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ABSTRACT OF THE THESIS 

 
Active Testing of Executive Functions: Toward More 

Efficient and Equitable Individual Behavioral Modeling 

by 

María De La Luz Rojo Domingo 

Master of Science in Biomedical Engineering 

Washington University in St. Louis, 2022 

Professor Dennis Barbour, Chair 

Inferences about executive functions are commonly drawn through serial administration of various 

individual assessments that often take a long time to complete and cannot capture complex trends 

across multiple variables. In an attempt to improve upon current methods used to estimate latent 

brain constructs, this thesis makes two primary contributions to the field of behavioral modeling. 

First, it brings attention to sequential designs for more efficient diagnostic testing of fluctuations in 

executive functions with respect to a baseline level. It was shown that a sequential framework was 

successfully capable of detecting significant differences in cognitive performance more rapidly 

than conventional fixed approaches. Second, it introduces a scalable Gaussian Process estimator 

that can build individual psychometric models of task performance without requiring prohibitive 

amounts of data. This probabilistic machine learning classifier was capable of obtaining fully 

predictive models of working memory capacity person by person with high confidence.
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Chapter 1: Introduction 
Executive functions are at the center of cognitive psychology and comprehend the basic brain 

processes of working memory, cognitive flexibility and inhibitory control (Miyake et al., 2000). 

This core triad of executive functions is constituted by high-level cognitive processes that play a 

vital role in our everyday mental and physical activities (Diamond, 2013). Executive functions 

provide a foundation for higher-order processes such as reasoning, problem-solving and decision 

making (Viana-Sáenz et al., 2020). Considering that executive functions are the cornerstone of 

learning and academic success (Zelazo et al., 2016), rigorous short- and long-term characterization 

of improvements and fluctuations in these neurocognitive skills is essential. Neuroscience 

researchers typically employ quantitative measures of executive functions in order to gain insight 

LQWR�D�VXEMHFW¶V�EUDLQ�VWDWHV��3HUIRUPDQFH-based numerical measures can be useful to examine both 

inter- and intra-individual changes in the manifestation of executive functions across time. 

Unfortunately, with current behavioral assessments, it should be recognized that a number of 

challenges persist to performing thorough studies of the relationships among executive functions, 

as well as their variability. To this day, multidimensional testing in perceptual or cognitive 

domains predominantly consists of serial administration of lengthy unidimensional tests that 

constitute a test battery. Refinement of traditional executive function testing procedures is 

indispensable to lay the groundwork for quantitatively predicting learning outcomes person by 

person more efficiently. 

There exist numerous shortcomings in traditional cognitive and perceptual methods, such as the 

fact that current unidimensional tests within a battery broadly apply fixed designs with no active 

https://www.zotero.org/google-docs/?I5lEHz
https://www.zotero.org/google-docs/?ilb8Wa
https://www.zotero.org/google-docs/?Pi7ADi
https://www.zotero.org/google-docs/?k6v8mU
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testing involved. Unfortunately, the lack of flexibility in one-size-fits-all assessments typically 

translates into excessive data requirements for accurate modeling, as there is no possibility of 

actively shortening test duration for any individual. In view of this major drawback of 

standardized behavioral tests, it is timely to formalize and extend the concept of variable 

termination inherent to adaptive procedures. By means of a sequential testing design, this work 

seeks to actively test whether changes in task performance have occurred from one session to 

another of the same task. 

Considering that hypothesis testing generally entails low computational complexity, this study 

supports the notion that it is feasible to carry out multiple interim analyses before the end of a test 

session to more rapidly detect differences in executive functions and stop collecting data before 

reaching a maximum number of observations. In this thesis, it is demonstrated that relatively 

simple and straightforward frequentist tools can suffice to effectively tackle the problem of 

reducing total trial count in individual cognitive tests, while still controlling for error rates. It is 

also worth emphasizing that frequentist statistics, which are well-established tools that are 

commonly used in scientific inquiries, are the backbone of the sequential framework proposed. As 

a result, this method of conducting assessments does not introduce new techniques, but simply 

combines them in a way that exploits the benefits of statistical analyses. To promote the 

widespread use of sequential analyses in a variety of behavioral applications, this study sheds light 

on the great potential they offer to reduce test duration in the diagnosis of significant changes in 

cognitive performance. 

Additionally, a major limitation in psychometrics is that rigorous estimation procedures for 

complex problems in higher dimensions are neither standardized nor well-established. The fact 
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that unidimensional assessments fail to exploit and quantify the interactions between variables 

related to several executive functions cannot be ignored. Indeed, individual task performance 

measures involve a mixture of executive function processes, as it turns out to be difficult to isolate 

an index of a single functional process in any particular executive function task (Hughes & 

Graham, 2002). As a result, the fundamental failure of conventional approaches to capture 

nonlinear, multidimensional trends among psychological variables is substantially inefficient and 

makes scalability to higher dimensions unattainable.  

Another source of concern is that current estimation methods combine measurements across 

individuals within a group to construct cognitive models. Although this method is useful for 

reducing noise and inferring similarities in a population, referencing individuals against each other 

and norming raw measurements introduces systematic errors and test bias (Reynolds & Suzuki, 

2012). For instance, adaptive staircase designs are a widespread threshold-seeking procedure to 

summarize task performance and, when combined across a cohort, they allow researchers to infer 

group-level functions related to the underlying constructs of interest. The justification for this 

approach is that without referencing individuals against one another, the data requirements to draw 

individualized inference over complex latent constructs are excessive in higher dimensions due to 

WKH�³FXUVH�RI�GLPHQVLRQDOLW\´�(Barbour, 2019; Feczko et al., 2019). The problem is that, especially 

in the case of heterogeneous cohorts of people, this population-based approach has a detrimental 

effect for minority or outlier examinees, whose performance tends to be misestimated with respect 

to the majority group (Reynolds & Suzuki, 2012). Thus, it is of paramount importance to design 

for improved estimation procedures that take a more equitable approach to estimate complex 

individual models. All in all, there is a dire need for innovative solutions for exploiting 

multidimensional feature spaces and retaining data efficiency for individual model training. To 

https://www.zotero.org/google-docs/?Ug9XbJ
https://www.zotero.org/google-docs/?Ug9XbJ
https://www.zotero.org/google-docs/?3YtmJH
https://www.zotero.org/google-docs/?3YtmJH
https://www.zotero.org/google-docs/?WXwDzO
https://www.zotero.org/google-docs/?v3egwQ
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achieve this objective, this thesis puts forward a practical method for obtaining tractable complex 

individual models that can be trained with reasonable amounts of data applying modern estimation 

techniques. 

To recapitulate, regarding the limitations that come with using traditional behavioral assessments 

of perceptual and cognitive processes, this thesis aims to improve upon current methods so as to 

promote more equitable and efficient assessments in cognitive psychology, neuroscience and 

education. Chapter 2 proposes a frequentist sequential testing statistical framework that can 

shorten test duration and lead to faster screening for changes in executive functions. Empirical 

results in non threshold-seeking cognitive tasks endorsed that even with hypothesis testing 

techniques only, it is possible to detect fluctuations between two test sessions with fewer 

observations than standard testing procedures. Next, chapter 3 establishes a sophisticated 

inference method that employs Bayesian machine learning tools to build a novel probabilistic 

estimator. This novel active learning Gaussian Process estimator, which is described in more 

detail below, was evaluated to quantify spatial working memory. This promising implementation, 

which is generalizable to other tasks, lays an essential foundation for incorporating additional 

executive functions beyond those from working memory capacity. Chapter 4 summarizes the 

conclusions of the two main contributions of this thesis to the field of cognitive neuroscience, and 

outlines future expansions of this line of research to continue to advance the field of behavioral 

modeling.   
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Chapter 2: Active Executive Function 
Difference Detection 

Cognitive testing is essential for evaluating executive functions, but efforts are still needed to 

reduce test burden. Fortunately, by using more efficient data collection designs, shorter 

behavioral assessments can be developed. Scaling down data requirements in cognitive tests 

may also facilitate more frequent testing, allowing one to more easily determine if brain states 

have changed on any given day. Construct-valid tests designed to measure a given executive 

function can be informative to determine whether a fluctuation from baseline has occurred. 

Direct comparison of individual performance from one test session to another is one way to 

gauge intra-subject fluctuations in executive functions. A difference detection strategy can be 

applied to compare sets of responses from the same individual and the same assessment, then 

decide whether performance in one test session is significantly different from performance in 

another session. Based on task performance, the simplest way to make a quick diagnosis of 

VLJQLILFDQW�FKDQJHV�LQ�H[HFXWLYH�IXQFWLRQLQJ�LV�D�ELQDU\�RXWSXW��³GLIIHUHQW´�YV�³VDPH´��RU�

HTXLYDOHQWO\��³FKDQJH´�YV�³QR�FKDQJH´��+\SRWKHVLV�WHVWLQJ is a classical frequentist approach 

WR�PDNH�VXFK�GHWHUPLQDWLRQ�E\�UHMHFWLQJ��RU�IDLOLQJ�WR�UHMHFW��WKH�QXOO�K\SRWKHVLV��³LQIHUULQJ�

from performance in the cognitive test, there are no detectable fluctuations in executive 

function with respect to the baselLQH´� 

It is important to recognize that there are many different types of executive functioning 

assessments, so researchers should adapt the difference detection strategy to the nature of the 

task at hand, rather than searching for a one-size-fits-all solution. Overall, tasks can be largely 
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classified as threshold-seeking or non threshold-seeking. Threshold-seeking assessments tend 

to have independent variables and correspond to models focused on specifying psychometric 

performance thresholds, such as the maximum number of items one can remember in a Corsi 

span task. On the other hand, non-threshold seeking approaches may not have independent 

variables and typically yield an output metric that summarizes performance on all responses, 

such as mean reaction time in a timing task. The non threshold-seeking cognitive assessments 

tackled in this chapter can be divided into two categories: timing models and accuracy 

models. The focus of this study is on the application of sequential analyses for difference 

detection in non threshold-seeking models that do not have a validated mechanism for 

adjusting task difficulty. Then, solutions for improving upon current psychometric function 

estimation procedures will be addressed in chapter 3. 

2.1 Sequential Testing 
Sequential analyses are far from being a new invention. As a matter of fact, statistical 

techniques to sequentially analyze data are well-established procedures that have a long history 

(Dodge & Romig, 1929). Testing items sequentially, one after another, is common practice in 

quality control in manufacturing and detection of anomalies in medical trials (Eggen, 1999; 

Spiegelhalter, 2003). To date, despite the popularity of sequential testing in fields such as 

medicine, one may find it surprising that this method is underutilized in most other research 

disciplines (Lakens et al., 2021). Due to the increased efficiency gains that a sequential design 

can offer (Neumann et al., 2017), it is worth exploring the potential for this approach to 

hypothesis testing in the field of cognition. Mainstream use of sequential testing as a screening 

tool in behavioral and psychological sciences could translate into detecting differences in 

executive functions in shorter periods of time. With this in mind, the goal in this chapter is to 

https://www.zotero.org/google-docs/?Zz9740
https://www.zotero.org/google-docs/?UktU4d
https://www.zotero.org/google-docs/?UktU4d
https://www.zotero.org/google-docs/?bbMTCp
https://www.zotero.org/google-docs/?cTtaf9
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contrast sequential testing procedures with conventional non-sequential testing routines in the 

scope of detection of differences in executive functions relative to a cohort average or changes 

relative to an individual baseline. 

