-t 16’).  

2.5.9 Network Plasticity Analysis 

Network plasticity was determined by comparing the correlation of gene pairs between conditions. 

Between two conditions, every gene that was called by SAM as being differentially expressed in 

both conditions was segregated into one of two groups – the TF group or the non-TF group. 

Putative Brachypodium transcription factors were identified as described above. All pairwise 

Pearson’s correlation values were calculated between groups in each of the conditions. This 

yielded two correlation values for each gene pair – one value corresponding to each condition. The 

order of the values of each gene expression profile across all assayed stress conditions was then 

randomly shuffled via the Fisher-Yates Shuffle procedure [107] creating 7,200 random 

permutations of the data. In each permutation, two subsets of equal size (N=15) were selected. 

Each permutation therefore was a random permutation of a gene’s total expression data profile 

from which two independent samples of size N=15 were selected. The pairwise Pearson’s 

correlations between all TF-TG pairs were calculated in each permutation.  In order to determine 

significance of correlation change across conditions, a cutoff was chosen such that the average 

number of genes pairs that had correlation changes exceeding that cutoff in each random 

permutation (average number of false discoveries per permutations) was an appropriately small 

ratio of the number of gene pairs that had correlation changes exceeding that threshold in the true 

dataset (number of positives). This process is similar to SAM [100]. In all comparisons, the 

threshold was chosen such that the FDR was less than or equal to 0.05. 
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2.5.10  Undefined Module Member Genes 

In order to identify genes which could be associated with a role in abiotic stress response by 

module membership, but could not have a predicted function attached to them, the entirety of the 

Brachypodium proteome was aligned against the Phytozome annotations for Sorghum bicolor 

[108], Glycine max [109], Arabidopsis thaliana [110], Zea mays [111], Setaria italica [112], and 

Oryza sativa [113]. Proteins which aligned with 70% identity over 70% or more of their total 

length, to a gene in one of the target species were associated with the functional annotation of the 

target gene. Of 26,552 Brachypodium proteins, 15,480 (58.3%) aligned to at least one target gene 

in at least one target species. 11,072 genes (41.7%) did not align to any target genes in any target 

species. Of those genes that aligned, 1,313 were associated only with annotations such as 

“expressed”, “putative protein”, “protein of unknown function”, or similar, and never with more 

functionally-informative annotations. These were identified as undefined loci. In order to 

supplement these associations, InterProScan [77] annotations were included. Genes which did not 

have an informative InterProScan result, and did not align to a target species, or, did not have an 

informative annotation if they did align, were identified as undefined loci. Therefore, the only 

information we could reliably attach to these loci were their expression profile and the set of genes 

with which they co-express.  

2.5.11  Accession Number 

The raw data is available at the Plant Expression Database (www.plexdb.org) under PLEXDB 

accession number ‘BD2’. 
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dGCNA: edge-wise differential gene co-

expression network analysis 

3.1 Introduction 
The advent of High-Throughput Sequencing has made the generation of large expression datasets 

a commoditized experimental assay. Economies of scale and improvements in sequencing 

technology drive costs down and data yields up. As costs decrease and yields increase, the 

complexity and scale of gene expression experiments expand. This great expansion in data scale 

and complexity presents two challenges. The first challenge is that it is difficult to extract 

biological meaning from large, many-faceted expression experiments. The result sets of pairwise 

differential expression tests or analysis of variance approaches rapidly become untractable and 

unmanageable. This challenge is overcome by the application of novel computational methods. 

This solution creates the second challenge, in that the individuals who are most suited to 

conducting complex computational analyses are often not suited to teasing apart biological 

meaning and identifying the best course of action in terms of candidate selection and 

experimentation. 

3.1.1 Gene Co-Expression Network Analysis 

In terms of transcriptome-scale network-based gene expression analyses, the application of gene 

co-expression network (GCN) analysis has become widely utilized. On the most basic level, a 

network is a collection of network “nodes” (in this case, genes) and network “edges” (pairwise, 

gene-gene relationships). An individual edge connects two nodes, and the collection of all nodes 

and edges make up the network as a whole. In a gene co-expression network, a node has an 

associated expression profile – this profile is the set of all gene expression values obtained in an 

expression experiment. In short, gene-gene expression profile similarities are determined by a 
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similarity metric (such as the Pearson Correlation Coefficient, PCC, [114]). These similarities are 

passed through a transform (“adjacency function”) to determine a binary adjacency matrix, in 

which edges that are related have entries of “1”, and unrelated edges have entries of “0”. The 

relationships described in the adjacency matrix can then be clustered, to generate sets of 

interrelated nodes, which have been shown to have functional significance. 

Perhaps the most widely utilized framework for network analysis of large scale expression datasets 

is the Weighted Gene Co-expression Network Analysis (WGCNA, [96]) R package. This schema 

introduces a great deal of granularity into the final set of node relationships; the “weighted” aspect 

of the framework allows the final relationships to be decimal values on the interval [0,1], or [-1,1] 

depending on user preferences.  

3.1.2 Network Comparison and Elasticity 

Gene co-expression networks are a powerful tool to describe and characterize gene expression 

trends in large, complex datasets. A common initial conception of GCNs is that the inclusion of 

more data will increase the breadth and granularity of the GCN – resulting in a network describing 

the behavior of more genes and identifying smaller clusters of related genes. This turns out not to 

be the case. Feltus et al., showed that as more and more data was included in a network, fewer and 

fewer genes were reliably related to one another, and clusters became more globular and 

featureless [115]. Their work discovered instead that it was more practical to group expression 

assays that were themselves related, and to build many small networks rather than one large 

network. In recent work in Brachypodium, a large amount of elasticity was found to exist in the 

relationships between genes under varying abiotic stresses [69]. The implication is that, under 

varying conditions, gene co-expression networks are remodeled as the regulatory landscape of the 

underlying biological system changes to meet the needs of the organism.  
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These analyses point directly to a short-coming of the current schema of GCN analysis techniques, 

which was partially approached by Feltus et al.; as more datasets are added to a GCN analysis, 

only those pairwise relationships which are stable across all datasets are identified. The elasticity 

of gene-gene expression relationships all but guarantees that with enough data, no gene-gene 

relationship will hold across all observable perturbations of a biological system. 

The comparison of GCNs has been approached multiple times. The DNA R package, was created 

to identify differential connectivity, edge strength, and structure. However, it is limited to small 

networks (e.g., 20-400 genes), and so addresses a different problem set  [116].  The algorithm 

mlDNA [117] approaches a similar scale of problem as dGCNA. However, it is based on the 

identification of previously genes known to be responsive to the particular perturbation. This is 

not necessarily a problem, as in well-studied organisms, these genes will be known. However, 

dGCNA is targeted at identifying novel signal without prior information. The DINA algorithm is 

implemented in a web platform and is targeted as pathway-size gene sets. While clearly effective, 

it relies both on prior knowledge and a small gene set [118]. The original authors of WGCNA also 

put forth a strategy for differential network analysis, relying on differences in the whole-network 

connectivity measure for a gene between individual networks. This final method identifies genes 

which undergo large changes in connectivity. Indeed, as we show below these genes are enriched 

for information, however, this method does not identify statistically significant changes in the 

edges of genes which do not have very high overall connectivity, is not implemented in a software 

package or program, and is not immediately generalizable to any new comparison [119]. Indeed, 

this method is defined as a loose framework for differential network analysis, rather than an 

algorithm or software package proper.  The most similar method of direct network comparison is 

that of DiffCoEx [120], to which we directly compare our results. 
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It is exceedingly doubtful that a single static GCN will ever describe the expression relationships 

between an organism’s genes in all observed conditions. Instead, GCNs describe the expression 

landscape of – for example – a particular cell type, an environmental condition, or developmental 

stage. It will therefore be important to not only construct GCNs describing a discrete biological 

state, but to compare networks of various states to observe how the gene-gene relationships are 

remodeled to meet the needs of the organism. 

To that end we have developed an algorithm, dGCNA, which directly compares two GCNs derived 

from closely related datasets. Implemented in Java, the algorithm greatly eases the difficulty of 

comparing a large, complex structure such as a GCN, and identifies statistically significant 

adjacency differentials in the edges and nodes between the GCNs of interest. Comparing two 

datasets via their emergent GCNs also allows the comparison of datasets of unequal size. We show 

the results of our algorithm on a published dataset of circadian expression derived from 

Arabidopsis thaliana, and illustrate the biological meaning derived from identifying co-expression 

elasticity within GCNs. We further demonstrate the fine-grained insight which is gained by 

comparing individual, conditional networks rather than analyzing them as a single whole. Finally, 

we compare our method to existing packages or algorithms with the stated goal of network 

comparison. 

The source code of dGCNA is available for download at https://github.com/hdpriest/dGCNA. 

3.1.3 Author Contributions 

Todd Mockler directed the research focus to the topic of topological changes within gene co-

expression networks, and contributed to the manuscript. Henry Priest conceived, designed, and 

developed the dGCNA algorithm and program, conducted analysis and wrote the manuscript. At 

https://github.com/hdpriest/dGCNA
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the time of this writing, this material has not been published. Written permission for use of this 

material has been obtained from Todd Mockler. 

3.2 Algorithm & Methods 

3.2.1 Algorithm & Implementation 

The dGCNA algorithm consists of two main parts – determination of appropriate parameters for 

the adjacency function, and application of those parameters in the generation of a differential 

GCN. Gene inclusion and exclusion is left to the user’s criteria and preferences. Both datasets 

utilized for comparison must comprise the same overall set of genes. The number of observations 

in each dataset need not be identical. The software manual includes a tutorial, description of 

proper format for input expression data, advice for gene inclusion/exclusion, and selection of 

observation sets can be found in http://www.danforthcenter.org/hpriest/Supplemental_File_3.xlsx 

Supplemental File 4. 

Terminology 

The purpose of the algorithm described in this manuscript is to identify statistically significant 

pairwise differential gene co-expression within GCNs. This is achieved by applying the method of 

adjacency transformation to a differential similarity matrix, rather than a similarity matrix. The 

terms ‘elasticity’ and ‘differential adjacency’ refer to two discrete entities. Each individual edge 

has some associated differential adjacency value, on the interval [-2,2]. However, these values are 

not directly representative of the resultant elasticity of the edge in question. Elasticity describes 

the property of an edge to become either more or less strong in network 2 relative to network 1. 

Negative elasticity refers to an edge which decreases in absolute value in network 2 relative to 
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network 1. Positive elasticity refers to an edge which increases in absolute value in network 2 

relative to network 1. An edge may have a positive differential adjacency, but negative elasticity 

(for example, a change from -0.9 in network 1 to -0.1 in network 2, a differential adjacency of 0.8), 

or a negative differential adjacency but positive elasticity (-0.1 to -0.9, the converse of above). 

Differential adjacency refers to a mathematical value; elasticity refers to a network edge-wise 

property. Regardless, the product of a comparison between two GCNs is a set of node-node 

interactions, with all edge values lying on the interval [-2,2] which we term a differential-Gene 

Co-expression Network, or dGCN. 

Algorithm Process 

The algorithm proceeds in a way similar to a classic GCN analysis. First, the datasets are analyzed, 

to provide the user with information on how best to select parameters for the adjacency function. 

Second, the datasets are permuted and iteratively compared, to estimate the statistical significance 

of any particular differential similarity and adjacency observed in the true comparison. Finally, the 

datasets are directly compared, and differential similarities are calculated. The differential 

similarities are segregated into two gene co-expression elasticity networks. These networks are 

passed through the sigmoid adjacency transform, utilizing independent parameters for the positive 

and negative elasticity networks. These two networks are then individually passed through the 

Topological Overlap process (see [121]), and hierarchical clustering is conducted to create two 

independent sets of gene clusters. 

1. Network Comparison and Elasticity Determination 

The second segment of the algorithm compares two gene expression datasets to identify 

statistically significant differential adjacencies on a per-edge basis. Two methods are provided for 
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determining the cutoff for significant edge elasticity. The first method (“scalefree” extends the 

assumption of scale free topology in gene co-expression networks [122] to that of differential co-

expression networks, and identifies parameters based on the conformity of the obtained dGCNs to 

the expected scale free topology criteria. The second method (“permute”) utilizes random 

permutations of the input datasets. Fundamentally, the permutation method compares the true 

edgewise differential adjacency with the expected edgewise differential adjacency based on these 

permutations. These differential adjacencies are then translated into an elasticity matrix. 

1a. Scale-free Topology Criterion 

There is a great deal of evidence that shows biological networks tend to follow a scale-free 

distribution of node-wise edge connectivity. The first method of identifying a cutoff for significant 

differential adjacency is via the adherence of the produced dGCN to the scale-free topology 

criterion. Namely, the per-node degree distribution should adhere to a power law [122], and 

thereby correlate well with the Log-Log model [123].  

The “scalefree” command accepts user-defined upper and lower bounds for the alpha and mu 

parameters. The algorithm calculates the differential similarities between all possible pairs of 

genes in the input dataset, and segregates these values into positive and negative elasticity 

networks. The algorithm then tests all combinations of alpha and mu, iterating the former by 

increments of 2, and the latter by increments of 0.05. For each iteration, the sigmoid adjacency 

function is applied, and the per-iteration distribution of per-node connectivity is then compared 

against the log-log model. The R-squared correlation of the per-iteration node connectivity 

distribution against this model is used as one of the criteria for determining appropriate parameter 

selection. Additional important metrics are the average per-node connectivity (the sum of all edge 
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values associated with a given node), and the slope of the best fit linear regression. This process 

generates a matrix of values which show the value of the various parameters of the scale-free 

criterion, relative to the alpha and mu parameters.  

Parameters should be chosen such that the produced positive and negative elasticity networks 

adhere to these criteria within acceptable limits. For the purposes of these analyses, those limits 

are an R-Squared correlation to the log-log degree model greater than 0.75, and a slope less than 

-0.8. The lowest absolute parameters (or, closest to zero) which satisfy these criteria are typically 

the best parameters to choose, however, the adherence of the network to the scale free criterion 

must be balanced against the average per-node connectivity. See [122] and 

http://www.danforthcenter.org/hpriest/Supplemental_File_3.xlsx 

Supplemental File 4 for more information on this topic. 

