Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-89-47

1989-12-01

A Methodology for Developing Correct Rule-Based Programs for
Parallel Implementation

Rosanne Fulcomer Gamble

Production systems, also called rule-based systems, are very useful in automating certain
human expert tasks, but the current technology exhibits many problems. We believe that
parallelism is difficult to exploit in production system programs for two reasons. First, the
original serial programs are designed with a priori knowledge of an explicit global control
mechanism which must be simulated for correct execution in parallel. The second reason for
the difficulty is that no formal language exists in which to express these programs and no
verification techniques are utilized to prove properties which guarantee correct execution in
parallel. With these two... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

6‘ Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Gamble, Rosanne Fulcomer, "A Methodology for Developing Correct Rule-Based Programs for Parallel
Implementation” Report Number: WUCS-89-47 (1989). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/757

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F757&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F757&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F757&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F757&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F757&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F757&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F757&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/757?utm_source=openscholarship.wustl.edu%2Fcse_research%2F757&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/757

A Methodology for Developing Correct Rule-Based Programs for Parallel
Implementation

Rosanne Fulcomer Gamble

Complete Abstract:

Production systems, also called rule-based systems, are very useful in automating certain human expert
tasks, but the current technology exhibits many problems. We believe that parallelism is difficult to exploit
in production system programs for two reasons. First, the original serial programs are designed with a
priori knowledge of an explicit global control mechanism which must be simulated for correct execution
in parallel. The second reason for the difficulty is that no formal language exists in which to express these
programs and no verification techniques are utilized to prove properties which guarantee correct
execution in parallel. With these two obstacles removed, a correct rule-based program can be designed to
exploit increased parallelism when mapped to a parallel production system model for execution. This
research will concentrate on the development of parallel production system programs. The objective is to
define a theoretical foundation to describe parallel production systems for implementation in parallel
architectures. The Swarm language will be used as the vehicle for encoding the programs. Swarm's
associated proof theory will be used, and possibly extended, to show correctness of properties necessary
to guarantee correct parallel execution of the rule-based programs. Thus, the overall contribution of this
research will be a methodology for defining, developing, and encoding correct parallel production system
programs.

https://openscholarship.wustl.edu/cse_research/757?utm_source=openscholarship.wustl.edu%2Fcse_research%2F757&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/757?utm_source=openscholarship.wustl.edu%2Fcse_research%2F757&utm_medium=PDF&utm_campaign=PDFCoverPages

A METHODOLOGY FOR DEVELOPING
CORRECT RULE-BASED PROGRAMS FOR
PARALLEL IMPLEMENTATION

Rosanne Fulcomer Gamble

WUCS-89-47

Center for Intelligent Computer Systems
Department of Computer Science
Washington University

Campus Box 1045

Omne Brookings Drive

Saint Louis, MO 63130-4889

A proposal presented to the Department of Computer Science of Washington Univer-
sity in preparation for doctoral work.

Prepared under the direction of William E. Ball.

A Methodology for Developing
Correct Rule-based Programs
for Parallel Implementation

Rosanne Fulcomer Gamble

WUCS-89-47

Abstract

Production systems, also called rule-based systems, are very useful in automating cer-
tain human expert tasks, but the current technology exhibits many problems. We believe
that parallelism is difficult to exploit in production system programs for two reasons.
First, the original serial programs are designed with a priori knowledge of an explicit
global control mechanism which must be simulated for correct execution in parallel. The
second reason for the difficulty is that no formal language exists in which to express these
programs and no verification techniques are utilized to prove properties which guaran-
tee correct execution in parallel. With these two obstacles removed, a correct rule-based
program can be designed to exploit increased parallelism when mapped to a parallel pro-
duction system model for execution.

This research will concentrate on the development of parallel production system pro-
grams. The objective is to define a theoretical foundation to describe parallel production
system programs for implementation in parallel architectures. The Swarm language will
be used as the vehicle for encoding the programs. Swarm’s associated proof theory will
be used, and possibly extended, to show correciness of properties necessary to guarantee
correct parallel execution of the rule-based programs. Thus, the overall contribution of
this research will be a methodology for defining, developing, and encoding correct parallel
production system programs.

1 Introduction

Production systems, also called rule-based systems, are very useful in automating certain
human expert tasks, but the current technology exhibits many problems. The sequential
systems are far too slow to be useful for any complex problem where resources such as
time are limited. There is no formal specification language in which to write these pro-
grams easily. Also, no verification techniques are utilized to guarantee specific correctness
criteria, such as program specifications and constraints.

To solve the speed problem, attempts at making production systems execute in parallel
have been made. Significant speed up has not yet been achieved. Guptafll] concludes
the reasons for limited parallelism are that there are only a small number of affected
productions per working memory change, there are large variations in processing times
for the productions, and only a small number of working memory elements change per
cycle. Since production systems spend as much as 90% of their execution time in the
matching and processing of working memory elements, attempts have been made to in-
crease the speed of this portion of the system execution [11, 21, 1, 17, 3]. If successful
speed up of this area can be achieved, then the rest of the system should be executed in
parallel as well. Research in this area has resulted in models [12, 19] which are overly
synchronous because they use a global control mechanism to guarantee their parallel pro-
grams give results that can be produced by the serial systems. Because synchronization
causes unnecessary bottlenecks in the parallel execution of a rule-based program, work
to achieve more asynchronous systems is ongoing [14, 15, 20]. Both the synchronous and
asynchronous systems lose global control, and once the system is executing in parallel,
problems such as serializability, termination detection, and task ordering arise.

We believe that parallelism is difficult to exploit in production system programs for
two reasons. First, the original serial programs are designed with a priori knowledge
of an explicit global control mechanism which must be simulated for correct execution
in parallel. Parallelism may be better exploited if the rule-based programs for parallel
architectures are designed directly from the specifications. The second reason for the
difficulty is that no formal language exists in which to express these programs. Therefore
no verification techniques are utilized to prove properties which guarantee correct parallel
execution. Designing a rule-based program for parallel execution demands such formal
methods, due to the complexity of the execution, to ensure correct behavior. With these
two obstacles removed, a correct parallel rule-based program can be designed to overcome
the problems that arise when the whole system is executed in parallel, along with lessening
the limitations stated above.

This research will concentrate on the development of parallel production system pro-
grams. The objective is to define a theoretical foundation to describe parallel production
system programs for implementation in parallel architectures. The Swarm language [18]
will be used as the vehicle for encoding the programs. Swarm’s associated proof theory[6, 5]
will be used, and possibly extended, to show correctness of properties necessary to guar-
antee correct parallel execution of the rule-based programs. Contributions made by this
research will be the following developments: 1) methods for eliminating conflict resolution
strategies from serial rule-based programs, 2) methods for formally encoding and proving
rule-based programs, and 3) methods for enhancing the programs to exploit parallelism
while maintaining correctness criteria. Thus, the overall contribution of this research will
a methodology for defining, developing, and encoding correct parallel production system
programs.

The paper is organized in the following manner. The next section details the problems
associated with executing a production system program in parallel and eliminating global
control for this type of execution. Section 3 presents general background on related systems
which have taken different approaches to solving one or more of the problems presented
in Section 2. Included in Section 3 is a brief description of a sequential production system
and the use of global control. Section 4 contains a description of the Swarm language, its

associated proof theory, and the motivation for using Swarm as a tool for conducting the
research. Section 5 presents the research proposal and contributions.

2 (General Problems

Most production systems rely on some form of global control which determines when a rule
can fire. To execute a production system in parallel and asynchronously, global control
must be eliminated, simulated or encoded locally. In this section, we list several problems
that must be addressed when developing parallel production system programs. These
problems stem from the attempt to execute a rule-based program in parallel and from the
elimination of global control.

Rule division among processors. In order to achieve parallel computation, the
rules must be divided among the processors so that the processors can execute asyn-
chronously. Ways to divide the rules include partitioning or copying certain rules for all
or a limited number of processors. Distributing working memory does not pose a problem
provided that a processor has access to all data needed.

Termination detection. Processors operating asynchronously with only working
memory as their medium may not have a way to determine when a solution is reached or
when no solution can be found.

Solution correctness. In sequential systems, a global control mechanism, such as
conflict resolution, is responsible for directing the search for a solution. If the search space
is too complex, more control, such as adding additional task ordering, is utilized to prune
it. Using this control, the solutions reached are acceptable. Guaranteeing a solution path
will converge is difficult without global control. It is also difficult to prove the solution
reached is among the set of solutions deemed satisfactory.

Non-determinism. Once the order of rule execution cannot be controlled globally,
the same solution will not be guaranteed to occur on two independent executions of the
same program.

Serializable solution. Rules may interfere with each other by changing data upon
which other rules initially relied. The interleaving of actions of rules fired in parallel may
produce solutions that cannot be obtained in a serial execution of the rules.