 In this study, task performance on a full test, where the maximum number of observations 

were presented, is used to establish a baseline executive function metric. Broadly, investing 

time to gather a large number of trials on the first testing session is justified by the fact that a 

reference model representing the underlying cognitive state as accurately as possible is 

desirable for a more efficient subsequent comparison to a new testing session. Departing from 

this baseline, the inference a researcher draws concerning the presence or absence of 

differences in brain states can be regarded as a dichotomy. With sequential tests, resolving this 

dichotomy in a more time-efficient manner is not only achievable, but also quite 

straightforward. The main idea of this technique is to establish a practical sampling plan to 

periodically run an interim analysis of the cumulative results, instead of waiting until the end 

to perform one final analysis after spending all the trials in the overall budget. An interim 

analysis can also be refeUUHG�WR�DV�D�³ORRN´��ZKLFK�PHDQV�DQDO\]LQJ�WKH�GDWD�FROOHFWHG�XS�WR�D�

point. In the context of detecting changes in executive functions, the purpose of the look is to 

determine whether there is enough evidence to endorse the presence of a difference in 

cognitive performance after a certain number of observations. Alternatively, it is possible to 

claim that the presence of an effect larger than the effect size of interest can be rejected 

because the observed effect at the interim inspection is much smaller than what is considered a 

large enough effect size for the particular cognitive test. In the latter case, the data collection 

SURFHVV�LV�LQWHUUXSWHG�IRU�³IXWLOLW\´��ZKLFK�PHDQV�WKDW�HDUO\�GDWD�VKRZV�LQVXIILFLHQW�SURPLVH�RI�

the presence of a difference in executive function. That is, it is either impossible or very 
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unlikely for the final analysis to yield a significant p value. 

Presumably, with every additional data point that a behavioral test collects, the amount of 

evidence in support of one of the two opposing hypotheses increases. The alternate and null 

K\SRWKHVHV�ZHUH�UHVSHFWLYHO\�GHILQHG�LQ�WKLV�VWXG\�DV�³WKHUH�ZDV�D�VLJQLILFDQW�FKDQJH�LQ�

FRJQLWLYH�IXQFWLRQ´��+����DQG�³WKHUH�ZDV�QR�VLJQLILFDQW�FKDQJH�LQ�FRJQLWLYH�IXQFWLRQ´��+����

Thus, after serial addition of each new sample, a hypothesis test can be performed to see if 

either conclusion can be reached with confidence. The testing session will be stopped if the 

null hypothesis can be rejected (e.g., a NHST), or because the alternate hypothesis can be 

rejected (e.g., an equivalence test). In practice, instead of inspecting the data after every single 

observation, performing an inspection after a small batch of samples reduces computational 

time. This sequential modality, known as group sequential design, was implemented in the 

non-threshold-seeking tests in this study. Concretely, the hypothesis tests that were performed 

after each batch of trials were Mann-Whitney U tests when the data streams contained reaction 

time information and binomial tests when the responses stored accuracy data. 

It is intuitive that with more data collected, there is less uncertainty about the effect size and, 

thus, more information is available to researchers to draw inference from. In effect, the key 

issue in sequential designs lies in deciding when to terminate the investigation and validate a 

particular decision, contemplating the possibility that the number of trials required to draw a 

conclusion could certainly be less than the pre-established maximum number of trials planned. 

In general, fewer samples are needed to draw conclusions about large effects than small effects 

and forcing every participant to experience the same number of samples is inefficient when the 

effect sizes are likely to vary. At each interim analysis, based on the test responses gathered, 
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one of the following three decisions is made: accept the null hypothesis, reject the null 

hypothesis, or continue testing. In the first case, the test is interrupted because enough evidence 

has been accumulated to determine that a significant change in executive function with respect 

to the previous session is extremely unlikely. In the second case, early stopping takes place at 

an interim look because there is sufficient evidence to resolve a change in executive function. 

In the third and last case, more samples are drawn and the test continues, because the 

information available after that particular number of observations is not quite enough to make 

a confident decision regarding whether a change in executive function has occurred. Therefore, 

test duration in sequential frameworks depends on performance at the individual level, unlike 

traditional testing procedures, where the number of observations collected is identical for all 

the subjects. For many individuals, their specific sample size is reduced due to the possibility 

of rejecting the null hypothesis or if it is sufficiently clear that the expected effects are not 

present and continuing data collection is a waste of resources. Although less attention is 

typically given to stopping the study for futility before reaching the maximum number of trials, 

this is not a trivial matter given that resources are limited and collecting more observations 

might cost more time, money, and effort. 

2.2 Methods 
The purpose of the experiments conducted in this chapter was to illustrate the application of 

sequential testing in executive function research. A retrospective analysis of four cognitive tasks 

was performed to compare the sequential procedure to traditional methods. The evaluation was 

carried out in timing and accuracy tasks, which measured reaction time and accuracy of 

responses, respectively. In particular, the sequential testing model of assessment was 

implemented on Countermanding and Numerical Stroop for the timing tasks, and PASAT+ and 
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Cancellation for the accuracy tasks. The tasks are described in more detail below. 

Regarding the data collection, young adults recruited from the University of California, Irvine 

and the University of California, Riverside completed mobile-based tests in the app ³Recollect 

the Study´, which can be downloaded on the App Store. Recollect the Study has been used as a 

SODWIRUP�WR�JDWKHU�GDWD�IRU�RWKHU�EHKDYLRUDO�VWXGLHV��VXFK�DV�³8&DQFHOODWLRQ��$�QHZ�PRELOH�

measure of selective attention and concentration´�(Pahor et al., 2022). The Recollect app 

contains a test battery that was designed to measure executive functioning. 18 college students 

between 18 and 22 years old completed the test battery on touchscreen devices. The tests in the 

tablet-based battery included the non-threshold-seeking tasks of interest, among other 

assessments. Since each one of the young adults from the cohort took the test battery ten times, 

the total number of sessions for each task was 180. The data from these sessions was used to 

evaluate sequential testing in Countermanding, Numerical Stroop and PASAT+. For the 

Cancellation task, however, a different dataset consisting of 460 test sessions from college 

students was preferred for proof of concept. This alternative study was more suitable simply 

because most of the Cancellation files in the dataset used for the rest of the tasks had an 

insufficient number of trials to perform a sequential analysis. In both datasets, several data files 

that contained incomplete sessions or extreme reaction time values (outliers) were removed from 

the analysis. The final number of sessions for each specific task will be specified in the results 

section. 

The Countermanding task estimates the executive function of inhibitory control or the ability to 

control the execution of a response by measuring response inhibition latency (Morein-Zamir et 

al., 2004). The Countermanding version that was used to collect the data was a hybrid of Simon 

https://www.zotero.org/google-docs/?xXwfmW
https://www.zotero.org/google-docs/?aQcPDP
https://www.zotero.org/google-docs/?aQcPDP
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and Spatial Stroop tasks (Davidson et al., 2006; Diamond, 2013). In this test, the participant was 

instructed to tap on one of two buttons in response to a visual stimulus. Depending on the color 

of the stimulus, which appeared on the left or right buttons interchangeably, the participant had 

to tap on the same side of the screen (congruent trial) or on the opposite side (incongruent trial). 

A brief practice session was followed by three blocks of trials: the first block contained 

congruent trials only, the second block contained incongruent trials only, and the third and final 

block contained a total of 48 trials including both conditions (congruent and incongruent). The 

VHTXHQWLDO�WHVW�SURFHGXUH�ZDV�SHUIRUPHG�RQ�WKH�WKLUG�EORFN��ZKLFK�ZDV�UHIHUUHG�WR�DV�WKH�³PL[HG�

DVVHVVPHQW�EORFN´� 

The Stroop test is one of the famous tests to estimate inhibitory control by measuring 

interference and its control (Martínez et al., 2018). The Numerical Stroop task employed in this 

battery assessed inhibitory control based on responses that are either congruent or incongruent 

with a mental set. In the test battery, a non-symbolic Stroop animal task with two conflicting 

dimensions (number and size) was performed by the participants. In each trial, they were 

simultaneously presented various numbers of elephants and frogs on each side of the screen. 

7KHQ��WKH\�KDG�WR�LQGLFDWH�ZKLFK�VLGH�³KDG�PRUH�WKDQ�WKH�RWKHU´�DV�TXLFNO\�DV�SRVVLEOH��

irrespective of animal size. After a few practice trials, the assessment stage began and 60 trials 

were presented, with equal counts for congruent and incongruent trials. 

PASAT+ is an adaptation from the Paced Auditory Serial Addition Task (Gronwall & Sampson, 

1974) that combines elements of both a working memory task and a test of information 

processing speed to measure sustained attention, flexibility, and calculation ability (Tombaugh, 

2006). The original task was developed to assess the effects of acquired brain injury on cognitive 

https://www.zotero.org/google-docs/?r5R4K0
https://www.zotero.org/google-docs/?I5HnA2
https://www.zotero.org/google-docs/?dtX0qc
https://www.zotero.org/google-docs/?dtX0qc
https://www.zotero.org/google-docs/?5rAJNa
https://www.zotero.org/google-docs/?5rAJNa
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functioning, but it has also been validated in healthy individuals (Wiens et al., 1997). This test 

requires attention and is an extremely sensitive measure of vigilance, since the subject is 

required to not only attend to the relevant numbers, but also be aware of the ongoing changes on 

the screen. In this assessment, the participants were asked to add the last two elements from a 

sequence of numbers that appeared on the center of the screen one after another. It should be 

noted that each number must be added to the one just before it, not to the answer. The sums are 

pairwise, and the values are selected from a multiple choice set presented at the bottom of the 

screen. After the practice stage, the responses to 20 assessment trials were recorded. 

Cancellation is a timed test akin to the D2 test, a psychodiagnostic instrument for measuring 

processing speed, rule compliance, and quality of performance (Brickenkamp & Zillmer, 1998). 

The Cancellation task in this test battery involves the cognitive domains of sustained and 

selective attention, inhibitory control, psychomotor speed, visual searching and motor 

coordination (Brucki & Nitrini, 2008). In the version of the task that the participants took, 8 

items were displayed per row, with 3 to 5 targets per row (every 10 rows had exactly 40 targets). 

The goal was to select as many targets and clear as many rows as possible within the global time 

limit of 3 minutes and 30 seconds for the assessment block. With this, participants could 

FRPSOHWH�³ERQXV�URZV´�LI�WKH�JOREDO�WLPH�OLPLW�ZDV�QRW�H[FHHGHG��7KH�WLPH�OLPLW�IRU�HDFK�URZ�

was 6 seconds, with 1 second screen blank interval between rows. For each row, the total 

number of hits, false alarms (Type I errors), misses (Type II errors) and correct rejections was 

recorded. Each row was considered a trial that was assigned a binary accuracy score: 0 if there 

were any errors in the row or 1 if the answer was perfect, i.e. , if the row had no Type I or Type 

II errors. 

https://www.zotero.org/google-docs/?JLulZi
https://www.zotero.org/google-docs/?Xa5NGL
https://www.zotero.org/google-docs/?769hg9
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It is reasonable to presume that the number of trials used to make a decision concerning 

difference detection is inversely proportional to the amount of uncertainty in the decision. On a 

case-by-case basis, experimenters may decide if it is more desirable to prioritize short test 

duration or low error rate, remaining conscious that there is a trade-off between test length and 

statistical test accuracy. In this study, the outcome from the traditional fixed testing design 

VHUYHG�DV�³JURXQG�WUXWK´�ZKLOH�WKH�VHTXHQWLDO�SURFHGXUH�HVWLPDWLRQ�ZDV�UHJDUGHG�DV�WKH�

³H[SHULPHQWDO�FRQGLWLRQ´��7\SH�,�HUURU�UDWH�RU�Ƚ corresponds to the probability of a significant 

result when the null hypothesis (H0) is true, while Ⱦ is the probability of a non-significant result 

when the alternate hypothesis (H1) is true. 