1b. Gene Expression Permutation 

The second method of dGCN construction relies on identifying statistically significant differential 

similarities. In order to achieve this, the gene expression datasets are concatenated in a gene-wise 

fashion. The per-gene expression series are permuted via the Fisher-Yates ([107]) procedure, from 

which a pair of gene expression datasets (hereafter sets A and B), equal in size to the smaller of 

the input observation sets is extracted. For example, if two datasets A and B with 16 and 19 

observations were utilized, a single set of 35 observations from a single gene would be constructed, 

permuted, and two randomly selected sets of observations, each of size 16 would be selected. 

These datasets are then passed through the dGCN construction process outlined above, to generate 

a dGCN based on the permuted data. The parameters utilized for calculation of the dGCN are the 

same as those utilized in the construction of the true dGCN. For each permutation of data, a 

distribution of differential similarities edge strengths is determined. 
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The above permutation process is repeated a user-specified number of times. This step is 

computationally expensive, and is made feasible by the utilization of Java’s comparatively robust 

thread and memory management model. The resultant matrix of similarity differentials from each 

permutation is analyzed to build a distribution of average, per-permutation differential similarity 

values. This distribution, derived from random data sets, is a sampling of the expected level of 

random similarity variance between the specific input datasets. The true differential similarity 

matrix is calculated for the original input data sets, and the observed differential similarity values 

are compared against the average, per-permutation distribution of differential similarity values. 

For each differential similarity value on the interval [0,2], significance is determined by controlling 

for the expected false positive rate. All differential similarity values which exceed the given cutoff 

are tabulated in both the original datasets, and in the average per-permutation distribution. The 

false discovery rate is simply the average per-permutation number of edges above the cutoff, 

divided by the number of true edges exceeding the cutoff. The false discovery rate for every 

differential similarity value is tabulated and provided to the user. This process is then repeated for 

negative differential similarity values, on the interval [-2,0].  This process allows the user to control 

the number of expected false positives, versus the number of expected true positives, at all potential 

cutoffs. These numbers are then transformed via the sigmoid adjacency transform, and provided 

to the user. Once a significance level is determined for differential adjacency, this can be applied 

to determine elasticity networks. This is very helpful, as the two methods for identifying significant 

differential adjacency can be combined, to identify a cutoff that produces scale-free elasticity 

networks, and to assign to each produced network edge an expected false discovery rate.  

2. Differential Adjacency Calculation 
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It is recommended to utilize both methods of estimating the correct cutoffs identifying significant 

elasticity. By utilizing the scale-free topology criterion to select parameters for the positive and 

negative elasticity adjacency transform, the user can ensure the produced networks conform to the 

expected topography. By utilizing the false-discovery rate estimation from permutation analysis, 

the user can estimate the likelihood of observing a given differential adjacency by chance – based 

on random permutations of the input dataset. If necessary then, the user can mask differential 

adjacency values they deem to be associated with insufficiently low FDR values.  

Differential adjacency calculation in all applications described above and below requires the 

mapping of differential similarity values (lying on the interval [0,2], or [-2,0]) to the interval [-1,0] 

and [0,1]. This is done by dividing each differential similarity by 2. Once this mapping is complete, 

the adjacency function, along with the given parameters is applied. This is consistent throughout 

all differential adjacency calculations, so scale-free criteria and false discovery estimation all refer 

to common values.  

3. Gene Co-Expression Elasticity Network Calculation 

The resultant dGCN is further processed in two segments. The network edges representing positive 

elasticity (a pair of nodes which become more-co-expressed in Dataset B versus Dataset A) are 

treated independently of those edges representing negative elasticity (decreased co-expression in 

set B versus set A).  

The positive and negative elasticity networks are each subjected to the topological overlap process 

[121]. This metric has been shown [121,124] to be a robust method of node-node association. Node 

pairs with many overlapping partners (i.e., they share most of their neighborhoods), have a high 
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TOM, whereas nodes which share no neighbors and are not connected via an adjacency edge have 

a TOM of zero.  

The TOM-processed elasticity matricies generated by this final step of the algorithm are converted 

to dissimilarity matricies, and are processed through a hierarchical clustering procedure derived 

from [105], and two independent cluster sets, based on the pairwise dissimilarities, are generated 

for further analysis by the user.  

Cytoscape import files are also provided. Both an unfiltered file is generated (containing the node-

node differential adjacency edge strengths for all pairwise relationships) and a filtered file, 

containing only those edges whose differential adjacency values exceed the user-specified 

thresholds. In both Cytoscape files, both the differential adjacency and the absolute value of the 

differential adjacency edge strengths are provided. 

3.2.2 GO-term enrichment analysis 

All GO-term enrichment analyses described in this manuscript are carried out using the topGO R 

package, available via Bioconductor [125,126]. Common options in all analyses are 

‘algorithm=`classic`’ and ‘statistic=`fisher`’. The GO-term to gene-locus mappings utilized for 

these analyses derived directly from the TAIR 10 Annotation (www.arabidopsis.org, [110]). 

3.2.3 Promoter Analysis 

Promoter analysis was carried out using the Element software [21]. In brief, the Element algorithm 

finds the rates of occurrence of all short DNA sequences (in this case, all possible sequences five 

to eight nucleotides in length) in the ‘background’ set of all 500 nucleotide-long upstream 

sequences of Arabidopsis genes in the TAIR10 annotation. Element then compares the observed 

occurrence rates for the same 5-8nt sequences in a set of query promoters, and identifies those 

http://www.arabidopsis.org/
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sequences which are statistically over-represented. All reported statistics are corrected for multiple 

comparisons. 

3.2.4 Individual GCN Construction 

Included alongside the implementation of the dGCN analysis engine is a routine for calculation of 

a standard GCN. To achieve this, the software follows the popular and robust schema of the 

WGCNA R package [96]. Pairwise gene similarity values are calculated via a user-specified metric 

from the following options: the Pearson Correlation Coefficient, the GINI coefficient, and the 

spearman rank correlation. The sigmoid adjacency function is utilized, and a parameter 

determination routine (“determine”) is also provided. These methods have been re-implemented 

in Java to facilitate full use of multithreading and a streamlined memory. In the case of the 

Columbia-0 network and the Lhy-OX network, parameters a=20 and mu=1 were utilized. In the 

unified data analysis, alpha = 30 and mu = 0.9 was utilized. 

Parameter Determination 

It is critical to determine appropriate parameters for the sigmoid adjacency function, and the 

implementation of the algorithm includes a routine specifically targeted at achieving this.  

Ideally, the slope of the linear regression should be near -1, and the R-squared correlation should 

be greater than 0.75. It is best to select parameters that satisfy these criteria without sacrificing 

high average node connectivity. More information and guidance on this process is available in 

http://www.danforthcenter.org/hpriest/Supplemental_File_3.xlsx 

Supplemental File 4. 
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3.3 Results 
In order to demonstrate that dGCNA identifies biological signals that cannot be identified through 

a classic GCN approach, we analyzed two circadian time-courses in the model organism 

Arabidopsis thaliana. Full growth conditions, sampling protocols, RNA preparation, array 

hybridization, array quality control, and array normalization procedures are described in [127]. In 

short, Wild-type Columbia-0 (Col-0), and a line over-expressing the core circadian clock oscillator 

LATE ELONGATED HYPOCOTYL (LHY, AT1G01060) (Lhy-OX), were subjected to circadian 

entrainment via short-day (SD) photo/thermo-cycles for 7 days. Samples were taken every four 

hours for 48 hours, beginning at subjective dawn. Arrays were RMA-normalized utilizing the 

Affymetrix software, and per-sample normalized gene expression values were produced. 

Each time-course was described by a set of 25,000 gene expression data series, of 12 time-points 

for each genotype. In order to be included in the set of probe-sets to be analyzed, a probe-set must 

have at least one data point with non-log RMA normalized intensity greater than 50, in at least one 

of the two data sets. This generated a list of 9,882 probe-sets. Although the algorithm and 

implementation described herein easily handles gene sets of much larger size, in practice it is not 

always ideal to use the largest possible gene input sets. Low-variance genes and low expression 

genes may only expand computational resource requirements and complicate secondary analyses, 

while adding little or no information of use.  

In all subsequent analysis, these datasets were analyzed in three ways. First, as independent 

datasets, the Columbia-0 time course (“Col-0”), the AtLHY over-expression time-course (“Lhy-

OX”). Secondly, as a ‘unified’ dataset, in which the data series from the Col-0 and Lhy-OX 

datasets were concatenated in a gene-specific fashion (“Unified”). Finally, as a comparative 

dataset, in which the algorithm described herein compared the datasets against one another. This 
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final analysis generated a total elasticity network (all statistically significant elastic gene-gene 

edges), and two subnetworks: the negative elasticity network (all gene-gene relationships which 

experience a decrease in co-expression from Col-0 to Lhy-OX), and the positive elasticity network 

(all gene-gene relationships that experience an increase in co-expression from Col-0 to Lhy-OX). 

The Pearson Correlation Coefficient (PCC) was utilized for all analyses of these data. 

3.3.1 Differential Gene Co-expression Network Analysis 

The total elasticity network was calculated by first utilizing the ‘scalefree’ command. All 

combinations of values for the mu parameter on the interval [0.5,1] and the alpha parameter on 

the interval [16,30] were tested. Results are shown 

inhttp://www.danforthcenter.org/hpriest/Supplemental_File_4.xlsx 

Supplemental File 5. Based on these results, parameters of alpha = 26 and mu = 0.8 were 

selected for the positive elasticity network, and parameters of alpha = 28 and mu = 0.8 were 

selected for the negative elasticity network. 

Adjacency cutoffs for dGCN construction were determined estimation of statistical significance 

of each produced differential adjacency value. The ‘permute’ command was run with the same 

sigmoid adjacency function parameters identified above, with 100 permutations. The distribution 

of per-permutation observed differential similarity values was computed, and the observed true 

differential similarity values are compared against this background. These differential similarity 

values are then transformed via the adjacency transform. The cutoffs of positive differential 

adjacency >= 0.01, and negative differential adjacency <= -0.01 correspond to estimated false-

discovery rates of FDR < 0.0252 and FDR < 0.0380, respectively. These produced cutoffs apply 

to network adjacencies – not differential similarities. In this particular case, both methods utilized 
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for determining the final network structure gave rise to highly similar networks. A new set of 

permutations produced essentially the same differential similarity cutoffs, within 0.02 similarity. 

Larger permutation sets (200, 300, 500) did not reduce this variance. 

By combining both the determined best sigmoid adjacency parameters for positive and negative 

elasticity calculation, as well as the cutoffs for statistical significance, the overall elasticity network 

could be calculated. With the ‘compare’ command, the two datasets were directly compared. The 

overall differential network was then masked to isolate the two sub-networks, the positive (edge-

specific differential-adjacency >= 0.01) and negative (edge-specific differential-adjacency <= -

0.01) elasticity networks. Individual networks calculated from each dataset (see methods), 

comprised 18,739,031 total unique edges. In total, the elasticity networks comprise 4,368,745 

edges. This represents 23.31% of edges which were found to exist which, and 4.47% of the 

97,653,924 total possible edges.  

The positive elasticity network (scale free criterion: 0.774, slope: -1.117, mean connectivity: 

99.45) contains 2,932,647 edges (67.1% of all elastic edges). The negative elasticity network (scale 

free criterion: 0.755, slope: -1.115, mean connectivity: 91.02) contains the remaining 1,436,098 

edges (32.9% of total elastic edges). The positive and negative elasticity networks, made up only 

of significantly differential adjacency edges, were subjected to hierarchical clustering and 

produced cluster sets of 65 and 61 clusters, respectively. 

3.3.2 Comparison of Elasticity Networks to Standard GCNs 

It is critical to establish that the algorithm presented here generates novel insight into the gene-

gene relationships of a particular set of data. We must determine that the elasticity analysis 

presented identifies biological meaning distinct from that revealed by previous approaches. It is 

important to consider the source of the data – a pair of circadian time-courses, from wild-type 
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Columbia-0 and a line over-expressing the core circadian oscillator AtLHY (AT1G01060, [128]). 

In the comparisons presented, we would expect that the circadian clock would be mis-expressed, 

and that effects of AtLHY overexpression would be evident in aspects of gene expression relating 

to abiotic stress response (which is regulated by the circadian clock) [129], energy harvesting 

(which is phased to specific times of day to optimize growth and energy harvesting)[130], light-

sensing (in which AtLHY is a principle factor)[128], and growth itself (for which AtLHY has been 

shown to be a critical regulator)[131].  

Network Level Analysis 

It is important to distinguish the produced elasticity networks from standard GCNs. We wished to 

determine if the elasticity networks describe a substantially different set of relationships from that 

of classic GCNA. We therefore directly compared the sets of gene-gene relationships which were 

identified utilizing a classic GCNA approach, and those edges identified as having statistically 

Figure 7 Overlaps between gene-gene edge sets. Overlaps were identified between the total 

elasticity, unified, AtLHY-OX, and Columbia-0 networks. Edge sets were determined by binary 

presence/absence of an edge between gene pairs. 
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significant elasticity. If dGCNA reveals novel biological signals, both the set of edges which are 

represented in the network, as well as their edge values, should be highly distinct from the edge 

sets of a classic GCNA.  

Again, standard GCNs were calculated for three datasets: the original two datasets, consisting of 

data from Col-0 and Lhy-OX, and the union of the two datasets (the Unified dataset), in which 

each gene is represented by a total of twenty-four observations. These sets represent, in our view, 

the most common approaches to network analysis of multiple datasets such as these. The overlap 

of the edge sets contained within these three networks and the total set of statistically significant 

elastic edges is shown in Figure 7. 

 

The individual GCNs constructed from the Col-0 and Lhy-OX datasets contained 7,058,715 and 

14,351,006 edges, respectively. Of those, 2,670,690 edges were shared between them. Of these, 

Figure 8. Edges identified by dGCNA are distinct those identified using previous approaches. 