Task-order dependence. Some tasks depend on the execution or non-execution of
other tasks. With no global scheduler, such dependence must be encoded within the rules
or working memory.

Multi-rule execution ordering. This problem is intertwined with serializability
and task-order dependence. When multiple rules are fired asynchronously from different
sources, restrictions must be placed on the order in which changes are made to working
memory. Also, the order in which rules match working memory may be restricted. These
restrictions are necessary for achieving a correct solution.

Consistency of working memory. When a rule-based program executes in parallel,
it is possible for a rule t{o view a working memory element in the middle of another rule
changing it. Avoidance of such inconsistency can be done by determining which actions
are atomic.

3 Background

This section begins with a description of the general sequential production system and the
important role played by conflict resolution. Descriptions of synchronous parallel produc-
tion systems are given next. Also, the approaches these systems use to solve the problems
of serializability and rule distribution are discussed. A previously developed asynchronous
model is then presented along with an asynchronous model still being developed. Both
the synchronous and asynchronous systems avoid the control problem by using only those
rule-based programs that make no assumptions regarding conflict resolution. We discuss
the general blackboard architecture, and its relation to this research, last.

3.1 Production Systems

A simple production system consists of production memory (PM), which is defined by a
set of rules, and working memory (WM), which is a database of assertions. A production
rule has the following form:

LHS — RHS

where
LHS is made up of a conjunction of condition elements (CEs)
RHS is made up of action elements (AEs)

Every CE represents a pattern or template matched against working memory elements
(WMEs). WMEs are data objects with class and attribute-value pairs. A positive CE is
a CE satisfied when there exists a matching WME. A negative CE is a CE that succeeds
when no matching WME can be found. Pattern variables are consistently bound through-
out the positive CEs. Free variables may exist in negative CEs. Every AR is made up of
working memory elements (WMEs) and specifies modification to WM. Positive AEs add
to WM and negative AEs delete from WM.

Execution of a serial production system comsists of repeatedly executing a match-
select-act (Figure 1) cycle until a halt statement (a type of AE) is reached or the match
phase returns the empty set. The match phase compares the LHS of all rules to working
memory. A match for every CE in a rule constitutes an instantiation of that rule. A rule
may have one or more instantiations. All instantiations from all rules are gathered at the
end of the match phase to form a set. This non-empty set of instantiations, called the
conflict set, is passed through the select phase. During this phase, a conflict resolution
strategy determines a single instantiation or some subset of the conflict set which is passed
to the act phase. The act phase performs the actions of RHS of the instantiations passed.
‘The results of this phase may be modifications to WM, and /or calling subroutines, and /or
modifications to PM. Once all actions are performed the cycle begins again with the match
phase.

WM, PM Conflict Executable

Set Rules

Figure 1: Simple Production System

3.1.1 Use of Conflict Resclution

Conflict resolution is one form of global control. Production systems use conflict resolution
strategies to control the search for a solution, and to achieve an efficient execution of a
rule-based program. Most production systems have a conflict resolution strategy built in.
Thus, programs encoded within a system make implicit use of its strategy. In general a
conflict resolution strategy is made up of a combination of conflict resolution rules. The
strategies may come in different forms to accommodate any particular rule-based system
design. McDermott and Forgy[13] detail thirteen of these rules, grouping them into five
categories: 1) production order—based on a relationship defined among the rules, 2) spe-
cial case-based on subsumption and redundancy of rules, 3) recency-based on the time
of assertion for WMEs, 4) distinctiveness-based on history of rules fired, 5) arbitrary
decision—causes only one rule to be chosen randomly for éxecution. Some programmers
use variations on these thirteen rules or detail another type of conflict resolution rule for
a particular type of rule-based program.

McDermott and Forgy[13] believe the function of conflict resolution is to provide a
mechanism that can preserve sensitivity and stebility in a production system, without
sacrificing autonomy. Semnsitivity refers to the degree of responsiveness in the system.
Stability refers to the degree to which the system maintains continuity in its behavior.
They state the useful characteristics in all production systems as follows.

1. Both sensitivity and stability should not be ignored.
. The system must be sensitive to its own processing,.
3. The systems should sort relevant information from non-relevant
information when conflict occurs in working memory.
4. The system should make a decision about execution when

multiple rules can be fired.
5. All actions taken should be observably deterministic.

For Fickas, et al [9], the important characteristics of a production system with respect
to conflict resolution are:

1. Flexibility: the system must be flexible enough to permit different
kinds of strategies to be matched to different domains.

2. Representation: control knowledge should be represented separate
from domain knowledge.

3. Dynamic Conirol: if a system deduces control knowledge while
executing, it should make use of this knowledge.

ORBS [9, 8, 10] is a production system which allows the user to choose the desired
conflict resolution strategy and create additional rules on a program by program basis.
The motivation for this allowance is strategy flexibility. The conflict resolution strategy
should be flexible for the system to respond in a reasonable fashion to frequent, sometimes
competing and unexpected, demands from its environment. Such responsiveness comes
from limiting the number of productions fired on each cycle. Without conflict resolution,
the easiest way to enforce this limitation is to make the rules applicable in mutually
exclusive situations, requiring that productions be given knowledge of each other’s domains
of applicability. This knowledge will limit the system’s flexibility because new productions
cannot easily be added.

Though ORBS displays these characteristics, the programmer is burdened with the
responsibility of determining how to match the strategies to the programs, when a change
in strategy for a program is necessary, and how to perform that change.

3.2 Parallel Production Systems

This section describes the synchronous parallel production system models from Ishida and
Stolfo [12] and Schmolze [19], and the asynchronous parallel production system models
from Schmolze [20] and Miranker [14, 15]. A brief description of each model is given,
followed by the approaches each system takes to solve the problems of serializability and
rule distribution.

3.2.1 Ishida and Stolfo’s Model

Ishida and Stolfo[12] propose a parallel firing mechanism for production system execution.
The aim of this mechanism is to reduce the total number of sequential production rule
cycles by executing multiple matching rules simultaneously on multiple processor systems.

The two major problems addressed are the synchronization problem (or serialization
problem}, and the decomposition problem (or distribution of rules problem). The syn-
chronization problem occurs when production rules are written without considering rule
interference. The definitions for this interference are defined under the serializability

heading below. To achieve a solution, it is necessary to determine all the rules in produc-
tion memory that interfere with the rule in question. These rules are then synchronized
with the given rule, i.e., they are not to executed simultaneously with that rule. The de-
composition problem occurs when a partition or distribution of a given production system
must be found for multiple rules to be fired as often as possible.

In the model developed by Ishida and Stolfo, the production rules are distributed
between a control processor (CP) and all processing elements (PEs). Oxly production
system programs written without any assumptions of particular selection algorithms for
conflict resolution are used, though the system does not have to be a commutative pro-
duction system®. If the result of a parallel execution of two rules cannot be achieved
in a sequential execution of those rules, then interference occurs and the two rules must
be synchronized. A data dependency graph, explained in more detail below, is used to
determine interference. The execution cycle, pictured in Figure 2, is described as follows:

1. match: FEach PE executes this phase simultaneously and reports
its instantiations to the CP.

2. select: The CP chooses at most one of the reported rules from the
match phase for each PE, so that interference between PEs does
not occur.

3. act: Each PE executes this phase simultaneously. If WM is
distributed among the PEs, changes are reported to the CP and
broadcasted to the PEs. Rules are only fired by the CP if no PE can
execute a rule.

Synchronization occurs at each step. A processor cannot continue in the cycle until
all processors finish each step.

Serializability

A data dependency graph of production rules is used for the analysis of interference
between rules. Within this graph, a P-node represents a production rule and a W-node
represents a class of WMEs. A directed edge from a P-node to a W-node means the
RHS of the P-node modifies the W-node. If an element of the W-node is added, then the
W-node is +changed. A —changed W-node means an element of the W-node is deleted.
The directed edge is labeled with a + or — to indicate the action. A directed edge from
the W-node to the P-node, means the LHS of the P-node refers to the W-node. If the
class is positively referenced the W-node is called +referenced, and sumlarly for negative
references. The corresponding edge will be labeled with a + or —

Analysis of interference of two distinct rule firings is based on the data dependency
graph. Given rules A and B, in order to prevent a non-serializable execution of A and B,
synchronization must occur between them if there exists a W-node which satisfies at least
one of the following:

1A commutative production system is one in which, given a rule set R of some program P, then YA B
where A,B € R and A,B appear in the conflict set together, the same result occurs when A executes before
B, as it does when B executes before A.

B. (conflict sety) B. (coniflict set,)
s —p{ CP |-t \
C. (executable C. (executable
ruleq) rulen)

PE; ® & © PE,

Figure 2: Ishida and Stolfo’s Synchronous Parallel Production System

1. +changed (—changed) by A and —re ferenced (+referenced) by B.
2. +changed (—changed) by B and —re ferenced (+referenced) by A.
3. +changed (—changed) by A and —changed (+changed) by B.