For each sequential testing experiment, Type I and Type II error counts were determined by 

observing whether the decision from the standard testing procedure was in agreement with the 

conclusion from the sequential design. In other words, a final conclusion from an interim look 

that does not match the conclusion made when the maximum number of observations has been 

collected is considered DQ�HUURU��)RU�WKH�VDNH�RI�EUHYLW\��³GLIIHUHQW´�LV�XQGHUVWRRG�LQ�WKLV�FRQWH[W�

DV�³IOXFWXDWLRQV�LQ�H[HFXWLYH�IXQFWLRQLQJ�EH\RQG�D�SDUWLFXODU�HIIHFW�VL]H�KDYH�EHHQ�GHWHFWHG´�DQG�

³VDPH´�LV�HTXLYDOHQW�WR�³QR�IOXFWXDWLRQV�GHWHFWHG��H[HFXWLYH�IXQFWLRQLQJ�KDV�QRW�FKDQJHG´��

Correct detections can be separated between true positives and true negatives, corresponding to 

ERWK�DSSURDFKHV�GHWHUPLQLQJ�³GLIIHUHQW´�DQG�³VDPH´��UHVSHFWLYHO\��2Q�WKH�FRQWUDU\��D�7\SH�,�

error or a false positive occurred when the sequential strDWHJ\�GHFLGHG�³GLIIHUHQW´�DQG�WKH�

FRQYHQWLRQDO�VWUDWHJ\�GHFLGHG�³VDPH´��ZKHUHDV�D�7\SH�,,�HUURU�RU�IDOVH�QHJDWLYH�RFFXUUHG�ZKHQ�

WKH�VHTXHQWLDO�VWUDWHJ\�GHFLGHG�³VDPH´�DQG�WKH�FRQYHQWLRQDO�VWUDWHJ\�GHFLGHG�³GLIIHUHQW´� 

For each task, contingency tables were used to determine the error rates and fully evaluate the 
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effectiveness of sequential testing with respect to the control procedure. Specificity was 

calculated as the number of true negatives divided by the total number of false positives and true 

negatives. Positive predicted value or sensitivity was computed as the number of true positives 

divided by the total number of true positives and false positives. This metric was used to specify 

what proportion of positive identifications was actually correct. Negative predictive value was 

calculated as the number of true negatives divided by the total number of true negatives and 

false negatives. True positive rate, also known as sensitivity, was computed as the number of 

true positives divided by the total number of true positives and false negatives. Sensitivity was 

calculated to determine what proportion of actual positives was identified correctly. Finally, the 

false positive rate was computed as the number of false positives divided by the total number of 

false positives and true negatives. 

It is important to note that performing multiple tests without correcting the significance 

threshold, or Ƚ level, is associated with an increase in the false positive rate. In fact, inflated 

error rates due to optional stopping without adjusting the Ƚ level is an important problem in the 

UHSURGXFLELOLW\�FULVLV��³3-KDFNLQJ´�WDNHV�SODFH�ZKHQ�UHVHDUFKHUV�YLRODWH�WKH�SUHVHW�7\SH�,�HUURU�

probability by rerunning analyses when a statistically significant effect is desired but not found 

(Head et al., 2015). Therefore, making the Ƚ level more stringent when multiple statistical tests 

are performed is a necessary step to prevent a potential inflation of Type I errors. In the 

experiments below, Ƚ was corrected with the Bonferroni-Holm procedure, but it should be noted 

that different types of corrections exist. Bonferroni-Holm procedure was found to be the most 

widely recommended way to reduce the apparent significance of effects from multiple looks 

(Giacalone et al., 2018). Thus, the rejection criteria were adjusted for each hypothesis test based 

on the Bonferroni-Holm formula: Ƚ୧ �ൌ �ȽȀሺ� െ � ൅ ͳሻ�(Holm, 1979). Accordingly, the Ƚ 

https://www.zotero.org/google-docs/?Qxd5A4
https://www.zotero.org/google-docs/?crY1ET
https://www.zotero.org/google-docs/?hK67By
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corrected values (Ƚ୧) were different for each Mann-Whitney U test or binomial test, depending 

on three factors: Ƚ or the overall Type I error rate, � or the total number of interim analyses, and 

��or the current hypothesis test index, starting from i = 1. 

While guaranteeing low error probabilities, the justification of sequential testing becomes 

evident when one considers its main advantage: a substantial reduction in test duration. Again, in 

the case that a large effect is present, a shorter test session with fewer trials could suffice to draw 

an inference about detectable differences in executive functions. In addition, due to the potential 

reduction in sample size, all the trials that have not been used on a given session could be 

invested in additional test procedures or testing sessions, enabling more extensive or more 

frequent testing for the same time commitment in the long run. In this study, the number of trials 

that were saved in each test session with sequential analyses was computed to illustrate the 

efficiency gains of this method. Some sessions required fewer trials due to significance while 

others due to futility. The futility threshold was fixed for all interim analyses at a particular 

HIIHFW�VL]H��7KH�HIIHFW�VL]HV�ZHUH�FRPSXWHG�ZLWK�³&RKHQ
V�G´�DQG�³&RKHQ¶V�K�´�IRU�UHDFWLRQ�WLPH�

data and accuracy data, respectively. For Countermanding and Numerical Stroop, Cohen's d, one 

of the most commonly used measures of effect size, was calculated as the mean difference in 

reaction time divided by the pooled standard deviation (Funder & Ozer, 2019). On the other 

hand, for the PASAT+ and Cancellation tasks, the accuracy measurements only had two possible 

YDOXHV��]HUR�RU�RQH���VR�&RKHQ¶V�K���ZKLFK�LV�D�YDULDWLRQ�RI�&RKHQ¶V�K�WKDW�LV�EHWWHU�VXLWHG�IRU�

binomial tests, was used to measure the distance between the proportions from each independent 

group (Cohen, 1988). 

https://www.zotero.org/google-docs/?T2prR0
https://www.zotero.org/google-docs/?aipEkx
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2.3 Results 
The sequential design experiments can be separated into two main categories: models that 

measure reaction time and models that measure task accuracy. First, the results from timing 

models reflecting distributions of response times will be presented, and subsequently, the 

findings from models reflecting derived measures of accuracy will be addressed. For the 

GLIIHUHQW�JURXS�VHTXHQWLDO�GHVLJQV��WKH�³FRVW´�RI�VHTXHQWLDO�WHVWLQJ�LV�PHDVXUHG�Ey recording 

WKH�QXPEHU�RI�7\SH�,�DQG�7\SH�,,�HUURUV��ZKLOH�WKH�³EHQHILW´�LV�LQGLFDWHG�E\�WKH�WULDO�VDYLQJV�

relative to the maximum number of pre-planned trials. 

2.3.1 Timing Models 

Accuracy is typically very high in the Countermanding and Numerical Stroop tasks; thus, 

the main dependent measures are the mean reaction times for correct congruent and 

incongruent trials. Performance in these timing tasks can be represented with models of 

reaction times on a trial-by-trial basis that follow a right-skewed distribution. In other words, 

the time a subject takes to complete each trial can be visualized in the particular right-

skewed distribution from their responses to the cognitive test. The Mann-Whitney U test is a 

nonparametric alternative to a t test that makes no assumptions about the distribution of the 

data (Hart, 2001), which might not necessarily be normally distributed. In the group 

sequential design that was implemented here to test for differences in executive function 

performance, multiple Mann-Whitney U tests were performed for every session that was 

compared to a baseline session, such that each Mann-Whitney U test was carried out after 

each additional batch of samples. 

https://www.zotero.org/google-docs/?YAlZcL
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For both timing tasks, the maximum number of sequential Mann-Whitney U tests used was 

6, but in practice, many sessions required fewer tests to reach the significance or futility 

boundaries. As mentioned earlier, the overall Ƚ level in a sequential design differs from the 

Ƚ level at each look. For a desired Type I error rate of 0.05, the corresponding Ƚ corrected 

values for each of the six interim analyses were 0.008, 0.010, 0.013, 0.017, 0.025, 0.050. It 

can be noticed that when the final looks occurred, the Ƚ values got closer and closer to the 

uncorrected alpha level. For Countermanding, the starting number of observations was 8, 

and after each Mann-Whitney U test, data was added to the sequence in batches of 8, up to a 

maximum of 48 total trials. For Numerical Stroop, the first analysis took place with 10 trials 

only, and subsequent interim analyses were performed after incorporating 10 additional 

trials at a time, up to a maximum of 60 total trials. 

Effect sizes play an important role in statistical tests, as they quantify the magnitude of an 

effect that emerges from the sampled data (Schäfer & Schwarz, 2019). Naturally, the larger 

the magnitude of the difference between groups, the lower the number of samples required 

to detect it. Thus, it is anticipated that the individuals that would benefit the most from the 

sequential design are those that show larger differences in performance between sessions. If 

their performance is almost identical, they would also take very short tests because the effect 

size is too small at early inspections to be detectable, and it is not worth wasting more trials 

and testing time. Effect sizes for timing data can EH�FRPSXWHG�ZLWK�&RKHQ¶V�G��&RKHQ�

originally classified d values of less than 0.2 to be small, and d values greater than 0.8 to be 

large (Sullivan & Feinn, 2012). In general, very small effect sizes will correspond to non-

significant p values in the Mann-Whitney U tests, indicating that there are no detectable 

differences in executive functioning. By contrast, large effect sizes lead to significant p 

https://www.zotero.org/google-docs/?1MF7th
https://www.zotero.org/google-docs/?niWGI2
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values, and the conclusion will be that significant differences in task performances are 

detected. 

