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ABSTRACT OF THE THESIS
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Research Advisor: Professor Jung-Tsung Shen

Nonlinear optical materials give rise to a multitude of phenomena that have impor-

tant applications in technology and science. Due to small nonlinearities in naturally

occurring materials, large optical fields are necessary to realize measurable nonlinear

phenomena. The necessity of high intensity sources severely limits its use in practical

applications, especially in low-powered devices. Several methods for enhancement

of nonlinearity have been proposed, including use of conjugate polymers, resonators,

and metallic nanoparticles. In this thesis, the nonlinear enhancement properties of

subwavelength metal-dielectric gratings are explored. Enhancement in nonlinearity

by several orders of magnitude is achieved, with the enhancement entirely controlled

by the geometry of the structure, and independent of the wavelength of incident light.

Ultimately, the nonlinear enhancement properties of metal-dielectric gratings allows

for the reduction of input light intensity in producing nonlinear optical phenomena,

and is an important step in the design low-powered nonlinear optical applications.
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Chapter 1

Thesis Introduction

1.1 Summary

Nonlinear optical materials give rise to a multitude of phenomena that have impor-

tant applications in technology and science. One fundamental example is harmonic

generation, in which light combines to form new light at integer multiples of the in-

put frequency. Materials capable of harmonic generation are of practical importance

since they are able to generate or detect light at frequencies that are not available in

current optical devices. Another fundamental example is optical bistability, in which

the intensity of output light can take two distinct stable values for a given input,

creating an optical two-state system. Bistable devices, such as optical logic gates and

memory, are critically important for optical computing, which promises much faster

computation than in current electronic devices. The degree of optical nonlinearity

in a material depends upon the strength of the optical field, and varies in different

materials. Due to very small nonlinearities in naturally occurring materials, large op-

tical fields are necessary to realize measurable nonlinear phenomena. The necessity

of high intensity sources to observe the effects of optical nonlinearity severely limits

it use in practical applications, especially in low-powered devices. To realized such

devices, the enhancement of nonlinear material properties is required. Several meth-

ods for enhancement of nonlinearity have been proposed, including use of quantum

wells, Fabry-Perot resonators, and metallic nanoparticles. Recently, there has been

interest in characterizing the optical response of subwavelength metallic structures

containing nonlinear dielectric materials. Examples include subwavelength metallic

gratings, [1, 2, 3], and hole arrays [4]. In this thesis, the nonlinear enhancement

1



properties of subwavelength metal-dielectric gratings are explored. Through several

numerical calculations, enhancement in nonlinearity by several orders of magnitude is

achievable in subwavelength metal-dielectric gratings. Also, a general scaled mapping

from the far-field nonlinear optical response of the grating to a homogeneous dielectric

slab with enhanced nonlinearity is derived. In validation, the enhancement is demon-

strated in harmonic generation and optical bistability for common nonlinear dielectric

materials. By this method, the enhancement in metal-dielectric gratings is entirely

controlled by the geometry of the structure, and independent of the wavelength of

incident light. Ultimately, the nonlinear enhancement properties of metal-dielectric

gratings allows for the reduction of input light intensity in producing nonlinear opti-

cal phenomena. More specifically, the grating is an important step in the design of

low-powered nonlinear optical applications.

1.2 Thesis Outline

Chapter 2 is a brief introduction to nonlinear optics. Topics covered are nonlinear

material definitions for second and third order nonlinearity as well as nonlinear optical

phenomena focusing on harmonic generation and optical bistability.

Chapter 3 is a brief overview of nonlinear enhancement techniques from scientific

and engineering literature. Focus is given to microscopic enhancement techniques of

hyperpolarization of conjugate polymers and quantum wells as well as macroscopic

techniques of metallic nanoparticles, resonators, and subwavelength metallic gratings.

Chapter 4 is the quantification of nonlinear enhancement of metal-dielectric grat-

ings at subwavelength scales. Here, physical arguments are developed for nonlinear

enhancement. Also, simple and general scaled mappings are derived.

Chapter 5 is the verification of nonlinear enhancement of metal-dielectric gratings

at subwavelength scales. Many orders of magnitude enhancement is demonstrated in

second and third harmonic generation and optical bistability.

2



Appendix A is a brief introduction to the finite difference method and FDTD for

electrodynamic systems. Also, boundary conditions for FDTD simulation are dis-

cussed.

Appendix B is the computational summary and validation for FDTD simulation

of both nonlinear homogeneous dielectric slabs and nonlinear subwavelength metal-

dielectric gratings. Error analysis and convergence is discussed.
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Chapter 2

Introduction of Nonlinear Optics

Nonlinear optics is a field of optics that describes the changes of the optical properties

of materials in the presence of light. This behavior is contrary to everyday experience,

but is firmly rooted in the interaction of light with matter at atomic scales. Effects

resulting from nonlinear optics arises from light at large intensities within materials.

These nonlinear properties produce a plethora of interesting phenomena such as wave

mixing and bistability. In this chapter, a basic introduction to nonlinear optics is

provided. Nonlinear optics is a rich field that provides many useful applications in

fundamental science and technology; however, focus is given on optical materials and

phenomena directly related to content of this thesis.

2.1 General Nonlinear Optical Theory

Throughout the field of Optics, many materials have optical properties that are de-

pendent upon ”what” and ”how” light is present within the medium. For example,

many materials have dispersive properties; when glass is shaped as a prism, white

light becomes separated through dispersion, and results in an index of refraction that

is frequency dependent. Another example is materials with birefringence which re-

sults in an incidence dependent index of refraction for same frequencies of light. Thus,

through covering the whole of Optics, it should be of no surprise to find that optical

materials can have properties that are electric field dependent. It is through this field

dependence that materials are known to have optical nonlinearity.
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The physical picture of optical nonlinearity in materials starts with the permittivity

of materials. Under typical conditions, optical material have a linear relation between

polarization density, P, and electric field, E as

P = ǫ0ǫlE (2.1)

where ǫ0 is the permittivity of free space and ǫl is the permittivity of the material.

In the presence of light, the ratio of the speed of light in free space to the speed of

light in the material, known as the index of refraction, n, is directly related to the

permittivity of the material as

n =
√
ǫlµl (2.2)

where µl is the permeability of the material. For non-magnetic materials and dielectric

materials by definition, µl = 1. Thus, n =
√
ǫl

The permittivity of a material under the linear relation between electric field and

polarization density works well under most optical conditions, such as waveguiding

in optical fibers. However, when the electric field become very large, the linearity

condition no longer holds. The source of optical nonlinearity is found at the atomic

level. The electric field that binds the electron to the nucleus of an atom is very larger,

on the order of 1011. When an external electric field is applied to the atom via light,

under normal conditions, its field perturbation on the electron is very small, causing

little effect to the atomic polarization. This justifies the linearity of the polarization

density relation. However, increasing the field intensity of light to atomic levels

within the material results in a great perturbation of the electron beyond the linear

limit. This results in nonlinear effects and invalidates the linear polarization density

relation.

Mathematically, the polarization density relation with the electric field can be gener-

alized through a Taylor series expansion.

P = ǫ0(ǫlE+ χ(2)|E|2 + χ(3)|E|3 + . . .) (2.3)
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For small electric fields, only the first term is kept. This gives the linear relation

as discussed. However, if the electric field is large enough, the higher-order terms

must be kept. When this occurs, the polarization density is no longer linear, and

becomes nonlinear. The second-order term is known as second-order nonlinearity with

a second-order nonlinear coefficient χ(2). Similarly, the third-order term is known as

third-order nonlinearity with a third-order nonlinear coefficient χ(3). More detailed

information regarding these particular nonlinear terms in real materials can be found

in the remaining sections in this Chapter. Higher order effects beyond the third-order

are possible in theory, however, often are not observed in the lab due to extreme field

requirements to realize them, and therefore will not be given treatment in this thesis.

This concludes the brief introduction to general nonlinear optical theory. From here,

physical treatment is given to second-order and third-order nonlinear materials. Also,

related nonlinear phenomena are discussed. For more information related to nonlinear

optics, refer to [5].

2.2 Second-Order Nonlinear Optics

To expand upon the theory discussed above, a brief introduction to second-order non-

linear optics is given. In this section, a practical material definition for second-order

nonlinear materials is determined. Also, common second-order nonlinear materials

are listed and described. Lastly, optical phenomena produced by second-order non-

linearity are discussed. Particular attention is given to second harmonic generation,

as it is the main phenomena discussed later in the thesis.

2.2.1 Second-Order Nonlinearity Definition

Materials with second-order nonlinearity display a polarization density describe by

the first nonlinear term, where all other higher nonlinear terms are neglected.

P = ǫ0(ǫlE+ χ(2)|E|2) (2.4)
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Although the polarization density description of second-order nonlinearity is techni-

cally correct, a more useful definition of second-order nonlinearity can be produced

from it. Here, the goal is to have the second-order nonlinearity combined into one

material permittivity definition. This is easily achieved by factoring out one electric

field in the polarization density above.

P = ǫ0(ǫl + χ(2)|E|)E (2.5)

Next, combine both the linear and second-order nonlinear parts into a total permit-

tivity ǫ.

P = ǫ0ǫE (2.6)

Now, this looks like the linear definition, expect now the total permittivity is field

dependent.

ǫ = ǫl + χ(2)|E| (2.7)

From the total permittivity definition of second-order nonlinearity, it is seen that the

second-order nonlinear effect is specifically dependent upon the electric field within

the material. Also, the linear part remains the same, so for small field inputs, the

total permittivity is linear which is consistent with the previous linear theory.

2.2.2 Material Types

The key feature of second-order nonlinear materials is their crystalline structure

breaks inversion symmetry, i.e. the properties of the crystal change by the trans-

formation r → −r. Materials with inversion symmetry cannot exhibit second-order

nonlinearity, as the transformation eliminates the second-order term in the polariza-

tion density. However, materials with inversion symmetry exhibit third-order nonlin-

earity, which is discussed in the next section. Second-order nonlinear optical materials
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occur in nature and are often used in scientific and engineering disciplines. As a refer-

ence to later happenings in this thesis, a collection of the most common second-order

nonlinear materials are listed in Table 2.1. A complete lists of measured second-order

nonlinear materials can be found here [6].

Second-Order NL Materials

Material Name λ (µm) ǫl χ(2) (pm/V )
Lithium niobate 1.058 4.98 0.84
Copper bromide 10.6 3.88 16.0

Copper chloride (I) 10.6 3.58 13.4
Gallium arsenide 10.6 11.5 150

Tellurium 10.6 22.96 1340
Cadmium selenide 10.6 5.98 108

Table 2.1: Linear and nonlinear optical properties of common second-order nonlinear
materials in the near to mid infrared frequency range. Units in MKS

Although many second-order materials are listed over a wide range of wavelengths,

attention is focused to second-order materials in the mid-infrared range. Specifically,

the second-order nonlinear properties of Copper Chloride (I) (CuCl(I)) at 10.6 µm

are used throughout this thesis.

2.2.3 Second Harmonic Generation

Second harmonic generation is a second order nonlinear optical process in which

light at frequency ω combines to form new light at frequency 2ω. Second harmonic

generation is unique to second-order nonlinear materials, as seen in Figure 2.1.

Here, light at frequency ω is pumped into a second-order nonlinear crystal and light

with frequencies ω and 2ω are transmitted. Cleverly, a prism is used to separate the

frequencies into two separate beams. Second harmonic generation can occur with

partial to full conversion from the input. In general, the second harmonic conversion

efficiency is

ηSHG =
4
(

χ(2)
)2

ω2L2I

n3c3ǫ0
(2.8)
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Figure 2.1: Shown is a simple experimental setup for creation of second harmonic gen-
eration from second-order nonlinear materials. Light at frequency ω is pumped into
a second-order nonlinear crystal and light with frequencies ω and 2ω are transmitted.
A prism is used to separate the frequencies into two separate beams.

where L is the slab thickness and I is the intensity. Thus, for full conversion, a

suitable long slab in necessary at low intensities. Energy conservation consideration

dictate that for full conversion, the second harmonic light is at half the intensity of

the input, as two input photons combined to form one output photon.

In general, second harmonic generation is a special type of second-order nonlinear

phenomena of three wave mixing. Here, light a two different frequencies ω1 and ω2

can add or subtract to form new light. Specifically, second harmonic generation is

three wave mixing addition where ω1 = ω2 = ωinput.

Lastly, full conversion requires perfect or quasi phase matching between the input

frequency and corresponding second harmonic. For simple systems, the index of

refraction at the input frequency must match the index of refraction of the second

harmonic for ideal conditions. In most materials, this does not occur due to dispersion.

To overcome this, many techniques have been created, such as periodic poling [7], for

near perfect phase matching conditions.
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2.3 Third-Order Nonlinear Optics

2.3.1 Third-Order Nonlinearity

Materials with third-order nonlinearity display a polarization density describe by the

second nonlinear term, where the first and all other higher nonlinear terms are ne-

glected. The first nonlinear term is neglected specifically because material exhibiting

second-order nonlinearity do not have inversion symmetry. Here, materials that do

have inversion symmetry lose the first nonlinear term, leaving the second nonlinear

term, as seen below.

P = ǫ0(ǫlE+ χ(3)|E|3) (2.9)

Although the polarization density description of third-order nonlinearity is technically

correct, a more useful definition of third-order nonlinearity can be produced from it.

Here, the goal is to have the third-order nonlinearity combined into one material

permittivity definition. This is easily achieved by factoring out one electric field in

the polarization density above.

P = ǫ0(ǫl + χ(3)|E|2)E (2.10)

Next, combined both the linear and third-order nonlinear parts into a total permit-

tivity ǫ.

P = ǫ0ǫE (2.11)

Now, this looks like the linear definition, expect now the total permittivity is field

dependent.

ǫ = ǫl + χ(3)|E|2 (2.12)
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From the total permittivity definition of third-order nonlinearity, it is seen that the

third-order nonlinear effect is specifically dependent upon the electric field squared

within the material; this can also be thought as the intensity within the nonlinear

medium. Also, the linear part remains the same, so for small field inputs, the total

permittivity is linear which is consistent with linear theory.