From this analysis, a synchronization set is produced for each rule. This set contains
all rules which must be synchronized with the rule, or all rules that interfere with the
rule. Because the analysis is static more synchronization is reported than is necessary in
execution.

Rule Distribution

Operations, such as I/O, are allocated to the CP, and the remaining system is decomposed
among the PEs. The goal is to achieve a decomposition in which multiple rules may
be concurrently fired as often as possible, reducing the number of production cycles.
The two major difficulties in devising such an algorithm are that the number of possible
decompositions is too large to take an exhaustive approach, and the optimal decomposition
may change as the usage of the production system changes.

The decomposition is based on the parallel executability of two rules. Parallel exe-
cutability refers to the number of cycles which can be reduced by allocating the two rules
to different processors. Rules are allocated to the processors in order of their parallel ex-
ecutability, with the highest two rules allocated first. Parallel executability is determined
by sample execution traces of the program. The hierarchical decomposition algorithm first
produces a hierarchical data structure called a rule tree, and then creates partitions for
the rule set from the rule tree.

10

For evaluating the effectiveness of the parallel execution of production systems, Ishida
and Stolfo developed a simulation environment consisting of an Analyzer, a Simulator
and a Decomposer subsystem. OPS5 production systems are input to the Analyzer which
produces the synchronization sets from the data dependency graph constructed. The
Simulator simulates any partition of the rule set of the production system and creates the
sample execution traces. The synchronization sets produced by the Analyzer are referenced
by the Simulator. The Decomposer examines the execution traces of the Simulator and
measures the parallel executability between each pair of rules, then partitions the rule set
using the rule tree produced.

3.2.2 Schmolze’s Synchronous Model

This model[19] was developed to provide a solution to the serializability problem which
improves upon the one given by Ishida and Stolfo above. It is targeted for a set of
processors with shared memory. The execution cycle, pictured in Figure 3, is defined as
follows:

1. match: All processors perform a parallel match, producing
a set of instantiations.
2. select: All processors jointly select the instantiations
to be executed and place them on a shared instantiation queue.

3. post: Processors examine each instantiation on the queue, form the actions
for the instantiation and post the actions to a shared action queue.
4. act: Processors perform all posted actions.

Synchronization is performed at each step. The shared queues only provide sequential
access to each instantiation and action. There is no restriction as to the number of actions
a processor can execute, i.e., there is no longer a restriction of one instantiation per
Processor.

Serializability

Two causes of non-serializability are identified as LHS disabling and RHS clashing.
LHS disabling occurs when the simultaneous execution of two rules causes one of the rules
to become irrelevant and no longer match. The select step above will be responsible for
disallowing the co-execution of any set of rules with a cycle of disabling relations. RHS
clashing occurs when the actions of two simultaneously execution rules overlap, such that
one rule adds a working element that the other deletes. If two instantiations clash and one
rule can disable the other, then non-serializable results may be obtained. The co-execution
of such rules can be prohibited in either the select step or by imposing a partial order
on the execution of actions in the act step. The paper gives three complex methods for
determining what rules can be co-executed. Using these methods, more rules are executed
simultaneously than using the method given by Ishida and Stolfo[12].

11

— PE; * o o PE|, |t—

A. PM,WM) A (PM,WM)

B. (conflict set)

'Y C ¢ joint selection)

shared
instantiation
queue

**% D. (examine actions)

shared -
action queue E)‘ P(:ég?;h)
E. {action
to performy)

Figure 3: Schmolze’s Synchronous Parallel Production System

12

3.2.3 Schmolze’s Asynchronous Model

Schmolze[20] describes PARS (Parallel Asynchronous Rule System), a system in which
each processor in a multiple processor system is a separate production system with local
production and working memories. This model is different than the previous two presented
because there is almost no synchronization performed, thus eliminating the time wasted
in synchronous systems where some processors are forced to wait for other processors to
finish the current step. Their goal is to improve upon the performance of the Ishida and
Stolfo model previously described through asynchronous computation.

The set of rules are partitioned over the processors. Working memory elements may
be duplicated among the processors, so the every processor has all the necessary classes of
elements that the rules need to match. Processors also have knowledge of where duplicate
working memory elements are located and where interfering rules are located on other
ProCessors.

Each processor executes the following execution loop at its own pace, asynchronously.
Figure 3 depicts the cycle of one processor.

1. match: Performed using local production and working
memories.

2. select: Also performed locally. Instantiations of
temporarily disabled rules are ignored. Only arbitrary
selection is used. The processor returns to the match phase if
the conflict set is empty. It does not terminate.

3. disable: Requests to disable interfering instantiations are
sent out. The processor blocks until all acknowledgements are
received.

4. act: Actions of the firing instantiations are sent to
appropriate processors, and the processor waits for receipt of
all acknowledgements. Actions in local working memory are taken
immediately.

5. enable: Request are sent to enable previously disabled rules
and the processor returns to the match step.

Possible synchronization occurs through the communication protocols in the disable
and act step. Processors not involved in communicating messages may continue to execute
asynchronously. Also, after a processor completes a step, it does not have to wait for the
other processors to complete that step before continuing to the next step in the cycle.

Processors accept messages from other processors before entering the match phase and
while waiting for message acknowledgements in the disable and act phases. A problem with
message passing may occur in the disable phase if a processor receives actions invalidating
the chosen instantiation while waiting for its acknowledgements. If the instantiation is
invalid, after all acknowledgements are received, the processor skips to the enable phase.

As seen from the execution cycle, termination does not occur as in the earlier models
because a processor may receive work even though its conilict set from a match phase is
empty. Thus, in PARS, termination is controlled by a designated processor that deter-
mines, through message passing, when all processors are idle and broadcasts termination

13

PE;

conflict
set

single

instantiated possible]
rule synchronization

Figure 4: Execution of a single processor in PARS

commands.

Because working memory elements are duplicated, a processor may receive a change
while it is matching, causing working memory inconsistencies. A remedy for this problem
is a double acknowledgement protocol used when sending actions. The original receipt of
actions from another processor indicates that certain WMEs will be added or removed.
But the receiver prevents the use of this information until it is sure that all appropriate
processors have received it, to prevent inconsistency.

The reasoning behind the development of an asynchronous model, is that by reducing
the amount of synchronization, there is more potential for parallelism. The estimated
results achieved by PARS substantiate this claim. Through simulation of their algorithms,
Schmolze and Goel improve upon Ishida and Stolfo by having each rule synchronize with
less than half (on average) the number of rules that Ishida and Stolfo require and by
co-executing about twice as many instantiations as that of Ishida and Stolfo.

Serializability

To guarantee serializability, concern needs to be placed only on sets of co-executing
instantiations. In this model, instantiations are said to co-execute if and only if their
period of execution overlaps. This period for an instantiation is the time of commitment
to execute an instantiation (made in the disable step) to the later of the following two
times: 1) the time that instantiation’s local actions are taken or 2) the time that all
acknowledgement have been received from the act step for that instantiation.

To analyze the interference between instantiations, a directed graph IDO(I) is used,
where I is the set of instantiations. This graph represents instantiation disabling order,
such that each i € Iis a node in IDO(I). If i and j are in T and j disables i, there is an

14

arc from i to j, making i execute before j. The co-execution of a set of instantiations, I, in
PARS, is serializable if IDO(I) is acyclic and no two distinct instantiations in I clash.

A guarantee is made such that a set of instantiations that co-execute meet the above
conditions of serializability by: 1) performing an off-line analysis of the rules, 2) deter-
mining pairs of rules whose instantiations should not co-execute, and 3) enforcing rule
synchronization from the determination in 2).

Additional steps are taken which reduce the work of enforcing synchronizations be-
tween processors and preventing deadlock. If a pair of rules are known to disable each
other only one rule of a pair is required, instead of both, to initiate disabling. Also,
by ensuring that the graph for this requirement is undirected and acyclic, deadlock is
prevented.

Rule Distribution.

To partition the rules among the processors, several approaches are combined includ-
ing the paralle] executability[12] measure. The final result is a distribution that attempts
to maximize rule co-execution, which increases the number of rules that execute simulta-
neously, and minimizes communication costs, which reduces the length of each processor’s
basic cycle time.