(A-E) Density heatmaps of edge values for different sets of edges. The x-coordinate of an edge is 

determined by that edge’s value in the Columbia-0 network. The y-coordinate of an edge is 

determined by that edge’s value in the AtLHY-OX network. Edges falling along the x=y line have 

similar values in both datasets. (A) Density heatmap for all possible pairwise edges, totally 

97,574,884 pairings, demonstrating the possible ‘edge-space’ of the two datasets. (B) Density 

heatmap for edges in the Columbia-0 network. (C) Density heatmap for edges in the AtLHY-OX 

network. (D) Density heatmap for edges in the Unified data network. Majority of edges fall near 

the x=y=1 or x=y=-1 region, indicating the Unified analysis approach captures relationships that 

are stable between both datasets. (E) Density heatmap for edges in the total elasticity network.  

dGCNA identifies those edges which have very strong changes in value between the underlying 

datasets. All edges included in (E) have FDR <= 0.0380, see methods. 
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only 383,881 edges (14.4%) were also shared with the total elasticity network. Elasticity analysis 

identified 795,026 edges previously unique to the Col-0 network as elastic (19.7% of Col-0-

specific edges), and 1,873,459 of 9,431,599 of edges previously unique to the Lhy-OX network 

(19.9% of Lhy-OX-specific edges). In order to better assess both the set of edges which are 

included in each network, and the strength of those edges, each network’s edges had their values 

plotted as a heatmap. 

 

Figure 8A shows the distribution of all possible 97,574,884 edges based on their values in the 

Col-0 and Lhy-OX datasets. Most edge values tend to cluster in the upper right or lower left 

quadrants, with a great deal of spread, as is expected. The individual networks calculated from the 

total, unfiltered similarity network (Figure 8, B and C) show the practical effect of adjacency 

transforms in setting a lower limit for acceptable similarity. In Figure 8B, the Col-0 edge set shows 

a uniformly strong set of relationships (all edge values near -1 or +1), whereas there is no 

discernable selection for values in the Lhy-OX dataset. In Figure 8C, the Lhy-OX edge set shows 

strong relationships, with all edge values near -1 or +1, and there being no discernable dependence 

on edge value in Col-0. Figure 8D shows the edges included in the unified data set network. Many 

edges have entirely un-remarkable edge values in Col-0 or Lhy-OX, falling near the origin of the 

plot. However, there is a very strong bias for edge values which are close to +1,+1, and -1,-1. This 

tendency reveals the pitfall of performing GCNA on combined datasets. The majority of edges 

included in the Unified network have strong relationships in both of the included subnetworks. A 

great many edges that were included in the subnetworks are not included in the unified dataset. 

Finally, Figure 8E shows the values of the edges included in the elasticity network. These edges 

have strongly differing edge values in the original Col-0 and Lhy-OX datasets. This edge set is 
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highly distinct from any of those shown in Figure 8B-D. All of the edges identified to have 

statistically significant elasticity change their edge value drastically between the Col-0 and Lhy-

OX networks. Although some of the elastic edges are identified in either of the two original data-

sets, the gene relationships these edges represent are identified as undergoing significant changes 

in response to the genetic perturbation. Of the 4,368,745 elastic edges, 1,147,356 (26.3%) were 

entirely novel, which indicates that without comparing the two original datasets, there would be 

no reason to expect the genes represented by those edges were related at all.  Of the remaining 

elastic edges, 2,668,485 were shared with either the Col-0 or Lhy-OX networks only, identified 

portions of those networks as of particular interest in their response to the genetic perturbation. 

Only 183,429 elastic edges were shared with the unified network (4.2%). This particularly low 

overlap shows the utility of viewing a pair of datasets in such contrast. It is clear that dGCNA 

reveals novel gene-gene relationships, as well as shows the elasticity of previously identified gene-

gene relationships in response to genetic perturbation.  

Network Analysis by Node Connectivity 

As our differential adjacency analysis identifies node-pairs which undergo significant changes in 

their relationship, we hypothesized that genes proximal to the genetic perturbation in the 

regulatory landscape of Arabidopsis would be more likely to undergo elasticity. We would 

expect that those nodes with many significant elastic connections would be associated the 

functions for which AtLHY is known to regulate or be associated with. We therefore identified 

two groups of nodes: the 5% of nodes with the highest total connectivity (K), and the 5% of 

nodes with the lowest total K. These connectivity groups were identified for each of the networks 

generated: the total elasticity network, the positive and negative elasticity networks, the 

individual Col-0 and Lhy-OX networks, and the Unified data network. Because each network 
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contained approximately 9800 genes, these groups numbered 490 genes each. Each group was 

subjected to GO-term enrichment analysis. Table 6 contains the GO-terms which were 

statistically over-represented in the group of high-K nodes from the total elasticity network. Any 

GO-terms which were also found to be over-represented in the high-K groups in any of the three 

individual networks (Col-0, Lhy-OX, or Unified) are not listed. The GO-terms were found to 

only be statistically over-represented in the elasticity analysis correspond very closely with those 

functions AtLHY is known to regulate. The GO-terms represent abiotic stress: GO: GO:0009266, 

“response to temperature stimulus”, GO:0009409, “response to cold”, GO:0006970, “response to 

osmotic stress”, and GO:0009651, “response to salt stress”. The enriched terms also represent 

light-sensing and growth: GO:0009416, “response to light stimulus”, GO:0009314, “response to 

radiation”, GO:0010051, “xylem and phloem pattern formation”, and GO:0007389,“pattern 
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specification process”. The complete lists of statistically enriched GO Terms for each 

connectivity group are provided in http://www.danforthcenter.org/hpriest/Supplemental_File_5.xlsx 

Supplemental File 6. 

 

In addition to the above analysis, we analyzed the promoters of each of the above sets for over-

representation of DNA motifs. The promoters of the high-K grouping derived from the total 

elasticity network were statistically over-represented for the DNA elements: “AAATATC”, 

Gene Ontology Term Short Description Total Elasticity Neg. Elasticity Pos. Elasticity Col-0 Lhy-OX Unified

GO:0009266 response to temperature stimulus 9.85E-08 0.0017 0.0003 0.8557 1.0000 1.0000

GO:0009409 response to cold 9.96E-07 0.0022 0.0011 1.0000 1.0000 1.0000

GO:0007623 circadian rhythm 1.90E-06 4.70E-06 3.01E-05 0.5784 1.0000 1.0000

GO:0048511 rhythmic process 1.90E-06 4.70E-06 3.01E-05 0.5784 1.0000 1.0000

GO:0006970 response to osmotic stress 6.22E-05 0.0030 0.0655 0.8201 0.5419 0.9769

GO:0009651 response to salt stress 0.0005 0.0073 0.2124 0.6945 0.4238 0.8207

GO:0009416 response to light stimulus 0.0007 0.0870 0.0043 1.0000 0.0507 1.0000

GO:0009314 response to radiation 0.0011 0.1123 0.0055 1.0000 0.0626 1.0000

GO:0005983 starch catabolic process 0.0011 0.0017 0.0018 1.0000 1.0000 1.0000

GO:0015994 chlorophyll metabolic process 0.0013 0.0019 0.0004 0.8201 0.4493 1.0000

GO:0044247 cellular polysaccharide catabolic process 0.0014 0.0019 0.0021 1.0000 1.0000 1.0000

GO:0009737 response to abscisic acid stimulus 0.0017 0.1449 0.0277 1.0000 1.0000 1.0000

GO:0009251 glucan catabolic process 0.0017 0.0022 0.0027 1.0000 1.0000 1.0000

GO:0009415 response to water 0.0019 0.0075 0.0060 0.8022 1.0000 1.0000

GO:0006778 porphyrin metabolic process 0.0025 0.0008 0.0034 0.4332 0.7119 1.0000

GO:0044275 cellular carbohydrate catabolic process 0.0026 0.0008 0.0034 1.0000 1.0000 1.0000

GO:0033013 tetrapyrrole metabolic process 0.0026 0.0008 0.0034 0.4332 0.7119 1.0000

GO:0009725 response to hormone stimulus 0.0037 0.2167 0.0980 0.4332 0.8434 0.0519

GO:0009719 response to endogenous stimulus 0.0037 0.2251 0.1024 0.4332 0.8545 0.0536

GO:0006807 nitrogen compound metabolic process 0.0040 0.0214 0.0020 1.0000 1.0000 0.8937

GO:0044283 small molecule biosynthetic process 0.0041 0.4793 0.0514 0.8492 0.0622 1.0000

GO:0015995 chlorophyll biosynthetic process 0.0070 0.0097 0.0018 1.0000 0.5419 1.0000

GO:0009631 cold acclimation 0.0074 0.0803 0.0655 0.3914 1.0000 1.0000

GO:0006779 porphyrin biosynthetic process 0.0098 0.0023 0.0119 0.5008 0.8434 1.0000

GO:0034641 cellular nitrogen compound metabolic process 0.0101 0.0524 0.0055 1.0000 1.0000 1.0000

GO:0009414 response to water deprivation 0.0104 0.0460 0.0360 0.7544 1.0000 1.0000

GO:0000272 polysaccharide catabolic process 0.0104 0.0166 0.0138 1.0000 1.0000 1.0000

GO:0005982 starch metabolic process 0.0108 0.0007 0.0660 1.0000 1.0000 1.0000

GO:0033014 tetrapyrrole biosynthetic process 0.0108 0.0030 0.0146 0.5396 0.8906 1.0000

GO:0010051 xylem and phloem pattern formation 0.0207 0.4765 0.0243 1.0000 1.0000 1.0000

GO:0016070 RNA metabolic process 0.0212 0.4793 0.0116 1.0000 1.0000 1.0000

GO:0007389 pattern specification process 0.0216 0.0910 0.1818 1.0000 1.0000 1.0000

GO:0003002 regionalization 0.0220 0.2910 0.0730 1.0000 1.0000 1.0000

GO:0044271 cellular nitrogen compound biosynthetic process 0.0247 0.0022 0.0055 0.4332 0.4287 1.0000

GO:0016052 carbohydrate catabolic process 0.0305 0.0034 0.4775 1.0000 0.2832 1.0000

GO:0009845 seed germination 0.0438 0.0612 0.3701 1.0000 1.0000 1.0000

GO:0009058 biosynthetic process 0.0482 0.3856 0.0519 1.0000 0.2651 1.0000

GO:0042440 pigment metabolic process 0.0482 0.0182 0.0153 0.1599 0.5647 1.0000

GO:0046148 pigment biosynthetic process 0.0495 0.0182 0.0153 0.1828 0.6459 1.0000

Table 6. Gene Ontology Terms Found to be Statistically Over-represented Only in the Elasticity 

Networks produced by dGCNA. 
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“AAATATCT”, “AATATC”, “ATATC”, “AATATCT”, and “AAAATATC”. All elements were 

in the top 10 hits (maximum FDR-corrected p-value < 3.34e-09). These elements are all near-

exact matches for the Evening Element, which AtLHY is known to bind. The total sets of all 

over-represented DNA motifs, for all high- and low-K groups are contained in 

http://www.danforthcenter.org/hpriest/Supplemental_File_6.xlsx 

Supplemental File 7. 

3.3.3 Biological Meaning of Elasticity Networks 

Cluster-level Analysis 

At the highest level, we would expect to see each cluster of genes identified as positively and 

negatively plastic undergo changes in co-expression between networks. The dataset-specific 

expression profiles of the genes of each module were plotted for direct comparison.  

The genes of each cluster were subjected to GO-term enrichment analysis. It would be expected 

that the large changes in network topology triggered by over-expression of AtLHY would be 

related to the general functions which AtLHY regulates. We see that this is the case.  

Every gene can be a member of one module in the positive elasticity network, and one module in 

the negative elasticity network. We highlight here two modules, the first, module 8 of the negative 

elasticity network (module -08), and the other, module 1 of the positive elasticity network (module 

+01). These modules are highlighted for their combination of biologically interesting GO-term 

enrichment and expression profiles.  

Module -08 has 321 member genes, which are enriched for several abiotic stress response GO 

terms (GO:0009409, GO:0009414, “response to cold”, “response to water deprivation”, 

respectively, both FDR-corrected p-value <0.02), as well as GO:0015979, “photosynthesis”, FDR-

corrected p-value < 0.0035. Genes of this module tend to have a very strong spike in expression at 
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zt08 in the Columbia-0 wild-type (Figure 9A). Under the growth conditions of the experiment, 

this corresponds with lights-off. Under the Lhy-OX perturbation, however, this coordinated 

increase in expression is phased to zt00/zt24, and is much attenuated (Figure 9B). Many of the 

genes never spike in expression at all. Element analysis of the promoters of the gene members of 

module -08, revealed that the exact evening element core (TATC) appears in six of the top twenty 

most enriched sequence elements (all FDR-corrected p-value < 3.5 x10-6). These results are 

obtained with no a priori assumptions or inputs regarding the function of AtLHY. An additional 

eight of the top twenty elements contain partial matches to the evening element.  
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Figure 9. Mean-normalized, RMA-normalized gene expression for two modules of genes 

undergoing significant elasticity. The RMA-normalized expression values for each gene were 

normalized by the mean expression value for that gene. Gene expression values (y-axis) for the 

genes in a particular module were plotted to give an indication of that modules overall expression 

pattern over the course of a short-day circadian experiment (x-axis). (A) Expression pattern for 

genes of module -08 based on data derived from the Col-0 dataset. (B) Expression pattern for the 

same set of genes depicted in (A), based on expression data derived from the AtLHY-OX dataset. 

Module -08 undergoes significant negative elasticity, exemplified here by the loss of the distinct 

expression peaks at zt08 and zt32. The genes are loosely co-expressed under over-expression of 

AtLHY, with almost no apparent coordinated expression pattern. (C) Expression pattern for genes 

of module +01 based on data derived from the Col-0 dataset. (D) Expression pattern for the same 

set of genes depicted in (C), based on expression data derived from the AtLHY-OX dataset. 

Module +01 undergoes significant positive elasticity, in which a set of genes that is loosely co-

expressed in a wild-type background becomes very strongly co-expressed under over-expression 

of AtLHY. 