2.3.2 Material Types

The key feature of third-order nonlinear materials is their crystalline structure does

not break inversion symmetry, i.e. the properties of the crystal do not change by the

transformation r → −r. Materials with inversion symmetry cannot exhibit second-

order nonlinearity, as the transformation eliminates the second-order term in the

polarization density. However, materials without inversion symmetry can exhibit

second-order nonlinearity, which is discussed in the previous section. Third-order

nonlinear optical materials occur in nature and are often used in scientific and engi-

neering disciplines. As a reference to later happenings in this thesis, a collection of

the most common third-order nonlinear materials are listed in Table 2.2. A complete

lists of measured third-order nonlinear materials can be found here [6].

Third-Order NL Materials

Material Name λ (µm) ǫl χ(3) (m2/V 2)
Silica (I) 1.064 2.25 8e-23

Gallium arsenide 10.6 10.89 1.49e-19
Silicon 10.6 11.56 7.4e-20

Germanium 10.6 16 1.05e-19

Table 2.2: Linear and nonlinear optical properties of common third-order nonlinear
materials in the near to mid infrared frequency range. Units are in MKS.

Although many third-order materials are listed over a wide range of wavelengths,

attention is focused to third-order materials in the mid-infrared range. Specifically,

the third-order nonlinear properties of Gallium Arsenide (GaAs) and Silicon (Si) at

10.6 µm are used throughout this thesis.
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2.3.3 Optical Kerr-Effect

The optical Kerr effect is special to third-order nonlinear materials. Because of the

symmetry in its nonlinear permittivity, it can be expressed as an intensity dependent

index of refraction for small input intensities. This formulation is useful in mea-

surement of χ(3) in materials and for physical understanding of third-order nonlinear

effects in transmission spectra and optical bistability.

The derivation is rooted in the linear index of refraction as the square root of the

relative permittivity

n =
√
ǫ (2.13)

With constant relative permittivity in linear optical systems, the index of refraction

is also constant. However, the permittivity definition of third-order nonlinear systems

is dependent upon the square of the electric field within the material

ǫ = ǫl + χ(3)|E|2 (2.14)

Applying the same approach as in the index of refraction, it is expected that the

third-order nonlinear index of refraction is field dependent as well. Thus, taking the

square root

nnonlinear =
√

ǫl + χ(3)|E|2 (2.15)

However, this is rather cumbersome in this form, so it is assumed that the third-order

nonlinear material experiences small electric fields. Thus, by factoring the linear

permittivity out of the square root, and applying the binomial expansion

nnonlinear =
√
ǫl(1 +

χ(3)

2ǫl
|E|2) (2.16)

Since n0 =
√
ǫl, the nonlinear index of refraction becomes

nnonlinear = n0 +
χ(3)

2n0

|E|2 (2.17)

Using the definition of intensity as

I =
1

2
cǫ0|E|2 (2.18)
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the nonlinear index of refraction becomes

n(I) = n0 +
χ(3)

cǫ0n2
0

I (2.19)

Defining a nonlinear index of refraction coefficient as

n2 =
χ(3)

cǫ0n2
0

(2.20)

the final form of the nonlinear index of refraction via the optical Kerr effect is

n(I) = n0 + n2I (2.21)

Thus, for small input intensity into third-order nonlinear materials, the index of

refraction of the material changes linearly. As long as the product of n2I remains

sufficiently small, this definition of third-order optical nonlinearity can be applied to

experiment where n2 is measured, from which χ(3) can be found, or it can be used in

theoretical calculation of interesting nonlinear phenomena, such as optical bistability,

when intensity inputs are weak overall.

2.3.4 Third Harmonic Generation

Third harmonic generation is a third-order nonlinear optical process in which light

at frequency ω combines to form new light frequency 3ω. Third harmonic generation

is unique to third-order nonlinear materials, as seen in Figure 2.2.

Here, light at frequency ω is pumped into a third-order nonlinear crystal and light

with frequencies ω and 3ω are transmitted. Cleverly, a prism is used to separate the

frequencies into two separate beams.

Third harmonic generation can occur with partial to full conversion from the input.

Energy conservation consideration dictate that for full conversion, the third harmonic

light is at a third the intensity of the input, as three input photons combined to form

one output harmonic photon.
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Figure 2.2: Shown is a simple experimental setup for creation of third harmonic
generation from third-order nonlinear materials. Light at frequency ω is pumped into
a third-order nonlinear crystal and light with frequencies ω and 3ω are transmitted.
A prism is used to separate the frequencies into two separate beams.

In general, third harmonic generation is a special type of third-order nonlinear phe-

nomena of four wave mixing. Here, light a three different frequencies ω1, ω2, and

ω3 can add or subtract to form new light. Specifically, third harmonic generation is

three wave mixing addition where ω1 = ω2 = ω3 = ωinput.

2.3.5 Optical Bistability

Optical bistability is a third-order nonlinear process by which light can have two

possible transmitted intensity states at one input intensity, as seen in Figure 2.3.

The graph of optical bistability forms a hysteresis curve. Outside the two-state region,

output light takes one stable value. Within the two-state region, there exists an upper

state and a lower state. These two-states are stable; however, how they are reached

is dependent where the previous single valued transmission state was located. To

reach the lower state, light must start in the single-valued lower state branch, and

through increasing the intensity, the lower state can be reached. Similarly, to reach

the upper state, light must start in the single-valued upper state branch, and through

decreasing the intensity, the upper state can be reached. In effect, the memory of

previous location in the nonlinear system yields the upper or lower state branches.

More information on optical bistability can be found here [8].
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Figure 2.3: Shown is the hysteresis curve for a third-order nonlinear material in
optical bistability. Nonlinear system exhibiting optical bistability have two stable
transmission states for a single input intensity. The upper state is arrived from higher
intensities above the hysteresis. The lower state is arrived from the lower intensities
below the hysteresis.
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Chapter 3

Techniques for Nonlinear Optical

Enhancement

Nonlinear optical materials have many interesting phenomena that have potential

use in optical devices and technology. However, in there current state, nonlinear

optical materials produce very weak nonlinear optical responses, requiring large laser

intensity to realize nonlinear phenomena. This trait lead nonlinear optical materials

to be impractical, especially in low powered optical devices, and too bulky for on-

chip integration. Thus, in order for nonlinear optics to enter the practical regime, the

overall nonlinearity must be enhanced. In this Chapter, physical considerations for

nonlinear enhancement are discusses, and current nonlinear enhancement techniques

are categorized.

3.1 Physical Considerations

The primary limitation of nonlinear optics in practical applications is the relatively

weak response of optical nonlinearity in natural occurring materials. For applications

of nonlinear optical phenomena to be used in realistic devices, the overall optical

nonlinearity of materials must be significantly enhanced by many orders of magni-

tude. In this section, the weak nature of nonlinear optical materials is described, and

pathways for nonlinear enhancement are suggested.

16



3.1.1 Nonlinear Optical Limitations

As discussed in Chapter 1, nonlinear optics provides a plethora of optical phenomena,

such as optical bistability and frequency mixing, that have distinct scientific inter-

est, and also important applications to optical devices. For example, the hysteresis

of optical bistability in third-order nonlinear materials can be utilized to create the

two-state logic systems needed for optical gates and memory [9, 10, 11]. This optical

logic is of critical importance to all-optical computing, which promises much faster

computation than current electronic methods. Also, optical computing eliminates the

need for optical-to-electronic and electronic-to optical transitions for computing pur-

poses in optical devices, such as long distance fiber optics communications. Another

important example is the utilization frequency mixing within second and third-order

nonlinear materials. Under suitable conditions, these materials can generate or detect

light at frequencies that are not currently available in lasers or detectors [12, 13, 14].

This has a particular importance to research in THz light sources and detectors, which

has great application to biological and chemical measurement as well as medical imag-

ing, but is severely lacking in the current available technology catalog, [15, 16, 17].

Just from these examples, it is clear that nonlinear optical materials can play an

important role is the design of many emerging optical devices and technologies.

However, even with the many great properties of nonlinear optical materials, they

have many undesirable qualities that severely limit its use in practical applications

and devices utilizing nonlinear optical phenomena. The source of practical limitation

in naturally occurring nonlinear optical materials is its inherit weak nonlinearity,

in particular, χ(2) and χ(3). Going back to the permittivity definition of optical

nonlinearity, the total nonlinear effect is dependent upon the nonlinear coefficient,

χ(2) for second-order materials and χ(3) for third-order materials, and the field present

within the material, |E| for second-order materials and |E|2 for third-order materials

as seen below. Thus, the total nonlinear effect on the material is based on the product

of the nonlinear coefficient and the field present within the material. Given this

property, to yield strong nonlinear effects given a small nonlinear coefficient requires

a large field input, on the order of 1016W/cm2 [18].

Using the bulk nonlinearity properties of naturally occurring materials becomes im-

practical for all-optical commercial devices. The first drawback is the high intensities
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needed to generate nonlinear optical phenomena within the device. High intensity

laser sources are in general large, and cannot be scaled down for chip sized integration.

Also, even with small scale, high intensity sources in place, high intensities require

large powers, which are also impractical for commercial devices relying on low-power

requirements. Furthermore, for length dependent nonlinear optical processes, the

length scales necessary are in general in the centimeter scales, much larger than the

micro scale needed for on-chip integration. Thus, for nonlinear optics to be used in

practical applications at chip scale and at low powers, enhancement of nonlinearity

is necessary.

3.1.2 Pathways for Nonlinear Enhancement

From the field-dependent permittivity definition of optical nonlinear materials, it is

clear there are two pathways for enhancement of nonlinearity. The first approach is

the microscopic manipulation of materials that generate enhanced nonlinearity that

do not occur in nature. From the microscopic approach, the goal is to yield an

larger χ(2) or χ(3) in the nonlinear material of interest. For this to work, suitable

modification of electronic, atomic, or molecular polarizations or quantum states is

necessary in creation of new, enhanced nonlinear materials, not occurring in nature.

The second approach is the macroscopic organization of materials in structures that

generate enhanced nonlinearity. For the macroscopic approach, the goals is to yield

a larger |E| or |E|2 within the nonlinear material of interest. For this to work,

structures containing nonlinear materials must locally enhance the fields surrounding

the nonlinear materials, producing an overall enhancement in optical nonlinearity

using naturally occurring nonlinear materials.

3.2 Past Enhancement Techniques

Using the pathways for nonlinear enhancement, many different approaches in gener-

ating enhanced nonlinearity have been proposed in the literature. In this section, a
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brief categorization of nonlinear enhancement techniques from the literature is pro-

vided. For each type, the nonlinear enhancement technique is described and nonlinear

enhancement quantified.

3.2.1 Hyperpolarizability of Conjugated Polymers

Hyperpolarizability of Conjugate Polymers is a microscopic enhancement technique

that generates enhanced optical nonlinearity through modification of the polarizabil-

ity on conjugate polymers, which translates into larger second-order and third-order

nonlinearities. This technique has been experimentally verified, and observed many

orders of enhancement in second and third order nonlinearity within conjugate poly-

mers [19, 20]. Although these microscopic enhancements yield many orders of mag-

nitude enhancement, they only apply to conjugate polymer materials. Thus, when

compared to other nonlinear materials, they only do marginally better than the nat-

urally occurring nonlinearity in semiconductors.

3.2.2 Quantum Wells

Quantum Wells is a microscopic enhancement technique that generates enhanced

optical nonlinearity through modification of semiconductor energy levels and energy

sub-bands, which translates into larger second-order and third-order nonlinearities

[21, 22, 23]. This technique has been theoretically discussed and experimentally

verified with many orders of magnitude enhancement in optical bistability [24], and

harmonic generation [25].

3.2.3 Plasmonic Nanoparticles

Plasmonic nanoparticles is a macroscopic enhancement technique that generates en-

hanced optical nonlinearity through local field enhancement from plasmonic responses

of injected metallic nanoparticles into nonlinear materials. This technique has been

theoretically discussed and experimentally verified with many orders of magnitude
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enhancement in second order, and third order nonlinearity [26, 27, 28, 29]. Cur-

rently, one disadvantage of this approach is yielding a consistent injected placement

and number of nanoparticles in a nonlinear material. This is particularly important

as optical devices in mass production require consistent material properties in the

manufacturing process.

3.2.4 Resonators

Resonators either containing nonlinear materials or are themselves nonlinear materials

is a macroscopic enhancement technique that produces large nonlinear enhancement

through strong confined local electric fields within cavities. One type of resonator

is the nonlinear Fabry-Perot resonator which is simply two facing mirrors with a

nonlinear material place between the mirrors. Incoming light is trapped between the

mirrors, resulting in an enhanced local field between the mirrors, and as a result,

large nonlinearity. This has been shown to be order of magnitude enhancement in

optical bistability [30, 31], and order of magnitude enhancement in second harmonic

generation [32]. Although nonlinear Fabry-Perot produces large enhancement, its

main limitation is its bulky size, on the centimeter scales, which prohibits its use

in on-chip integration for practical optical devices. Also, specifically in bistability

cases, nonlinear Fabry-Perot has slow switching times, roughly 25 ps, which lowers

the speed in optical computation or memory.

Another popular resonator enhancement technique is micro-ring resonators, which

are spherical or toroid shaped optical materials, which light is coupled into where it

is confined to through whispering gallery modes. Nonlinear enhancement has been

observed in very low power optical bistability [33, 34], and efficient wave mixing

[35, 36]. Micro-ring resonators have the beneficial size at micro scales; however,

increasing the quality factor general increasing the switching times, which are not

beneficial.
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3.2.5 Subwavelength Metallic Apertures

Subwavelength metallic apertures containing nonlinear materials is a macroscopic

enhancement technique that produces large nonlinear enhancement through strong

confined local electric fields within the subwavelength metallic apertures. This tech-

nique has been theoretically and experimentally demonstrated for second and third

order nonlinear materials in a number of nonlinear optical phenomena. Several orders

of magnitude enhancement of optical bistability and optical switching were theoreti-

cally calculated in subwavelength metallic gratings with third order nonlinear mate-

rials [1, 3]. Similarly, in subwavelength metallic gratings, propagating solitons were

calculated for third-order nonlinearity [2]. In subwavelength metallic hole arrays, one

order of magnitude enhancement of second harmonic generation was experimentally

verified [4].