3.2.4 Miranker, Kuo, and Browne’s Model

The implementation of a recent parallel production system with a production rule lan-
guage called CREL [14, 15] is underway. This system will execute asynchronously and in
parallel on a shared memory multi-processor system. CREL {Concurrent Rule Execution
Language) has a syntax identical to OPS5, and a semantics derived from a combination of
the theories of serializability from databases and the UNITY language[4]. CREL programs
that run correctly in a sequential environment are guaranteed to run correctly in a paralle]
environment. A guarantee must be made by the program designer that the result of the
parallel execution of the system is serializable and that all serial executions reach a correct
fixed point. Though the CREL authors hoped to have a rule execute as soon as it is able
to fire, the semantic constraints due to negation disallow this approach. They believe
one problem of executing a production system in parallel is that only a small amount of
parallelism can be exploited when dynamic methods of determining which tasks can be
performed simultaneously are utilized. Their approach is to develop static ways for this
determination, which are applied at compile time.

Serializability

Rules that interfere with eacl other are termed mutually exclusive. Compiler algorithms
determine independent sets of rules, called clusters, such that a rule in one cluster is
not mutually exclusive with any rule in any other cluster. By definition, clusters can
operate asynchronously with respect to each other. The rules within each cluster are mu-
tually exclusive and form a synchronization set, according to Ishida and Stolfo’s definition,
since a rule in one cluster cannot interfere with any rule in any other cluster. Using the

15

dependency graph originated by Ishida and Stolfo as described above, they found that
direct application of the mutual exclusion analysis did not produce a substantial number
of clusters. Therefore, they developed a set of optimizing transformations which break
unnecessary mutual exclusion dependencies, increasing the potential parallelism. For ex-
ample, static analysis may predict unnecessary dependencies that, due to the state of
current working memory, do not exist. Such transformations include the identification
of the control varjable. This control variable breaks dependencies in the graph between
rules which match different control variable values. The utilization of additional constants
in the condition element patterns to create finer divisions of working memory within the
dependency graph to reduce its connectivity.

To correctly execute multiple rule firings, they compute the mutual exclusion sets from
the dependency graph, followed by repeating the execution cycle (match-select-act) where
selection from the conflict set of multiple rules from the same mutual exclusion set should
not form a cycle with conflicting interferences. They prove that a correct CREL program is
guaranteed to reach a correct terminal state under the execution scheme described above,

Rule Distribution

Clusters can be distributed among processors since no global synchronization is necessary
for rules across clusters. But, among rules interfering with each other, synchronization is
still required to insure correctness of the parallel execution. Thus if interfering rules are
present on different processors, these processors must synchronize. They say that these
processors can synchronize through message passing. Local synchronization of the rules
must occur at each processor.

3.3 Blackboard Architectures

The blackboard architecture is an informal extension of a production system. By informal
we mean, in the abstract blackboard system, the production system operation has been
extended to include additional features such as separate inferencing systems operating
in parallel on a shared working memory. Actual implementations of blackboards differ
significantly. Some of these differences are the result of attempts to solve the problems
of inferring and performing related activities in parallel. Thus, the results achieved by
blackboard architectures may provide insight and information for solving some of the
problems posed by parallel production systems.

In the general blackboard architecture, knowledge is segmented into modules called
knowledge sources (KSs). Each KS has its own set of rules (or procedures) and a local
inference engine which can be different from the other KSs. Communication between
modules is limited to the reading and writing of a shared memory data structure called
a blackboard. The blackboard contains the global state data. The KSs produce changes
to the blackboard which lead incrementally to a solution to the problem. Data on the
blackboard are objects organized hierarchically into levels of analysis. The KSs transform
data from one level to the next, until a solution is found. As the blackboard changes,
different KSs are automatically activated to work on it. Included in the blackboard model
are control modules that monitor the changes on the blackboard and determine which
KSs can use the blackboard. These control modules can be in the form of a XS or can be
located separately on the blackboard.

16

Each KS can be thought of as a separate production system sharing working memory
with other KSs. Some KSs are dependent on others, causing some type of scheduling
to occur between KSs so that there is no memory contention and no interference. The
problems that arise in the implementation of a blackboard system are very similar to those
presented in section 2. Thus the solutions given by researchers of different blackboard
systems will contribute to our research.

The development of the CAGE[16] blackboard system, a concurrent problem-solving
system, caused questions to arise that are similar to those our research is attempting to
answer.

1. Are problem-solving systems that rely heavily on centralized
control doomed to fail in a concurrent environment?

2. Can control be distributed? If so, to what extent?

3. If more knowledge results in less search, can a similar
tradeoff be made between knowledge and control?

4. In concurrent systems where control, especially global control,
is a serializable process, can knowledge be brought to bear to
alleviate the need for control.

The types of parallelism to be expressed in CAGE are 1) knowledge parallelism, in
which the knowledge sources and rules within each KS can run concurrently; 2) pipelin-
ing parallelism, the transfer of information from one level of the blackboard to another,
allowing multiple KSs to operate at different levels; and 3) data parallelism, in which the
blackboard can be partitioned into solution components for concurrent operation. The
following assumptions are utilized: a) all of the agents can see all of the blackboard all of
the time and what they see represents the current state of the solution; b) any agent can
write its conclusions on the blackboard at any time, without getting in anyone else’s way;
and c) the act of an agent writing on the blackboard will not confuse any of the other
agents as they work. In CAGE, centralized control mechanisms are provided for select-
ing as many events as possible to be processed in parallel and causing many KSs to run.
The application programmer assumes much of the burden for developing this centralized
control, ensuring the correctness of the control, and ensuring it is the minimal control
necessary.

Global control is used to determine the focus of attention (FOA), defined to be the
next KS to use the blackboard, the next object to be processed, or some combination of
an object to be processed by a certain KS. In Crysalis[22], the goal is to address the FOA
problem. An efficient sequence of rules must be chosen in response to a specific problem.
If some rules in the conflict set of a KS are not fired when they match, some solutions
may be lost. Global knowledge specifies the order of the tasks to be performed, and the
choices among competing alternatives. Thus, the control is very explicit and restrictive to
ensure proper execution of the system. A solution to the FOA problem in Crysalis uses
control rules to directly state which KS to run next, instead of picking a set of KSs as
possibly useful and then ruling most of them out during global conflict resolution.

In Crysalis {22], a hierarchical production system was designed to incorporate explicit
strategies of control within the blackboard system. In a hierarchical production system,
control proceeds through many levels of strategy heuristics until one specific action at

17

the problem-solving or bottom-most level is selected. During execution, inferences can
be made from any level to any other level. Each level is a complete production system
containing rules that examine the current state and choose actions at the next lower level.
The highest level consists of a single control XS that examines the current state of the
panels to select a KS or sequence of KSs to invoke at the next level. The process repeats
with the execution of rules in a XS at one level causing the KSs at the next level to
be invoked until the bottom level is encountered where object rules actually construct a
solution. When a lower level KS terminates, control returns to the KS at the previous
level which invoked the terminating KS.

A transactional blackboard [7] aims to maintain the integrity of the shared data which
is accessed asynchronously. A transaction manager is associated with the database. Any
reference to the blackboard must be part of a transaction. A locking protocal is used with
commit-abort actions. Data consistency is maintained using time-stamps.

In the transactional blackboard, two mechanisms are provided for safe access to black-
board data. First, knowledge sources can communicate by accessing shared data in sepa-
rate transactions. Also, several KSs can participate in a common transaction if they need
to see a common consistent view of shared data. If the system state matches the general
preconditions of a KS, that agent takes the specified actions. These actions include re-
questing that the controller schedule a XS activity by placing an entry on the controller
goal queue, performing some operations on the blackboard, and/or sending a message to
another KS.

A transaction manager associated with the blackboard receives requests from agents,
executes on their behalf and packages the responses. Two and three-phase commit pro-
tocols are used. Atomicity ensures that at the end of a tramsaction, all write actions
associated with the transaction have taken place or all the data referenced by the trans-
action is restored to the state that existed when the transaction began.

POLIGON[16] is a demon-driven blackboard system, in which global control, as it is
used in the previously described systems, is eliminated. In the POLIGON system, KSs
are aftached to data elements in the blackboard. Changes to the data elements result in
the activation of all KSs attached. The goal for developing POLIGON is the elimination
of all global synchronization, so that a KS is immediately executed as relevant data are
changed. Within this framework, there is no need from any separation of the KSs for
the blackboard. The programmer must specify the classes of blackboard nodes in which
a particular piece of knowledge is interested. Overall communication delay and mem-
ory contention is eliminated because the interpreter does not have to examine the entire
knowledge base to decide on a subset of rules, i.e., there is no global conflict resolution.
Since there are no global variables, POLIGON provides a mechanism for defining sharable,
mutable data, and with minimal bottlenecks. ‘

In order to solve the problems caused by eliminating control, POLIGON uses control
at various levels within the system structure. For example, control may be placed at
each node where actions of rules must be executed serially. Other types of explicit and
restrictive node control are also used such that control is global with respect to the data,
not the rules.