In sequential testing for timing models, data collection was stopped for futility by rejecting 

the presence of an effect of interest, but an appropriate futility threshold that does not 

excessively raise error rates must be established. For the timing experiments, data collection 

was stopped early if d was less than 0.05 at any of the sequential tests, and the alternative 

hypothesis was rejected. In sequential designs, stopping for futility because the final result is 

unlikely to be a significant result has EHHQ�FRLQHG�DV�³VWRFKDVWLF�FXUWDLOPHQW´�(Lakens et al., 

2021). This practice saves testing time due to the low probability of observing a significant 

effect within the predetermined maximum sample size. Only in extreme samples with large 

variation would a Cohen's d value smaller than 0.05 at an interim analysis eventually reach 

statistically significant results. With lower data requirements, futility implied the following 

FRQFOXVLRQ��³VDPH�H[HFXWLYH�IXQFWLRQ�VWDWH��QR�GHWHFWDEOH�FKDQJHV´� 

For the Countermanding task, 166 sessions were compared pairwise to each other, 

FRQVLGHULQJ�RQH�VHVVLRQ�WKH�³'D\��´�EDVHOLQH�WKDW�ZDV�FRPSDUHG�WR�WKH�RWKHU�VHVVLRQ�LQ�

search of changes relative to the reference day, which was evaluated using the entire trial 

budget. Summary statistics were computed from the values in the contingency table shown 

in Figure 2.1, which indicates the error counts for this task. Specificity was 3108 / (345 + 

3108) = 0.90, true positive rate (sensitivity) was 9792 / (9792 + 616) = 0.94, false positive 

rate was 345 / (345 + 3108) = 0.09, positive predictive value (precision) was 9792 / (9792 + 

345) = 0.97 and lastly, negative predictive value was 3108 / (616 + 3108) = 0.835. Figure 

2.1 also shows a pie chart of the trial savings for the Countermanding task. Notably, 42.1 % 

of the sessions used just the initial 8 trials, which was the minimum number of observations. 

https://www.zotero.org/google-docs/?XTw3PV
https://www.zotero.org/google-docs/?XTw3PV
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For the sequential design, the average number of trials was 20, and only 16.3 % of the 

sessions used 48 trials, which was the maximum number of pre-planned observations. 

 

Figure 2.1: Countermanding error rates and trial savings with a significance level of Ƚ = 0.05 and 
futility of d ������� 

 

A sequential design demonstrated more efficiency than a fixed design in the Numerical 

Stroop task, too. Figure 2.2 shows a contingency table with the count of Type I and Type II 

errors for a total number of 5886 comparisons of the 108 sessions of the task against each 

other. A pie chart with a detailed breakdown of the number of trials used for each session is 

also included in Figure 2.2. Specificity was 1265 / (214 + 1265) = 0.86, true positive rate 

(sensitivity) was 3995 / (3995 + 412) = 0.91, false positive rate was 214 / (214 + 1265) = 

0.15, positive predictive value (precision) was 3995 / (3995 + 214) = 0.949 and negative 

predictive value was 1265 / (412 + 1265) = 0.754. The trial savings were evident, given that 

88.2 % of the sessions were shorter using sequential tests and that more than fifty percent of 

the sessions only used 10 or 20 trials. The average number of trials was 23 for the sequential 

test design, which was considerably smaller than 60, the number of pre-planned trials used 



20 
 

in the fixed design. 

 

Figure 2.2: Numerical Stroop error rates and trial saving with a significance level of Ƚ = 0.05 and 
futility of d ������. 

 

2.3.2 Accuracy Models 

In this subsection, group sequential designs are analyzed using a different statistical test 

comparing accuracies instead of reaction times. PASAT+ and Cancellation are tests whose 

outputs are typically quantified as a proportion of correct trials. Performance in such 

accuracy tasks can be represented by modeling the accuracy across all the trials with a 

binomial distribution. As described earlier, the approach selected to reduce testing time of 

accuracy tasks was sequential binomial tests. In these two tasks, each trial had two possible 

outcomes (i.e. success/failure), so the two-sided binomial tests were used to determine 

whether the observed test accuracies from a new testing session differed from what was 

expected (accuracy from a baseline session). The input argument for each interim binomial 

test was the cumulative number of successes and the total number of independent trials 

presented, while the output was the corresponding p value. For PASAT+, the starting 
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number of observations was 4, and after each binomial test, data was added to the sequence 

in batches of 4, up to a maximum of 20 total trials. For Cancellation, the first analysis took 

place with 10 trials, and subsequent interim analyses were performed after incorporating 10 

additional trials at a time, up to a maximum of 40 total trials. 

For both accuracy tasks, the overall level of significance was set at an Ƚ value of 0.05, which 

is the exact same Type I error rate that was set for the timing tasks above. For PASAT+ the 

corrected alpha levels for each of the five sequential binomial tests were 0.010, 0.013, 0.017, 

0.025, 0.050. On the other hand, the Ƚ thresholds for each of the four sequential tests carried 

out in Cancellation were 0.013, 0.017, 0.025, 0.050. Regarding futility, a threshold was set 

IRU�HDFK�WDVN�XVLQJ�D�PLQLPXP�HIIHFW�VL]H�LQ�WHUPV�RI�&RKHQ¶V�K� because the data for the 

accuracy tasks was binary (ones and zeros), rather than continuous (reaction times). For 

3$6$7��DQG�&DQFHOODWLRQ��WKH�IXWLOLW\�ERXQGDU\�ZDV�VHW�DW�D�&RKHQ¶V�K��YDOXH�RI������(IIHFW�

size values below the futility threshold were considered to be negligible differences in 

performance for this study. One should not forget that higher futility boundary values could 

have been set to reduce even more the number of trials, but at the cost of higher amounts of 

false negatives or Type II errors. Again, the cost and benefits of the sequential designs are 

reflected in contingency tables showing Type I and Type II errors, and pie charts illustrating 

how much test length was reduced for each task. 
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Figure 2.3: PASAT+ error rates and trial saving with a significance level of Ƚ = 0.05 and futility 
of h2 ������ 

 

Figure 2.3 was obtained by comparing 170 sessions of PASAT+ against each other in search 

of changes in executive functions. Using sequential binomial tests, specificity was 10455 / 

(27 + 10455)  =  0.997, true positive rate (sensitivity) was 3233 / (3233 + 481) = 0.870, false 

positive rate was 27 / (27 + 10455) = 0.00258, positive predictive value (precision) was 

3233 / (3233 + 27)  = 0.992 and lastly, negative predictive value was 10455 / (481 + 10455) 

= 0.956. The average number of trials was 11, and 76.7 % of the sessions were shorter than 

the traditional test. Again, the sequential tests could have adopted less conservative stopping 

criteria, and further improved the time savings for this task. For instance, the large positive 

predictive value indicates that the false positive rate is very low, as shown in the 

contingency table. Perhaps, a slightly greater value than 0.05 could have been chosen for the 

Ƚ level in PASAT+. 
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Figure 2.4: Cancellation error rates and trial saving with a significance level of Ƚ = 0.05 and 
futility of h2 ������ 

 

Finally, Figure 2.4 reflects the difference detection summary for Cancellation, where 249 

sessions were compared against each other. Specificity was 18889 / (704 + 18889) = 0.964, 

true positive rate (sensitivity) was 10454 / (10454 + 1078) = 0.907, false positive rate was 

704 / (704 + 18889) = 0.036, positive predictive value (precision) was 10454 / (10454 + 

704) = 0.937 and lastly, negative predictive value was 18889 / (1078 + 18889) = 0.946. The 

average number of trials was 26, and 65.6 % of the sessions were shorter than the traditional 

test. The trial savings were relevant but perhaps not as substantial as they were for the other 

tasks above. This could be attributed to the fact that traditional output metrics for 

Cancellation rely solely on accuracy, but in this task the speed of the response also plays an 

important role. Maybe the reason why more trials are required to detect significant changes 

in performance in Cancellation is that reaction time differences are not being assessed in the 

sequential tests, which only test for differences in the number of perfect rows. An even more 

relevant aspect that also needs to be considered is that the trade off between trial savings and 

error rates is affected by the effect sizes that an experimenter is trying to measure. As a 
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consequence, the experimental outcomes in the contingency tables and pie charts for all the 

tasks above will vary depending on the minimum effect size of interest and the 

conservativeness of the error rate threshold. This study established the Ƚ significance level at 

�����DQG�WKH�PLQLPXP�PHDQLQJIXO�HIIHFW�VL]H�DW������IRU�&RKHQ¶V�d DQG�����IRU�&RKHQ¶V�h2. 

These values, which were empirically determined, yielded satisfactory error rates and trial 

savings, but other upper and lower stopping boundary combinations could be attempted too. 

2.4 Discussion 
A frequent limitation of current behavioral test procedures is assessment length, which is one 

of the most relevant factors responsible for respondent burden (Kleinert et al., 2021). 

Unfortunately, fixed testing designs are standardized and can take a long time to complete, 

making it inconvenient to get quick diagnoses of changes in executive functions. Because of 

their block design, conventional tests must proceed to completion and use the maximum 

sample budget before the analysis stage. Current methods for drawing inferences about latent 

constructs would derive benefit from the ability to speed up the search for differences in 

executive functions in cases where effect sizes happen to be relatively large. To this end, 

more efficient data collection strategies that decrease test duration, and thus mitigate 

respondent burden, need to be developed. In threshold-seeking tasks, such as Corsi span 

tasks, classical active learning with modulation of task difficulty typically leads to a 

significant reduction in data requirements. In fact, in the next chapter, it will be demonstrated 

that active sampling techniques can produce fast and accurate psychometric function 

estimation. 

At the individual task level, a different approach is needed for improving efficiency in 

assessments designed without independent variables, such as task difficulty or stimulus 

https://www.zotero.org/google-docs/?BzhZOd
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intensity. Essentially, many non-threshold-seeking tasks consist of repeating the same task 

item multiple times or systematically delivering the same counterbalanced task items for 

each individual. In this setting, because all the trials are inherently identical and there is no 

independent variable to manipulate, specific selection of testing items is not applicable. 

Therefore, the number of total task items to deliver becomes the only aspect that the 

experimenter can adjust. Effectively, the number of trials is directly proportional to task 

duration, which is the main feature that can be modified in non-threshold-seeking tests 

through active testing. Batch sequential testing was proposed in this chapter as a useful 

approach to actively select the number of trials and detect individual changes in executive 

functions in shorter periods of time. Although underutilized in most scientific research 

domains, sequential testing is a well-established procedure that can be widely adopted for 

active testing of executive functions. Eventually, the ultimate solution is expected to consist 

of multidimensional latent variable models that exploit the relationships between results of 

repetitive tasks. 

To provide evidence of the efficiency gains of sequential cognitive testing, quality 

assessments of the models for non-threshold-seeking tests have been reported. Broadly, the 

evaluation of group sequential testing in several timing and accuracy tasks aimed to bring 

this existing methodology to the attention of researchers in the behavioral science field. The 

objective of the adopted strategy was to interrupt the data collection process as soon as the 

number of observations gathered was sufficient to detect significant changes in task 

performance or to conclude that there were no detectable changes because the measured 

effect was too small to be resolved even with the maximum number of planned task items. 

Performance of sequential testing was satisfactory since the error rates were reasonably low 
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and efficiency gains were achieved. On average, sequential testing required smaller sample 

sizes than traditional methods, as illustrated in the pie charts above. Despite using fewer test 

LWHPV�WR�PDNH�D�GHWHUPLQDWLRQ�RI�³VDPH´�RU�³GLIIHUHQW´��the Type I and Type II error counts 

in the contingency tables were relatively low, suggesting that researchers should contemplate 

sequential procedures as a preferable alternative for saving time, effort and other resources in 

the long run. Overall, this chapter revealed the potential utility of sequential testing and 

emphasized a long-held view that the data requirements in traditional cognitive tests are 

excessive. 