This concludes the brief categorization nonlinear enhancement techniques. From here,

the thesis specializes to nonlinear enhancement of subwavelength metallic apertures

containing both second order and third order nonlinear dielectric materials in demon-

stration of enhancement harmonic generation and optical bistability.
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Chapter 4

Characterization of Nonlinear

Enhancement in Subwavelength

Metal-Dielectric Gratings

In this chapter, the enhancement properties of metallic arrays containing nonlin-

ear dielectric materials are discussed. The physical structure and field properties

of metal-dielectric gratings at subwavelength scales are developed. Also, a simple

scaled mapping between nonlinear metal-dielectric gratings and homogeneous nonlin-

ear dielectric slabs is derived to quantify physical characteristics. Lastly, a general

scaled mapping is proposed for a complete physical mapping that accurately predicts

nonlinear phenomena.

4.1 Physical Systems of Subwavelength Metal Di-

electric Gratings

Gratings have provided a means for exploring a multitude of phenomena in engineer-

ing and physics. From classical wave interference to the famous double slit experiment,

gratings play a major role in classical and modern physics. However, in all of these

applications, the role of gratings is to provide wave interference. More surprising are

the properties of gratings above the diffraction limit, specifically when light is larger
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than several slit lengths known as subwavelength. In this section, the grating struc-

ture and transmission properties of subwavelength gratings are described. Also, the

local enhancement properties of metallic arrays are discussed.

4.1.1 Grating Layout and Assumptions

In the analysis of subwavelength metal-dielectric gratings, several important quanti-

ties of the system are defined in order to describe its structure and its field properties.

A simple drawing of a metal-dielectric grating at subwavelength scales is shown in

Figure 4.1. To begin, we set a coordinate system ideal for the analysis. The positive

x-direction is set along the horizontal axis, pointing to the right. The positive z-

direction is set pointing out of the figure. Lastly, the positive y-direction is set along

the vertical axis, pointing down. The y-direction has an atypical pointing direction

for convenience since input light travels from top to bottom in the numerical analysis.

In Figure 4.1, the basic layout of the metal-dielectric grating is shown. Here, metal

(shown as black) and dielectric (shown as blue) materials are layered periodically in

the x-direction. The periodicity length of the system, notated as d, describes the

length in which layered metal and dielectric materials repeat in the grating. In this

analysis, the grating is assumed to be infinite in the x-direction, and thus, has infinite

periods. This assumption neglects grating end effects in the analysis. The slit width

of the system, notated as a, describes the length between repeating metal layers. The

slit width is also the width of the nonlinear dielectric layer in the grating. Lastly, the

film thickness of the system, notated as L, in the thickness of the grating.

For reasons to be discussed in the remaining subsections, the transmission and non-

linear enhancement of metal-dielectric gratings depends on several assumptions, and

are listed. (1) The wavelength of the incidence light is much greater in length than

one periodicity of the metal-dielectric grating. This assumption is known as sub-

wavelength scaling. (2) The light polarization is trans-magnetic polarized (of TM

polarization) at the grating interface. Here, the electric field oscillation is always nor-

mal to the metallic slits. For trans-electric polarization of light, the metal-dielectric

grating does not generate any transmission modes or field enhancement effects due to

electric field evanescence in the slits. Because of this, the analysis of gratings at TE
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Figure 4.1: The metal-dielectric grating has thickness, L. Between the metal slits,
the dielectric material has a linear permittivity, ǫl, and a second-order nonlinearity,
χ(2), or a third-order nonlinearity, χ(3). The structure has a periodicity length, d,
and metal slit width, a, which is also the width of dielectric layer in the grating.
The grating is constructed at subwavelength scaled, meaning light is greater than the
periodicity of the grating. From this, a local field enhancement between the metal slits
is a result of TEM modes present in subwavelength metallic arrays at TM polarized
light normally incident to the surface.

polarization will not be considered in this thesis. (3) The incidence of light is normal

the grating film interface. This is assumed for simplicity in this analysis, although

not necessary. In general, as long as the TM polarization is maintained, any incidence

will achieve transmission and field enhancement. (4) The metal is assumed to be a

perfect-electric conductor (PEC) which means the electric field is zero at all points

within the metal. This assumption helps to greatly reduce the computational loads,

and simplifies the analysis. Although no metal in nature is PEC, at long wavelengths

of light, up to the mid-infrared, external electric fields display little penetration, mak-

ing this assumption valid. (5) The material definitions of linearity and nonlinearity

of the dielectric materials between the slits is assumed to have the same form as

discussed in Chapter 2. (6) Both metal and dielectric materials are assumed to have

no absorption, dispersion, or other losses. Again, this is made to make the analysis

focused on nonlinear enhancement. However, losses due to imperfect electric conduc-

tion effects in metals will be given treatment in Chapter 5. With these assumptions
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in place, the transmission and local field enhancement of metal-dielectric gratings at

subwavelength scales are discussed in detail.

4.1.2 Transmission through Subwavelength Gratings

The thought of light fully transmitting through a densely layered metal-dielectric

grating may seem impossible, especially considering that the grating is mostly com-

posed of metal which does not permit light penetration. However, two points are

missed in this thought. The first point is that dimensionality of the metal-dielectric

grating relative to incident light is at subwavelength scales. This criterion implies

that light behaves fully “wave-like” with respect to its interaction with the grating,

which allows for interesting dynamics to occur. If light were not these scales, it would

behave “ray-like”, in which most of the light would bounce off the metal like mirror,

creating only partial, diffracted transmittance. The second point is that light does

not fully transmit over all grating thicknesses. Only at specific grating thicknesses at

a particular frequency can a metal-dielectric grating have perfect transmission. For

most grating thicknesses, only very low partial transmittance occurs.

The transmission properties of metal-dielectric grating is clearly seen the example

transmission spectrum shown in Figure 4.2. Here, the sharp peaks of the transmission

spectrum are the frequencies that fully transmit at the film thickness chosen. This

is known as the resonance condition. However, these transmission peaks are discrete.

The majority of the frequencies are at very low partial transmittance, known as

off-resonance conditions. It is noted that where the transmission peak occurs is

highly dependent on the grating thickness. To yield full transmission at a particular

frequency, the film thickness must be tuned accordingly.

4.1.3 Local Field Enhancement

The source of enhanced optical nonlinearity in metal-dielectric gratings is in the uti-

lization of local field enhancement caused by its transmission properties at subwave-

length scales. As seen in the preceding subsection, metal-dielectric gratings allow for

partial to full transmission of light at subwavelength scales. Recall, at these scales,
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Figure 4.2: Shown is the linear transmission spectrum of a subwavelength metal-
dielectric grating. Sharp peaks of the transmission spectrum are the frequencies that
fully transmit at the resonance condition. Only at specific grating thicknesses at a
particular frequency can a metal-dielectric grating have perfect transmission. The
units of frequency are normalized with the length unit set at a micron.

light is much larger than the periodicity of the grating. Also recall that the metal is

assumed to be perfect, under which no light is allowed to penetrate. Thus, for light

to pass through the grating, it can only do so through the dielectric slits, which does

permit light. However, under these conditions, the very large light compared to the

slits must “squeeze” through, resulting in a significant increase in the field strength

within the slit region as shown in Figure 4.3. The local field enhancement within the

slit results from energy, flux, and electric potential conservation in the slit region.

26



Since the light is condensed within the slit, to maintain these quantities, the electric

field strength must significantly increase, hence producing local field enhancement.

By cleverly using a nonlinear material as the dielectric material in the slits, it expe-

riences a much larger field as compared to the incident field. Averaging over the slit

region, the far-field transmitted light from the nonlinear metal-dielectric grating has

a larger nonlinear response. It is through this process the metal-dielectric grating

generates enhanced nonlinearity.

Figure 4.3: A local field enhancement between the metal slits is a result of TEMmodes
present in subwavelength metallic arrays at TM polarized light normally incident to
the surface. Effectively, light must squeeze the dielectric layers as the metal in the
grating array is assumed to be PEC. When a nonlinear material is placed as the
dielectric layer, the overall nonlinearity of the material is enhanced.
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4.2 Simple Scaled Mapping

From the physical understanding established in the first section, the metal-dielectric

grating at subwavelength scales produces local field enhancement between the metal

slits. Thus, it is expected that by placing a nonlinear material between the slits, on

average, the overall nonlinear response of the grating should be larger than the non-

linearity of the nonlinear material itself. However, although the previously derived

physical understanding was qualitatively correct, its quantitative features are neces-

sary to completely understand the enhancement in nonlinearity. Thus, to provide a

deeper physical understanding of the grating, a simple scaled mapping between the

metal-dielectric grating and a homogeneous dielectric slab is established. Mapping

to a nonlinear homogeneous dielectric slab allows the metal-dielectric grating to be

better understood using a nonlinear system that is well-known. The goal of the scaled

mapping is to produce the identical nonlinear optical response of the metal-dielectric

grating at far-field. Through this mapping, we can better understand the physical

properties, as well as predict the nonlinear optical phenomena of the grating by em-

ploying the knowledge of the nonlinear dielectric systems. In this section, a simple

scaled mapping is derived between a nonlinear metal-dielectric grating and a nonlinear

homogeneous dielectric slab. Also, errors associated with the mapping are calculated

and explained. From the analysis, it will be shown that the metal-dielectric grat-

ing achieves multiple orders of magnitude enhancement atop of the slit constituent

nonlinear material properties, and that the enhancement of optical nonlinearity is

entirely controlled by the geometry of the grating structure.

4.2.1 Unit Cell Correspondence

To establish the simple scaled mapping, mathematical relationships are needed to

connect the physical quantities of the metal-dielectric grating to a representative

homogeneous dielectric slab. There are many different techniques to accomplish this

task ranging from the whole of the Maxwell equations to transformation optics. How-

ever, the technique employed in this thesis is a unit cell correspondence, in which the

energy, flux, and electric potential in the unit cell of the metal-dielectric grating is

conserved in the unit cell of the homogeneous dielectric slab [37]. The unit cell of

28



the metal-dielectric grating is one full periodicity of the grating. The homogeneous

dielectric slab however, does not have a unit cell due to its uniformity. Instead, a

grating periodicity width of the dielectric slab is used as its unit cell, as this pro-

vides the best connection between the two systems in the conservation of physical

quantities. A pictorial representation of this is described in Figure 4.4.

Figure 4.4: Shown is the proposed simple scaled mapping from the unit cell of the
subwavelength metal-dielectric grating into a homogeneous dielectric slab. For com-
parison purposes, the mapped homogeneous dielectric slab is analyzed over the peri-
odicity width of the grating.

To begin the scaled mapping, consider the electric field in the material between the

metal slits, E, and the electric field in the dielectric slab, Ē. Hereafter, optical

parameters associated with the simple scaled mapping to the homogeneous dielectric

slab are denoted with a bar; quantities without a bar are those of the grating system.

The potential difference over one periodicity in the grating is a ·E, since the metal is

assumed to be PEC, and thus, the field cannot penetrate it. The potential difference

over one periodicity of the dielectric slab is then d · Ē. In equivalence, the electric

field becomes the following.

Ea = Ēd (4.1)

Solving for Ē, the electric field within mapping becomes

Ē =
E

d/a
(4.2)

This relation, derived using electric potential differences, yields the scaled mapping

to the electric field. From this, the electric field is enhanced by a factor d/a. Al-

though this is not the end, it is a promising start as d/a > 1, which constitutes an

enhancement. Similarly, requiring the instantaneous power flow across the surface to
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be equivalent, the following expression is found.

(

Ē× H̄
)

× d = (E×H)× a (4.3)

By applying the electric field scaled mapping into the above equation, it yields

H̄ = H (4.4)

the scaled mapping for magnetic fields. Interestingly, the magnetic field between both

systems remain unchanged. However, this is not surprising as the perfect metal slit

squeezes the electric field, resulting in an enhancement, whereas the magnetic field is

pointing parallel to the slits, and thus unaffected. To complete the scaled mapping,

the film thicknesses and permittivities must be found. This requires using the last

physical connection, energy. Using this, the following expression is found.

1

2

(

ǭĒ2 + µ̄H̄2
)

× L̄× d =
1

2

(

ǫE2 + µH2
)

× L× a (4.5)

Analyzing this expression, the scaled mapping yields a family of solutions. Using

the free parameter s, any number of mappings can be found with result material

properties and thicknesses as follows.

µ̄ =
a

d
s ǭ =

d

a
sǫ L̄ =

L

s
(4.6)

Choosing different s allows the mapping to become purely dielectric, purely magnetic,

or a hybrid system [38]. Since most nonlinear dielectric materials of interest have

µ̄ = µ = 1, it follows the mapping should as well. To achieve this, it fixes the free

parameter as s = d/a, so that µ̄ = µ = 1, and as a result, the film thickness becomes

L̄ =
L

(d/a)
(4.7)

and the permittivity scaling condition becomes

ǭ =

(

d

a

)2

ǫ (4.8)
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This central result shows that the total permittivity is enhanced by (d/a)2. By

expressing the electric field in the mapped slab, it follows that a grating with a

second-order nonlinearity has a permittivity scaling as

ǭ =

(

d

a

)2

ǫl +

(

d

a

)3

χ(2)
∣

∣Ē
∣

∣ (4.9)

and a third-order nonlinearity has a permittivity scaling as

ǭ =

(

d

a

)2

ǫl +

(

d

a

)4

χ(3)
∣

∣Ē
∣

∣

2
(4.10)

Thus, the scaling condition for the linear permittivity becomes

ǭl =

(

d

a

)2

ǫl (4.11)

Similarly, the scaling condition for the second-order nonlinearity becomes

¯χ(2) =

(

d

a

)3

χ(2) (4.12)

and third-order nonlinearity becomes

¯χ(3) =

(

d

a

)4

χ(3) (4.13)

In general, for higher orders of nonlinearity, that the scaling condition becomes

¯χ(n) =

(

d

a

)n+1

χ(n) (4.14)

From the simple scaled mapping, it is clear that the enhancement of nonlinearity is

many orders of magnitude and is entirely controlled by the geometry of the grating.