18

4 DParallel Languages

Because we are interested in developing parallel rule-based programs, we need a language
in which to encode these programs. Concentration will be on program development,
thus we need a language that is independent of hardware. Also, the language must have
mechanisms to express concurrent operations. In this section, the languages of Linda[2]
and UNITY[4] are briefly discussed, followed by a description of the Swarm language and
why we have chosen it for this research.

4.1 Linda

The goal of the Linda programming language[2] is to make it largely unnecessary to
think about the coupling between parallel processes. Linda’s uncoupled processes never
deal with each other directly. A parallel program in Linda is a spatially and temporally
unordered bag of processes. When Linda operators are injected into a host language, the
host language turns into a parallel programming language. In the Linda framework we
can get parallelism by replicating as well as partitioning tasks to multiple processes.

Linda’s unit of memory is the logical tuple, or ordered set of values. Elements in
Linda memory have no addresses. They are accessed by logical name, where a tuple’s
name is any selection of its values. Linda’s shared memory is referred to as the tuple
space. A process with data to communicate adds it to the tuple space and a process
that needs to receive data seeks it in the tuple space. To be changed, tuples must be
physically removed, updated and reinserted. This makes it possible for many processes to
share access to a Linda memory simultaneously. Messages in Linda are never exchanged
between two processes directly.

There are three basic operations on tuples: out(), in(), and read(). The operation
out(t) causes tuple t to be added to the tuple space, and the executing process continues
immediately. The operation in(s) causes some tuple t, that matches template s, to be
withdrawn from the tuple space The process that executes an in(s) suspends until a match
is found. Matches are chosen arbitrarily. The operation read(s) is the same as in(s) except
the tuple remains in the tuple space when a read(s) occurs.

Dynamic scheduling of tasks is important in Linda, since tasks may require varying
amounts of time to complete. Thus, new tasks may be developed dynamically as old ones
are processed, using a distributed data structure called a task bag. Workers repeatedly
draw their next assignment from the task bag, carry out the specified assignment, and drop
any new tasks generated by the process back into the task bag. The program completes
when the bag is empty. If it were necessary to process tasks in a particular order a task
queue would be built instead of a task bag.

Linda has no proof theory and cannot stand alone. It must be used as a tool within a
host language.

4.2 UNITY

For Chandy and Misra[4], the first concern of program development is to design a solu-
tion to the problem. The second concern, separate from the first, is to implement the

19

solution in a given language on a given hardware. Their goal for developing UNITY is
to build a computation model and proof system which both is simple and has the ex-
pressive power necessary to permit the refinement of specifications and programs to suit
target architectures. Central issues for this development were: nondeterminism, absence
of control flow, proof systems that support program development by stepwise refinement
of specifications and the decoupling of correctness from complexity. They wanted to in-
corporate synchrony and asynchrony in a unified theory of parallel programming based on
state-transition systems.

A UNITY program consists of declaration of variables, a specification of their initial
values and a set of multiple-assignment statements. There is no sequential flow of con-
trol. An assignment statement is chosen nondeterministically. The choice is fair in that
every statement is executed infinitely often. Execution continues indefinitely, though each
assignment statement is guaranteed to terminate.

The proof system allows one to develop and study a proof in its own right. Chandy
and Misra state that correctness of a program is independent of the target architecture
and the manner in which the program is executed; by contrast, the efficiency of a program
execution depends on the architecture and manner of execution.

For example, UNITY and OPS5 are different systems of programming. OPS5 was
developed to facilitate knowledge representation and inference, while UNITY was devel-
oped for writing programs without concern for specific languages. In UNITY, the set of
statements is static, and therefore UNITY cannot accommodate self-modifying programs.
Since there is no control flow in a UNITY program, it cannot simulate the global selection
strategy. Also in UNITY, variables are accessed by name, not content as in Linda.

Throughout the following description of Swarm, more comparisons with UNITY will
be made.

4.3 Swarm

Swarm is a shared dataspace language [18]. The term shared dataspace refers to the general
class of programming languages in which the principal means of communication among
the concurrent components of programs is a common, content-addressable data structure
called a dataspace. Linda was first to use this concept as its tuple space. The state of
a Swarm program consists of a dataspace, i.e., a set of transaction statements and data
tuples. Tuples in Swarm are similar to tuples in Linda. Executing a Swarm transaction
is similar to a process taking a task from the Linda task bag.

Underlying the Swarm language is a state-transition model similar to that of UNITY[4],
but recast into the shared dataspace framework. In the model, the state of a computation
is represented by the contents of the dataspace, a set of content-addressable entities. The
model partitions the dataspace into three subsets: the tuple space, a finite set of data
tuples; the transaction space, a finite set of transactions; the synchronic group, discussed
later. An element of the dataspace is a pairing of a type name with a sequence of values.

Swarm is very similar to UNITY. For this research, Swarm is the language of choice
because the constructs that appear in Swarm, such as transactions and tuples, more closely
relate to rule-based programs than the constructs of assignment statements and named

20

variables in UNITY.

A program in Swarm begins execution with a specified initial dataspace, On each
execution step, a transaction is chosen nondeterministically from the tramsaction space
and executed atomically. This selection is fair in the sense that every transaction in
the transaction space at any point in the computation will eventually be chosen. An
executing transaction examines the dataspace and then, depending upon the results of
the examination, can delete tuples (but not transactions) from the dataspace and insert
new tuples and transactions into the dataspace. Unless a transaction explicitly reinserts
itself into the dataspace, it is deleted as a by-product of its execution. Program execution
continues until there are no transactions in the dataspace.

Within the program description there exists sections in which to declare all (and only
those) tuples and transactions that are (and can be) used in the program. Each tuple
type declaration defines a tuple schema whose instances can be examined, inserted, and
deleted by the program.-The transaction types section declares the types of transactions
that can exist in the transaction space. Each transaction type declaration defines a set of
transaction instances that can be executed, inserted, or examined by a program.

The body of a transaction instance consists of a sequence of subtransactions connected
by the || operator. Each subtransaction definition consists of a variable list, a query, and
an action. A subtransaction’s action specifies sets of tuples to insert and delete and
transactions to imsert. A subtramsaction is executed in three phases: query evaluation,
tuple deletions, and tuple and transaction insertions. Evaluation of the query seeks to find
values for the subtransaction variables that make the query predicate true with respect
to the dataspace. If the query evaluation succeeds, then the dataspace deletions and
insertions specified by the subtransaction’s action are performed using the values bound
by the query. If the query fails, then the action is not executed. The subtransactions
of a transaction are executed simultaneously: all queries are evaluated first, then the
indicated tuples and the transaction itself are deleted, and finally the indicated tuples and
transactions are inserted. By default, both the tuple and transaction spaces are empty.
The initialization section establishes the dataspace contents that exist at the beginning of
a computation.

The Swarm logic is defined in terms of the same logical relations as UNITY: (unless,
ensures, and leads-to). Some of the concepts of these relations have been reformu-
lated. A proof rule for transaction statements is defined which replaces UNITY’s rule for
multiple-assignment statements, the ensures relation is redefined to accommodate the cre-
ation and deletion of transaction statements, and UNITY’s use of fixed-point predicates
has been replaced with other methods for determining program termination. Because of
this carefully constructed logic, most of the theorems developed for UNITY can be directly
adapted to the Swarm logic.

With the close relation between the Swarm logic and UNITY logic, anything that we
can do in Swarm can be done in UNITY, since we will restrict our programs to those that
are not self-modifying. However the task in UNITY would be far more difficult. Thus, by
using Swarm, we have the ease of using a language closer to a rule-based language, the
concept of designing a program without regard to a specific hardware, and the use of a
proof theory for developing correct programs.

The programming logic constructed in Swarm also utilizes a synchronic group, a unique

21

feature. Synchronic groups are dynamically constructed groups of transactions which are
executed synchronously as if they were a single atomic transaction. The synchronic groups
should not be confused with the synchronization sets discussed earlier. In section 3.2, a
synchronization set is produced for each rule which contains all rules which must be syn-
chronized with the rule because of possible interference with that rule. All the transactions
in a synchronic group are executed simultaneously, and their actions are synchronized, i.e.,
all deletions before all actions. The synchrony relation defines synchronic groups of trans-
actions. This relation can be stated initially. It can also be added or deleted dynamically
as transactions execute.

4.3.1 The Swarm Proof Theory

In this section, we will briefly present the Swarm proof theory[18].