In general, performing multiple statistical tests to sequentially monitor the data as it accrues 

requires careful pre-planning. This could perhaps be argued to be one of the disadvantages of 

sequential testing compared to non-sequential approaches. A few of the decisions that 

researchers need to make beforehand are what are appropriate effect sizes for difference and 

futility for the task at hand, what the maximum sample size will be, how much time will be 

dedicated for interim analyses, at what points will the interim analyses be performed, and so 

on. However, one should also be conscious that there are several software tools available to 

design and analyze sequential batches of trials more easily. An important advantage to 

emphasize is that this procedure is based on traditional frequentist statistics, which are 

methods that most researchers are familiar with and that generally involve low 

computational complexity. Rather than using complex machine learning tools, this strategy is 

simply founded on well-known statistical methods, such as U tests and binomial tests, and 

thus can be viewed as a fallback when more intricate techniques are not feasible. 

Sequential testing results in many benefits to cognitive and perceptual evaluations. The 

flexibility of this approach allows experimenters to make modifications to the test 
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characteristics to each unique task and target population. Statistical test accuracy and test 

length can be traded off by adjusting the effect size of interest, the expected false positive 

rate or the expected power. Furthermore, the interim capacity of dynamically adjusting each 

test individually can impact the expansion of sequential executive function testing to a wide 

variety of contexts, regardless of hardware capacity. Ultimately, another long-term benefit of 

this approach could be increased engagement and participation in regular behavioral 

assessments that would lead to continuous monitoring of executive functions across time. 

Similar difference detection frameworks that enable substantial test length reductions could 

be implemented in future studies in a variety of cognitive domains beyond the tasks 

addressed in this thesis. 
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Chapter 3: Individual Psychometric 
Probabilistic Model 

In the field of psychometrics, much effort has been spent on unidimensional estimation 

tasks over many decades, but surprisingly little work has gone into estimating 

multidimensional models, using novel estimators besides linear regression. In higher 

dimensional spaces, predicting individual task performance person by person in an 

effective and efficient manner is a formidable challenge. Combining behavioral 

measurements across subjects from a cohort reduces noise as well as testing time 

commitment from each person, but it can be problematic in heterogeneous populations 

where observations vary considerably from individual to individual. Low proportion of 

particular subgroups in the population comprising the standardization sample inevitably 

introduces systematic errors in detriment of underrepresented groups. In other words, 

referencing individuals against one another and norming raw measurements is a major 

source of testing bias (Reynolds & Suzuki, 2012). To date, rigorous estimation procedures 

for complex multidimensional problems are neither standardized nor well-established, as 

they would inescapably entail burdening participants with large numbers of often tedious 

trials. 

The threshold-seeking psychometric test design for the working memory task described in 

this chapter is ahead of the repetitive testing addressed above. In chapter 2, sequential 

testing was essentially one of the very few alternatives available to improve efficiency in 

non-threshold-seeking tasks because they lack independent variables. Threshold-seeking 

https://www.zotero.org/google-docs/?z0G4ML
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span tasks, however, are modeled by a psychometric function that depends on an explicit 

input variable. To improve upon span tasks and similar cognitive tests, a number of 

approaches could potentially be developed in response to the lack of estimation 

procedures in higher dimensions. Eventually, it would be of particular interest to create 

more thorough models that allow for multiple forms of measurement to contribute towards 

a better understanding of cognitive and perceptual underlying constructs such as latent 

variable models. 

One of the main objectives of the research line described in this chapter is to take a step 

forward in building a multidimensional estimator capable of incorporating a wide variety 

of prior beliefs and co-estimation procedures into an active learning process. It is 

noteworthy that this study effort promotes more equitable evaluations of latent constructs 

by developing estimation techniques that do not rely exclusively on variability between 

individuals. Advantageously, modern machine learning approaches have indeed become a 

major enabler for unified models capable of reflecting complex trends across multiple 

variables. Pursuit of this approach can provide a basis for a simultaneous speed up in 

estimation convergence with fewer observations and a richer summary of each 

LQGLYLGXDO¶V�WDVN�SHUIRUPDQFH� 

The key development effort that is presented in this chapter is the establishment of an 

improved Gaussian Process (GP) estimator for the 4-parameter psychometric function 

model. The technical details of GP-based modeling will be explained more fully below, 

but it is worth underscoring that a major contribution of this work was the generalization 

of a novel binomial likelihood function. Previously, only a Bernoulli likelihood had been 

implemented in a GP framework (Chen, 2020). Currently, the initial testing has been 

https://www.zotero.org/google-docs/?B851WE
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undertaken in individual psychometric functions yielded from accuracy scores of a span 

task delivered to a young adult population. More specifically, this probabilistic machine 

learning classifier has been validated in a spatial working memory task quantifying a 

SHUVRQ¶V�DELOLW\�WR�UHFDOO�D�VHTXence of spatial locations. This step has been fundamental to 

confirm the desired behavior of the estimator when it comes to constructing complex 

individual models of executive functions in one dimension. Ultimately, the work 

described in this chapter paves the way to expand the estimator into new dimensions in 

order to incorporate other informative predictors. 

3.1 Psychometric Functions and Gaussian Process 
Framework 

Psychometric functions are probabilistic predictors of behavior that represent the 

relationship between a certain parameter of a perceptual or cognitive phenomenon and a 

VXEMHFW¶V�SHUIRUPDQFH�RQ�D�WDVN�(Wichmann & Hill, 2001). Hence, they represent a 

mathematical model of response probability as a function of a stimulus feature that is 

useful for inference of psychological constructs (Gold & Ding, 2013). This analytic 

function can be fully described by four parameters: the threshold, the spread and two 

additional parameters that define the upper and the lower asymptotes (Treutwein & 

Strasburger, 1999). Much emphasis has been placed on estimating the value at which a 

subject achieves some arbitrary proportion of correct detections: the threshold at a 

predetermined percent correct. Most standard procedures, such as adaptive staircase, have 

focused on determining performance threshold directly, without estimating the entire 

psychometric function (Shen, 2013). Nonetheless, it is worth highlighting that estimation 

of all four parameters, beyond just the threshold, is crucial for a more comprehensive 

https://www.zotero.org/google-docs/?X2JOWL
https://www.zotero.org/google-docs/?7KUzeF
https://www.zotero.org/google-docs/?W7QEoz
https://www.zotero.org/google-docs/?W7QEoz
https://www.zotero.org/google-docs/?ZvDo10


31 
 

evaluation of underlying brain processes. Furthermore, generating a probabilistic model of 

the full function enables efficient active model selection (Gardner et al., 2015; Larsen et 

al., 2021). 

Common psychometric function models include the Gaussian and Weibull cumulative 

distribution functions �ĩ\FKDOXN�	�)RVWHU�������. The cumulative Gaussian distribution 

function is given by Ȱሼ�Ǣ Ƚǡ Ⱦሽ, where Ƚ corresponds to the aforementioned psychometric 

threshold and Ⱦ, the spread or inverse of the slope of the curve at threshold, quantifies the 

transition from task success to failure, thus reflecting internal task process noise (Buss et 

al., 2006; Strasburger, 2001). Due to chance or task design, poor fits to the 2-parameter 

model may arise when responses to stimuli at the low and high asymptotes of the 

psychometric function are not in agreement with model predictions. However, estimates of 

the threshold parameter and especially the spread parameter can be quite inaccurate if the 

asymptotes of the sigmoid function are not estimated concurrently (Wichmann & Hill, 

2001). In consequence, building accurate fits that do not make strong assumptions about 

the shape of the curve requires a more general model that is allowed to be shifted and/or 

scaled along the ordinate axis. Accordingly, the cumulative Gaussian distribution function 

is augmented and leads to a new model that is analytically expressed as Ȳሺ�ሻ ൌ ɀ ൅ ሺͳ െ

ɀ െ ɉሻ�Ȱሺ�ሻ�(Kingdom & Prins, 2010; Wichmann & Hill, 2001). Of note is that this 

HTXDWLRQ�LQFOXGHV�QRW�RQO\�SV\FKRPHWULF�WKUHVKROG��Į��DQG�VSUHDG��ȕ���EXW�DOVR�ODSVHV��ɉ) 

and guesses (ɀ). The two additional parameters, ɉ and ɀ, have a crucial impact on the 

extremes of the psychometric function because they capture response behavior at low-

probability events. While the lapse parameter accounts for deviations from perfect 

performance at easy tasks where correct responses are almost always expected, the guess 

https://www.zotero.org/google-docs/?9VcN82
https://www.zotero.org/google-docs/?9VcN82
https://www.zotero.org/google-docs/?fMS610
https://www.zotero.org/google-docs/?b0ql6U
https://www.zotero.org/google-docs/?b0ql6U
https://www.zotero.org/google-docs/?gzLJWL
https://www.zotero.org/google-docs/?gzLJWL
https://www.zotero.org/google-docs/?pJyv9b
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parameter contemplates the possibility that subjects may guess the correct answer for a 

difficult task with nonzero probability. Even though ɉ and ɀ are generally considered 

nuisance parameters unrelated to the construct of interest, they still play a significant role 

in constructing a complete model that exploits the information yielded by the entire 

sigmoidal psychometric function. 

Logistic regression, a classifier version of linear regression, is the gold-standard estimator 

of a 4-parameter psychometric sigmoid representing probabilities of task performance 

(García-Pérez & Alcalá-Quintana, 2005; Kingdom & Prins, 2010; Yssaad-Fesselier & 

Knoblauch, 2006). In more recent works, another tool that has been employed to model a 

psychometric function is a Gaussian Process (GP). GPs are distributions over functions that 

serve as useful models for probabilistic inference about underlying constructs. As 

probabilistic models, they are taken as a valuable metric to prediction uncertainties in our 

estimations. It is also worth noting that parametric logistic regression has been shown to be 

functionally equivalent to a GP classifier in the one-dimensional case (Song et al., 2018). A 

significant advantage of using a GP model is that it is defined only by the input data due to 

its non-parametric nature. Because estimations are derived from the observations and not a 

set of fixed parameters, this powerful model provides unprecedented flexibility for 

estimating a wide variety of functions. Because of the scalable nature of this modeling 

procedure, multiple input dimensions can be included with practical amounts of data in a 

real setting. Further, a GP combines prior beliefs with new data to generate a posterior 

belief about the latent function, granting more efficient estimation and more powerful 

inference chains in higher dimensions (Rasmussen & Williams, 2006; Williams, 1998). By 

virtue of active learning algorithms, this Bayesian method can place its allowance of trials 

https://www.zotero.org/google-docs/?8rUMdx
https://www.zotero.org/google-docs/?8rUMdx
https://www.zotero.org/google-docs/?o1Sdtu
https://www.zotero.org/google-docs/?X5G5w8
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at the most informative input values for each individual, and therefore cut down massive 

data requirements dramatically. 