For example, a grating with geometry d/a = 10 delivers an enhancement of 1000 for

second-order materials or an enhancement of 10000 for third-order materials. Equiv-

alently, this enhancement allows for the reduction of input laser light intensity by

many orders of magnitude to observe identical nonlinear optical phenomenon. For

example, in the previous cases, laser light would be reduced over three to four orders
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of magnitude in observation of an equivalent nonlinear response. In addition, the en-

hancement is frequency independent, which is crucial as nonlinear optical phenomena

can only be observed at specific frequencies of light.

4.2.2 Simple Scaled Mapping Convergence

To determine the accuracy of the simple scaled mapping, a test of the transmission of

a metal-dielectric grating was compared to its mapping. To simplify the test, only the

linear part of the mapping was used, as nonlinear phenomena, such as producing of

optical bistability and resonance in harmonic generation, are highly dependent upon

linear characteristics. Thus, any small difference in the linear part who dramatically

change the outcome in the nonlinear part.

In this test, the convergence of the transmission response of simple scaled mapping

compared to that of the metal-dielectric grating was analyzed. Here, two variables

in the grating were varied, the degree of relative subwavelength, λ/d, and enhance-

ment factor, d/a. The variations were all compared to the resulting scaled mapping

response. For simplicity, the simple scaled mapping was set to yield perfect transmis-

sion. Thus, any differences with the response of the metal-dielectric grating would

yield off-resonance transmission.

The results of the convergence test are seen below in Table 4.1. Here the axes repre-

sent the two variables, d/a and λ/d with the bulk of the table showing the resulting

difference between the metal-dielectric grating and corresponding simple scaled map-

ping. Two trends become evident in the analysis of Table 4.1. The first trend is

increasing the degree of subwavelength in the grating results in a better mapped re-

sponse. For example, for λ/d = 40, most of the gratings have less than one percent

error with the scaled mapping. The second trend is increasing d/a in the grating

results in a worse mapped response. For example, at λ/d = 10, when d/a = 2, its

error is 0.72 percent versus when d/a = 20 where its error is 13.5 percent.

From these results, it is concluded that the simple scaled mapping is only accurate

for deep subwavelength gratings, i.e. λ/d >> 1. At this junction, one may argue

that simply designing gratings to be at very large degrees of subwavelength solves the
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Linear Percent Error in Simple Scaled Mapping
d/a λ/d

2 3 4 5 10 20 40
2 19.310 8.2891 4.6089 2.9342 0.72848 0.18181 0.04543
3 44.771 23.631 14.234 9.4195 2.4669 0.62417 0.15651
4 58.943 35.710 23.029 15.813 4.3792 1.1251 0.28324
5 67.117 44.394 30.145 21.342 6.2169 1.6212 0.40972
10 82.029 64.782 50.092 38.790 13.471 3.7308 0.95854
20 88.933 76.786 64.500 53.502 22.104 6.6034 1.7355
50 93.355 85.483 76.486 67.376 33.818 11.302 3.0853

Table 4.1: Linear errors between the simple scaled mapping and metal-dielectric grat-
ing. Deeper degrees of subwavelength improves simple scaled mapping, but greater
enhancement reduces mapping.

problem. This argument is definitely mathematically true, but alas physically unre-

alizable, as most gratings at these very large degrees of subwavelength are not pos-

sible to construct. For example, a grating is designed to achieve large enhancement,

d/a = 10 for light at λ = 10µm. To better mapping, the degree of subwavelength

was chosen to be λ/d = 40, so that from Table 4.1, the linear error difference is less

than one percent. This design would require slit widths of 25 nm, which are difficult

to construct, not to mention impractical for the rather large input wavelength. Also,

such small slits would be very lossy when real metal effects were accounted. Thus, a

more practical solution is needed by the means of a general scaled mapping which is

fully accurate over all degrees of subwavelength and enhancement factors.

4.3 General Scaled Mapping

From the results of the previous section, a simple scaled mapping was derived using a

unit cell correspondence of physical quantities between a nonlinear dielectric grating

and a nonlinear dielectric slab. From the simple scaled mapping, enhancement factors

for both linear and nonlinear parts of the relative permittivity were observed and

generated via the ratio of grating periodicity to slit width, d/a. However, further

analysis of the simple scaled mapping found it to be accurate for gratings with a

very large degree of subwavelength, λ/d >> 1. For the a scaled mapping to be fully
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predictive and practical, it must be accurate over all degrees of subwavelength. In

this section, a general scaled mapping is derived. Through small modification of the

linear permittivity to eliminate all linear errors, a general scaled mapping is reached.

4.3.1 Linear and Nonlinear Corrections

The permittivity scaling condition, ǭ =
(

d
a

)2
ǫ, previously derived is asymptotically

exact at deep subwavelength scales, λ/d >> 1. To extend this to all subwavelength

scales, a general scaled mapping is derived. To accomplish this, only the linear solu-

tions of the metal-dielectric grating and homogeneous dielectric slab in transmission

need to be considered. By modifying the linear permittivity of the simple scaled

mapping as

ǭl = ǫc

(

d

a

)2

ǫl (4.15)

an identical linear transmission response of grating Tmapped = Tgrating can be yield.

The linear dielectric correction ǫc can be found by setting the calculated transmission

of the grating, Tgrating, to the the solution of transmission through a dielectric slab,

and is calculated using the following expression

T−1
grating = 1 +

(

(d/a)2 ǫlǫc − 1
)2

4 (d/a)2 ǫlǫc
sin2

(

2π

λ
L̄ (d/a)

√
ǫlǫc

)

(4.16)

Here, the rather complicated expression on the right is the analytical solution for

transmission of dielectric slab for light at normal incidence. The exact solution for

the transmission of the metal-dielectric grating can be found as well for the same

conditions, but is even more complicated, and omitted. Its solution can be found

here [39]. The modification of the mapped linear permittivity slightly alters the fields

within the slab, Ēc, and because of this, requires a modification to the nonlinear part

of the permittivity as

¯χ(2) = χ(2)
c

(

d

a

)3

χ(2) (4.17)

and

¯χ(3) = χ(3)
c

(

d

a

)4

χ(3) (4.18)
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The nonlinear dielectric corrections χ
(2)
c and χ

(3)
c are found by dividing the calculated

fields within the slit of metallic arrays by the fields of the dielectric slab, and the

corrections are expressed as as χ
(2)
c =

(

E
(d/a)Ēc

)3

for second-order nonlinearity and

χ
(3)
c =

(

E
(d/a)Ēc

)4

for third-order nonlinearity. Calculation of all three corrections yield

a more accurate mapped response of the grating and are completely determined from

the linear solutions of the metal-dielectric grating and dielectric slab in transmission.

It is worth noting that all three corrections are fully predictable by means of an-

alytical expressions, not merely ”fudge factors” to make the scaled mapping work.

In essence, the general scaled mapping eliminates linear error by means of aligning

the linear transmission spectra over a broadband of frequencies. Also, these correc-

tions are very small, on the order of 1 percent, and still produce the same order

of magnitude enhancement to nonlinear materials. When ǫc is small, χ
(2)
c and χ

(3)
c

are essentially one. Through this procedure, a general scaled mapping is produced

with great accuracy over all subwavelength scales, and thus completes the general

scaled mapping. From here, it is used and tested in the next chapter over a range of

nonlinear phenomena and intensities.
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Chapter 5

Demonstration of Enhancement in

Metal-Dielectric Gratings

In this chapter, the nonlinear enhancement of metal-dielectric gratings is demon-

strated in harmonic generation and optical bistability. Also, the scaled mapping is

validated at the same field inputs as the metal-dielectric grating. In addition, special

treatment is given to real-metal effects and off-resonance scaled mapping. Through

these collective efforts, the enhancement properties of metal-dielectric gratings is es-

tablished.

5.1 Overview of Methodology

With the background and theory in place, the nonlinear enhancement of metal-

dielectric gratings can now be validated and demonstrated. Although nonlinear optics

offers many useful and interesting phenomena, it would be very difficult to demon-

strate the enhancement of the grating in every type. Therefore, only the most funda-

mental nonlinear phenomena are given treatment, that is second harmonic generation,

third harmonic generation, and optical bistability.

Due to the field dependence of the nonlinearity, validation could not accomplished

through direct calculation of the Maxwell equations. Instead, the validation was

performed using many rigorous numerical calculations of the far-field transmission for

both the metal-dielectric grating and the general scaled mapping. Specifically, the

electrodynamic calculations were processed using the finite-difference time-domain
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(FDTD) numerical method, and the MEEP simulation software used in all cases

[40]. Information regarding the specific computational methodologies related to either

nonlinear metal-dielectric gratings or nonlinear homogeneous dielectric slabs can be

found in Appendix A and Appendix B. In Appendix A, an overview of the finite

difference method and FDTD is discussed. In Appendix B, system specific error

analysis and convergence of metal-dielectric gratings and homogeneous dielectric slabs

is given.

To give a full analysis, the enhancement of metal-dielectric gratings and the robustness

of the general scaled mapping is demonstrated through fundamental nonlinear optical

phenomena, specifically harmonic generation in second-order and third-order nonlin-

ear materials, and optical bistability. To contrast the enhancement of the nonlinear

response from the grating, reference slabs containing the nonlinear material within the

grating are also demonstrated. Thus, an enhanced response in harmonic generation

from metal-dielectric gratings would yield orders of magnitude increase in frequency

generation efficiency compared to the reference slabs for the same field input. Simi-

larly, an enhanced response in optical bistability from metal-dielectric gratings would

yield bistability thresholds at intensities orders of magnitude lower compared to ref-

erence slabs. For both cases, the general scaled mapping would overlap the response

of the metal-dielectric gratings, confirming the prediction. In particular for bistabil-

ity, the scaled mapping includes correct off-resonance transmission, and maps both

upper and lower branches. From the results of each case, we will have collectively

established the orders of magnitude enhancement of metal-dielectric gratings and the

accuracy of the general scaled mapping for different grating thicknesses, periodicities,

and intensities.

In addition to these case, two non-ideal cases are considered. The first case is the cal-

culation of the nonlinear response of metal-dielectric gratings containing real metal.

In particular, the real metal is assumed to be silver and the enhancement is demon-

strated in second harmonic generation. The second case is further treatment of off-

resonance mapping of the general scaled mapping. In particular, the metal-dielectric

grating is assumed to have perfect electric conduction, but the film is adjusted to be

off-resonance. The enhancement is demonstrated in third harmonic generation.
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Although the grating as proposed produces an enhancement for any suitable wave-

length maintaining the assumptions of the analysis, demonstration is focused to the

mid-infrared region of light at 10.6 µm in both harmonic generation and optical

bistability. The remaining sections of this chapter detail the cases described above.

Physical materials and geometric structures are tabulated. Also, graphs depicting

orders of magnitude enhancement are supplied.

5.2 Second-Harmonic Generation

In this section, the enhancement of metal-dielectric gratings is demonstrated and

validated in second harmonic generation. The enhanced response is compared to

reference slabs containing the nonlinear material between the metal slits. Also, the

general scaled mapping is shown against the response of the grating.

5.2.1 Grating System

In demonstration of enhanced second harmonic generation, the metal-dielectric grat-

ing was suitably designed to efficiency produce the phenomena. To generate second

harmonics, a second order nonlinear material is required. For wave mixing at 10.6

µm, Copper Chloride (I) was chosen, and was used as the dielectric layering between

the metal slits. The metallic grating was designed with subwavelength periodicity.

Lastly, the grating thickness was tuned for optimal conversion near resonance. The

specific physical quantities for this metal-dielectric grating are found below in Table

5.1.

5.2.2 General Scaled Mapping

Using the physical quantities of the designed metal-dielectric grating for second har-

monic generation, the general scaled mapping to a homogeneous dielectric slab was

obtained. The mapping quantities are found in Table 5.2 below.
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SHG metal-dielectric Grating Parameters
λ 10.6 µm
d 1.325 µm
a 0.165 µm
d/a 8
λ/d 8
L 11.2 µm
ǫl 3.5834
χ(2) 13.4 pm/V

Table 5.1: Metal-dielectric grating parameters in second harmonic generation

SHG Scaled Mapping Parameters
λ 10.6 µm
L̄ 1.4 µm
ǭl 229.34
χ̄(2) 6860 pm/V
ǭc 1.009242

χ̄
(2)
c 1

ǭl/ǫl 64
χ̄(2)/χ(2) 512

Table 5.2: General scaled mapping parameters in second harmonic generation

From the general scaled mapping, the designed metal-dielectric grating is predicted

to have an enhancement in linear permittivity of 64 and an enhancement in second-

order nonlinearity of 512 for Copper Chloride (I). This prediction results in nearly

three-orders of magnitude enhancement in second-order nonlinearity.

5.2.3 Reference Slabs

Although the predicted enhancement is many orders of magnitude larger than the

base optical properties of CuCl(I), it does not necessary guarantee orders of magni-

tude enhancement in second harmonic generation, as it is dependent on the overall

optical response of grating, not just the second-order nonlinearity. Because of this,

reference slabs of Copper Chloride (I) at various thicknesses are calculated at the
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same field inputs as the metal-dielectric grating containing CuCl(I) (and correspond-

ing scaled mapping). For proper comparison, two slab thicknesses were chosen. The

first slab thickness represents the best case comparison, where the slab thickness is set

on resonance and contains the same number of index wavelengths within the reference

slab as the grating system contains. For this case, the slab thickness is equal to the

grating thickness. The second slab thickness represents the worst case comparison,

where the slab thickness is set off resonance and is set at the thickness of the general

scaled mapping. These two reference slab thicknesses represent an envelope of com-

parison for second harmonic generation to the metal-dielectric grating designed with

CuCl(I).

5.2.4 Results

In Figure 5.1, the calculated response of second harmonic generation in the metal-

dielectric grating containing CuCl(I) (black dots), general scaled mapping (red line),

and reference slabs of CuCl(I) (blue lines) is shown. The horizontal axis represents the

field input to the collective systems, where all were calculated at the same field inputs.

The vertical axis represents second harmonic generated by the collective systems. For

continuity purposes, the field input is normalized such that it scales the magnitude of

the nonlinear part of the permittivity over the linear permittivity. For second-order

nonlinear materials, the normalization is defined as χ(2)|E0|
ǫl

. For this demonstration

of second harmonic generation, the field inputs were kept very small, on the order of

10−5 normalized, to keep the growth of the second harmonic quadratic in all systems

for proper comparison. Also, the second harmonic transmission was also normalized

to the input field as I2ω/I0.