 



75 

 

Module +01 has 81 member genes, which are strongly enriched for GO-terms related to stress and 

abiotic stress, chemical and carbohydrate stimulus, as well as several GO-terms relating to biotic 

stress responses. These systems are all known to be regulated to various degrees by the circadian 

system [132]. Module +01 is also of great interest for the dramatic change in expression profiles 

of the constituent genes. Genes of module +01 experience moderate co-expression, with general 

day-time repression (zt00 through zt08) followed by night-time expression at multiple time-points 

(zt12 through zt24, Figure 9C). Almost all gene members of module +01 experience a sharp 

expression peak at dawn (zt00 and zt24) under overexpression of AtLHY (Figure 9D). The 

promoters of these member genes are not substantially enriched for any particular known circadian 

or stress related element, though there are some DNA motifs which are enriched that are weak 

matches to part of the Evening Element. There is no clear hypothesis to draw regarding the 

transcriptional regulation of the dramatic shift in expression profile and co-expression of the genes 

of module +01. 

The full module gene lists, the complete listing of all promoter analysis results, and each 

module’s GO-term enrichment statistics may be found in 

http://www.danforthcenter.org/hpriest/Supplemental_File_7.xlsx 

Supplemental File 8. 
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Gene Level Analysis 

In order to determine if the individual gene-gene relationships which comprise the elasticity 

networks hold meaning, we examined AtLHY’s immediate differential adjacency network. AtLHY 

had 625 differential edges, 401 positive, 224 negative. The Evening Element (EE) core sequence 

(TATC/GATA) is a known binding site of AtLHY. We surmised that if the genes in the immediate 

neighbor of AtLHY are in fact under the regulatory control of AtLHY to some degree, they should 

be enriched for the EE core sequence. Table 7 contains the results of Element analysis of the 

promoters of the genes in the immediate neighborhoods of AtCCA1 and AtLHY.  Analysis of the 

promoters of genes immediately proximal to AtLHY in the overall elasticity network revealed 21 

DNA motifs containing the EE core. We wished to determine if these elements were selectively 

enriched in either the positive or negative elasticity networks. Enrichment of the evening element 

was distinctly segregated. 18 EE core containing DNA elements were over-represented in the 

positive elasticity network, and only one such DNA element was enriched in the negative elasticity 

Neighborhood # Promoters Motif Variants Highest Rank

LHY Total Elasticity 625 21 12

LHY +Elasticity 401 18 4

LHY -Elasticity 224 1 31

LHY Col-0 1293 8 51

LHY LHY-OX 2354 7 226

LHY Unified 956 6 36

CCA1 Total Elasticity 2069 9 74

CCA1 +Elasticity 1096 1 102

CCA1 -Elasticity 973 3 90

CCA1 Col-0 1304 4 94

CCA1 LHY-OX 1968 5 169

CCA1 Unified 122 1 26

Evening Element

Table 7. Enrichment of the Evening Element in the Immediate 

Neighborhood of AtCCA1 and AtLHY. 
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network. The element ATATC was found 828 times, in 325 of 401 promoters of positive elasticity 

genes connected to AtLHY (FDR-corrected p-value < 1.72x10-17). Motifs containing exact 

matches of the EE make up 6 of the top 10 most enriched motifs. Similar analysis on the immediate 

neighborhood of AtLHY in the individual networks do not reveal similar signal. The EE core 

sequence first appears as the 226th most-enriched in the promoters of AtLHY’s immediate 

neighbors in the LHY-OX network. The next closest appearance is 252nd. Discovery of AtLHY’s 

binding target fares little better in the ColSD network, with the highest appearance occurring at 

51st overall. Variants of the EE core appear only 7 times in DNA elements over-enriched in the 

immediate neighborhood of AtLHY in the Lhy-OX network, and only 8 times total in the promoters 

of AtLHY’s neighborhood in the ColSD network. We next investigated if the enrichment is related 

specifically to AtLHY connectivity, or simply enriched in genes associated with AtLHY through 

its regulation of the circadian system. We identified the immediate neighbors of AtCCA1. AtCCA1 

forms a heterodimeric transcription factor complex with AtLHY (citation needed). Only 9 total 

variants of the EE core are found in the total elasticity network of AtCCA1, and the highest-ranked 

sequence appears at 74th overall. Elasticity analysis does not appear to enrich for this signal in the 

neighbors of AtCCA1, with the presence of the EE core sequence being roughly the same in the 

elasticity networks as it is in the individual networks. In-vivo work would need to be completed to 

ascertain which of the putative 325 promoters identified by the elasticity analysis AtLHY actually 

binds to, but it would appear that network comparison and elasticity analysis isolates biological 

signal quite well. 

The immediate neighbors of AtLHY are also significantly enriched for GO terms of interest, 

including GO:0007623, “circadian rhythm” in the top 5 terms of the negative elasticity network, 

and  GO:0009409, “response to cold” in the top 5 terms of the positive elasticity network. All 
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enriched terms in immediate neighborhood of AtLHY in the elasticity networks are included in 

http://www.danforthcenter.org/hpriest/Supplemental_File_8.zip 

Supplemental File 9. The above terms are also enriched in the immediate neighborhoods of 

AtLHY in the individual networks. However, in the elasticity network, these terms are contained 

in a list of 83 total terms, the majority of which represent functions which are regulated by the 

circadian system. In the individual networks, the number of enriched terms is 483 – dGCNA in 

this case clearly isolates a much stronger biological signal.  

3.3.4 Comparison to DiffCoEx 

DiffCoEx [133] is an algorithm primarily concerned with identifying differential co-expression on 

a modular level. This enables the analysis of how large groups of genes behave as groups, but does 

not enable in any way the analysis of genes on an individual level. In other words, DiffCoEx 

determines if the genes of module A change in co-expression with the genes in module B, and 

conducts that comparison for all possible pairings of modules. dGCNA identifies statistically 

significant co-expression changes on a gene-to-gene level, and builds module sets that reflect those 

changes. 

 DiffCoEx identified 24 modules of genes – however these groups are not broken out into groups 

that increase in co-expression and groups that decrease in co-expression, but are an agglomeration 

of both behaviors. The module set produced by DiffCoEx encompassed all genes in the analysis. 

It is worth noting, especially in light of the analysis below, that DiffCoEx and dGCNA are 

fundamentally different in their approach to differential co-expression in high-dimensional gene 

expression datasets. 
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In order to compare the modular analyses of DiffCoEx and dGCNA, we compared the gene 

member lists of all three independent modular sets against each other; the DiffCoEx set, the 

dGCNA ‘positive elasticity’ set, and the dGCNA ‘negative elasticity’ set. If the modular analyses 

gave largely the same groupings, a gene list from one set of modules should have strong overlap 

with a gene list from another set of modules. This is easily determined by an overlap-based 

enrichment analysis. This occurred infrequently in the comparisons we conducted with only one 

DiffCoEx module overlapping with a single dGCNA module (royalblue3 with module -43, p < 

0.001). In fact, the average number of significant overlaps between a DiffCoEx module and a 

dGCNA module was 7.52. The ‘mediumorchid’ module overlapped significantly with 36 dGCNA 

modules – more than a quarter of all modules identified by dGCNA. Similar analysis found that 

dGCNA modules tended to significantly overlap with multiple DiffCoExp modules – this would 

imply that it is not simply the case that dGCNA finds submodules of DiffCoEx modules, or vice-

versa. Overall, the modular analyses overlap only weakly. This reflects the major differences in 

the underlying analysis targets, and approaches, of DiffCoEx and dGCNA. 

The modules identified by DiffCoEx were subjected to the same Element-based promoter analysis 

as those modules identified by dGCNA. The modules were also subjected to GO-term enrichment 

analysis. AtLHY was a member of the ‘darkolivegreen2’ module, a module with 139 member 

genes. These genes were over-represented for three GO-terms of great interest: GO:0007623, 

‘circadian rhythm’, GO:0048511, ‘rhythmic process’, GO:0042754, ‘negative regulation of 

circadian rhythm’ (FDR-corrected p-value < 0.25, 0.25, and 0.27, respectively). In addition to three 

other GO-terms: GO:0042221, ‘response to chemical stimulus’, GO:0046685, ‘response to 

arsenic’, and GO:0051179, ‘localization’ (all FDR-corrected p-value <0.027). The promoters of 

this module were enriched for twenty DNA motifs, however, most were weak matches to a highly-
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redundant portion of the evening element (“AAATAA”), and only two were partial matches to the 

G-box (“CACGTA”, and “ACGTG”, both FDR-corrected p-value < 2.4x10-4). 

In the elasticity analysis done via dGCNA, AtLHY is a member of module 28 in the positive 

elasticity network (+28) and module 30 in the negative elasticity network (-30). Module +28 is not 

statistically enriched for any GO terms. However, module -30 is statistically enriched for three GO 

terms: GO:0009416, “response to light stimulus”, GO:0009628 “response to abiotic stimulus”, and 

GO:0009314, “response to radiation”, all at FDR-corrected P-value < 0.005. These three gene 

ontology terms represent primary functions which AtLHY has been shown to regulate, and are the 

only terms for which module -30 is enriched. The promoters of this module were enriched for 48 

DNA elements, including many partial matches to the G-Box sequence, as well as an exact match 

(“CACGTG”, FDR-corrected p-value 8.9x10-5). 

DiffCoEx does not provide access to node-node interactions, or a tabulation of each node-node 

interaction that is statistically significantly different. This is a major advantage provided by 

dGCNA, and our analysis above indicates that these node-node interactions, specifically when 

they denote elasticity, may contain important biological signals which are excluded by DiffCoEx. 

While biological experimentation would be required to determine which module set captures more 

accurate biological signal, there is no question that dGCNA provides a more granular analysis of 

node-node interactions in the differential co-expression relationships of genes. 

3.4 Discussion 
The comparison of gene co-expression networks is an underutilized area of gene expression 

analysis. With sequencing prices continuing to drop, and yields increasing, it is easier than it has 

ever been to conduct a complex, multi-dimensional gene expression experiment. Computational 
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biology method development must keep pace with the commonality of increased complexity in 

gene expression datasets. With dGCNA, presented here, we show that the comparison of GCNs 

reveals novel biological signals on three levels: the whole-network level, the gene-cluster level, 

and the individual gene-to-gene relationship level. 

3.4.1 Novel Whole-Network Biological Insights Revealed by Elasticity 

Analysis 

Network-level gene co-expression trends have not been previously shown to hold strong 

biological signals. While network-wide connectivity distributions are an important part of 

network reconstruction [96,122], and module-level connectivity plays an important role in 

prediction of criticality of individual genes, the connectivity of a gene across an entire GCN has 

not previously been of great interest. In our analysis the grouping of genes which are most elastic 

– that is, they possess the greatest number of statistically significant elastic edges – are directly 

related to the functions regulated by AtLHY (Table 6). In addition, the promoters of those highly 

elastic genes are very strongly statistically enriched for the Evening Element, which is the known 

binding site of AtLHY (http://www.danforthcenter.org/hpriest/Supplemental_File_6.xlsx 

Supplemental File 7).  

This is analogous to a direct differential gene expression analysis. By employing a comparative 

strategy, dGCNA identifies only those connections which change significantly between 

conditions. A high-connectivity gene node, which is un-related to the perturbation under study 

would be removed from an elasticity analysis. While employing GCNA allows the discovery of 

broad trends of co-expression within a dataset, applying dGCNA with a pair of datasets allows 

discovery of only the differences of trends between datasets, and avoids capture of what could be 

termed ‘house-keeping’ trends. 
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3.4.2 Cluster Level Analysis 

The generation of gene clusters which are similarly expressed across a large dataset has always 

been a key strength of GCNA. Elasticity analysis continues this, by enabling the tracking of large-

scale changes in gene co-expression between datasets. Figure 9 exemplifies this facet of dGCNA. 

Under overexpression of AtLHY, a number of previously phased to the day/night transition are 

mis-expressed. These genes are strongly enriched for photosynthesis and stress-response related 

genes (GO:0009409, “response to cold”, FDR-corrected p-value <0.02 and GO:0015979, 

“photosynthesis”, FDR-corrected p-value < 0.0035). Light/Dark transitions are the principle 

method of entrainment for the diurnal/circadian system, and AtLHY is a principle mediator of that 

pathway. Many genes are tightly regulated to be expressed a specific time of day, to best adapt the 

organism to the surrounding environment. This particular module of genes is expressed at dusk 

(Figure 9A), and, under AtLHY over-expression, lose their co-expression almost entirely. Their 

spike in expression at zt08 is entirely lost, and the genes which still undergo large changes in 

expression do so at zt00 – dawn – instead of dusk (Figure 9B).  

Module +01, on the other hand, has weak-to-moderate co-expression, being principally expressed 

during the dark period (Figure 9C) in the Columbia-0 control. Under over-expression of AtLHY, 

the genes of module +01 experience a drastic change in expression profile, becoming highly 

expressed at dawn (Figure 9D). Our algorithm is very effective at identifying not only gene-to-

gene co-expression changes, but identifying groups of genes which all change co-expression in 

similar fashions. In this way, the commonalities of gene-gene relationships between a pair of 

datasets can be removed, and stark, broad changes such as those shown in module +01 are revealed. 
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3.4.3 Meaning of node-node interactions in elasticity network 

To date, there is little information about the true meaning of gene-gene interactions in GCNs. The 

edges in GCNs are often mistaken to imply a molecular interaction (i.e., gene A regulates gene B), 

or a similar physical connection of proteins. However, edges in GCNs denote co-expression – 

nothing more. The meaning of such a relationship is contextually rooted in the underlying data. 

The forgoing notwithstanding, our analysis of the local connections of AtLHY in the elasticity 

network suggest more meaning in a dGCN. In the total elasticity network, the promoters of the 

immediate neighbors of AtLHY were substantially enriched for the Evening Element – again, the 

direct binding substrate of AtLHY (Table 7, Row “LHY Total Elasticity”). In comparison to 

standard GCNA of the individual and unified datasets, the over-representation of the Evening 

Element in neighbors of AtLHY is very strong, with the evening element occurring less than half 

as many times, in twice as many promoters (Table 7, Rows “LHY Col-0”, “LHY LHY-OX”, and 

“LHY Unified”). The substantial enrichment of the EE is found only by application of dGCNA. 