The proof system for Swarm is similar in style to that of UNITY. The UNITY logic
seeks to derive the proof from the program text by relying upon proof of program-wide
properties, e.g., global invariants and progress properties. With the Swarm logic, these
ideas are extended into the shared dataspace framework. Swarm’s underlying compu-
tational model is similar to that of UNITY, but has a few key differences. A UNITY
program consists of a static set of deterministic multiple-assignment statements acting
upon a shared-variable state space. The statements in the set are executed repeatedly
in a nondeterministic, but fair, order. Swarm is based on less familiar programming lan-
guage primitives—nondeterministic transaction statements which act upon a dataspace
of anonymous tuples—and extends the UNITY-like model to a dynamically varying set
of statements. The programiming logics are identical, with the exception of the multi-
ple assignment statement, the ensures relation, and the fixed point predicates as stated
above,

Notational conventions are also similar to UNITY. They use Hoare-style assertions of
the form {p} ¢ {¢} where p and ¢ are predicates and ¢ is a transaction instance. UNITY
assignment statements are deterministic; execution of a statement from a given state will
always result in the same next state. This determinism, plus the use of named variables,
enables UNTTY’s assignment proof rule to be stated in terms of the syntactic substitution
of the source expression for the target variable name in the postcondition predicate. In
contrast, Swarm transaction statements are nondeterministic; execution of a statement
from a given dataspace may result in any one of potentially many next states. This arises
from the nature of the transaction’s queries. A query may have many possible solutions
with respect to a given dataspace. The execution mechanism chooses any one of these
solutions nondeterministically—fairness in this choice is not assumed. Since the state of a
Swarm computation is represented by a set of tuples rather than a mapping of values to
variables, finding a useful syntactic rule is difficult.

As in UNITY’s logic, the basic safety properties of a program are defined in terms
of unless relations. Defining TRS to be the set of all possible transactions, the Swarm
definition mirrors the UNITY definition:

punlessg = [Vt: te TRS: {pA—q} i {pVq}]
The unless relation is defined informally as follows. If p is true at some point in the

22

computation and g is not, then, after the next step, p remains frue or ¢ becomes true.
In other words, either p A ~g continues to hold indefinitely or ¢ holds eventually and P
continues to hold at least until ¢ holds.

Stable and invariant properties are fundamental notions of the proof theory. Both
can be defined easily.

stable p = p unless false
invariant p = (INIT = p) A (stable p)

INIT is a predicate which characterizes the valid initial states of the program. A
stable predicate remains true once it becomes true, although it may never become true.
Invariants are stable predicates which are #rue initially.

We use the ensures relation to state the most basic progress (liveness) properties
of programs, UNITY programs consist of a static set of statements. In contrast, Swarm
programs consist of a dynamically varying set of transactions. The dynamism of the Swarm
transaction space requires a reformulation of the ensures relation. Without considering
the synchrony relation, the ensures relation is defined informally as follows. If p is true at
some point in the computation, then (1) p will remain {rue as long as ¢ is false; and (2) if ¢
is false, there is at least one transaction in the transaction space which can, when executed,
establish ¢ as true. The second part of this definition guarantees ¢ will eventually become
{rue.

Let [t] mean that the transaction ¢ is present in the transaction space, Formally
ensures is defined as:

P ensures q =
(p unless ¢) A
(3t:t e TRS: (pA—g= [thA
{pA-g}i{g})

The only way a transaction is removed from the dataspace is as a by-product of its
execution; the fairness assumption guarantees that a transaction in the transaction space
will eventually be executed. Thus, the Swarm definition of ensures is a generalization of
UNITY’s definition.

The leads-to property, denoted by the symbol +~—s, is commonly used in Swarm
program proofs and is identical to the definition in UNITY. Informally, p — ¢ means
once p becomes true, ¢ will eventually become true. However, p is not guaranteed to
remain {rue until g becomes true.

UNITY makes extensive use of the fixed-point predicate FP which can be derived
syntactically from the program text. Since FP predicates cannot be defined syntacti-
cally in Swarm, verifications of Swarm programs must formulate program postconditions
differently—often in terms of other stable properties. However, unlike UNITY programs,
Swarm programs can ferminate; a termination predicate TERM can be defined as follows:

TERM = (Yi:t&€ TRS:=[t])
Other than the cases pointed out above (i.e., transaction rule, ensures, and FP), the

23

Swarm logic is identical to UNITY’s logic. The theorems (not involving F'P) developed
in Chapter 3 of UNITY can be proven for Swarm as well.

4.3.2 From Swarm to Rule-based Programs

As stated earlier, we will be using the Swarm language to describe the production system
programs. The Swarm proof theory will be used to show correctness of program behavior.
We can make a correlation of a Swarm program to a rule-based program. The shared
dataspace is divided into three subsets: the tuple space, the transaction space, and the
synchrony relation.

The working memory of a production system is equivalent to the tuple space in Swarm,
as is a working memory element to a tuple. However, production memory has no direct
equivalent, because a rule in production memory may be a transaction or it may be a
subtransaction. The distinction depends on the independence of the production rule to
other production rules and the way that the transaction space is organized. There is no
equivalent of the synchrony relation in production systems.

Termination of a serial production system occurs when the conflict set produced by
the match phase is empty. Termination in Swarm occurs when the transaction space is
empty. Thus, it will be necessary to carefully define when a transaction reasserts itself
and when it does not, in order for the rule-based program to correctly terminate.

The Swarm execution cycle, in the context of production systems
is as follows:

i. Non-deterministically choose a transaction from the
production memory.

ii, Match subtransactions simultaneously against the working
memory.

iii. Execute simultaneously all subtransactions that evaluate to

true and change working memory, with all deletions preceding
all additions .

4.3.3 Motivation for Using Swarm

It is necessary for us to use some language for defining and developing cur parallel rule-
based programs. The Swarm language and model provides us with some inherent qualities
that we believe will be beneficial toward achieving our goals. The major benefit of using
this model is that we can use its proof theory. It is possible that a formal model with a
different rule execution cycle will yield better results, and this will be determined. The
main disadvantage is that the execution cycle is unlike any production system language
currently available. But, this different rule execution cycle does not make it necessary to
match all rules to determine which ones have instantiations, since only one rule is chosen
at a time to match and execute.

In Swarm, there is no general structure for a global control module or global scheduler
as in production systems or blackboard systems. The type of global control mechanism

24

present in Swarm is a scheduler which filters out all undesirable execution sequences.
Thus, proofs are performed only on those execution sequences that have the behaviors
desired. For example, given a set of transactions, T = {¢,%2,%s,%4}, we want only to
reason (prove properties) about those executions where #; executes before every execution
of t4. Then the filter would accept the finite execution sequence, 1, 1y, £4, {3, 12, I3, L, but
not #, to, 13,14, 24, 82,7, We will only use this scheduler when no other alternatives exist.

Even using this filtering mechanism, no global conflict set will be produced. Any rule
that is chosen and has subtransactions that are matched successfully, will be executed.
There is no control mechanism to decide which transaction is chosen. This lack of control
will force an analysis of the importance of global control in parallel rule-based programs.
Therefore, by using a formal language such as Swarm, finding specific solutions to the
control problems and rule ordering problems will produce insights into general solutions.

Other properties in Swarm also make it a desirable model. Asynchronous computation
can be simulated and:synchronous computation can be performed dynamically through
the synchrony relation. Transactions or rules are considered atomic. Use of the proof sys-
tem will alleviate the problems of non-determinism, solution correctness, and termination
detection within a rule-based program.

25

5 Research Proposal

This section begins with an overview of the proposed research. The tasks in bold face are
discussed separately in detail. The overall contribution of this research will be methods for
defining, developing, and encoding correct parallel production system programs. Concen-
tration will be placed on transforming current serial programs. The problems presented
in section 2 will be addressed within the tasks. The transformations and derivations that
are described will be performed manually.

1. Eliminating global control. This task will occupy the largest portion of the re-
search. We will define a class of conflict resolution rules or strategies relied on by different
serial rule-based programs. The role that these strategies play in the serial programs will
be analyzed and their worth in parallel rule-based programs will be determined. Those
strategies that are necessary to keep will be emulated by methods which we will develop.

2. Formal description and proof. We will show that specifications and constraints
of rule-based programs can be formally described. Also, we will show how a rule-based
programs can be incrementally developed and proven to maintain correct behavior. This
task will be done by encoding programs into Swarm. Once these programs are encoded
in Swarm, we will utilize the proof theory of Swarm to show correctness of the program
according to initial specifications and constraints.

3. Enhancing rule-based programs. A series of derivations of the programs in Swarm
will be defined to change the program into one which exhibits parallelism while maintaining
correctness. These derivations will be in the form of rules and/or heuristics. Issues
concerning serializability and synchronization will be addressed under this heading.

4. Mapping programs to architectures. By analyzing the enhanced programs, we
will discuss ways to project them onto parallel architectures. Target architectures will be
defined in which the issues of serializability and proper rule distribution and ordering will
be addressed.

5. Evaluation of research. The methodologies for transforming the serial rule-based
programs to rule-based programs without conflict resolution will be evaluated. Swarm will
be evaluated to determine its usefulness in the context of parallel production systems. The
benefits and disadvantages of Swarm will be presented as well as suggestions for extensions
and changes. The programs developed in Swarm will be evaluated on the basis of 1) the
degree to which the problems presented in section 2 are overcome, and 2) the degree of
paralielism achieved.