In Figure 5.1, the enhancement of second harmonic generation in metal-dielectric

gratings is observed. Compared to the best-case in the reference slab envelope, the

efficiency of the metal-dielectric gratings is over 400 times greater, greater than two

orders of magnitude. This implies for larger d/a, the grating with produce greater

enhancement of second harmonic generation. In addition, the response of the gen-

eral scaled mapping overlaps well with the response of the metal-dielectric grating.

This confirms the use of the general scaled mapping as a predicting tool for systems

40



10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-5 10-4

S
ec

on
d-

H
ar

m
on

ic
 T

ra
ns

m
is

si
on

, I
2ω

/I 0

Permittivity Ratio, χ(2)|E0|/εl

Scaled Mapping
Ref. L=LmappingRef. L=Lresonance

Grating

Figure 5.1: Far-field transmission, I2ω/I0, of the metal-dielectric grating containing
CuCl(I) in second harmonic generation. From an input light at 10.6µm, the metal-
dielectric grating with d/a = 8 at subwavelength scales, show as black dots, yields
an second harmonic conversion efficiency 450 times larger compared to the references
slab containing CuCl(I) used in the grating, blue lines. Also, the scaled mapping, red
line, maps very well to the optical response of the grating. The input field strength

is presented as a ratio defined as χ(2)|E0|
ǫl

for second-order materials, which scales
the magnitude of the nonlinear part of the permittivity over the linear permittivity.
The second harmonic generation shown is an small field inputs, as the nonlinear
part is roughly 10−4 the linear part for this comparison. This plot validates the
enhancement properties of the metal-dielectric grating and scale mapping in second
harmonic generation.

in second harmonic generation. From these conclusions, the orders of magnitude

enhancement of second harmonic generation in metal-dielectric gratings is confirmed.
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5.3 Third-Harmonic Generation

In this section, the enhancement of metal-dielectric gratings is demonstrated and vali-

dated in third harmonic generation. The enhanced response is compared to reference

slabs containing the nonlinear material between the metal slits. Also, the general

scaled mapping is shown against the response of the grating.

5.3.1 Grating System

In demonstration of enhanced third harmonic generation, the metal-dielectric grat-

ing was suitably designed to efficiency produce the phenomena. To generate third

harmonics, a third order nonlinear material is required. For wave mixing at 10.6

µm, Gallium Arsenide was chosen, and was used as the dielectric layering between

the metal slits. The metallic grating was designed with subwavelength periodicity.

Lastly, the grating thickness was tuned for optimal conversion near resonance. The

specific physical quantities for this metal-dielectric grating are found below in Table

5.3.

THG metal-dielectric Grating Parameters
λ 10.6 µm
d 0.800 µm
a 0.100 µm
d/a 8
λ/d 13.25
L 3.352 µm
ǫl 10.13
χ(3) 1.49 ∗ 10−19pm2/V 2

Table 5.3: Metal-dielectric grating parameters in third harmonic generation

5.3.2 General Scaled Mapping

Using the physical quantities of the designed metal-dielectric grating for third har-

monic generation, the general scaled mapping to a homogeneous dielectric slab was

obtained. The mapping quantities are found in Table 5.4 below.
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THG Scaled Mapping Parameters
λ 10.6 µm
L̄ 0.419 µm
ǭl 644
χ̄(3) 7390 ∗ 10−19pm2/V 2

ǭc 1.0066425

χ̄
(3)
c 1

ǭl/ǫl 64
χ̄(3)/χ(3) 4096

Table 5.4: General scaled mapping parameters in third harmonic generation

From the general scaled mapping, the designed metal-dielectric grating is predicted

to have an enhancement in linear permittivity of 64 and an enhancement in third-

order nonlinearity of 4096 for Gallium Arsenide. This prediction results in nearly

four-orders of magnitude enhancement in third-order nonlinearity.

5.3.3 Reference Slabs

Although the predicted enhancement is many orders of magnitude larger than the

base optical properties of GaAs, it does not necessary guarantee orders of magnitude

enhancement in third harmonic generation, as it is dependent on the overall optical

response of grating, not just the third-order nonlinearity. Because of this, reference

slabs of Gallium Arsenide at various thicknesses are calculated at the same field inputs

as the metal-dielectric grating containing GaAs (and corresponding scaled mapping).

For proper comparison, two slab thicknesses were chosen. The first slab thickness

represents the best case comparison, where the slab thickness is set on resonance

and contains the same number of index wavelengths within the reference slab as the

grating system contains. For this case, the slab thickness is equal to the grating

thickness. The second slab thickness represents the worst case comparison, where the

slab thickness is set off resonance and is set at the thickness of the general scaled

mapping. These two reference slab thicknesses represent an envelope of comparison

for third harmonic generation to the metal-dielectric grating designed with GaAs.
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5.3.4 Results

In Figure 5.2, the calculated response of third harmonic generation in the metal-

dielectric grating containing GaAs (black dots), general scaled mapping (red line),

and reference slabs of GaAs (blue lines) is shown. The horizontal axis represents the

field input to the collective systems, where all were calculated at the same field inputs.

The vertical axis represents third harmonic generated by the collective systems. For

continuity purposes, the field input is normalized such that it scales the magnitude

of the nonlinear part of the permittivity over the linear permittivity. For third-order

nonlinear materials, the normalization is defined as χ(3)|E0|2

ǫl
. For this demonstration

of third harmonic generation, the field inputs were kept very small, on the order of

10−4 normalized, to keep the growth of the third harmonic small in all systems for

proper comparison. Also, the third harmonic transmission was also normalized to the

input field as I3ω/I0.

In Figure 5.2, the enhancement of third harmonic generation in metal-dielectric grat-

ings is observed. Compared to the best-case in the reference slab envelope, the effi-

ciency of the metal-dielectric gratings is over 1500 times greater, greater than three

orders of magnitude. This implies for larger d/a, the grating with produce greater

enhancement of third harmonic generation. The response of the metal-dielectric grat-

ing at larger field input loses linearity and plateaus. This is caused by the nonlinear

part becoming large enough to push the grating system off-resonance, reducing the

overall third harmonic generation. However, dividing the third harmonic field by

the transmitted input frequency results in large efficiency, thus producing significant

enhancement compared to the reference envelope. In addition, the response of the

general scaled mapping overlaps well with the response of the metal-dielectric grating.

This confirms the use of the general scaled mapping as a predicting tool for systems

in third harmonic generation. From these conclusions, the orders of magnitude en-

hancement of third harmonic generation in metal-dielectric gratings is confirmed.
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Figure 5.2: Far-field transmission, I3ω/I0, of the metal-dielectric grating containing
GaAs in third harmonic generation. From an input light at 10.6µm, the metal-
dielectric grating with d/a = 8 at subwavelength scales, show as black dots, yields
an third harmonic conversion efficiency 1500 times larger compared to the references
slab containing CuCl(I) used in the grating, blue lines. Also, the scaled mapping, red
line, maps very well to the optical response of the grating. The input field strength

is presented as a ratio defined as χ(3)|E0|2

ǫl
for third-order materials, which scales the

magnitude of the nonlinear part of the permittivity over the linear permittivity. The
third harmonic generation shown is an small field inputs, as the nonlinear part is
roughly 10−4 the linear part for this comparison. This plot validates the enhance-
ment properties of the metal-dielectric grating and scaled mapping in third harmonic
generation.

5.4 Optical Bistability

In this section, the enhancement of metal-dielectric gratings is demonstrated and

validated in optical bistability. The enhanced response is compared to reference slabs

containing the nonlinear material between the metal slits. Also, the general scaled

mapping is shown against the response of the grating.
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5.4.1 Grating System

In demonstration of enhanced optical bistability, the metal-dielectric grating was

suitably designed to efficiency produce the phenomena. To generate bistability, a

third order nonlinear material is required. For bistability at 10.6 µm, Silicon was

chosen, and was used as the dielectric layering between the metal slits. The metallic

grating was designed with subwavelength periodicity. The grating thickness was tuned

such that it generated the first onset of bistability. The specific physical quantities

for this metal-dielectric grating are found below in Table 5.5.

OBS metal-dielectric Grating Parameters
λ 10.6 µm
d 0.883 µm
a 0.221 µm
d/a 4
λ/d 12
L 4.24 µm
ǫl 12.09
χ(3) 7.4 ∗ 10−20pm2/V 2

Table 5.5: Metal-dielectric grating parameters in optical bistability

5.4.2 General Scaled Mapping

Using the physical quantities of the designed metal-dielectric grating for optical bista-

bility, the general scaled mapping to a homogeneous dielectric slab was obtained. The

mapping quantities are found in Table 5.6 below.

From the general scaled mapping, the designed metal-dielectric grating is predicted

to have an enhancement in linear permittivity of 16 and an enhancement in third-

order nonlinearity of 256 for Silicon. This prediction results in nearly three-orders of

magnitude enhancement in third-order nonlinearity.
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OBS Scaled Mapping Parameters
λ 10.6 µm
L̄ 1.06 µm
ǭl 195
χ̄(3) 1894 ∗ 10−20pm2/V 2

ǭc 1.006445

χ̄
(3)
c 1

ǭl/ǫl 16
χ̄(3)/χ(3) 256

Table 5.6: General scaled mapping parameters in optical bistability

5.4.3 Reference Slabs

Although the predicted enhancement is many orders of magnitude larger than the

base optical properties of Si, it does not necessary guarantee orders of magnitude

enhancement in optical bistability, as it is dependent on the overall optical response

of grating, not just the third-order nonlinearity. Because of this, one reference slab

of Si at the first onset of optical bistability was calculated at the same field inputs as

the metal-dielectric grating containing Si (and corresponding scaled mapping). The

choice represents the best case comparison.

5.4.4 Results

In Figure 5.3, the calculated response of optical bistability in the metal-dielectric

grating containing Si (black dots), general scaled mapping (red line), and the reference

slab of Si (blue line) is shown. The horizontal axis represents the field input to the

collective systems, where all were calculated at the same field inputs. The vertical axis

represents transmission generated by the collective systems. For continuity purposes,

the field input is normalized such that it scales the magnitude of the nonlinear part

of the permittivity over the linear permittivity. For third-order nonlinear materials,

the normalization is defined as χ(3)|E0|2

ǫl
. For this demonstration of optical bistability,

the field inputs were not kept very small, and range from 0.01 to 10, in order to show

the complete threshold of bistability for all systems. Also, the transmission was also

normalized to the input field as Iω/I0.
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In Figure 5.3, the enhancement of optical bistability in metal-dielectric gratings is

observed. Compared to the reference slab, the threshold of bistability of the metal-

dielectric gratings is reduced by 50 times, roughly two orders of magnitude. Lowering

the threshold of optical bistability is of great importance, particularly in low-power

optical computation. This implies for larger d/a, the grating with produce greater

enhancement of optical bistability, by further lowering of the bistability threshold.
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Figure 5.3: Far-field transmission, Iω/I0, of the metal-dielectric grating containing
silicon in bistability. The bistability region of the grating occurs at over two orders of
magnitude lower intensity than the references slab. Both the grating and the reference
slab film thicknesses were set near the first on-set of bistability.

In Figure 5.4, the response of the general scaled mapping overlaps well with the

response of the metal-dielectric grating. This of particular importance as it confirms

the scaled mapping in both on resonance and off resonance situations. Also, the

scaled mapping is capable of mapping to optical two state systems, predicting the

threshold location and upper and lower contrast branches. From this, it confirms the

use of the general scaled mapping as a predicting tool for systems in optical bistability.

From these conclusions, the orders of magnitude enhancement of optical bistability

in metal-dielectric gratings is confirmed.
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Figure 5.4: Far-field transmission, Iω/I0, of the metal-dielectric grating containing
silicon in bistability. The general scaled mapping maps very well to the transmission
of the upper and lower bistability curves, and predicts the intensity on-sets of the
bistability region.

5.5 Enhancement with Real Metal

In this section, the enhancement of metal-dielectric gratings is demonstrated and

validated in second harmonic generation when the PEC assumption is removed and

replace with the real metal response of Silver. The enhanced response is compared

to reference slabs containing the nonlinear material between the metal slits. Because

the general scaled mapping is based on the PEC assumption, no mapping is shown

against the response of the grating.

5.5.1 Grating System

Hardened critics of the scaled mapping analysis and previous enhanced nonlinear

phenomena demonstrations would be wise to be skeptical of the enhancement of
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optical nonlinearity with the assumption that metal is a perfect electric conduction,

as no real metal is PEC. In general, metals are lossy, and carry some penetration

depth. With these features existing, might it reduce or eliminate any enhancement

of optical nonlinearity?

In demonstration of enhanced second harmonic generation with a real metal response,

the metal-dielectric grating was suitably designed to efficiency produce the phenom-

ena. To generate second harmonics, a second order nonlinear material is required.

Using the same second-order nonlinear material in the previous wave mixing example,

at 10.6 µm, Copper Chloride (I) was chosen, and was used as the dielectric layering

between the metal slits. The metal was chosen to be metallic response of Silver at

10.6µm. The metallic grating was designed with subwavelength periodicity. Lastly,

the grating thickness was tuned for optimal conversion near resonance. The specific

physical quantities for this metal-dielectric grating are found below in Table 5.7.

SHG metal-dielectric Grating Parameters
λ 10.6 µm
d 3.53 µm
a 0.833 µm
d/a 4
λ/d 3
L 2.606 µm
ǫl 3.5834
χ(2) 13.4 pm/V

Table 5.7: Metal-dielectric grating parameters in second harmonic generation with
Silver as grating material instead of PEC

5.5.2 General Scaled Mapping

Since the PEC condition was removed from the metal-dielectric grating, the simple

and general scaled mapping derived cannot be applied to a system containing a real

metal response. Also, a general scaled mapping is difficult to obtain using the meth-

ods employed in previous analysis. Thus, a general scaled mapping was not given

for this case. It was seen in the previous section that when metal is PEC that the
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general scaled mapping predicts the response of the metal-dielectric grating in sec-

ond harmonic generation. Thus, using the general scaled mapping as a guideline,

the designed metal-dielectric grating is predicted to have an enhancement in linear

permittivity of 16 and an enhancement in second-order nonlinearity of 64 for Copper

Chloride (I). Under the PEC assumption, this prediction results in nearly two-orders

of magnitude enhancement in second-order nonlinearity. However, factoring in lossy

in the metal, it should be expected to have an second-order enhancement of greater

than one order of magnitude.