Further molecular work would need to be carried out to confirm if AtLHY does in fact bind to any 

of the promoters of its gene neighbors. However, from a strictly in-silico standpoint, the results 

are excellent. 

3.4.4 Comparison to Similar Methods 

The complexity of both networks and network comparison has generated a number of software 

solutions [116–119]. These solutions, while effective, do not apply to the identification of 

statistically significant differential adjacencies within large, transcriptomic-scale gene expression 

datasets.  

The underlying data sources, targeted products, and scale of dGCNA are closely aligned with the 

DiffCoEx procedure [120]. The comparison to DiffCoEx revealed fascinating results. Each 



84 

 

algorithm was able to associate with AtLHY several of the functions that AtLHY is known to 

regulate or influence. However, each also failed to capture the entirety of the functional space of 

AtLHY. In fact, the results are non-overlapping, with DiffCoEx identifying the rhythmic and 

circadian associations of the transcription factor in question, and dGCNA identifying light-sensing 

and abiotic stress responses as the principle related functions. Neither algorithm was able to 

overwhelmingly associate putative transcription factor binding sites with the genes that co-express, 

or differentially co-express with AtLHY between the Col-0 and Lhy-OX datasets. In addition, the 

modular analyses of dGCNA and DiffCoEx are highly non-overlapping. This is certainly a direct 

result of the entirely independent approaches towards analysis of the changes in co-expression 

between datasets. DiffCoEx targets identification of module-to-module differential expression. 

The target of dGCNA is to assess significant gene-to-gene changes in differential co-expression, 

and to build modules from those changes. 

This allows dGCNA to provide both a broader, and a more granular view of differential co-

expression than DiffCoEx. Individual gene-gene differential co-expression relationships are 

provided directly to the user. As we have demonstrated above, these relationships carry strong 

biological function, indicating in this case both putative regulatory circuitry and functional 

relatedness. In addition, dGCNA carries out the process of its algorithm in an automated fashion, 

without requiring the user to manually manipulate the data at each algorithm step. Simultaneously, 

the user retains the ability to fully customize each step of the algorithm, enabling great ease-of-use 

without sacrificing power or customization.  

3.5 Conclusions 
Gene co-expression elasticity is an expected property of biological systems. Transcriptional 

regulation is multi-layer system consisting of pre-, co-, and post-transcriptional regulatory effects, 
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all of which change in response to external stimuli. Analytical methods that treat co-expression 

relationships as concrete objects have been shown to be severely limited when applied to large-

scale, multi-experiment expression datasets [134]. These approaches begin to miss biological 

signal when applied to even relatively small scale, but independently generated expression datasets 

[69].  

Here we have presented dGCNA, implemented in java, which enables investigators to make 

inquiries into the co-expression landscape of complex, large-scale expression datasets. Our 

algorithm enables the tracking of individual co-expression relationships between conditions, 

thereby allowing observation of GCN remodeling in response to stress, circadian entrainment, 

genotypic diversity, developmental stage, or any perturbation of interest. We show that our method 

is a significant improvement over previous computational methods in the area, allowing far finer 

understanding of co-expression elasticity, as well as statistical control and scale free topology. 

In particular, Figure 8 illustrates in stark contrast the gene-gene relationships which are found by 

analyzing identical datasets from different perspectives. All edge-sets depicted therein contain 

biological information, and each relies on different biological ground. No approach depicted is an 

incorrect analysis of the dataset described here, merely incomplete. A complete approach to an 

experiment with multiple datasets must analyze the data in parts, in comparison, and as a whole, 

in order to gain a complete picture of the behavior of those datasets when analyzed from multiple 

perspectives. 

Especially notable is that our method tracks and identifies statistically significant changes in gene-

gene interactions. This approach will allow for the tracking of these changes over a great many 

datasets. In many experimental systems – and some crops – there exists a great many microarray 
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and high-throughput sequencing gene expression datasets. These datasets are deposited in massive 

centralized data warehouses, and infrequently accessed or re-analyzed. Integration of these data, 

along with other orthologous data, such as quantitative trait loci, exacting phenotypic analysis, and 

protein-protein interaction maps will allow for the construction of large scale models of plant 

functions and systems. Requisite for such an effort is a detailed understanding of gene-gene 

relationships, and how such relationships respond to changing environmental conditions, nutrient 

availability, tissues, and developmental stage. 
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Analysis of disparate experiments via direct 

network comparison – a proof of concept 

4.1 Introduction 
Over the last several years, the use of GCNA to characterize patterns of expression among genes 

or transcripts within a transcriptome has become increasingly popular. GCNs have been used to 

characterize the behavior of genes on a transcriptome-wide scale in plants under abiotic stress 

[69,135,136], biotic stresses [137–139], gene expression perturbations (for example, through 

TDNA insertional mutagenesis) [140], and cosmic rays [141]. Extensions to the standard 

application of GCNA to expression datasets have been completed by the addition of metabolomic 

datasets [142,143], and by overlaying the results of quantitative trait locus (QTL) analysis onto the 

resultant network [144]. This ‘layering’ of multiple datasets has been exceedingly fruitful, and will 

continue to be so. 

However, the above referenced work, and the similar multitude of studies are nearly all concerned 

with the analysis of one or a few individual datasets. The analysis of multiple datasets, especially 

when sourced from multiple independent biological experiments, has proven to be a hurdle, which 

has only recently become an active area of research. The promise of GCNA, or any unsupervised 

learning/clustering approach is to simplify the analysis of many-sample datasets in a way that 

pairwise comparison of sample sets cannot. Unfortunately, the comparison of datasets in the 

manner that network comparison makes possible simply raises the previous limitation of pairwise 

comparisons to a new data scale. The integration of many datasets into a holistic gene co-

expression network was incompletely explored in 2013 [115].  
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4.1.1 Analysis of very large-scale transcriptome datasets 

Feltus et al, analyzed more than 7,100 publicly available Arabidopsis microarray gene expression 

datasets. Through a data mining approach which utilized pre-clustering of the array set into 86 

non-overlapping groups, the authors were able to identify an unprecedented level of gene-gene 

interactions. When analyzed as a single, overarching dataset, the 7100 microarrays resulted in a 

network of only 3,297 total genes, and 129,134 interactions. In comparison, when the 86 groups 

of microarrays were analyzed as independent sets, the total set of all networks contained 19,588 

genes (94.7% of those on the Arabidopsis Affymetrix chip) and 558,022 gene-gene interactions. 

A great deal of characterization was performed on each individual network. Each individual 

network contained a number of modules, which could be further characterized by individual gene 

connectivity, module-level functional and promoter-content enrichment, and conformity to scale-

free topology.  

However, the authors stopped short of comparing the networks directly. It would be an important 

extension of their work to compare the network-to-network changes in gene-gene associations in 

a robust manner. The application of the dGCNA algorithm to this problem would enable tracking 

of gene-gene associations across all possible comparisons of tissue, developmental stage, 

environmental conditions, and stresses. Unlike approaches which use targeted datasets to identify 

putative loci critical for targeted functions (i.e., heat stress response), the robust comparison of 

many datasets would allow both the targeted characterization of gene-gene interactions, but also 

the determination of the variance of those interactions in a robust manner. 

Here, we characterize gene-gene co-expression relationships within, and between, fourteen 

microarray datasets describing gene expression of the model organism Brachypodium distachyon 

under abiotic stress, control, and coordinated circadian growth conditions. We track the co-
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expression relationships between genes, and determine which relationships change in a statistically 

significant fashion between conditions. 

4.1.2 Author Contributions 

Henry Priest conceived and executed all analyses, and wrote the manuscript. 

4.2 Results 
Each of the individual datasets, described in Table 8, was analyzed in an identical way. All datasets 

were compared in an all-versus-all fashion, in which parameters for the sigmoid adjacency 

function of dGCNA were determined, and permutation analysis was performed to identify the 

correct differential adjacency cutoff to utilize for determination of the final elasticity network 

structure. Finally, modular analysis via functional enrichment and promoter analysis for the 

enrichment of short sequences within annotated promoter regions was performed. 

4.2.1 Parameter and Cutoff Calculation 

The appropriate parameters for use in the sigmoid adjacency function were calculated utilizing the 

‘scalefree’ command within dGCNA. This represented 156 sets of parameters (alpha and mu) for 

Experiment Sampling Start (ZT) Intervals (hours) Temperature (C°) Day Length (hours)

High Temp. ZT+2 1, 2, 5, 10, 24 42 16

High Salinity ZT+2 1, 2, 5, 10, 24 22 16

Drought ZT+2 1, 2, 5, 10, 24 22 16

Chilling ZT+2 1, 2, 5, 10, 24 4 16

Control A ZT+2 1, 2, 5, 10, 24 22 16

Control B ZT+2 1, 2, 5, 10, 24 22 16

Control C ZT+2 1, 2, 5, 10, 24 22 16

LDHC ZT+0 every 4 hours 28/12 12

LDHH ZT+0 every 4 hours 28/28 12

LLHC ZT+0 every 4 hours 28/12 12

LDHC Freerun ZT+0 every 4 hours 28 24

LDHH Freerun ZT+0 every 4 hours 28 24

LLHC Freerun ZT+0 every 4 hours 28 24

Table 8. Description of Input Datasets. 
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the adjacency function for all possible comparisons of the thirteen input datasets (one parameter 

set is generated for each of the positive and negative elasticity networks in a single comparison). 

All scale free criteria and adjacency cutoffs utilized for network comparison are available in 

http://www.danforthcenter.org/hpriest/Supplemental_File_9.xlsx 

Supplemental File 10. 

Differential similarity cutoffs were found via the use of dGCNA’s ‘permute’ command. This 

returned a set of 156 differential similarity cutoffs, which are summarized in Figure 10.  

Figure 10. Elasticity Network Parameter and Cutoff Selections A) Heatmap of differential 

similarity cutoff values as determined by permutation of input datasets. Positive values (purples) 

represent cutoffs determined for positive elasticity networks. Negative values (oranges) represent 

cutoffs determined for negative elasticity networks. Diagonal values are zero, as networks were 

not compared to themselves. B) Histogram of the absolute values of all differential similarity 

cutoffs found by dGCNA ‘permute’ command. C) Histogram of values determined by dGCNA 

scalefree command for the alpha parameter of the sigmoid adjacency function. All even values 

on the interval [16,26] inclusive were interrogated. D) Histogram of values determined by 

dGCNA scalefree command for the alpha parameter of the sigmoid adjacency function. All 

values evenly divisible by 0.05 on the interval [0.70,0.95]  inclusive were interrogated. 
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We observed distinct trends in the cutoffs determined for each comparison (Figure 10A). Most 

obviously, the LLHC Free-run (LLHC-FR) dataset has very high cutoffs in almost all comparisons. 

Indeed, in all but one comparison (against the High Salinity dataset), the cutoffs for significant 

elasticity exceeded a differential similarity of 1.5, and resulted in very small networks (see below). 

Comparisons against three abiotic stress datasets, Drought, Chilling, and High Salinity consistently 

yielded the lowest cutoffs. Lower cutoffs are naturally associated with higher network sizes, but 

are also the result of higher overall differences in gene-gene similarity scores on a network-wide 

scale. 

Cutoffs determined by permutation followed a roughly normal distribution, with mean 1.43 

(Figure 10B). A number of cutoffs were determined to be at positive or negative 2, indicating that 

there was no difference between the networks compared that exceeded that which would be 

expected by chance. This also results in an empty network, and in every case in which no 

significant differential similarities could be found, the LLHC-FR dataset was a member of the 

comparison. 

Parameters utilized in the sigmoid function were determined by adherence of the produced network 

to the scale free criteria. Even in cases in which no significant differential similarities were found, 

scale free topology could be achieved in the elasticity networks of the datasets being compared. 

This indicates a possible pitfall of relying solely on scale-free topology in network construction, 

at least in the determination of differential network topology. Values for the alpha parameter were 

evenly distributed around the center of the range tested (Figure 10C). However, values for the mu 
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parameter were heavily biased toward the lower end of the range tested (Figure 10D). This is a 

product of utilizing the lowest parameter found to generate acceptable scale-free topology. 

The cutoffs determined by permutation for statistical significance are identified in the context of 

differential similarity – prior to adjacency transformation by parameters determined to generate 

scale-free topology. Although in previous analyses it appeared that there was a strong relationship, 

in an elasticity context, between scale-free topology and statistically significant edges, in the 

analysis of these datasets, 36/156 adjacency-transformed cutoffs were non-zero, but on the interval 

[-0.1,0.1], indicating that scale free topology criteria identified adjacency parameters which were 

very close to those identified by permutation analysis. A further 10 cutoffs were found to be equal 

to zero after adjacency transformation, indicating that the adjacency transform was a more strict 

determination of edge presence than permutation analysis. 26 additional adjacency-transformed 

cutoffs were found, whose absolute values, A, satisfied 1.9 < A < 2. These cutoffs are very high, 

which indicates that the parameters for the sigmoid adjacency function were much more lenient 

than the cutoffs determined by permutation. There does not appear to be a strong relationship, in 

comparisons between the 13 datasets analyzed here, between statistical significance of differential 

similarity, and scale-free topology generated by a sigmoid adjacency function.  

4.2.2 Distribution of Network Sizes 

A strong inverse correlation (r2 of 0.64) between the value of differential adjacency applied, and 

the size of the resultant network. In other words, as cutoffs closer and closer to 2, or -2, are required 

for statistical significance, the networks grow smaller and smaller, as expected.  