The 4-parameter model described above, Ȳሺ�ሻ ൌ ɀ ൅ ሺͳ െ ɀ െ ɉሻ�Ȱሺ�ሻ, acts as a linking 

function of the latent function. This means that Ȳሺ�ሻ compresses the output range of the 

GP from the range of all real numbers (�ሺ�ሻ א �Թ) to the range of probability values (�ሺ�ሻ א

�ሾͲǡͳሿ�ሻ. One caveat of the 4-parameter model is that, in some cases, the nuisance 

parameters that this linking function integrates could affect the shape of the sigmoid more 

than desired. Fortunately, owing to the Bayesian nature of this framework, investigators 

can constrain the model by incorporating their domain-specific knowledge into it through 

deliberate specification of a prior distribution for each of the estimated parameters 

(Treutwein & Strasburger, 1999). For this reason, a logical solution to prevent mislabeled 

data points from having a detrimental effect on accurate model fitting is to establish a 

probability prior on ɀ and ɉ. In this work, a beta prior defined on the interval [0, 1] and 

parameterized by two positive shape parameters, a = 2 and b = 50, was incorporated into 

the model. The mode of this prior distribution was 0.02, indicating a general expectation of 

a 2% probability of lapses or guesses. Simply put, the implementation of this beta prior 

ensured that the effect of the guessing and lapsing rates on the psychometric fits was only 

modest. 

In this GP framework, there are two relevant elements that must be combined to the 4-

parameter linking function, namely, a likelihood and a kernel. The likelihood function 

represents the information gained from new data generated from the working memory 

construct, and it is equivalent to the sampling distribution probability function �ሺ�ȁɅሻ for 

fixed observations �, given the model parameters Ʌ. Although the GP is a non-parametric 

https://www.zotero.org/google-docs/?x3pLeZ
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model, the components of the GP, such as the kernel function, may themselves have 

parameters. These are referred to as hyperparameters, and their correct adjustment exerts 

great influence over the predictive distribution of the GP (Barbour et al., 2019). Typically, 

a Bernoulli, Gaussian or binomial likelihood is a valid choice of likelihood function 

compatible with a GP describing a latent function. In this particular unidimensional 

working memory application, the GP estimates performance based on observations at 

repeated input values in the task difficulty space, so a binomial likelihood is best suited to 

describe the latent function. On top of this likelihood, a kernel function must be selected to 

encode information about the shape and smoothness of the functions drawn from the GP. A 

linear kernel as a function of sequence length is useful to manifest the property of 

monotonicity of the function Ȳሺ�ሻ. Naturally, task performance in the spatial working 

memory test is expected to be monotonic with sequence length because the probability of 

successfully completing longer (harder) trials is expected to systematically diminish. The 

posterior belief about Ȳሺ�ሻ will tend toward 1 for the easiest trials and then, as task 

difficulty increases, it will gradually descend toward 0. It is important to point out that the 

covariance function of the linear kernel captures any deviation from the central tendency of 

the latent function, and that the mean function depends on the prior mean and the posterior 

covariance. This implies that an arbitrary value can be assigned to the prior mean function, 

which was set to a constant value of 0 in this framework. Altogether, the linear kernel was 

combined with the 4-parameter linking function, alongside the binomial likelihood, to build 

our GP probabilistic classifier. 

3.2 Model Training 
In Bayesian statistics, the basis for drawing inferences is the posterior distribution, which is a 

https://www.zotero.org/google-docs/?OLelTa
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combination of the prior knowledge and the observed evidence (van de Schoot et al., 2014). 

%D\HV¶�WKHRUHP�UHTXLUHV�FRPSXWLQJ�WKH�SURGXFW�RI�WKH�OLNHOLKRRG�IXQFWLRQ�DQG�WKH�SULRU�

distribution for obtaining the exact form of the posterior distribution (Etz, 2018). A 

frequently faced problem is that inference in probabilistic models might be intractable, and 

thus, calculating the posterior distribution poses significant computational challenges. To 

tackle this issue, posterior approximation inference algorithms have been developed to 

provide approximate solutions to the inference problem (Park & Haran, 2018). In the case of 

GP classification, the categorical nature of binary responses leads to a non-Gaussian 

posterior that can be approximated with methods such as variational inference. This 

particular technique casts inference as an optimization problem and aims to maximize the 

log marginal likelihood ��� ��ሺ�ȁ�ǡ Ʌሻ in order to estimate the hyperparameters from the data. 

Following this inference method, the best approximation possible is accomplished by 

minimizing the Kullback-Leibler divergence between the variational inducing distribution 

(variational GP) and the prior inducing distribution (true GP posterior) (Matthews et al., 

2016). 

Sparse GPs are a main avenue for addressing the challenge of high time and space 

complexities in large-scale GP regression. This approach has become an attractive strategy 

to reduce computational complexity and obtain faster convergence for GP approximation 

using a set of inducing points (Cheng & Boots, 2017). This subset of fictitious data points is 

judiciously selected from the initial data points, but it should be acknowledged that 

determining which specific points to retain from the input domain for optimal training of the 

GP is not a straightforward matter. Since the number of inducing points is directly 

proportional to the expressiveness of the full GP, there is a trade-off between the 

https://www.zotero.org/google-docs/?mJBzdi
https://www.zotero.org/google-docs/?Mt0866
https://www.zotero.org/google-docs/?ZD7opO
https://www.zotero.org/google-docs/?PdMDPd
https://www.zotero.org/google-docs/?PdMDPd
https://www.zotero.org/google-docs/?lPA9Oz
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generalizability of the GP approximation and the number of inducing points (Quiñonero-

Candela & Rasmussen, 2005). In this working memory task, the sparse framework was 

included by setting an inducing point at each of the 9 integer-valued locations that 

correspond to different levels of task difficulty, or at each data point abscissa, in the case of 

low data counts. 

In the process of building Gaussian process models of psychometric curves, an important 

matter to consider is the choice of prior beliefs. In this work, uninformative prior beliefs 

were used for model hyperparameters when fitting GPs to human data. Put another way, all 

possible hyperparameter values were considered equally likely before the first data point for 

a given individual was incorporated into the model. The uninformative priors that were used 

for all human data models had no discernible impact on model accuracy or efficiency. Then, 

human data served as priors for the simulations to aid in selecting appropriate trials for new 

subjects in the group, while allowing new data to overrule this information if it degrades 

model quality. Concretely, prior beliefs for model hyperparameters were given as gamma 

distribution fits to the hyperparameter distributions observed from GP models from using 

uninformative priors (Kuss et al., 2005). In this unidimensional setting, informative priors 

had no discernible impact on ultimate model accuracy or efficiency.  

3.3 Working Memory Task 
When performing a task or solving a problem, working memory fulfills the role of 

consciously selecting relevant information, retaining it for short periods of time and then 

manipulating it to plan and guide behavior (Cortés Pascual et al., 2019). Broadly, the more 

verbal or visual-spatial elements that must be held in mind, the more difficult the recall task 

becomes. In this context, a psychometric function is a suitable representation of the working 

https://www.zotero.org/google-docs/?kdQovf
https://www.zotero.org/google-docs/?kdQovf
https://www.zotero.org/google-docs/?0GZSy1
https://www.zotero.org/google-docs/?0iX3LS
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memory construct to visualize the proportion of correct detections as a function of stimulus 

level. Therefore, for varying numbers of item counts, the probability of successfully 

remembering a sequence of a certain length is reflected in the psychometric function, which 

maps the latent construct to the observed responses. A spatial working memory task was 

selected as a simple unidimensional test case to demonstrate the utility of the GP classifier. 

A widely used test to measure visuo-spatial working memory is the Corsi block tapping task 

(Corsi, 1972), which has been traditionally administered with a physical wooden board. The 

advent of numerous computer-based versions over the recent years, such as eCorsi, allowed 

for the test to be completed on tablets and other digital devices (Brunetti et al., 2014). A 

modified version of the standard eCorsi was used in this study, with 9 and 12 spatial 

locations on the screen, for children and young adults, respectively (Ramani et al., 2020). 

The discrimination task consists of recalling the exact order of appearance of a sequence of 

targets at the different locations. 

In this simple span task, the GP model samples one integer-valued sequence length at a time. 

Target sequence length is an independent variable that is commensurate with task difficulty, 

given that it is harder to remember longer random sequences of items (Towse et al., 1998). 

The dependent variable, task accuracy, represents the probability of correctly reporting a 

sequence of elements that was presented to the participant. At each trial, a GP is calculated, 

and the response is classified as either correct or incorrect. The sigmoid-shaped 

psychometric curve determines class membership, and, intuitively, the trials around the 

threshold point are expected to be the most informative for summarizing performance. In this 

way, the GP model is a probabilistic classifier that helps to determine the boundary above 

which a person cannot successfully perform the task, allowing one to draw inference about 

https://www.zotero.org/google-docs/?35Pjui
https://www.zotero.org/google-docs/?6UQRgt
https://www.zotero.org/google-docs/?qW0mHf
https://www.zotero.org/google-docs/?WS9P5V
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the associated cognitive function. 

Familiarization with the task was facilitated in the form of two unscored practice trials that 

were provided before the assessment stage began. The participants were then granted two 

lives and were presented the first scored trial at a sequence length of two. Thereafter, 

sequence length was increased by one if the response was correct. If a trial was recalled 

incorrectly, sequence length stayed the same for the next trial and would then decrease by 

two if the response was incorrect after the second attempt at the same sequence length. Every 

time a participant consecutively answered incorrectly a particular set of items, sequence 

length was decreased by two and a life was lost. The ascending or descending levels of 

difficulty follow an adaptive staircase procedure, where a reversal, i.e. a change of direction 

in stimulus difficulty, is elicited by a change in response. The output metric that was 

originally used for this task was maximum sequence length, i.e., the largest sequence length 

that was successfully completed. In place of this traditional measurement of task 

performance in the adaptive procedure, threshold estimates from the GP model were used in 

this new analysis to quantify performance. 

To validate the GP model, human data was collected from a cohort of 323 college students 

between 18 and 22 years old that completed the simple span task on touchscreen mobile 

devices. One participant from the initial cohort was excluded from the analysis due to task 

incompletion, whereas 17 subjects were removed because their psychometric model fits were 

unreasonable, most likely because of the small amount of data. The specific exclusion 

criteria were threshold estimates greater than 15 and/or spread estimates greater than 10.  

Overall, the total count of individuals that made up the analytical sample was reduced to 

305. On a final note, it is important to highlight that even though the data used in this 
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analysis was gathered from young adults, this novel framework is expected to be easily 

generalizable to other populations because the GP model fits are individualized. That is, the 

validity of the spatial working memory task could be demonstrated for individuals of 

different backgrounds and age ranges. 

3.4 Experiments and Results 
In this spatial working memory task, performance of the GP model was first assessed using 

real data from the 305 individuals. The proposed GP estimator was used to estimate a 4-

parameter psychometric curve for each one of them. Model goodness-of-fit was quantified 

by root-mean-square error (RMSE) between each model and the experimental data. 

Secondly, several simulation conditions were used to assess the capability of the generalized 

binomial likelihood to create unbiased estimates of 4-parameter psychometric functions. 

Sigmoidal observation models for classification, comparable to the simple span accuracy 

curves, were established as ground-truth generative models of participant responses. In 

addition, the GP model learned all the psychometric parameters Ƚ, Ⱦ, ɀ and ɉ in order to 

construct the 4-parameter model Ȳ. To determine how reasonable the resulting GP fits were, 

prior psychometric curves from the population data served as a valuable point of reference to 

confirm that the estimated parameters fell within the expected ranges. 