5.5.3 Reference Slabs

Although the predicted enhancement is many orders of magnitude larger than the base

optical properties of CuCl(I), it does not necessary guarantee orders of magnitude

enhancement in second harmonic generation, as it is dependent on the overall optical

response of grating, not just the second-order nonlinearity. Also, with the inclusion

of the real metal response in the grating, it is essential to compare to references

slabs, as the general scaled mapping is unable to predict the resulting enhancement

loss. Because of this, reference slabs of Copper Chloride (I) at various thicknesses are

calculated at the same field inputs as the metal-dielectric grating containing CuCl(I)

(and corresponding scaled mapping). For proper comparison, two slab thicknesses

were chosen. The first slab thickness represents the best case comparison, where the

slab thickness is set on resonance and contains the same number of index wavelengths

within the reference slab as the grating system contains. For this case, the slab

thickness is equal to the grating thickness. The second slab thickness represents the

worst case comparison, where the slab thickness is set off resonance and is set at

the thickness of the general scaled mapping. These two reference slab thicknesses

represent an envelope of comparison for second harmonic generation to the metal-

dielectric grating designed with CuCl(I).

5.5.4 Results

In Figure 5.5, the calculated response of second harmonic generation in the metal-

dielectric grating containing CuCl(I) and Silver (black dots), and reference slabs of
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CuCl(I) (blue lines) is shown. The horizontal axis represents the field input to the

collective systems, where all were calculated at the same field inputs. The vertical

axis represents second harmonic generated by the collective systems. For continu-

ity purposes, the field input is normalized such that it scales the magnitude of the

nonlinear part of the permittivity over the linear permittivity. For second-order non-

linear materials, the normalization is defined as χ(2)|E0|
ǫl

. For this demonstration of

second harmonic generation, the field inputs were kept very small, on the order of

10−4 normalized, to keep the growth of the second harmonic quadratic in all systems

for proper comparison. Also, the second harmonic transmission was also normalized

to the input field as I2ω/I0.

10-8

10-7

10-6

10-5

10-4

10-3

 3⋅10-4  5⋅10-4  1⋅10-3  2⋅10-3  5⋅10-3

I 2
ω
/I 0

χ(2)|E0|/εl

Ref. L=Lresonance
Ref. L=Lmapping

Silver Grating

Figure 5.5: Orders of magnitude enhancement of optical nonlinearity is still achieved
in grating containing lossy metal. For silver at 10.6 µm, a multi-order of magnitude
enhancement is observed in CuCl as compared to multiple reference slab film thick-
nesses. A scaled mapping is not shown as losses from metal were not incorporated
into its assumptions.

In Figure 5.5, the enhancement of second harmonic generation in metal-dielectric

gratings containing the real metal response of Silver is observed. Compared to the

best-case in the reference slab envelope, the efficiency of the metal-dielectric gratings

is over one order of magnitude times greater as suggested from the scaled mapping
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analysis. This implies for larger d/a, the grating with produce greater enhancement

of second harmonic generation, although not without additional losses due to the real

metal response. Also, for nonlinear materials at longer wavelengths, losses from metal

will diminish, where as shorter wavelengths will reduced the effectiveness of metal due

to larger field penetration into the metal. Overall, this result strengths our proposed

method for enhancement of nonlinear materials, and justifies the use of lossy metal

in enhancement. From these conclusions, the orders of magnitude enhancement of

second harmonic generation in metal-dielectric gratings is confirmed for real metal

responses of Silver.

5.6 Scaled Mapping Off-Resonance

In this section, the response of an enhanced metal-dielectric gratings is demonstrated

and validated in third harmonic generation when designed to be off-resonance. In

particular, this case is designed to show the accuracy and predictive power of the

general scaled mapping in an off-resonance case of harmonic generation.

5.6.1 Grating System

Hardened critics of the scaled mapping analysis and previous enhanced nonlinear phe-

nomena demonstrations would be wise to be skeptical of the capability of the general

scaled mapping in an off-resonance scenario. In general, the previous analysis gave

preference to the metal-dielectric grating on-resonance, and in the previous harmonic

generation cases, the general scaled mapping preformed well. With these features

existing, might the accuracy or prediction power of the general scaled mapping be

reduce or eliminated when off-resonance?

In demonstration of this question, a metal-dielectric grating was design to have en-

hanced third harmonic generation, but the metal-dielectric grating was not suit-

ably designed to efficiency produce the phenomena, i.e., the grating was design off-

resonance. To generate third harmonics, a third order nonlinear material is required.

Using the same third-order nonlinear material in the previous wave mixing example,
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at 10.6 µm, Gallium Arsenide was chosen, and was used as the dielectric layering

between the metal slits. The metallic grating was designed with subwavelength peri-

odicity. Lastly, the grating thickness was tuned to be at the trough for off-resonance.

The specific physical quantities for this metal-dielectric grating are found below in

Table 5.8.

THG metal-dielectric Grating Parameters
λ 10.6 µm
d 0.663 µm
a 0.166 µm
d/a 4
λ/d 16
L 3.6871 µm
ǫl 10
χ(3) 1.49 ∗ 10−19pm2/V 2

Table 5.8: Metal-dielectric grating parameters in third harmonic generation at off-
resonance

5.6.2 General Scaled Mapping

Using the physical quantities of the designed metal-dielectric grating for third har-

monic generation, the general scaled mapping to a homogeneous dielectric slab was

obtained. The mapping quantities are found in Table 5.9 below.

THG Scaled Mapping Parameters
λ 10.6 µm
L̄ 0.922 µm
ǭl 160
χ̄(3) 381 ∗ 10−19pm2/V 2

ǭc 1.006746

χ̄
(3)
c 1

ǭl/ǫl 16
χ̄(3)/χ(3) 256

Table 5.9: General scaled mapping parameters in third harmonic generation at off-
resonance
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From the general scaled mapping, the designed metal-dielectric grating is predicted

to have an enhancement in linear permittivity of 16 and an enhancement in third-

order nonlinearity of 256 for Gallium Arsenide. This prediction results in nearly

three-orders of magnitude enhancement in third-order nonlinearity.

5.6.3 Reference Slabs

For this validation case, reference slabs are not of concern. Here, the accuracy of the

general scaled mapping is being tested in an off-resonance case. Thus, no reference

slab are presented.

5.6.4 Results

In Figure 5.6, the calculated response of third harmonic generation in the metal-

dielectric grating containing GaAs (black dots), and general scaled mapping (red

line) is shown. The horizontal axis represents the field input to the collective systems,

where all were calculated at the same field inputs. The vertical axis represents third

harmonic generated by the collective systems. For continuity purposes, the field

input is normalized such that it scales the magnitude of the nonlinear part of the

permittivity over the linear permittivity. For third-order nonlinear materials, the

normalization is defined as χ(3)|E0|2

ǫl
. Also, the third harmonic transmission was also

normalized to the input field as I3ω/I0.

In Figure 5.6, the response of the general scaled mapping overlaps well with the

response of the metal-dielectric grating. Even at off-resonance, the general scaled

mapping predicts the response of the metal-dielectric grating in third harmonic gen-

eration. This is not entirely unexpected as the general scaled mapping for optical

bistability was validated, and this system had many points off-resonance (as neces-

sary for optical bistability) that accurately mapped. This confirms the use of the

general scaled mapping as a predicting tool for systems in third harmonic generation

and for any system on or off resonance, and is thus confirmed.
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Figure 5.6: The general scaled mapping of metal-dielectric grating in third harmonic
generation at off-resonance conditions accurately predicts the phenomena.
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Appendix A

Numerical Simulation of

Electrodynamic Systems

Many situations in science and engineering, mathematical and physical model do

not easily lend themselves to analytical or exact calculation. The remedy for these

situations is to use numerical methods. In this appendix, a brief introduction to nu-

merical methods related to this thesis is provided. Here, a brief overview of the finite-

difference numerical method is given. Methods for numerical simulation of electrody-

namic systems known as FDTD, critical in the analysis of nonlinear metal-dielectric

gratings, are discussed. Also, problem specific cases are presented in demonstration

of numerical modeling.

A.1 The Finite-Difference Time-Domain Method

In the calculation of physical models in engineering and science, the majority are ac-

complished through numerical methods. There are a variety of numerical approxima-

tions, such as finite difference [41] and finite element methods [42], for approximation

of physical and mathematical models. In the analysis of nonlinear metal-dielectric

gratings throughout this thesis, the finite difference numerical method was used for

calculating electromagnetic waves propagating through optical media. In this section,

an introduction is given for the finite difference approximation and its application to

electrodynamic theory.
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A.1.1 Finite Difference Approximation

Complex systems of differential equations are difficult to solve through analytical

methods. To yield solutions, physical models can be approximated and discretized

using the finite difference method. To start, the domain of the physical system is

discretized and made finite. To approximate the physical model along the domain,

discrete points are chosen for calculation. Most finite difference methods apply a

uniform discretization along each domain, although the discretization size may differ

among domains.

The simplest domain to discretized is a one-dimensional line as seen in Figure A.1.

Physical systems having 1-D domain are common in science and engineering and in-

clude bending of beams, electromagnetic waves in homogeneous materials, and ther-

modynamic heat transfer in planar structures. Here, the domain variable, x, is spatial

dimension in the x-direction, and discrete points are chosen every ∆x along the x-

direction. Since the domain has a finite length, L, the discretization produces a total

of L/∆x points of calculation.

Figure A.1: Shown is a one-dimension line is discretized uniformly. Here, the line is
discretized by ∆x for a domain length L. Producing this discretization creates points
of calculation in the approximation of physical models using the finite difference
method. For this example, the discretization produces a total of L/∆x points of
calculation.

As in most numerical methods for differential equations, the finite difference method

approximates the derivative operator. The finite difference approximation arises from

the definition of a derivative. For a single variable function, f(x), the derivative of

the function, as defined below, is the difference of the function at δx by δx when it

approaches zero.

f
′

(x) = lim
δx→0

f(x+ δx)− f(x)

δx
(A.1)
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For a discretized domain, the function, f(x), is approximated as

f
′

(x) ≈ f(x+∆x)− f(x)

∆x
(A.2)

where ∆x is the discretization length of the domain. Here, the derivative of the

function f
′

(x) at x approximated by the difference between the function f(x) at x

and its nearest neighbor f(x+∆x) divided by the discretization distance ∆x.

Although this approximation will work, more commonly, the approximation is created

by making the difference symmetrical as seen below.

f
′

(x) =
f(x+∆x)− f(x−∆x)

2∆x
(A.3)

Here, the difference is taken by the two nearest neighbors, producing a total average

of surrounding neighboring points. This finite difference approximation is known as

the central difference.

In demonstration of the finite difference method, the function f(x) = e(x) is approx-

imated over the domain [0, 1]. Now, simple calculus shows that f
′

(x) = ex, but for

demonstration purposes, the derivative of f(x) = ex is approximated using the finite

difference method. Using the central difference definition, the approximation is

f
′

(x) = ex
sinh(∆x)

∆x
(A.4)

which is very close to the exact derivative. In fact, the term sinh(∆x)
∆x

goes to unity

as ∆x goes to zero. For example, choosing ∆x = 0.1, sinh(∆x)
∆x

= 1.00167. Making

∆x = 0.01 an order of magnitude smaller yields sinh(∆x)
∆x

= 1.000017. In Figure A.2,

the approximations are shown for the discretization developed above. From the above

considerations, the finite difference method produces accurate results for well behaved

models under most computational scenarios.

The finite difference method can be easily extended to higher-order derivatives and in

multi-dimensional domains. For higher-order derivatives, the one-dimensional central

difference approximation is applied repeatedly to each derivative taken, as with exact

calculations. As an example, the second-order central difference approximation is
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Figure A.2: Graphic representation of the finite difference approximation to f(x) =

e(x) which resulted in f
′

(x) = ex sinh(∆x)
∆x

. Over the domain [0, 1] (horizontal-axis), the
approximation of the function is plotted for the two different discretizations (vertical-
axis). The large, blue, and small, red, discretization work very well, and are accurate
to the second and fourth decimal place respectively.

demonstrated for a one-dimensional function.

f
′′

(x) =
f

′

(x+∆x)− f
′

(x−∆x)

2∆x
(A.5)

Although this representation of the second-order derivative will work, expanding the

first derivatives with its central difference approximation yields a more convenient

form.

f
′′

(x) =
f(x+ 2∆x)− 2f(x) + f(x− 2∆x)

4(∆x)2
(A.6)
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In addition to higher-order derivatives, partial derivatives of multi-dimensional func-

tions can be calculated by the finite difference method. For multi-dimensional prob-

lems, each axis of the domain must be discretized. Then, approximating partial

derivatives is the same as computing exact partial derivative expressions. By holding

all discretized dimensions as constants except the dimension of interest, the partial

derivative approximation is determined. As an example, the one-dimensional x spatial

function f(x) is turned into a two-dimensional function f(x, t) in space and time, t.

Thus, the first partial derivative approximation with respect to x is exactly the same

as the one-dimension example but now holding t as a constant within the function.

fx(x, t) =
f(x+∆x, t)− f(x−∆x, t)

2∆x
(A.7)

Similarly, letting ∆t be the time discretization, the first partial derivative with respect

to t is seen below.

ft(x, t) =
f(x, t+∆t)− f(x, t−∆t)

2∆t
(A.8)

This concludes the brief introduction of finite difference approximation. Finite differ-

ence method is an easy, yet robust approximation scheme to be used in the calculation

of complex physical models. It is noted that further information is needed to fully

implement these approximations to differential equations, partial differential equa-

tions, and systems of differential equations. In particular, convergence and stability

criterion were not discussed, since it was not relevant for this introduction. From

here, the following references are particularly useful for further development of finite

difference methodology and practice [41].