5.1 Eliminating Global Control

Researchers in parallel production systems need rule-based programs which do not rely
on any conflict resolution strategy. They utilize programs that never had this reliance
or they transform their example programs into the types they need on a program by
program basis. These programs may be more easily expressed in parallel if they do not
initially rely on conflict resolution. Such programs may also exhibit more parallelism. No
methodologies for general transformation of these programs exist.

We will begin by gathering a set of representative rule-based programs. These programs

26

will be those used by parallel production system researchers and will include some toy
problems. Most of these programs will rely on a conflict resolution strategy, a combination
of different conflict resolution rules, Programs will be chosen so that the set contains
some current benchmark programs for parallel production systems, programs which rely
on different conflict resolution rules, programs which are known to be very sequential or
very parallel, and programs which have not been studied. For the purpose of clarity, we
call this set of programs INITIAL.

An analysis of the role that conflict resolution plays in the programs will be performed.
The importance this role has will be determined along with the changes that must be made
to the program if certain conflict resolution rules are eliminated. For those rules that must
remain to achieve desired results, methods for which the rules can be emulated will be
developed.

Because Swarm has no notion of a conflict set or global conflict resolution, it will be very
useful as a vehicle for this analysis. We want to encode the rule-based program in Swarm
so that it executed as it did in the simple production system. Thus we can determine
the importance of certain conflict resolution rules by examining sample executions of the
program in Swarm. Since Swarm rules are independent of each other, control must be
placed within the rule’s interaction with the dataspace.

The objective is to transform from INITIAL a set of programs that can be encoded in
Swarm. Then, by using Swarm, we can generalize the methods, by which the transforma-
tion was performed, to determine when to eliminate conflict resolution rules, and how to
emulate, or encode those necessary conflict resolution strategies. Part of this analysis will
be done by using the global scheduling filter mechanism in Swarm. By formally describing
the conflict resolution rules we do not wish to eliminate and looking at the behavior of
executions that are satisfactory, we hope to gain insight into efficient methods for encod-
ing those conflict resolution rules. This mechanism may also be used for those conflict
resolution rules which are necessary but cannot be encoded into Swarm.

The set of programs, that are transformed for execution in Swarm will be called SW.
We recognize that Swarm offers mechanisms to make the some transformations easier. For
example, the entire dataspace can be examined and also a transaction may be defined to
add a different transaction to the transaction space depending on the state of computation.
If mechanisms such at these are used to create programs with independent rules and no
reliance on global conflict resolution, they cannot be utilized directly in a production
system. Therefore, another objective is to develop general methods for transforming the
programs in INITTIAL to ones which can execute on a production system model. We will
use the information and insight gained by creating SW, to transform INITIAL into another
set of programs for the general production system model.

This new set of programs, call it PR will contain programs that can be executed on
a production system model and do not rely on any form of global conflict resolution. PR
may be a subset of SW, if some transformations from INITIAL to SW rely specifically on
characteristics of Swarm, such as the capability to utilize the global scheduling filter. PR,
may be a superset of SW, if there are ways to transform programs from INITIAL that
cannot be done in Swarm, and all programs in SW can be transformed into PR. There
may be no relation between PR and SW because of the differences between the general
production system model and Swarm.

27

Overall, an analysis will be performed to determine the conflict resolution strategies
which can be eliminated, ignored, simulated and/or encoded within production rules and
working memory for use in parallel production systems. Methodologies of simulating and
encoding these strategies specifically in Swarm will be developed. General methods of
simulating and encoding these strategies in a program targeted for a general production
system model will be developed. The differences between the general methods and the
Swarm methods will be given.

5.2 Formal Description and Proof

Some of the problems presented in section 2 may arise in parallel (and serial) production
systems as the result of informal problem description and lack of capability to guarantee
certain results. Currently a desirable solution for a rule-based program is guaranteed to
be achieved through multiple executions of the program. The use of conflict resolution
controls how solution paths are fraversed, in order to guarantee such paths converge. Nei-
ther multiple executions nor explicit control strategies prove program correctness. There
does not exist a commonly accepted formal system for which a rule-based program can be
expressed and proven correct. It is possible that a new way to express and prove rule-based
programs, as in Swarm, may lead to a change in a new production system model.

Concentration will be placed on the set SW defined in section 5.1. The set SW is the
set of rule-based programs that can be encoded in Swarm which were transformed from
INITIAL. The set INITIAL is a set of example rule-based programs which rely on various
conflict resolution strategies. In order to prove correctness of the programs, certain speci-
fications and constraints for each program must be formally encoded in Swarm and serve
as invariants. The set of acceptable solutions to the rule-based programs must also be
encoded formally into the terminating conditions for Swarm. Many of the specifications
for expert systems are vague, and extremely difficult to state formally. Therefore, we will
attempt to prove correctness of the behavior of the rule-based programs. It is possible that
during the proof process, rewriting of the program may be necessary, due to oversights
in the encoding or oversights in the transformation. Rewriting may also result in easier
proofs. Any insight gained from the formal description of the program and proving pro-
gram correctness can be reflected back onto the initial transformation methods for both
SW and PR.

Relationships between the methods of proving correctness and characteristics of the
program, including the initial conflict resolution strategy used, will be reported. If such
methods can be generalized, we will detail heuristics for proving a certain type of rule-based
program to be correct. This generalization applies also to encoding the specifications and
constraints, and for proving the equivalence between the solution results from the program
in INITIAL and the solution results from the program in SW', the set of transformed
programs in Swarm that have been proven correct,

The results of this part of the research will be formal descriptions of a set of rule-
based programs which can be proven correct. Such descriptions and proofs have not
yet been performed in Swarm, though their benefits have been discussed[5]. Through
the use of the Swarm proof theory, we can show equivalence of the globally controlled
programs in INITIAL and their counterparts in SW'. Lastly, providing general methods
for expressing rule-based programs in Swarm and for proving correctness according to

28

common characteristics and common encodings will be a contribution.

5.3 Enhancing Programs

In Section 3, methods were presented to solve certain problems that arise in attempts
to execute a production system program in parallel. Swarm provides a means to express
concurrent computations by allowing: 1) all satisfied subtransactions of a transaction
to execute simultaneously, and 2) the synchrony relation to dynamically gather related
transactions for simultaneous execution. Once a program is encoded in Swarm, it can
possibly be further enhanced to exploit more parallelism. Using the proof of the original
program, the enhanced program can maintain its original correctness criteria, plus any
additional correctness criteria that becomes necessary as parallelism is increased. This
task is of importance in giving insight into which type of computation, (synchronous,
asynchronous, or combination) allows more rules to execute simultaneously in Swarm and
in parallel production system programs.

Using those programs in SW', we will perform a series of transformation on each
Swarm program. These transformations will yield a final program in Swarm, in which:
1) a large number of rules that match are executed simultaneously, and 2) serializability
is guaranteed. Some technigues used for transformation will be taken from other sources
which detail program derivation, such as UNITY[4]. These transformations will be re-
flected onto the set of programs in PR, the general production systems programs which
do not rely on conflict resolution but exhibit desired behavior during execution. This
reflection will enhance these programs to exploit parallelism when executed on a parallel
production system model. Again some transformations may be specific to Swarm, but
attempts to generalize will be made.

The transformations in Swarm will include synchronizing transactions which do not
interfere and requiring additional control to be encoded in transactions which may in-
terfere. Interference definitions will be those defined in section 3. The transformation
rules will define ways to control multiple rule executions and guarantee serializability. In
essence, the evaluation of the transaction and tuple space will be static, and will rely
on previous research results on guaranteeing serializability, and controlling task ordering.
New correctness criteria will be added to the programs due to the increase in parallelism.
This criferia will be generalized as before across programs with similar characteristics.

From the accomplishments and restrictions defined at this point in the research, we
can determine if general methods and/or heuristics exist for directly encoding a rule-based
program in Swarm which exhibits the parallelism achieved by enhancement. If so, possible
derivation rules will be discussed. Two approaches can be taken to perform this task. One
approach will be to examine the initial rule-based programs. These programs will have the
initial rules and solution paths, along with the conflict resolution and control strategies.
From the structure of the program, and the previous methods necessary to transform it
to a parallel program, we will determine if there are general strategies to encode the serial
program directly into a parallel program. The second approach is to derive the program
by examining the initial specifications and constraints. In this approach, there will be
no concern over what conflict resolution strategies have been utilized in the past. The
programmer will begin by determining where parallelism can occur in the program, and
encode the program directly in Swarm, proving its correctness during development. It is

29

possible that the derivation rules will apply to a smaller subset of program than SW.