3.4.1 Model Validation: Real Data Fits 

As shown in Figure 3.1A, very good model fits to the data collected from the population 

were accomplished, since most RMSE values lay close to 0. The chances are that many of 

the high RMSE values corresponded to models that were not as good at capturing the 

observed trends due to smaller amounts of data and high variability. Representative example 

individuals of the population, whose RMSEs are depicted by vertical red lines in Figure 
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3.1A, were selected for the subsequent simulated data collection procedures. The joint 

distribution of psychometric thresholds and spreads was used to identify those participants, 

which resided at the joint 10th, 50th and 90th percentiles of both parameters. Model fit 

quality was inversely proportional to variability in task performance around threshold. This 

trend is reflected in Figure 3.1B-D, showing psychometric functions at the 10th, 50th and 

90th percentiles of fit quality. 

 

Figure 3.1: A. Histogram showing goodness-of-fit distribution over the cohort using the GP 
model and data collected using an adaptive staircase design. Vertical red lines indicate 9 
individuals selected for more extensive analysis. B-D. Psychometric functions estimating 

probability correct at the 10th, 50th and 90th percentiles of RMSE values for this population are 
shown by the blue curves. Red circles indicate the proportion correct values observed at each 
sequence length. Green lines indicate the 95% credible intervals for the threshold estimates. 

 

For all members of the study population, thresholds and spreads were determined from 4-

parameter model fits, as illustrated in Figure 3.2. In conjunction with the trend toward lower 

RMSE values in Figure 3.1, the considerable variation in parameter values appears to be at 

least partly attributable to variability in actual working memory across the cohort. In other 

words, true working memory trends at the population level seem to be captured by the data 

collection procedure. Furthermore, underpowered psychometric fits for small data sets are 

another potential source of variability in threshold values. Model goodness-of-fit tends to be 
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highest at spreads between about 0.5 and 1, probably due to the combination of finite 

resolution of memory load (i.e., task difficulty) and the limited data collected. Individuals at 

the right of the scatterplot had higher thresholds, indicating greater working memory 

capacity. The plot symbols toward the top of the scatterplot correspond to subjects with 

higher spreads, and thus greater internal memory process noise. Most participants cluster 

between threshold values of 4.5 and 8, and spread values of 0.5 and 3. The representative 

models that were further analyzed in the simulations are the 9 red crosses of the cohort 

members closest to joint threshold and spread percentiles of [10, 50, 90]. 

 

Figure 3.2: Scatterplot of estimated threshold and spread values showing that most results are 
clustered in a compact joint domain. One individual evaluated with 20 times the average data is 
indicated by a green diamond. Nine individuals indicated by red crosses were selected for more 
extensive analysis throughout the chapter. The shading of each data point indicates the RMSEs 

of the model. 

 

The fundamental premise of this study is that working memory performance can be 

adequately captured using properties of psychometric functions, such as psychometric 

thresholds. Thresholds are a proxy for the memory load at which individuals would be 
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equally likely to correctly versus incorrectly recall a target sequence. A traditional metric 

that has been used to capture internal memory processes is maximum sequence length. This 

common method of quantifying task performance is defined as the largest sequence length 

successfully recalled during the adaptive testing procedure (Conway et al., 2005). If both 

maximum sequence length and psychometric threshold capture similar trends over the 

population that took the simple span test, a strong correlation between them is expected. To 

test this hypothesis, a comparison between maximum successful sequence length recalled 

and estimated psychometric thresholds was carried out. The linear relationship determined in 

the study population between these two performance metrics is plotted in Figure 3.3. The 

inset at the bottom of the figure shows the distribution of maximum sequence length values. 

The histogram confirmed that the testing procedure as designed can successfully bracket the 

working memory performance of young adults. These results were in agreement with our 

assumption that both performance metrics are reflective of similar brain processes. Overall 

correspondence was high with a coefficient of determination of 0.812. 

Maximum sequence length, which was about one unit lower than threshold on average, was 

mapped to a compact subrange of thresholds. Thresholds are real-valued, but maximum 

sequence lengths can take on integer values only, yielding lower resolution. On the condition 

that both performance metrics are equally reliable, the higher resolution thresholds represent 

a potential advantage of fitting psychometric functions to data of this sort. With higher 

resolutions one has the ability to more finely determine whether the best models for two 

different data sets are the same or different. This benefit is key for the long-term goal of this 

project: quantification of the dynamic performance of working memory and related domains. 

https://www.zotero.org/google-docs/?3xuAxb
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Figure 3.3: Scatterplot of psychometric threshold versus maximum sequence length for the study 
population shows a linear relationship with a coefficient of determination of 0.812. Estimated 
thresholds are on average about 1 unit less than maximum sequence lengths. Margins show 

details of population distribution of each variable. 

 

For the purpose of evaluating the accuracy of the GP psychometric function estimator, it is 

useful to extensively analyze and visualize fits to a wide variety of task performance 

settings. Modeled psychometric functions to task data from nine representative individuals 

that cover most of the range of goodness-of-fit values across this study population are 

depicted in Figure 3.4. From the perspective of the modeling process, they were selected to 

reflect joint variation in threshold and spread across the study population, encompassing the 

diversity seen in the full cohort. 

Observation variability, psychometric spread, and model goodness-of-fit appear to be 

correlated in Figure 3.4 with posterior beliefs about interval estimates of the threshold 

values. This result is a key rationale for developing GP models of executive functions that, 

with more data constraining the model, give rise to improved estimation procedures. With 
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the GP estimator, complementary observations from other cognitive tasks, beyond those 

collected from working memory, could be included to further constrain these models. In 

addition, theoretical constraints not readily encoded into linear models could also lead to 

better psychometric model estimates. In essence, by incorporating additional executive 

functions from a greater variety of testing procedures, improvements in estimation accuracy 

may be forthcoming, without adding more total data acquisition time for each individual. 

 

Figure 3.4: Nine representative examples of psychometric curves from the study population. Red 
circles indicate the proportion correct values observed at each sequence length. Blue lines 

indicate model fits from the data. Green lines indicate 95% credible intervals for the threshold 
estimates. 

 

3.4.2 Model Validation: Constant Simulations 

In the following experiments, simulations of task trial performance were carried out to 

evaluate the properties of the GP estimator under experimental conditions not achieved in 
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the reference data set. The first series of simulations were designed with the constant stimuli 

method in order to ensure that the GP estimator delivered accurate psychometric function 

estimates when data quantity is not constrained. It should be noted that the advantage of 

using the method of constant stimuli in the form of simulations lies with its reliability, 

effectiveness and accuracy. In this experimental design, a fixed set of task items was 

repeatedly presented in random order, so as to determine the threshold of a psychometric 

procedure. Nine generative models, whose parameters were set fixed based on the nine 

representative model fits, were used to generate 100 observations at each integer-valued 

sequence length from 2 to 10 (i.e., 900 total observations) for each individual. This 

procedure ensured the inclusion, for all participants, of designated sequence lengths that they 

are expected to always recall successfully, sequence lengths near the threshold where 

predicted performance is more uncertain, and sequence lengths that participants are expected 

to fail at recalling almost every time. 

The generative models determine the corresponding success probabilities of the simulated 

trials. The observations are Bernoulli distributed, ensuring that no two simulations delivered 

identical data for the repeated experiments. Thus, estimated psychometric fits to the data for 

each simulated individual were yielded by the 4-parameter GP model and compared to the 

ground truth psychometric curves to test the GP classifier. In Figure 3.5, one can see the 

resulting curves and notice that the estimated threshold and spread values were close to the 

ground truth values of the generative models. The value of 0.0173 for the mean RMSE 

between the estimates and ground truths at integer sequence lengths was considerably 

smaller than the smallest RMSE value for the human data. In this oversampled case, the 

modeled functions accurately matched the ground truth functions, which is exactly the 
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behavior that was expected with nearly 2 orders of magnitude more data. 

The constant stimuli method is a widely known and easily understood method for 

psychometric function estimation that was well-suited for computerized validation of our GP 

framework. With real human participants, sampling uniformly across all sequence lengths is 

neither practical, due to the time-consuming acquisition of a large quantity of trials, nor 

optimal, given that trials near the threshold are significantly more informative. In a real-

world scenario, adaptive methods would clearly be preferred because they continually update 

a threshold estimate and are therefore able to select more informative samples. The purpose 

of testing with this simplified sampling scheme was just to provide a fixed reference against 

which to evaluate model performance. In summary, the method of constant stimuli was used 

at high sample counts to analyze the convergent performance of the GP model when data 

quantity grows to large amounts while ensuring fair comparisons across the different 

individuals. 
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Figure 3.5: Nine simulations of 900 observations each, generated from nine associated ground 
truth generative models, along with associated model fits. Red circles indicate the proportion 
correct values observed at each sequence length. Blue lines indicate model fits from the data. 

Orange lines indicate ground truth.  

 

For the 9 representative individual generative models, Figure 3.6 portrays a comparison 

between the threshold values resulting from the constant stimuli simulations and the ground 

truth values. This figure also includes representations of two other sampling schemes 

(adaptive staircase and actively learned observations) that will be explained in more detail in 

the next subsections. For constant stimuli, the mean signed threshold difference (estimate ± 

truth) was 6.34×10±4 ± 0.16. Because the mean estimated threshold values upon repeated 

simulations were close to the ground truth values, it can be argued that the threshold bias of 

this estimator is low. Threshold estimation variability for the full range of thresholds in the 

population under these sampling conditions was quantified by a mean threshold variance of 
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0.06 ± 0.15 for these nine examples. The novel estimator design appears to achieve accurate 

estimates for the psychometric thresholds present in this study population, provided that 

enough data is available. Since it was shown in Figure 3.5 that the novel GP model was able 

to capture psychometric trends accurately, based on the close correspondence between 

ground truth and the model curves, the satisfactory results in threshold estimates come as no 

surprise. 

 

Figure 3.6: Average psychometric threshold estimation accuracy for repeated simulations. 
Ground truth values are indicated by green diamonds. Mean thresholds estimated by constant 
stimulus, adaptive staircase, and actively learned observations are indicated by red, blue and 

purple triangles, respectively. Overall distributions are indicated by line histograms of the same 
colors. 

 

Under the same constant stimulus conditions, the threshold estimation procedure described 

above was repeated with several amounts of simulated data to determine the number of 
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observations required to achieve reliable results. Even though some examples required fewer 

samples than others for adequate convergence, the results in Figure 3.7 showed that mean 

threshold estimates converged at low bias under all data conditions, with steadily 

diminishing variance as more data were acquired. Overall, the constant stimuli simulations 

were useful to show low-bias convergence of the GP estimator to the ground truth generative 

models when many observations are simulated at each sequence length. 

 

Figure 3.7: Average estimator performance as progressively more constant stimuli data are used 
for training (red circles, blue line) and standard deviation (shaded area). 

 

3.4.3 Model Validation: Adaptive Staircase Simulations 

The original data from the human participants was collected with an adaptive or up-down 

procedure, which is a variation of the method of limits (Levitt, 1971). This method is 

threshold-seeking, meaning that it is more efficient at estimating thresholds accurately than 

https://www.zotero.org/google-docs/?bb7Srv
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constant stimuli. For an equivalent trial count, adaptive acquisition places a larger fraction of 

trials near threshold. Since those trials are more informative for psychometric model fitting, 

greater accuracy is expected with this method. The second condition of simulations used a 

large number of repeats in order to determine estimation accuracy and reliability under the 

adaptive staircase procedure. Concretely, 1000 simulations were computed for each of the 9 

representative models, following the same up-down procedure described above for actual 

human data acquisition. These simple span unidimensional detection task simulations were 

run with identical termination criteria to the original data collection procedures. Given their 

generative models, ground truths for those individuals were known beforehand, and were 

compared to the estimated psychometric threshold and spread from the GP model fits. The 

estimates from the simulated sessions were acquired with practical amounts of data, on the 

order of 10 to 20 adaptive sequences selected by tracking the most recent response. The 

results of the 9000 total simulations pointed to a reliable estimation procedure and can be 

visualized in Figure 3.6 above, as well as Figure 3.8 below.
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Figure 3.8: 1000 adaptive trials for each individual, terminating with the same criteria used for 
collection of real data from the study population. 