A.1.2 Finite Differences in EM Theory

As developed in Chapter 2, the propagation of light through media in classical regimes

is describe by the Maxwell equations. With simplified models, many exact expressions

in optics are found using the Maxwell Equations, such as light transmitting through
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linear homogeneous dielectric slabs, dispersion of materials, diffraction, and waveg-

uided modes. However, for more complex systems, such as nonlinear materials, or

empirical models, such as real metals, exact solutions are limited or impossible to be

found. Therefore, the need for numerical electrodynamic approximation is necessary

to explore and describe these systems. Here, a brief introduction of electrodynamic

systems as approximated by the finite difference method is presented.

To model light propagation through source-free media, two of the four Maxwell Equa-

tions are necessary: Ampere’s and Faraday’s Law respectively (seen below), as they

form the basis of wave propagation in electromagnetic theory. Note: Refer to the

nomenclature of previous chapters for variable definition clarity when necessary.

ǫ
∂E

∂t
= ∇×H (A.9)

−µ
∂H

∂t
= ∇× E (A.10)

Numerical modeling of electrodynamic systems becomes necessary when media ǫ and

µ have complex definitions. For example, in third-order nonlinear materials, ǫ =

ǫl + χ(3)|E|2 and µ = 1. Although material µ causes no analytical problems in this

example, the material ǫ does. Specifically, when solving for the electric field E in

Ampere’s and Faraday’s equations, E must also be solved for through the material

definition. In this case, a general solution is not possible, and requires numerical

calculation for full treatment. To do this, Ampere’s and Faraday’s Laws must be

approximated.

The simplest approximation to Maxwell’s Equations is through the finite difference

method. Using the introduction provided in the above section, finite difference

method is applied to these equations. Also, it is noted that the finite difference

method applied to electrodynamic systems is referred as the finite-difference time-

domain method or FDTD, as coined by Allan Taflov [43]. First, the domain must be

specified. The general domain for the Maxwell Equations is four-dimensional: three

spatial dimensions and one time dimension. However, many electrodynamic systems

do not require the full domain to be used. The simplest systems require only one
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spatial dimension and the time-dimension. In general, the time-dimension always is

required; time-independent electromagnetic problems can still be numerically solved

using finite differences, but these are solutions of the potential equation and are not

relevant to this thesis.

Next, the partial derivatives in the Ampere’s and Faraday’s laws are replaced with

the finite difference approximation. This is the point where the FDTD approxi-

mation becomes challenging. In the previous examples, only a single function with

multi-dimensional domains were considered. In the electrodynamic systems, the elec-

tric field E and the magnetic field H must both be solved, and thus, these two

functions must be approximated. In addition, the electric and magnetic fields are

coupled between Ampere’s and Faraday’s laws through curl operators, which are not

as simple to numerically approximate as ordinary partial derivatives. In fact, typical

finite difference implementations do not work with the Maxwell equations. This is

because these yield solutions that are affected by numerical dispersion, an adverse

approximation artifact that causes waves to spread in time and/or space, much like

material dispersion in optical systems. A fully functional FDTD implementation was

first created by Yee [44] in 1966. This successful FDTD algorithm, known as Yee’s

Algorithm goes as follows: 1) Discretize the domain 2) Implement typical finite dif-

ference approximations to partial derivatives, but stagger E and H fields between

calculation points (see Figure A.3) 3) Solve stagged field finite difference equations at

every time step (see equations below specifically for one-dimensional spatial systems).

Et+∆t

x
= Et

x
+

∆t

ǫ∆x

(

H
t+1/2∆t

x+1/2∆x
−H

t+1/2∆t

x−1/2∆x

)

(A.11)

H
t+1/2∆t

x+1/2∆x
= H

t−1/2∆t

x+1/2∆x
+

∆t

µ∆x

(

Et

x+∆x
− Et

x

)

(A.12)

In Figure A.3 and equations above, the magnetic field is calculated at points every

half integer, where as the electric field is calculated at every integer. This successfully

produces the stagger needed for Yee Algorithm. Also, in the equations, ǫ and µ

contains the wave propagation medium material definitions throughout the time-

domain and spatial domains. More complex material definitions or empirical material

properties may require further approximation of approximation manipulation to yield

63



Figure A.3: The domain discretization is shown for a two-dimensional implementation
of Yee’s Algorithm in FDTD calculation. Here, the electric field and magnetic field
points are staggered both in the spatial x-axis and time t-axis to prevent numerical
dispersion. Future time points are calculated from past time spatial points using the
finite difference method technique. The figure was borrowed from Chapter 3 in [45].

a suitable form. This concludes the brief introduction of FDTD. Approximations to

the Maxwell Equations using the FDTD method is an easy, yet robust approximation

scheme to be used in the calculation of complex electrodynamic models. It is noted

that further information is needed to fully implement these approximations in specific

cases. In particular, convergence and stability criterion were not discussed, since

it was not relevant for this introduction. From here, the following references are

particularly useful for further development of FDTD methodology and practice [45].
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A.1.3 FDTD Terminating Boundary Considerations

One item that was not discussed in the development of FDTD in the above section

was the issue wave propagation through finite domain media. In nature and in the

lab, light emitted from a source, whether it be the Sun, a light bulb, or a laser,

eventually is absorbed or scattered by the surrounding environment. Similarity, in

the computational environment, an effective absorber is necessary to eliminate wave

propagation at the ends of the finite spatial domain. Imperfect absorbers cause un-

wanted reflections which are returned into the simulation environment creating errors.

Therefore, the need for perfect numerical wave absorbers are necessary to efficiently

computation and accurate characterization of complex electrodynamic systems in nu-

merical FDTD. Here, a brief introduction to absorbing boundaries in FDTD systems

is presented.

There are several methods in FDTD for terminating a domain at its boundary. For the

purposes of this brief introduction, only two are covered due to the authors familiarity.

The first terminating boundary condition is knowns as the one-dimensional absorbing

boundary condition or ABC, and is the simplest to apply to FDTD codes. The central

idea of ABC is matching the electric and magnetic fields at the boundary end points

with the electric and magnetic fields next to the end points. This boundary condition

matches that of a vibrating string with one end of the string as a source of vibration,

and the other end is loop around a pole. When the end of the string vibrates, it moves

up and down the down with the vibration, instead of reflecting as would happen if

it was directly attached to the pole. As an example, implemented in an 1-D FDTD

code, outlay the end points of the discretized domain, and set them as the nearby

calculated field values as follows.

At this point, one may wonder why there are so many absorbing boundary conditions

is ABCs work so well. The simple answer is they do not work well in most FDTD

problems. ABCs work very well in 1-D problems were the electric and magnetic field

behave nicely. They can also work well in higher dimensional problems with some

modification. However, it most computational scenarios, they do not work well, such

as nonlinear problems, or light and oblique incidences to the ABC. Thus, a more

robust, comprehensive approach to absorptive boundary conditions is necessary.
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This leads to the second terminating boundary condition of interest as perfectly-

match-layers or PML. PML is considered the sexy, ”state of the art” approach to

boundary conditions in FDTD codes, as it provides a general, robust solution in ter-

minating FDTD domain end reflections. PML was proposed by J.-P. Berenger in

1994 [cite], and since then, many versions of PML with better performance have been

proposed as well [cite]. The central idea behind PML is that it is a computational

artificial material that is extremely lossy, or absorptive, to incident light of any fre-

quency, incidence, etc. First, the artificial material must have the same impedance

as the lossless computational domain to prevent reflections of incident light and to

allow it to fully enter. Second, once light enters, it must yield to extremely absorption

within.

There are many formulations of PML that exist, all with different derivations, all very

effective. Instead of diving into a particular PML formulation, an FDTD simulation

was run using PML as a boundary condition to demonstrate its effectiveness as an

absorbing material. In Figure A.4, a single frequency wave is incident upon a layer of

PML. The colors red and blue represent the electric field oscillation. For zero field,

white is represented. In lossless domain, the oscillation of the single frequency wave

is observed. However, in the PML layer, the fields are quickly absorbed. Thus, it

is clear from this simple result that PML is very effective at absorbing light at the

boundaries of FDTD computational domains.

For PML to be effective in nearly complete absorption, the thickness of PML needs to

be at least half the longest wavelength used in the computation. For single frequency

FDTD simulations, the PML thickness is rather easy to apply. However, for multi-

frequency FDTD simulations, caution is advised in setting a PML thickness to be

large enough to absorb all frequencies used. Although PML is extremely effective

in terminating domain end reflections, technically speaking, PML is not really a

boundary condition. Traditionally, a boundary condition is defined on a point, line

or surface. Here, PML is an artificial material used for computation convenience for

which it must to coat the outer edges of the computational domain to eliminates

reflections of nearly all light it touches. Because of this, the computational domain

must account for extra PML materials around the edges.
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Figure A.4: Shown is a two spatial dimensional FDTD simulation utilizing PML at the
top boundary. Where there is no PML, a half-wavelength of oscillating electric field is
seen. However, where PML is placed, no electric field is present, thus demonstrating
its near perfect absorptive effects. Through use of PML, easy, low computation FDTD
simulations are possible, eliminated unusually grid patterning or large grid domains.

This concludes the brief introduction to FDTD terminating boundary conditions.

For more information regarding FDTD and boundary conditions, see these references

[cite].
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Appendix B

Numerical Validation

General analytical calculations of nonlinear optical systems are often difficult or im-

possible to obtain from the Maxwell equations given the field dependence of nonlinear

optical materials. Thus, numerical methods are required to calculate nonlinear sys-

tems. In this appendix, numerical considerations to nonlinear homogeneous dielec-

tric slabs and nonlinear metal-dielectric gratings are discussed. Experiential knowl-

edge accumulated through hundreds of numerical simulations of nonlinear systems

is recorded for reference in future work related to this area. In particular, focus is

given to items such as grid layout and convergence. Also, transmission spectrum are

presented in validation of the numerical modeling accomplished through FDTD.

B.1 FDTD of Homogeneous Dielectric Slab

The numerical calculation of linear and nonlinear homogeneous dielectric slabs are

greatly important to the topics of this thesis. Its solutions are used as a mathematical

mapping from metal-dielectric gratings and as reference slabs to compare nonlinear

enhancement properties. In this section, the numerical simulation of homogeneous

dielectric slabs are discussed. Also, a validation of the FDTD setup are detailed using

a comparison between analytical and computational solutions in transmission.
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B.1.1 Grid Setup

To setup the numerical calculation for the transmission of the homogeneous dielectric

slab via the FDTDmethod, first the domain of the system must be determined. As the

name implies, a homogeneous dielectric material is assumed to have the same optical

properties throughout the material in at least one direction. Thus, to determine

the size of the spatial domain, only the direction of light propagation relative to

the material interface is necessary. For light at normal incidence, i.e. perpendicular

to the material interface, only one spatial dimension is required to fully capture

the transmission characteristics of a homogeneous dielectric slab, since light is only

propagating along one spatial dimension. Therefore, transmission of normal incident

light through a homogeneous dielectric slab is a two-dimension domain with one

spatial dimension and one time dimension. For light at an oblique incidence to a

homogeneous dielectric slab, i.e. at an angle to the material interface, two spatial

dimensions required to fully capture the transmission characteristics of a homogeneous

dielectric slab. Even though one spatial dimension is required for the simulation

of material properties, two spatial dimensions are needed to fully capture the wave

propagation. Therefore, numerical calculation of transmission of oblique incident light

through a homogeneous dielectric slab is a three-dimensional domain with two spatial

dimension and one time dimension. For visualization purposes, Figure B.1 shows the

differences between normal and oblique incidences, through which the reasoning for

each systems spatial dimensionality becomes clear. It will be seen in the next section

that metal-dielectric gratings will require a three-dimensional domain due to the

inhomogeneity of the grating system.

After establishing the domain characteristics, the simulation of homogeneous dielec-

tric slab for transmission of normal incident light is setup. In Figure B.2, a diagram

of the proposed spatial layout is shown. Note that the thickness of the colors for grid

layout in Figure B.2 do not carry any calculation points in the vertical direction, only

in the horizontal; this was done to highlight changes in the setup for visualization

purposes. Although the homogeneous dielectric slab has a two-dimensional domain,

the spatial layout does not change with time. Hence, the spatial grid is setup to allow

for a time evolution of the light.
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Figure B.1: Shown is the difference between normal incidence and oblique incidence.
For normal incidence, only one spatial dimension is necessary to capture the light
propagation. Conversely, two spatial dimensions are necessary.

Figure B.2: Shown is a two-dimension setup for the homogeneous dielectric slab. The
domain is discretized uniformly as required for the FDTD method. The homoge-
neous dielectric slab, red, is centered in the computational domain. A plane wave
source (left) and data collection (right) was placed one wavelength away from the
the dielectric film. Also, PML was placed at the ends of the computational domain
to absorb transmitted and reflected light to prevent measured light reentering the
computational area, as this interaction is not part of the designed simulation.

From the spatial grid layout, in Figure B.2, there is an arrangement of items within

the grid that is not arbitrary, and in particular, are built around the item of interest,
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in this case, a homogeneous dielectric slab. To begin, the thickness and material

properties of the homogeneous dielectric slab are set. Next, the properties of source

of light are determined, which are dependent upon the type of data needed. For linear

spectrum calculations, finite durational Gaussian pulses are useful since they contain

a ranges of frequencies. When normalized with the input pulse, it forms a complete

transmission spectrum over the frequency range of interest with only two simulations.

This situation provides the fastest computation, since only two computations are

necessary to capture a full spectrum. Conversely, using single frequency planes waves

in the calculation of transmission spectrum would require two runs per frequency

of interest, resulting in many simulations to capture the full transmission spectrum.

Unfortunately, for nonlinear calculations, single frequency plane-waves are the only

source for calculation as nonlinear phenomena only occur for single frequencies, and

broadband Gaussian pulses result in unwanted frequency mixing. Also, due to their

field dependence, simulations must be ran over a range of intensities to fully capture

the nonlinearity of the system.