When broken into quartiles by a ranking of the number of edges present in the calculated total 

elasticity network, clear trends appear. The bottom quartile of networks (containing 20 total 

networks) identified by application of significance cutoffs contained very few edges. The largest 
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network in this group comprised only 35,844 total edges. Seven of these 20 networks contained 

no edges at all in one or both of the positive- or negative-elasticity subnetworks. This group also 

contained ten of thirteen possible comparisons of the LLHC Free-run (LLHC-FR) dataset. Six of 

the remaining 10 non-LLHC-FR comparisons involved comparisons between stress-experiment 

control data and Diurnal/Circadian experiments, or between replicates of stress-experiment control 

data. Four comparisons in this lowest quartile had very few edges, but did not have a readily 

available explanation: High Temperature stress against LDHC-FR (12 total edges), LDHC against 

LLHC (27 total edges), LDHC-FR against LDHH (77 total edges), and LDHC-FR against LLHC 

(31,805 total edges). 

The top quartile represents twenty very large networks, ranging from 17.1 million edges (Drought 

vs LDHC-FR) to 55.2 million edges (Drought vs Control B). Of these, seventeen networks involve 

a comparison against the High-Salinity or Drought datasets. 

In order to determine if the apparent disparity in edge-set sizes in elasticity networks relating to 

particular datasets were distributed in a non-random way, each group of twelve total elasticity 

networks associated with each dataset were analyzed via the Wilcoxon signed-rank test. Five of 

thirteen datasets tended to give rise to elasticity networks that were significantly different than the 

expectation: Drought, High-Salinity, and Cold (maximum p-value, p < 0.035). These three datasets 

gave rise to networks larger than expected. The LDHH-FR dataset also tended to generate large 

elasticity networks (p-value < 0.0069). All other datasets gave rise to elasticity networks whose 

size did not differ significantly from the median, except for LLHC-FR, which gave rise to 

exceedingly small networks (p-value < 0.0031).   
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All significant elastic edge set sizes, positive, negative, and total, are available in Supplemental 

File 11. 

4.2.3 Probe-set Stability Analysis 

We wished to determine if we could utilize the connectivity of individual probe-sets as a metric to 

determine ‘stability’ of those probe-sets in multiple pairwise comparisons between network-scale 

datasets. To this end, we calculated the connectivity of all genes in all pairwise comparisons. 

Within the dGCNA algorithm, the parameters identified for the sigmoid adjacency function are 

selected based on their generation of a scale-free topology in the resultant positive and negative 

elasticity networks. Therefore, by design, most genes have few connections, and few genes have 

many connections. Within each pairwise comparison, all individual probe-sets were ranked to 

account for the highly non-normal distribution of probe-set connectivity scores. These ranks enable 

us to utilized the rank-percentile of each probeset’s connectivity as a connectivity score. 

We applied this method of probe-set scoring to sets of genes identified via individual network 

analysis to be enriched for particular functions of interest. We wished to determine if taking a 

multiple-comparison approach enriched the biological understanding or information underlying a 

particular grouping of genes. 

In our previous analysis of abiotic stress response in Brachypodium, a cluster of genes (‘Module 

02’, Figure 4 and Figure 5), was down-regulated in response to abiotic stress. By over-enrichment 

analysis of Gene-Ontology terms, this module was found to be substantially enriched for many 

functions related to cell cycle and DNA replication, as well as cell wall biogenesis, growth, and 

metabolism. Matos et al., later found that by removing thermocycles from the growth regimen 

entraining the circadian clock, four week old Brachypodium plants no longer displayed rhythmic 

growth [145].  
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Figure 11. Gene-set Stability Analysis. Heatmap of per-probe-set rank scores for genes within 

Module 02 of abiotic stress response modular analysis. Module 02 is significantly enriched for 

genes related to DNA replication, cell wall biogenesis, the cell cycle, carbon metabolism, and 

growth. Comparison of LDHC and LDHH networks identified very high levels of elasticity in 

probe-sets aligning to genes of Module 02. Comparisons against LLHC, LLHC-FR, Control C not 

shown due to small network sizes (<120k edges, or average 4 connections/node). 

We identified the probe-sets relating to set of genes contained in Module 02, and plotted their 

connectivity scores in elasticity networks derived from comparisons of the fully driven diurnal 

dataset against all other datasets (Figure 11A). A substantial portion of genes displayed very high 

elasticity in the comparison of LDHC against the LDHH dataset, which lacked thermocycles, and 

the high-salinity stress dataset. Of the total 976 gene loci present in Module 02, 878 gene loci were 

associated with at least one probe-set which demonstrated any elasticity between the datasets at 

all. Of these, 437 loci were in the top 15%, in terms of connectivity score, in the LDHC vs LDHH 

comparison, and/or the LDHC vs high salinity stress comparison. These genes comprise 44% of 

the original Module 02, and are enriched for largely the same GO terms as the original analysis 

identified. Of these high-elasticity genes, 182 (41.6%, 182/437) were found to be in the top 15% 
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of connectivity scores only in either the LDHC vs LDHH comparison, or the LDHC vs high-

salinity stress comparison, but no other comparison. These genes were found to be enriched for 

GO terms relating exclusively to DNA replication and organization, microtubules, and the cell 

cycle. The complete list of all GO terms found to be statistically enriched in this set of genes is 

included in Error! Not a valid bookmark self-reference.. The promoters of these gene loci were 

enriched for forty different purine-rich elements (i.e., ‘AGAG’, and variants thereof). Despite the 

obvious diurnal expression pattern (Figure 3A), there was no enrichment for sequence motifs 

related to or resembling known circadian regulatory elements. 

Table 9. Statistically enriched Gene Ontology terms of stress-responsive genes which experience 

elasticity under loss of thermocycles, or high salinity stress. 

 

Gene Ontology Term P-value FDR-corrected P-value Description

GO:0007018 6.40E-08 0.00010 microtubule-based movement

GO:0006928 7.20E-08 0.00010 cellular component movement

GO:0007017 1.90E-07 0.00017 microtubule-based process

GO:0034622 8.90E-06 0.00445 cellular macromolecular complex assembly

GO:0065003 9.80E-06 0.00445 macromolecular complex assembly

GO:0044085 1.60E-05 0.00545 cellular component biogenesis

GO:0006259 2.00E-05 0.00570 DNA metabolic process

GO:0034621 2.10E-05 0.00570 cellular macromolecular complex subunit organization

GO:0043933 2.30E-05 0.00570 macromolecular complex subunit organization

GO:0006270 4.60E-05 0.00964 DNA replication initiation

GO:0022607 7.40E-05 0.01344 cellular component assembly

GO:0016043 0.00017 0.02894 cellular component organization

GO:0006996 0.00021 0.03365 organelle organization

GO:0031497 0.00029 0.03838 chromatin assembly

GO:0034728 0.00029 0.03838 nucleosome organization

GO:0006334 0.00029 0.03838 nucleosome assembly

GO:0065004 0.00031 0.03838 protein-DNA complex assembly

GO:0006333 0.00035 0.03973 chromatin assembly or disassembly

GO:0009834 0.00035 0.03973 secondary cell wall biogenesis

GO:0006323 0.00038 0.04140 DNA packaging

GO:0051258 0.0004 0.04191 protein polymerization

GO:0007049 0.00048 0.04843 cell cycle
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In addition, this grouping of elastic genes were characterized by a unique profile of expression. In 

visualizing the expression profile of these genes in both the LDHC and LDHH conditions, a severe 

shift in expression pattern is apparent (Figure 12). Under normal driven conditions (LDHC, 

Figure 12A), the genes in question display a characteristic diurnal expression pattern, reaching 

their maximum expression peak in the four to eight hours preceding dawn. These genes undergo 

positive elasticity, and a general un-coordination in the gene set’s expression profile can also be 

seen in Figure 12A. Once thermocycles are removed (LDHH, Figure 12B), the gene set’s 

expression pattern becomes both highly correlated and also strongly a-typical. In many cases of 

mis-regulation or mis-expression of circadian factors, the circadian oscillator rapidly damps until 

no oscillation can be observed [128,146]. Alternatively, small increases or decreases in the period 

of oscillation are also observed [147]. In this case, rapid changes in expression is observed among 

Figure 12. Expression patterns of abiotic-stress responsive, cell-cycle related genes 

experiencing positive elasticity under loss of thermocycles. A) Genes display a roughly 

diurnal expression pattern under normal, LDHC conditions. B) The same set of genes is 

expressed in a highly coordinated but atypical fashion under absence of thermocycles. 

Expression values are mean-normalized non-log RMA intensity values. ZT numbers on x-axis 

denote zeitgeber time, number of hours since onset of dawn. All light periods are twelve hours 

in length. 

 



98 

 

this set of high elasticity genes, in which the genes oscillate between peak and trough expression 

levels over repeated periods of four hours. 

4.2.4 Prediction of Transcription Factor Binding Substrates 

We wished to determine if network topology, or differential network topology, could be utilized 

to predict the interaction of DNA-binding proteins with their target substrates. We first theorized 

that transcription factors which are co-modular with other genes might be predicted to bind the 

promoters of those genes. The five transcription factors present in Module 07 of the original abiotic 

stress network were assayed in an all-versus-all approach against the promoters of five of the top 

ten highest connectivity gene loci in the same module. In two separate experimental replicates, 14 

of the 25 tested interactions gave statistically significant increases in luciferase activity in the 

presence of the transcription-factor containing bait construct (Figure 13). In order to determine if 

these interactions could be predicted by differential network analysis, each elasticity network was 

mined for the all 25 of the possible edges depicted in Figure 4. The edge-values obtained were 

segregated into two groups, those that represented a positive interaction result from the yeast 1-

hybrid assays, and those that represented a negative result. The Wilcoxon ranked sum test was 

utilized to determine if the two populations of edge values differed greatly. Two possible 

hypotheses were identified. Either, by virtue of their interaction on the molecular level, the 

transcription factor-target gene interactions would be more stable (i.e., lower overall elasticity), 

or, the ability of the transcription factor to bind the target promoters under certain conditions would 

cause the interactions to be more elastic. We therefore performed a two-way test, in which the null 

hypothesis is that the two populations of edge strengths do not differ, and the alternative hypothesis 

is that the two populations differ. This test returned a p-value of 0.034, and analysis of the 
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populations indicates that the strengths of the positive interactions had higher elasticity values than 

those of the negative interactions.  

 

4.3 Discussion 
Gene expression analysis has progressed through several complete transformations. Now, a wealth 

of gene expression data is available publicly on a multitude of species. The analysis of this data, 

on a large scale is a difficult challenge. We have taken an approach which relies on prior 

knowledge of the conditions that generated the datasets in question, and have conducted an in-

silico experiment to determine if a statistically robust network comparison approach will yield 

informative results as to the datasets themselves, the gene loci and transcripts they represent, the 

relationships between those loci, and how those relationships depend on the conditions the 

organism inhabits.  

Figure 13. Interaction network of tested transcription factors and putative target promoters. 

Each interaction between each transcription factor (green hexagons) and putative target promoters 

(grey rectangles) are supported by two independent experimental replicates. Elasticity network 

interactions of the edges represented by blue arrows have higher elasticity than null interactions 

(non-connected TF/target gene pairs, p-value < 0.034, MWW test). 
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4.3.1 Elasticity networks differ greatly in size 

Differential network analysis via dGCNA enabled a detailed understanding of the datasets, and the 

networks they generate, as entire entities to themselves. Although all individual arrays and datasets 

passed quality control and filtering checks (see methods), it is quite clear that the biological 

experiment underlying LLHC-FR had serious underlying issues. It is probable at this point the 

issues lay in the execution of the experiment, as each step of RNA extraction, preparation, array 

hybridization, and quality control of arrays did not show any problems. While a conclusion may 

have been drawn in the context of the five other circadian experiments that the lack of light cycles 

combined with the free-run conditions led to no rhythmic gene expression (as prior analyses, not 

shown here, have indicated), this analysis indicates that no significant differences can be 

established with any other datasets consisting of an entirely different underlying structure. This 

probably indicates an underlying problem with the dataset, rather than a significant biological 

signal of interest. 

An alternative interpretation of very small network sizes in a given pairwise comparison is that the 

two networks are highly similar in structure. In the extreme case, if a comparison between two 

identical networks were made, a null network would result. Thus, small networks are not only a 

product of underlying problems in the dataset. Distinguishing this from the above can be done by 

comparisons against many different datasets (as done here) or through construction of an 

individual network utilizing a single dataset (i.e., to determine if co-expression signals exist 

therein). 

The number of identified significant elastic network edges differed greatly between individual 

comparisons. In general, this can be interpreted to represent the strength of the underlying 

biological differences between the experiments in question. Seventeen of the top twenty 
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comparisons, in terms of network size, involved a stress condition, in each case either high-salinity 

or drought. Each of these abiotic stress conditions, in the original published analysis, identified a 

large number of differentially expressed genes, with more than 9000 genes differentially expressed 

under drought stress, nearly a third of all annotated genes in the Brachypodium genome. However, 

although the drought vs. control B comparison yielded a network of over 50 million edges, the 

control A vs control B comparison yielded a network of over one million edges. Despite this huge 

difference in size, this indicates substantial underlying changes in gene co-expression between 

control experiments.  

Better than sample to sample correlations, and better than sample-correlation based clustering, 

comparisons of the emergent networks of array datasets allow for a fine-grained, edge-wise 

comparison of differences between datasets that generates an overall, dataset level comparison 

which illustrates the level of difference in gene relationships between large, sometimes unwieldy 

datasets.  

4.3.2 Methods of identification of significant elasticity  

The dGCNA java software supplies two methods for the identification of elasticity within a 

network comparison. In the original manuscript describing dGCNA, the cutoffs determined by 

permutation of input datasets, and by identification of scale-free topology were highly similar. It 

was of significant interest to determine if this phenomenon held true for the comparisons 

performed here. If scale-free elasticity networks also tended to consist of statistically significant 

edges, it would represent a convergence of statistics, biological signal, and network topography 

that is rarely found in computational science. 

Naturally, as shown in Figure 10, there does not seem to be any major correlation between the 

networks generated by adjacency parameters which yield scale-free networks, and the networks 
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generated by identification of statistically significant edges. Indeed, some networks had numerous 

edges present in a scale-free context, none of which were found to be statistically significant. 

Utilizing a generous classification of ‘similar’ cutoffs, in which the adjacency-transformed cutoff 

for statistical significance was less than 0.1 differential adjacency, only 46 of 156 total possible 

cutoffs were similar (29.4%). 