During this task, we will evaluate INITTAL as a set of example programs. This eval-
uation will determine what types of if INITTIAL is a good representative set of programs
which can be used as benchmarks for parallel production system, and what other types of
rule-based programs would be beneficial to this research specifically.

There are several by-products of this task. It will provide a means for analysis of
the bemnefits and disadvantages of the Swarm model in the context of parallel production
systems. We will be able to utilize previous research on serializability, rule division,
task ordering, etc., to enhance the programs, in conjunction with the proof theory of
Swarm. Also, developing rule-based programs that exhibit a large amount of simultaneous
computation in Swarm has not yet been performed.

In general, there are three main goals associated with this task. The first is to deter-
mine general characteristics of rule-based programs which exploit parallelism, and char-
acteristics that hinder parallelism. The second goal is to lay the foundation for a design
methodology such that if the rules are encoded in some way within a serial production
system model, transforming the rules to a parallel production system model can be per-
formed easily and correctly. By repeatedly examining the programs and improving them,
we hope to achieve this goal and contribute such a design methodology. Lastly, we will
discuss methods and/or heuristics for directly encoding rule-based programs from specifi-
cations and constraints, so that these programs exploit any inherent parallelism.

5.4 Mapping Programs to Architectures

Because Swarm is a theoretical language, it is necessary to speculate how these parallel
rule-based programs will be mapped onto parallel architectures. We believe that well-
designed programs should be easily mapped. But since the programs will be designed
without regard to efficiency of execution on a particular architecture, some added con-
straints may be necessary.

Before entering this task, we have transformed a set of rule-based programs, INITTAL,
to a new set, SW", which are those programs encoded in Swarm, proven correct and
enhanced to exploit parallelism. Within this task we will discuss how these programs can
be mapped onto target architectures. Some general assumptions applied to the execution
of Swarm on multiprocessors, will help us to speculate on the possible ways to implement
the programs on parallel architectures running Swarm.

One constraint of the mapping is that the correctness criteria established and proven
for the Swarm program, must be maintained. Otherwise, correct behavior cannot be
guaranteed during actual execution of the program on an architecture. For example the
mapping must define ways to partition production memory to control multiple rule exe-
cutions and guarantee serializability. Also, the rule distribution among processors should
not inhibit any rule that can execute from doing so.

Results from this task will be 1} an understanding of how the parallel rule-based
programs which we have developed can be implemented in current architectures, and 2)
a discussion on when partitioning of the transaction space is necessary versus replication
of the transaction space on every processor.

30

5.5 FEwvaluation of Finished Research

There are three major areas of the this research that will be under evaluation. First,
the methodologies for transforming the serial rule-based programs to rule-based programs
without conflict resolution will be evaluated. The metrics that will be used are 1) the total
number of conflict resolution strategies and /or rules eliminated, 2) which strategies can be
generalized from Swarm to the simple production system, and 3) determine the properties
of the program and/or conflict resolution strategy that restrict or ease generalization.

As stated earlier, if is possible that a new way to express and prove rule-based pro-
grams, as in Swarm, may lead to a change in the way production systems are modeled.
Since Swarm is a new model for this area, evaluation of the model for formally describing
and proving such programs is necessary. We will evaluate its performance in this context.
Swarm may be wholly beneficial to the development of parallel production system pro-
grams. It may-also-be that the Swarm model, in the manner in which it was used for
this research, was not-capable of yielding a satisfactory solution. In our evaluation, we
will determine-if this paradigm has-aided us in the development of such programs and
that the solutions found within this paradigm do not exhibit more serious drawbacks and
restrictions the solutions presented in other models.

Finally, the programs developed in Swarm will be evaluated on the basis of 1) the
degree to which the problems presented in section 2 are overcome, and 2) the degree
of parallelism achieved. These evaluations are consistent with those performed by other
researchers in this area. Because there will be no centralized control and we will be
developing parallel rule-based programs, it is necessary determine the extent to which the
problems given in section 2 have been solved by our efforts and by previous research efforts.
Most likely there will be trade offs between reaching a good solution for one problem and
a fair solution for another. If certain problems cannot be solved within the model, we will
explore reasons for this failure. The degree of parallelism will be measured against the
parallelism expressed by the similar programs in other models. Measures are the number
of rule firings necessary to achieve a sclution and the number of rules that can be fired in
parallel against that number from other parallel production system models.

31

References

[1] A. Acharya. Message passing computers as production system engines. In IJCAI-89
Workshop on Parallel Algorithms, August 1989, Unpublished proceedings.

[2] S. Ahuja, N. Carriero, and D. Gelertner. Linda and friends. Computer, 19(8):26-34,
August 1986.

[3] F. Barachini, H. Mistelberger, and E. Bahr. The art of parallel pattern matching. In
IJCAL-89 Workshop on Parallel Algorithms, August 1989. Unpublished proceedings.

[4] K.M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison Wesley,
Reading, MA, 1988,

[5] H.C. Cunningham and G.-C. Roman. Toward formal verification of rule-based sys-
tems: A shared dataspace perspective. Technical Report WUCS-89-28, Washington
University, June 1989.

[6] H.C. Cunningham and G.-C. Roman. A UNITY-style programming logic for a shared
dataspace language. Technical Report WUCS-89-5, Washington University, March
1989. To appear in IEEE Transaction on Distributed and Parallel Computing.

[7} J.R. Ensor and J.D. Gabbe. Transactional blackboards. In Alan H. Bond and Les
Gasser, editors, Readings in Distributed Artificial Intelligence. Morgan Kaufmann
Publishers, Inc., San Mateo, CA, 1988.

[8] 5. Fickas and D. Novick. Control knowledge in expert systems: Relaxing restrictive
assumptions. Technical Report CIS-TR 85-04, University of Oregon, February 1985.

(9] S. Fickas, D. Novick, and R. Reesor. Building control strategies in a rule-based
system. Technical Report CIS-TR 85-04, University of Oregon, January 1985.

[10] S. Fickas, D. Novick, and R. Reesor. An environment for building control rule-based
systems: An overview. Technical Report CIS-TR. 85-10, University of Oregon, 1985.

[11] A. Gupta. Parallelism in Production Systems. Pitman Publishing, London, England,
1987,

[12] T. Ishida and S.J. Stolfo. Towards the parallel execution of rules in production
system programs. In Proceedings of the IEEE International Conference on Parallel
Processing, Washington, D.C., 1985. IEEE Computer Society Press.

[13] J. McDermott and C. Forgy. Production system conflict resolution strategies. In D.A
Waterman and F. Hayes-Roth, editors, Pattern-Directed Inference Systems. Academic
Press, New York, NY, 1978.

[14] D.P. Miranker, C.M. Kuo, and J.C. Browne. Compiling parallelism among rules. In
IJCAI-89 Workshop on Parallel Algorithms, August 1989. Unpublished proceedings.

[15] D.P. Miranker, C.M. Kuo, and J.C. Browne. Parallel transformation for a concurrent
rule execution language. Technical Report TR-89-30, University of Texas at Austin,
October 1989.

32

[16] H.P. Nii, N. Aiello, and J. Rice. Frameworks for concurrent problem solving: A report
on CAGE and POLIGON. In Robert Engelmore and Tony Morgan, editors, Black-
board Systems. Addison-Wesley Publishing Company, Wokingham, England, 1988.

[17] M. Perlin. Match box: Fine-grained parallelism at the match level. In IJCAI-89
Workshop on Parallel Algorithms. Unpublished proceedings, August 1989, Also tech
report CMU-CS5-89-163.

[18] G.-C. Roman and H.C. Cunningham. A shared dataspace model of concurrency-
language and programming implications. In Proceedings of the 9th International
Conference on Distributed Computing Systems, pages 270-9, Los Alamitos, CA, 1989.
IEEE Computer Society Press.

[19] J.G. Schmolze. Guaranteeing serializable results in synchronous parallel production
systems. Technical Report 89-5, Tufts University, Medford MA, October 1989.

[20] J.G. Schmolze and S. Goel. A parallel asynchronous distributed production system.
In Submitted to ICPP-90, 1990. Technical Report in Preparation.

[21] M. Tambe, D. Kalp, A. Gupt, C. Forgy, B. Milnes, and A. Newell. Soar/PSM-E:
Investigating match parallelism in a learning production system. In ACM/SIGPLAN
PPEALS, pages 146-160, Sept. 1988.

[22] A. Terry. Using explicit strategic knowledge to control expert systems. In Robert En-
gelmore and Tony Morgan, editors, Blackboard Systems. Addison-Wesley Publishing
Company, Wokingham, England, 1988.

33

	A Methodology for Developing Correct Rule-Based Programs for Parallel Implementation
	Recommended Citation
	A Methodology for Developing Correct Rule-Based Programs for Parallel Implementation

	tmp.1459809062.pdf.P8JtF