Regardless of source type used, the location of the source is placed at least one

source wavelength away from the item of interest, in this case, the homogeneous

dielectric slab. In general, this is a suggested placement as it eliminates any near-

field radiation interactions with the source and the item of interest, and allows the

source-type to fully develops before interacting with any material. The location for

data collection of electric and magnetic fields mirrors the same requirements as the

source when collection radiation at the far-field. The data collection placement is at

least one wavelength from the item of interest. This is required to eliminate any near

field effect from the transmitted light from the material system. For homogeneous

dielectric slabs, near-field effects are not an issue; however, it is good FDTD practice

to place sources and data collection points at least a wavelengths distance from an

significant light interaction to only gather far-field transmission.

Lastly, to eliminate reflections at the ends of the computational domain, PML, or

perfectly-match-layers, a near perfect absorber of electromagnetic waves, was applied

at the boundary ends. This is of critical importance to FDTD simulation as it allows

for the measurement of light in complex structures without unwanted back-reflected

light. As mentioned in Appendix A, this causes a great deal of problems in early

FDTD simulation. For the simulation of homogeneous dielectric slabs, the execution
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of PML was done as prescribed. The PML thickness was adjusted to one-half of

the incident source wavelength. With the PML conditions established, it completes

the grid setup for normal incidence transmission calculations of linear and nonlinear

homogeneous dielectric slabs. As will be seen in the next section, the grid layout for

metal-dielectric gratings is very similar, but extended into two spatial dimensions.

From here, the accuracy of the FDTD setup is tested.

B.1.2 FDTD Convergence and Validation of HDS

Before computationally expensive simulations of nonlinear optical phenomena can be

produced, basic tests of the FDTD simulation setup of the homogeneous dielectric

slab must be performed. Several simple tests of physical quantities, such as energy

conservation and field visualization, are useful to determine whether the qualitative

aspects of the simulation are correct. However, the best tests of simulations come

from comparison to analytical solutions. Setting up an FDTD simulation under the

same assumption as a particular analytical solution should yield equivalent responses

under the same inputs.

To test the accuracy of the FDTD simulation of transmission of normal incident light

through a homogeneous dielectric slab, the response of the simulation was compared

to the analytical solution. The analytical solution is only valid for linear optical

systems, and thus obviously does not apply to nonlinear optical systems. However,

nonlinear optical systems converge to linear systems when the input light intensity is

at low powers. Also, validating the linear solution provides the correct foundation of

exploring the nonlinear realm.

The first test of the FDTD simulation of transmission through homogeneous dielectric

slab is the calculation of the transmission spectrum. In this simulation, a multi-

frequency Gaussian pulse was sent through the dielectric slab. Here, only a few

frequencies fully pass through the slab, as those frequencies match the propagating

mode of the slab. In Figure B.3, the results of this simulation are shown. Here

the horizontal axis is the normalized input frequencies and the vertical axis is the

normalized transmission, with 1 representing full transmission. The FDTD simulation

solution is shown as black circles, and plotted over it is the analytical solution in
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red circles. Since both solutions overlap, it is clear that the FDTD simulation and

analytical solution agree. Thus, the FDTD simulation of a dielectric slab passes well.

Figure B.3: Shown are the results of the homogeneous dielectric slab transmission
spectrum validation. The FDTD simulation solution is shown as black circles, and
the analytical solution in red circles. With both solutions overlapping, both the
FDTD simulation and analytical solution agree.

Although the first test made clear that the FDTD simulation of a homogeneous

dielectric slab confirms its general accuracy and its setup, it is unclear from the

test how much it is in error with the analytical solution. Also unclear is how many

grid points in necessary to accurately simulate the system without excess calculation.

Thus, a convergence test was conducted. Specifically, this test measures the error of

the dielectric slab between the FDTD simulation and analytical solution versus grid
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points per wavelength used. To simplify the analysis, single-frequency plane waves

were used.

In Table B.1, the results of the error and convergence test are presented. The columns

are arranged by grid points, error, and time of simulation. For 200 grid points per

wavelength, the FDTD simulation is nearly 10 percent in error, while only taking 2.1

s to compute. Since 10 percent error is not acceptable, the grid points per wavelength

were doubled to 400. At this resolution, the error dropped to 2.4 percent error, while

the time of simulation doubled to 4.2s. For further comparison, the grid points per

wavelength were double again to 800. At this resolution, the error was smaller at

1.6 percent error, yet the time of simulation was nearly 12s. From this analysis, it

is clearly seen that doubling of the grid points does result in lower error. However,

doubling of grid points also greatly increases the time of simulation. Since the FDTD

simulation of homogeneous dielectric slabs are computationally inexpensive, high res-

olution, low error simulation was easily achievable within seconds and minutes. Thus,

only the error convergence is of concern. However, it will be seen later that FDTD

simulation of metal-dielectric gratings are very computationally expensive, requiring

hours or even days to run. For these cases, error compromises must be made.

Diet Resolution Error
Points in One Wavelength Percent Error Time to Compute

200 9.8 2.1 s
400 2.4 4.2 s
800 1.6 11.8 s

Table B.1: Convergence of FDTD homogeneous dielectric slab. Increasing the points
per wavelength resolution reduces error but also increases total time of calculation.

This concludes the FDTD convergence and validation of the transmission of nor-

mal incidence light through homogeneous dielectric slabs. From this introduction,

guidance was provided in the setup of FDTD simulations of homogeneous dielectric

slabs. Also, the FDTD simulation of these systems was successfully validated, error

calculated, and convergence understood.
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B.2 FDTD of Metal-Dielectric Gratings

The numerical calculation of linear and nonlinear metal-dielectric gratings are central

to the topic of this thesis: enhancement of optical nonlinearity. Its solutions are only

obtainable by numerical simulation. In this section, the numerical simulation of metal-

dielectric gratings are discussed. Also, a validation of the FDTD setup are detailed

using a comparison between analytical and computational solutions in transmission.

B.2.1 Grid Layout

To setup the numerical calculation for the transmission of metal-dielectric gratings

via the FDTD method, first the domain of the system must be determined. Since

the material is inhomogeneous, the spatial domain is required to have two spatial

dimensions, even when the light is at normal incidence to the film interface. Therefore,

transmission of normal incident light through a metal-dielectric grating is a three-

dimension domain with two spatial dimensions and one time dimension. In the case

of light at an oblique incidence to a metal-dielectric grating two spatial dimensions are

still required to fully capture the transmission characteristics. After establishing the

domain characteristics, the simulation of metal-dielectric gratings for transmission of

normal incident light is setup. In Figure B.4, a diagram of the proposed spatial layout

is shown.

To start, the metal-dielectric grating was placed in the center of the domain with its

necessary material definitions applied. Here, the MD grating runs along the center of

the horizontal axis. Similarly to the FDTD simulation of the homogeneous dielectric

slab, PML layers were placed at the top and bottom the computational domain to

absorb transmitted and reflected light from the grating. Also, source light and data

collection was placed one wavelength from the grating to allow the source radiation to

fully develop and avoid near-field data collection as only the far-field was of interest.

Although the MD grating has a three-dimensional domain, the spatial layout does

not change with time. Hence, the spatial grid is setup to allow for a time evolution

of the light.
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Figure B.4: Shown is a three-dimension setup for the metal-dielectric grating. The
domain is is discretized uniformly as required for the FDTD method. One periodic-
ity is only needed for full simulation, and is centered in the computational domain.
A plane wave source (top) and data collection (bottom) was placed one wavelength
away from the the grating. Also, PML was placed at the ends of the computational
domain to absorb transmitted and reflected light to prevent measured light reenter-
ing the computational area, as this interaction is not part of the designed simulation.
Furthermore, a periodic boundary condition was placed on the sides of the computa-
tional domain to reduce the size to one periodicity. Lastly, a symmetry condition was
applied around the vertical axis to further reduce the computation domain by half.

By using the unit cell of the metal-dielectric grating, the FDTD simulation can be

very efficient. Although the analysis of MD gratings assumes that it infinite is length,

only one periodicity is necessary to simulate. Using a periodic boundary conditions

on the left and right sides of the domain properly captures this infinity assumption.

Also, it eliminated a larger computational domain containing multiple grating pe-

riodicities. Furthermore, this limits the width of the computational domain to the

size of the unit cell, being one periodicity. Since the unit cell of the MD grating
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is symmetrical, by placing the dielectric slit in the center, a symmetry condition

was applied along the central vertical axis to reduce computational work by half.

Through this specific layout for the metal-dielectric grating, the FDTD simulation is

fully optimized for computational efficiency. This completes the grid setup for normal

incidence transmission calculations of linear and nonlinear metal-dielectric gratings.

B.2.2 FDTD Convergence and Validation of MDG

Before computationally expensive simulations of nonlinear optical phenomena can

be produced, basic tests of the FDTD simulation setup of the metal-dielectric grat-

ing must be performed. Several simple tests of physical quantities, such as energy

conservation and field visualization, are useful to determine whether the qualitative

aspects of the simulation are correct. However, the best tests of simulations come

from comparison analytical solutions. Setting up an FDTD simulation under the

same assumption as a particular analytical solution should yield equivalent responses

under the same inputs.

To test the accuracy of the FDTD simulation of transmission of normal incident

light through a metal-dielectric grating, the response of the simulation was compared

to the analytical solution. The analytical solution is only valid for linear optical

systems, and thus obviously does not apply to nonlinear optical systems. However,

nonlinear optical system converge to linear systems when the input light intensity is

at low powers. Also, validating the linear solution provides the correct foundation of

exploring the nonlinear realm.

The first test of the FDTD simulation of transmission through metal-dielectric grat-

ings is the calculation of the transmission spectrum. In this simulation, a multi-

frequency Gaussian pulse was sent through the dielectric slab. Here, only a few

frequencies fully pass through the slab, as those frequencies match the propagating

mode of the slab. In Figure B.5, the results of this simulation are shown. Here the

horizontal axis is the normalized input frequencies and the vertical axis is the nor-

malized transmission, with 1 representing full transmission. The FDTD simulation

solution is shown as black circles, and plotted over it is the analytical solution in

red circles. Since both solutions overlap, it is clear that the FDTD simulation and
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analytical solution agree. Thus, the FDTD simulation of a metal-dielectric grating

passes well.

Figure B.5: Shown are the results of the metal-dielectric transmission spectrum vali-
dation. The FDTD simulation solution is shown as black circles, and the analytical
solution in red circles. With both solutions overlapping, both the FDTD simulation
and analytical solution agree.

Although the first test made clear that the FDTD simulation of a metal-dielectric

grating confirms its general accuracy and its setup, it is unclear from the test how

much it is in error with the analytical solution. Also unclear is how many grid points

in necessary to accurately simulate the system without excess calculation. Thus,

a convergence test was conducted. Specifically, this test measures the error of the

metal-dielectric grating between the FDTD simulation and analytical solution versus
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grid points per wavelength used. To simplify the analysis, single-frequency plane

waves were used.

In Table B.2, the results of the error and convergence test are presented. The columns

are arranged by grid points, error, and time of simulation. For 200 grid points per

wavelength, the FDTD simulation is 4.6 in error, while only taking 14.5 s to compute.

Since 4.6 percent error is not acceptable, the grid points per wavelength were doubled

to 400. At this resolution, the error dropped to 0.60 percent error, an acceptable error,

while the time of simulation ballooned to 109s. For further comparison, the grid points

per wavelength were double again to 800. At this resolution, the error was smaller at

0.48 percent error, yet the time of simulation ballooned further to 1379s, over twenty

minutes. From this analysis, it is clearly seen that doubling of the grid points does

result in lower error. However, doubling of grid points also greatly increases the time

of simulation.

MD Grating Resolution Error
Points in One Wavelength Percent Error Time to Compute

200 4.60 14.5 s
400 0.60 109 s
800 0.48 1379 s

Table B.2: Convergence of FDTD metal-dielectric slab. Increasing the points per
wavelength resolution reduces error but also increases total time of calculation.

From the results of Table B.2, it may suggest to be happy 0.60 percent error with the

400 grid points per wavelength resolution, and forget about higher resolutions since

they require longer run time. However, this error is only for linear solutions, as its

error was compared to the analytical solution. When using resolutions like 400 in

nonlinear simulations of metal-dielectric gratings, the linear parts was in low error,

but the nonlinear parts are in large error, as seen in Table B.3.

Here, these nonlinear errors arise from differences in the PEC metal assumption and

grid domain as seen in Figure B.3. The discretization in the slit generates a gap

between the last grid point in the slit and the grid point in the PEC metal. Since

the fields do not enter the metal, the last grid point next to the metal wall becomes

the effective slit width. Therefore, this numerical reduction of slit width results in

a small field error of linear calculations, but large error for nonlinear calculations as
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this error is cubic for second-order nonlinear materials and quartic for third-order

nonlinear materials.

For example, take the 400 grid points per wavelength case which generated a linear

error of 0.6 percent. For a grating geometry of λ/d = 10 and d/a = 4, a standard

grating in this thesis, there are only 10 points in the slit. Using the error calcu-

lations from Table B.3, it is seen that the numerical slit reduction effect generates

a minimum nonlinear error of 56 percent in second-order nonlinear systems and 95

percent in third-order nonlinear systems. Therefore, to properly model nonlinear

metal-dielectric gratings at subwavelength scales, large grid points per wavelength

are necessary, roughly 3200 (8x larger), to yield nonlinear errors less than 10 percent.

It is worth noting that these nonlinear errors are specific to metal-dielectric grat-

ings, as the inhomogeneity between the metal and dielectric materials in the grating

structure generate the error, and does not apply to the nonlinear computation of the

homogeneous dielectric slab.

NL Minimum Error
Points in Slit 2nd-Order Error 3rd-Order Error

10 56.3 95.3
20 23.5 37.2
30 14.8 23.0
40 10.8 16.6
60 7.0 10.7
80 5.2 7.9
200 2.0 3.1
640 0.6 0.9

Table B.3: Nonlinear convergence in metal-dielectric gratings. Where linear errors
convergence nicely at 20 points in the slit, nonlinear errors remain very large.

This concludes the FDTD convergence and validation of the transmission of normal

incidence light through metal-dielectric gratings. From this introduction, guidance

was provided in the setup of FDTD simulations of metal-dielectric gratings. Also, the

FDTD simulation of these systems was successfully validated, error calculated, and

convergence understood. Furthermore, nonlinear errors specific to metal-dielectric

gratings were quantified.
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