4.3.3 Interaction of Disparate Datasets to Enrich Biological Signal 

Originally identified in analysis of abiotic stress responses in Brachypodium (Figure 3), Module 

02 is substantially enriched for genes relating to DNA replication, the cell cycle, DNA 

organization, growth, cell wall biogenesis, and carbon metabolism. The genes present in this 

module were compared by their connectivity scores. This analysis identified a large subset of genes 

which have significant elasticity between datasets derived from fully-driven, diurnal LDHC 

conditions, and from similar conditions which lack thermocycles (LDHH), as well as under high-

salinity stress. By identifying 182 genes which undergo significant elasticity only between LDHC 

and LDHH, or LDHC and high-salinity (Figure 11), GO term enrichment analysis identified 

enrichment among terms relating only to DNA replication, organization, and the cell cycle. GO 

terms associated with growth and carbon metabolism were not present. The behavior of 

Brachypodium under loss of thermocycles has previously been studied. Matos et al. [145] found 

via high-throughput plant imaging analysis that rhythmic growth in Brachypodium was dependent 

primarily on the presence of thermocycles. The authors further concluded from microscopy that 

changes in growth rate were not due to either cell division or cell expansion changes alone.  

In Handakumbura et al., it was found that in either of two loss-of-function-mutants for cellulose 

synthase genes (BdCESA4, BdCESA7), abnormal cell walls were generated, with less thick cell 

walls of both metaxylem and interfascicular fibers, as well as small stem area [148]. Both of these 
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loci (Bradi3g28350 and Bradi4g30540, respectively) were associated with probesets that exhibited 

high elasticity in comparisons of abiotic stress datasets, as well as comparisons between stress and 

control datasets. Both loci were significantly more elastic in comparisons involving the LDHH 

dataset than they were in comparisons involving the LLHC dataset (Mann-Whitney-Wilcoxon, p-

value<0.0006783 in both cases). It is evident that the incorporation and direct comparison of 

abiotic stress-related data to diurnal and circadian data yields strong biological signal. 

An especially fascinating aspect of the set of 182 genes identified as highly elastic only between 

LDHC and LDHH, and between LDHC and high-salinity stress, is that these genes are decided not 

elastic between LDHC and drought stress. The responses of Brachypodium distachyon to drought 

and high-salinity stresses were highly similar overall (Figure 5). The genes captured as part of 

module 05 show strong down-regulation in response to drought, but a less strong response under 

high salinity. This could be taken to suggest that the response to drought seen in genes of module 

05 does not decrease those genes’ co-expression relationships that they possess under LDHC. 

However, the elasticity track of module 05 genes under high and low temperature stress is similar 

to that of drought, but their expression response under stress is more similar to that of high-salinity 

(Figure 11). There are very strong regulatory connections between the circadian clock, and abiotic 

stress responses in plants [129]. Given the major differences between the circadian system in 

Brachypodium (e.g., being much more strongly affected by thermocycles than by photocycles), 

the existence of links between various abiotic stresses should be examined more closely, and the 

analyses performed here are an excellent source of hypotheses. 

Our analysis, which derives from a gene module identified to regulate cell growth and division 

under abiotic stress (conditions which generate small, sickly plants in the main), and enriched via 

the comparison of LDHC- and LDHH-derived datasets has identified a set of 182 genes. These 
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genes are both responsive to stress and present in a cell-cycle enriched module, and they experience 

uniquely high elasticity in their gene-gene co-expression relationships upon loss of thermocycles 

(Figure 11). Further, this reduced gene set is not statistically enriched for functional terms relating 

to carbon metabolism or cell growth (We identified the probe-sets relating to set of genes contained 

in Module 02, and plotted their connectivity scores in elasticity networks derived from 

comparisons of the fully driven diurnal dataset against all other datasets (Figure 11A). A 

substantial portion of genes displayed very high elasticity in the comparison of LDHC against the 

LDHH dataset, which lacked thermocycles, and the high-salinity stress dataset. Of the total 976 

gene loci present in Module 02, 878 gene loci were associated with at least one probe-set which 

demonstrated any elasticity between the datasets at all. Of these, 437 loci were in the top 15%, in 

terms of connectivity score, in the LDHC vs LDHH comparison, and/or the LDHC vs high salinity 

stress comparison. These genes comprise 44% of the original Module 02, and are enriched for 

largely the same GO terms as the original analysis identified. Of these high-elasticity genes, 182 

(41.6%, 182/437) were found to be in the top 15% of connectivity scores only in either the LDHC 

vs LDHH comparison, or the LDHC vs high-salinity stress comparison, but no other comparison. 

These genes were found to be enriched for GO terms relating exclusively to DNA replication and 

organization, microtubules, and the cell cycle. The complete list of all GO terms found to be 

statistically enriched in this set of genes is included in Error! Not a valid bookmark self-reference.. 

The promoters of these gene loci were enriched for forty different purine-rich elements (i.e., 

‘AGAG’, and variants thereof). Despite the obvious diurnal expression pattern (Figure 3A), there 

was no enrichment for sequence motifs related to or resembling known circadian regulatory 

elements. 
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Table 9). The expression patterns of these genes after loss of thermocycles is also highly atypical 

(Figure 12B), which indicates an interesting avenue of investigation may lie in the identification 

of regulatory motifs that drive such a pattern. The promoters analyzed here identified a large 

number of purine-rich sequences, which have been linked to transcript stability and transcriptional 

control [149,150]. Vaughn et al., in particular found that transcripts containing purine-rich 

elements in their 5’ UTR region had a half-life of 9.6 hours, far greater than the average half-life 

of 3.8 hours. This temporal relation, in combination with the expression patterns of these genes 

under absence of thermocycles, which does not persist under loss of photocycles or entirely free-

running conditions makes the regulatory circuitry around this gene set of great interest. 

4.3.4 Relationship between network properties and molecular activity of 

transcription factor loci 

Molecular interactions between transcription factors and their substrate DNA sequence motifs has 

been an area of active study for the last half-century [151]. The prediction of these interactions is 

a difficult problem in plant species, as plants as a whole are not highly amenable to transformation, 

can have large or complex genomes, and are utilized in research as whole organisms rather than in 

cell culture. These factors make the acquisition of ultra-high quality transcriptomic datasets a 

difficult task, which makes the application of rigorous computational learning or prediction 

techniques perfected in bacterial or cell culture systems difficult. 

Development of high-throughput sequencing applications in gene expression profiling has enabled 

the rapid generation of expression data in a wide variety of plant systems, previously an impossible 

task utilizing microarray technology. Computational and bioinformatics methods appropriate to 

analyzing these datasets for the prediction of molecular interactions based on these types of data 

are an urgent need in plant science. 
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Here, five transcription factors were assayed for DNA-binding activity against 5 native promoter 

regions, all from Brachypodium distachyon. The transcription factor gene loci and the putative 

target promoter sequences were all drawn from the same gene module (Module 02, Figure 3). 

Yeast 1-Hybrid assays identified 14 interactions in two biological replicates (Figure 13). Analysis 

of the connectivity scores of the transcription factor loci did not reveal any results of particular 

interest. The transcription factors are not among those genes which experience extremely high 

elasticity, nor are they less elastic, than other gene loci on the whole. There was no statistically 

significant correlation between the connectivity scores of the putative binding targets and their 

cognate TFs across all pairwise comparisons of network data. Except in the same datasets that 

generated their co-modularity (i.e., high-salinity and drought against control experiments), there 

was no tendency for the gene loci to be co-modular. In short, there did not seem to be an enrichment 

on the network or modular levels for the positive molecular interactions, as verified by yeast 1-

hybrid analysis. 

However, analysis of edge-wise connectivity between TF loci and target promoters which interact 

on in the yeast 1-hybrid assay was significantly altered from those interactions which were found 

to not interact. The elasticity in adjacency scores between TF loci and their Y1H-identified 

promoter substrates was higher than those TF/target pairings found not to interact, at a statistically 

significant level (p-value < 0.034, MWW test). The signal found here is not particularly strong, 

and certainly does not indicate that TF/target gene elasticity can be used in exactly this manner, 

on a global transcriptome data level, to predict TF/target interactions. However, there may be an 

effect on TF/target elasticity for those pairs that truly interact in vivo. This certainly warrants 

further study with targeted expression datasets and tagged transcription factor proteins allowing 

verification of targets via immunoprecipitation followed by sequencing. This result, combined 
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with that previously found in the analysis of an Arabidopsis LHY overexpression line (Table 7) 

strongly suggest molecular interactions between specific transcription factor and target gene loci 

may be an identifiable signal in whole-transcriptome datasets. 

4.4 Conclusion 
Comparative analysis of network data structures carry strong biological signals, even when 

comparing datasets from disparate experiments and conditions. However, final hypotheses that 

result from this type of analysis are still highly dependent on underlying experimental data, 

execution of experiments, biological rationales, and sources of data. No over-arching signals or 

hypotheses could be easily drawn without heavy reliance on biological understanding of regulatory 

systems and previous biological results. Node connectivity remains an informative measure of 

node importance. Signals within an all-by-all pairwise elasticity analysis context could be 

discerned on a whole network, gene-group (i.e., modular), and single-gene level. More 

development and experimentation must be conducted to determine if some detected biological 

signals are truly indicative of molecular function.  

Fine-grained comparison of large-scale data sets of the nature executed here will become more 

and more necessary, as data is generated at an ever increasing rate. To not incorporate all available 

data across a particular plant system is a waste, of both the original data and the effort to warehouse 

the datasets in a rigorous manner. The well-reasoned and well-executed integration of a large 

number of disparate datasets can provide insight into gene function, and the variation of gene-to-

gene relatedness across a multitude of environmental conditions, tissues, developmental stages, 

and circadian cycles. 
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4.5 Methods 

4.5.1 Plant Growth, Microarray Dataset Generation and Normalization 

Microarray datasets describing gene expression in Brachypodium distachyon were obtained from 

two accessions available in http://www.plexdb.org/: BD1, and BD2. Affymetrix Microarrays (chip 

BradiAR1b520742)  were quality controlled utilizing the processes described in [98]. Collectively, 

the quality-controlled dataset comprises thirteen individual experiments – one entire experiment 

(high-light stress) was discarded due to pervasive quality-control issues. A single microarray in 

the heat-stress experiment was also discarded.  

The BD2 dataset contains 104 microarrays grouped into 7 experiments, which describe 

independent applications of heat, drought, high salinity, and chilling stress, along with three 

independent control experiments, consisting of un-treated wild-type. These experiments were 

sampled in an asymmetric time-course design, with time-points at 1-, 2-, 5-, 10- and 24-hours after 

onset of stress conditions. Each time-point was sampled in biological triplicate [69]. 

The BD1 dataset contains 78 microarrays, grouped into six experiments. These microarrays 

collectively describe a set of circadian/diurnal time-courses. Brachypodium distachyon Bd21-0 

plants were grown under photo/thermo-cycles (LDHC), photo-cycles (LDHH), or thermocycles 

alone (LLHC), for twenty one days. 

Over a forty-eight hour period, whole aerial tissues of three week old individual Brachypodium 

distachyon accession Bd21-0 plants were sampled every four hours. Three different light and 

temperature conditions were applied for at least one week prior to the beginning of sampling, to 

entrain the circadian system. These conditions consisted of thermo-cycles (LLHC, 12 hours 28°C, 

12 hours 12°C, constant light), photo-cycles (LDHH, 12 hours light, 12 hours dark, constant 28°C) 

http://www.plexdb.org/
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and photo/thermo-cycles (LDHC, 12 hours light with 28°C, 12 hours dark with 12°C). Light 

intensity was set to 1000 μmol m-2s-1. Relative humidity was set to 50%. All plants were grown in 

a Conviron PGR 15 growth chamber. After the driven experiments were complete, remaining 

plants were placed under constant conditions (LLHH, utilizing the same light and temperature 

regimen above), for 24 hours. Following this spacer, plants were sampled in exactly the same 

manner, to produce three circadian time-courses, which we refer to as “free-run”, or LDHC-FR, 

LDHH-FR, and LLHC-FR. All time-courses consist of thirteen time-points.  

Leaf tissue preparation and RNA extraction was performed as described in [97]. RNA preparation, 

hybridization, chip scanning and QC were performed as described [98]. Specifically, A 

GeneChip® Fluidics Station 450 was used for hybridization, and hybridized arrays were scanned 

utilizing a GeneChip® Scanner 3000. Quality control was performed utilizing the standard 

procedure described within the Affymetrix protocols (Affymetrix GeneChip® Expression Analysis 

Technical Manual, 701021 Rev. 5; http://www.affymetrix.com). All molecular work was 

performed within the Oregon State University Center for Genome Research and Bioinformatics, 

Central Service Laboratory.  

All microarray datasets included here were normalized as a set, utilizing the Robust Multi-array 

Average algorithm [70]. This algorithm was implemented in the Affymetrix Power Tools software 

package 

(http://www.affymetrix.com/partners_programs/programs/developer/tools/powertools.affx). The 

apt-probeset-summarize tool, version 1.15.0, also from Affymetrix, was used to summarize 

expression for each probeset. 

http://www.affymetrix.com/
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4.5.2 Probeset inclusion criteria 

All probesets were included, provided they satisfy the following criteria. In at least one of the 

thirteen included datasets, the probeset must have 80% of its total expression values exceeding a 

log2 RMA value of 7. This cutoff is explicitly chosen to be exceedingly lenient to allow probesets 

which are rarely expressed to be included, even if they are only expressed in a single experiment. 

The use of a comparative approach, statistical testing for differential similarity, and application of 

network topology criterion will limit nonsense signal created by inclusion of non-interesting 

probesets in certain datasets. These criteria resulted in an overall gene expression dataset of 182 

data points describing a total of 30,993 individual microarray probesets. Some probesets describe 

the sense, and anti-sense strand of gene models included in the Brachypodium distachyon version 

1.2 genome. However, these gene models are based on predictions, and do not yet incorporate data 

from recently available, strand-specific libraries. We therefore keep all included sense and anti-

sense probesets which are co-genic as separate objects, as either could correctly describe the 

behavior of the gene locus in question. 

4.5.3 Network Comparison 

Network comparison between each possible pairwise combination of the input datasets was also 

completed using the dGCNA algorithm. dGCNA applies the scale-free topology criterion 

described above to identify proper values for use within a sigmoid adjacency function to create 

differential gene co-expression networks. The dGCNA command ‘scalefree’ was utilized along 

with the parameters: ‘aL’ = 16, ‘aH’ = 26, ‘mL’ = 0.7, ‘mH’ = 0.95, to determine proper parameters 

for alpha and mu within the sigmoid adjacency function. For these network comparisons, the 

minimum mu and alpha which generate a network possessing a correlation criterion greater than 

0.8 and a slope less than -0.8 was selected. 
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In addition, dGCNA provides the ability to determine statistically significant differential 

adjacencies via the use of permutations of the input dataset. The ‘permute’ command was utilized, 

with 20 permutations, using the sigmoid adjacency function parameters identified above, to 

determine the statistical significance of each differential adjacency identified. All differential 

adjacencies identified which did not have a permutation-estimated false discovery rate of 0.05 or 

better were masked. 

Finally, for each comparison, the final comparison engine was run (using the ‘compare’ 

command), utilizing the cutoffs identified above. 

4.5.4 Yeast 1-Hybrid Assays 

Prey constructs containing the targeted promoter sequences were grown in large liquid cultures. 

YU (MATα, tryptophan selection) yeast were utilized to harbor the prey construct. Each cloned 

promoter construct contains the 1000nt directly upstream of either the annotated transcription start 

site, or start codon, if no transcription start site is annotated. The promoter sequence of interest is 

cloned directly upstream of a luciferase reporter gene. Bait constructs containing the CDS of the 

transcription factor of interest are transformed into YM4271 (MATa, uracil selection). Bait and 

prey construct-containing yeast strains were co-incubated for 24 hours, incubated on diploid 

growth media (double selection, -UW) for 24 hours, and finally grown on complete media for a 

further 24 hours. Cultures are re-suspended in PBS and assayed within a clear-bottomed 384 well 

plate, via addition of the luciferin substrate coelenterazine. 

Each promoter-TF interaction was assayed in 96 replicates. Activity was normalized against an 

empty-vector control bait. A separate analysis was conducted utilizing a non-activating reporter 

gene construct, with identical results. Luciferase activities falling more than 1.5*IQR from the 

media were excluded, for null, TF-promoter, and non-activating interactions. The TF-promoter 
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activities were compared against the null and non-activating promoter activities via the non-

parametric Mann-Whitney-Wilcoxon test. Only those interactions which were replicated in two 

separate experimental replicates were identified as positive. 

4.5.5 Promoter Analysis 

Promoter content analysis was completed utilizing the Element software [21].  Element analyzes 

a set of input promoter sequences for over-represented short sequences (5-8 nucleotides in length), 

by comparing the observed occurrence of each such short sequence in the input set, against the 

background set of all promoters present in a given genome. All statistical values generated by 

Element are corrected for false discovery. 

4.5.6 Gene Ontology Analysis 

The ‘topGO’ R package, available via Bioconductor [125,126] was utilized to test gene groups for 

over-representation of gene ontology terms. All p-values generated were corrected for multiple 

comparisons utilizing the R core function ‘p.adjust’, utilizing the ‘holm’ method for false 

discovery correction. 
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HDP conceived and conducted the analysis. HDP wrote the manuscript and made TF/target 
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Future Directions 
The generation of transgenic plants is always a difficult process. Even in well-studied systems, 

plant transformation efficiencies are low, and turn-around times are long [152–154]. Further, most 

transgenic cassettes are inserted at random within the genome and many methods of gene knock-

down or knock-out are imprecise, incomplete, or have off-target effects. Underlying genetic 

differences that govern transformation efficiency can vary so strongly that individual accessions 

within a species may at times be completely intractable targets of transformation. In addition, the 

generation time in plant systems is often measured in weeks, rather than hours or days, making the 

cultivation and propagation of plant systems a lengthy and expensive process. In short, perturbing 

plant systems in a directed way is difficult, which makes many of the approaches that have been 

so powerful in prokaryotic and simple eukaryotes impossible for plant species that are not research 

models [155,156]. 

These factors combine to constrain many plant science research programs to working within the 

naturally occurring genetic variation of plant populations. Plant species are incredibly diverse. For 

example, the C4 photosynthesis system – a core metabolic system responsible for energy harvesting 

– has  independently evolved more than 45 times [157]. The genomes of domesticated varieties of 

crop plants (i.e., Wheat, Triticum aestivum, an allohexaploid, AABBDD, or Strawberry, Fragaria 

vesca, an octoploid [159,160]) are much more complex than research models. In all but the most 

well developed model systems, these factors all drive plant computational biology, on the whole, 

to be an engine for high-quality predictive analysis.  

5.1 Data Mining & Machine Learning 
A wealth of data already exists about many plant species, even crops of high importance to 

agriculture. More than 9,000 individual samples exist in the Gene Expression Omnibus for Zea 
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mays, and more than 6,200 exist for Glycine max [161]. These data are underutilized, however 

ample evidence has shown that they cannot be simply analyzed in a straightforward manner to 

produce any intelligible results (Figure 8, [134]). Further development of the methods depicted in 

Gibson et al., and in Section 3, in combination with more rigorous machine learning techniques 

will leverage existing datasets in agriculturally important crops to identify answers to important 

questions. The results shown in Section 4 rely on an all-pairwise comparison schema of GCNs and 

reveal that understanding of biological signal is gained thereby. However, this is a cumbersome 

method of analysis when extended to any number of datasets. While it is clear that the differences 

between edgewise co-expression values hold useful information, individual edge values can be 

compared among a great many networks without conducting individual pairwise analyses. This is 

akin to analyzing the variance of gene expression across multiple samples, rather than the 

generation of differential expression values between a pair of such samples. The assembly of a 

many-dataset, edge-wise co-expression variance matrix will enable the identification of gene-gene 

relationships which co-vary in response to stress. By identifying those relationships known to exist 

on the molecular level (for example, between TFs and genes whose transcription is driven by the 

TF’s target promoter), a supervised learning approach may shed light on the relationship between 

co-expression variance and molecular interactions. 

A developing plant is a complex mosaic of tissue types, regulatory networks, intercellular 

signaling, metabolic cycles and stress responses. Each plant cell is able to modulate the state of its 

gene expression infrastructure in response to all of the above environments and stimuli. Gene-gene 

relationships change in drastic ways constantly. The ability to predict the tissues in which a 

particular gene pair relationship will exist will greatly identify the potential for a targeted 

perturbation to have unintended side effects. For example, if a TF and a target gene are co-
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expressed in a multitude of tissues, it may be the case that manipulating the expression of that TF 

locus will also affect the TF’s target gene in those tissues. If, however, the co-expression 

relationship of the TF and target gene is isolated to a single tissue type, there may be an expectation 

that the impact of perturbations on the TF’s protein level may only affect that specific target in 

that cell type. 

The targeted analysis of datasets through machine learning and/or unsupervised data mining 

techniques will allow for the establishment of a gene co-expression ‘galaxy’, or collection of 

condition-specific gene co-expression networks. The appreciation of the elasticity of gene-gene 

relationships between conditions, or between networks, will allow for the understanding of gene 

relationships on an extremely fine-grained level. 

The identification of stable gene-gene relationships across conditional subsets conversely requires 

the identification of highly unstable gene-gene relationships. These may be critical to normal 

function of plant systems, but represent poor targets for manipulation at the genetic level. 

Collectively, the assignation of gene-gene relationships as stable and non-stable across 

developmental stage, tissue, and environmental condition will allow high-quality predictions to be 

made regarding effects of transgenic perturbations, approaching an overarching goal of plant 

science, predicting phenotype as a product of genetic, epigenetic and environmental effects.  

5.2 Integration of Orthogonal Datasets 
The integration of multiple data types has been proceeding in both plant and animal systems for 

some time. This integration, for example, of quantitative trait loci, gene co-expression networks, 

and protein-protein interaction maps have been successful to varying degrees [142–144,164–166]. 

However these approaches often do not take a detailed approach towards integration of these data 
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into a cohesive model. AraNet, for example, provides many data-types alongside one another, and 

does not approach gene expression analysis in the most fine-grained way. QTL identification is, 

by its nature, dependent on a great many factors, including population structures, the experimental 

design, and the environment or geographic location in which the plants are grown [167]. Especially 

as plants with fewer genomic resources or historical molecular characterization are studied, a more 

direct integration of genetic variation must be developed. Predicted regulatory effects of QTLs 

found in TF or long non-coding RNAs must be attributed to observed single nucleotide 

polymorphisms or insertions and deletions. 

High throughput phenotyping platforms of multiple kinds are becoming more and more 

widespread, either through the installation of large controlled environment imaging platforms, 

field-deployed gantry and/or drone systems, or cheap, home-made optical sensor arrays can 

capture longitudinal data from plants through their growing cycle with reduced human interaction 

(citations). These systems will allow for the digitization of plant phenotypes that were previously 

categorically notated. For example, biotic infections can be assessed by the severity of surface 

lesions and necrotic areas, rather than scored in binary or gross severity levels. Plant height, growth 

rate, and color can be recorded on very large numbers of plants with high accuracy and low labor. 

The integration of phenotypic data with co-expression networks – especially on the metabolic level 

– has been a developing area of GCNA for some time [163]. The wide array of phenotypic data 

afforded by the flourishing field of high-throughput phenotyping will greatly enrich the utility of 

GCNs. 

In a similar manner to optical phenotyping, the size, and cost of small environmental sensors are 

decreasing rapidly. Present in the idea of ‘precision farming’ but also in the most state-of-the-art 

greenhouses, is the tracking of micro-climates in plant growth environments on a large scale. 
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Extremely high density temperature and humidity data, along with either well-tracked precipitation 

data or tightly-controlled watering will allow even higher accuracy modeling of plant environment 

and nutrient availability.  

In short, the data deluge we have observed in the last ten years is only the beginning of the 

avalanche of data we will receive in the next ten years. The finely targeted comparison of gene co-

expression networks is a necessary small step to generate organism-scale, data-driven functional 

models of plant systems critical to meet many global needs. 
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Appendix A  

1.1 Supplemental Figures 

 

Supplemental Figure 1. Principal component analysis of RMA normalized microarrays. 
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Supplemental Figure 2 Heatmap of RMA-expression value 

differences for 359 calcium ion binding associated loci. 
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1.2 Supplemental Files 
Supplemental File 1. List of member genes for all co-expressed gene modules in 

Brachypodium distachyon abiotic stress response network 

http://www.danforthcenter.org/hpriest/Supplemental_File_1.xlsx 

Supplemental File 2. Results of gene ontology functional term enrichment for all gene 

modules in Brachypodium distachyon abiotic stress response network 

http://www.danforthcenter.org/hpriest/Supplemental_File_2.xlsx 

Supplemental File 3. Results of Element promoter sequence analysis for promoters 

associated with all gene modules in Brachypodium distachyon abiotic stress response 

network 

http://www.danforthcenter.org/hpriest/Supplemental_File_3.xlsx 

Supplemental File 4. Software manual and usage guide for dGCNA. 

Supplemental Figure 3. Principal component analysis of RMA normalized microarray 

data for 359 calcium ion binding associated loci.  

 

http://www.danforthcenter.org/hpriest/Supplemental_File_1.xlsx
http://www.danforthcenter.org/hpriest/Supplemental_File_1.xlsx
http://www.danforthcenter.org/hpriest/Supplemental_File_2.xlsx
http://www.danforthcenter.org/hpriest/Supplemental_File_3.xlsx
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http://www.danforthcenter.org/hpriest/Supplemental_File_4.xlsx 

Supplemental File 5. Scale free criteria computed for the comparison of AtLHY-OX and 

Col-0 datasets 

http://www.danforthcenter.org/hpriest/Supplemental_File_5.xlsx 

Supplemental File 6. Gene ontology enrichment statistics for High- and Low-connectivity 

gene groupings in each of the 6 possible networks (total elasticity, positive elasticity, low 

elasticity, AtLHY-OX, Col-0, and Unified) 

http://www.danforthcenter.org/hpriest/Supplemental_File_6.xlsx 

Supplemental File 7. Promoter analysis statistics for High- and Low-connectivity gene 

groupings in each of the 6 possible networks (total elasticity, positive elasticity, low 

elasticity, AtLHY-OX, Col-0, and Unified) 

http://www.danforthcenter.org/hpriest/Supplemental_File_7.xlsx 

Supplemental File 8. Gene lists, promoter analysis statistics, and gene ontology enrichment 

results for all clusters in the positive and negative elasticity networks. 

http://www.danforthcenter.org/hpriest/Supplemental_File_8.zip 

Supplemental File 9. Gene ontology enrichment statistics for the genes in the immediate 

neighborhood of AtLHY in the positive and negative elasticity networks. 

http://www.danforthcenter.org/hpriest/Supplemental_File_9.xlsx 

Supplemental File 10. Criteria determined by permutation and scale free topology for 

usage in all pairwise comparisons 

http://www.danforthcenter.org/hpriest/Supplemental_File_10.xlsx 

Supplemental File 11. Positive, negative, and total significant elastic edge numbers for all 

comparisons 

http://www.danforthcenter.org/hpriest/Supplemental_File_11.xlsx 

http://www.danforthcenter.org/hpriest/Supplemental_File_4.xlsx
http://www.danforthcenter.org/hpriest/Supplemental_File_4.xlsx
http://www.danforthcenter.org/hpriest/Supplemental_File_5.xlsx
http://www.danforthcenter.org/hpriest/Supplemental_File_6.xlsx
http://www.danforthcenter.org/hpriest/Supplemental_File_7.xlsx
http://www.danforthcenter.org/hpriest/Supplemental_File_8.xlsx
http://www.danforthcenter.org/hpriest/Supplemental_File_9.xlsx
http://www.danforthcenter.org/hpriest/Supplemental_File_10.xlsx
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