 

Average trial count was 12.5 ± 2.04 (mean ± standard deviation) for the simulation results, 

which compares with the average trial count for the human data results: 12.4 ± 1.87 for the 

entire study population, and 12.8 ± 1.99 for the 9 representative individuals. The mean 

signed threshold difference (estimate ± truth) was 3.41×10±3 ± 0.59, with a threshold 

difference variance of 0.41 ± 0.32. Variance was relatively small (similar to 30±50 constant 

stimulus trials) and the threshold values are low, too, indicating that threshold bias is small 

under these reduced data conditions. Therefore, the GP estimator can be used to fit 
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psychometric functions reasonably well by altering the next sample based on the result of the 

previous sample. Nonetheless, adaptive data acquisition is still not optimal and can be 

further constrained to estimate psychometric functions even more efficiently with the GP 

model. 

3.4.4 Model Validation: Active Learning Simulations 

Active data acquisition is a particular form of adaptive acquisition in which subsequent test 

items are selected to optimize an objective function incorporating all previous data. Model 

updates after each new observation ensure that this optimization stays current as new data 

are collected. To evaluate performance of the GP estimator when model information gain is 

maximized, active learning simulations were run. 

 

Figure 3.9: 1000 active trials for each individual, terminating after the average number of trials 
obtained using the simulated adaptive trials. 
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Figure 3.9 shows the threshold estimation results of active data acquisition for the 9 

UHSUHVHQWDWLYH�PRGHOV�JLYHQ�WKRVH�VLPXODWHG�LQGLYLGXDOV¶�SUHYLRXV�WULDOV�IURP�WKH�ZRUNLQJ�

memory task. These simulations were terminated after the same mean number of adaptive 

trials for each individual, rounded up. Mean trial counts across all 9 models under these 

conditions were 13.4 ± 1.50. With respect to adaptive or constant stimulus procedures, the 

small variation of the actively sampled model parameters demonstrated greater accuracy and 

reliability of the active learning design. 

3.5 Discussion 
This chapter introduced a non-parametric Gaussian Process probabilistic classifier that was 

capable of performing inference with fully predictive models that estimate the entire 

psychometric function. This promising GP implementation for 4-parameter psychometric 

functions is a crucial foundation to add more task variables and incorporate additional 

informative predictors. As a Bayesian method, it has the ability to couple any existing 

theoretical modeling constraints with any empirical data constraints that might be available. 

The purpose of expanding the GP kernel into new dimensions and increasing model 

complexity is to accomplish higher dimensional estimates of psychometric functions. 

Multiple experiments were presented above to demonstrate the results of the novel 

development in a working memory capacity task that was used as a test case. The goal of this 

research line, however, is to construct, apply, and generalize similar scalable models to other 

applications in psychometrics, too. The validity of the spatial working memory task is 

anticipated to extend to a variety of cognitive and perceptual domains. 

In previous GP frameworks, a Bernoulli likelihood function was the only likelihood 



54 
 

available and repeated test items had not been accommodated. Thereby, a key expansion of 

this work was the novel binomial likelihood function that was developed and validated. It is 

worth underlining that the likelihood function was driven by a generalized 4-parameter 

sigmoid, instead of a 2-parameter cumulative Gaussian sigmoid. Performance was modeled 

DV�D�IXQFWLRQ�RI�WKH�LQGHSHQGHQW�YDULDEOH�³VHTXHQFH�OHQJWK´��HTXLYDOHQW�WR�³WDVN�GLIILFXOW\´��

so active learning was feasible for this span task. By testing at the locations that 

corresponded to higher uncertainty in the posterior distribution, active learning was 

implemented for the new binomial likelihood, whereby prospective data can be collected 

optimally. In other words, a more advanced data collection shortcut than adaptive staircases 

was shown to be successfully implemented to actively acquire the data. The unidimensional 

generalization to the 4-parameter model opens up a much larger variety of problems that 

could benefit from the efficiency gains of actively learned GP estimation. Future 

experimental designs for working memory assessment could benefit from a real-valued input 

variable to provide higher resolution options for active learning to select among. This could 

EH�DFKLHYHG�E\�UHSODFLQJ�³VHTXHQFH�OHQJWK´��ZKLFK�RQO\�WDNHV�LQWHJHU�YDOXHV��ZLWK�D�

GHVLJQHG�YDULDEOH�RI�³WDVN�GLIILFXOW\´�IRU�UHDO-valued scores. 

For the working memory test case, the initial focus was placed on accuracy scores from 

young adults as well simulation results. The purpose of these evaluations was to validate the 

human dataset available and verify that the overall accuracy scores were consistent with 

previous results. The cognitive models were tested under constant stimuli, adaptive staircase 

and active learning scenarios. In these settings, the efficiency gains were not extraordinary 

with respect to generalized logistic regression models. This finding is consistent with the 

notion that the power of the GP framework is its scalable nature, yielding substantial 
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efficiency gains upon the addition of more latent variables with complex interactions (Song 

et al., 2018). The successful outcome of the current work in a unidimensional space was that 

the GP was capable of performing high-quality fits, reflecting the anticipated psychometric 

threshold and spread trends. Estimator bias and variance (i.e., reliability) were both low as 

long as sufficient data was acquired, which fell in the range of 30-50 total data points for 

threshold and 100-200 total data points for spread. Threshold estimates appeared to be less 

variable under repeat adaptive staircase testing conditions (i.e., more reliable) than the 

traditional metric of maximum sequence length, which appeared to be biased toward higher 

values. Overall, however, the two metrics were shown to be highly correlated, implying that 

thresholds estimated using the GP method would be at least as informative as maximum 

sequence length recalled. 

In essence, the focus of the current study has been to verify that the proposed modeling 

procedure accurately captures trends in the data. A working memory task was selected for 

the purposes of testing and validation. Using modern machine learning algorithms, the GP 

framework yielded probabilistic cognitive models that represented psychometric 

performance data accurately and consistently. The GP models have been designed to 

PHDVXUH�H[HFXWLYH�IXQFWLRQV�ZLWK�OLPLWHG�UHIHUHQFH�WR�RWKHU�LQGLYLGXDOV¶�SHUIRUPDQFH��

promoting more equitable behavioral models. This GP based modeling procedure has the 

potential to be widely applicable to quantify psychological variables in a vast array of 

cognitive and perceptual tasks. Future analyses could involve demonstrating its functionality 

in other cognitive domains outside of memory.

 

 

https://www.zotero.org/google-docs/?ibS8sP
https://www.zotero.org/google-docs/?ibS8sP
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Chapter 4: Conclusion 
The target of the current research is to determine on a regular basis if the current cognitive 

performance of an individual is significantly altered from a baseline level. Despite the enormous 

advances in our understanding of executive functions, there is still plenty of scope for improving 

upon conventional testing methods designed to draw inferences about them. Novel techniques must 

be developed to conduct more nearly optimal evaluations of intrasubject variability or underlying 

latent variables over time with increased inferential power. In general, executive functioning testing 

requires querying participants multiple times to accomplish model fits to the behavioral data and 

ultimately better understand the corresponding underlying latent constructs. Behavioral assessments 

that acquire data actively provide enhanced efficiency and thus avoid large numbers of tedious trials, 

both in unidimensional and multidimensional feature spaces. Active testing modalities are especially 

FRPSHOOLQJ�IRU�HVWLPDWRUV�WKDW�EXLOG�PRGHO�ILWV�ZLWK�OLPLWHG�UHIHUHQFH�WR�RWKHU�LQGLYLGXDO¶V�

performance. In view of these facts, this thesis proposes to develop scalable testing strategies that are 

equitable, less data-intensive and that take advantage of test-specific active sample collection. 

Undoubtedly, the burdensome time requirement of data collection is a notable shortcoming of 

current testing procedures. One should note that it can be more challenging to shorten timing and 

accuracy tasks that do not have any independent variables. The main issue with non-threshold-

seeking behavioral tests where the overall difficulty of the set of trials is the same for all individuals 

is that one cannot select the most informative elements within the independent variables, as they are 

simply non-existent. Fortunately, researchers are given the opportunity to resort to sequential testing 

for improved efficiency and a substantial speed up of these types of cognitive tasks. Chapter 2 has 

shown that a notable reduction in the number of trials presented to participants can be accomplished 
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with sequential tests that can reliably detect the presence of significant differences in latent 

constructs. Perhaps surprisingly, most current designs do not take advantage of tools like sequential 

testing, despite its potential benefits. Hence, this thesis aimed to act upon the lack of flexibility of 

current unidimensional tests by attempting to demonstrate the feasibility and efficiency of sequential 

testing schemes to scale down the data requirements needed to estimate fluctuations in executive 

function processes. The empirical experiments described above for tasks without independent 

variables illustrated that more efficient determinations about fluctuations in executive functions can 

be made while controlling for error rates and saving valuable resources, such as time and money, 

when opting to adopt sequential testing. The general principles of sequential testing can be applied to 

other cognitive and perceptual domains, so researchers are encouraged to consider putting this 

strategy forward in order to speed up evaluations in their particular scientific inquiries. 

Multiple routes exist to extend the current non-threshold-seeking sequential testing framework. The 

first extension to point out is that timing models could include not only reaction time data, but also 

accuracy information. Although keeping track of changes in accuracy of the responses might not be 

as impactful in tasks like Numerical Stroop or Countermanding, it could still be a valuable feature to 

detect differences in executive functions with even fewer observations. Similarly, models for 

accuracy tasks that usually do not take the amount of time employed to respond into account could 

be expanded to include this additional feature. All in all, quicker determinations about cognitive 

states could potentially be accomplished in non-threshold-seeking tasks by testing for fluctuations in 

reaction time and accuracy simultaneously, i.e., extending to a multidimensional model using data 

streams from just the test in question. 

Furthermore, while this study demonstrated the benefit of a group sequential approach for cognition 
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in a particular experimental setting, it is possible that sequential designs could reflect even more 

significant resource savings in other behavioral tasks or under slightly different simulation 

conditions. Future analyses might consider design modifications that include the use of a variety of 

alpha-level corrections (for insWDQFH��2¶%ULHQ±Fleming or Pocock corrections), incorporation of 

variable futility stopping criteria (like a beta-spending function), as well as combinations of several 

numbers of interim steps and batch sizes. A logical next step beyond frequentist strategies comprises 

the replication of the sequential approach using Bayesian statistical tools, which are able to put to 

use information from earlier stages of the study. That is, making use of Bayesian statistics, 

researchers could take advantage of pre-study prior information about the measures of interest to 

perform model comparison and derive credible intervals for estimates. 

Chapter 3 turns the attention to threshold-seeking assessments, proving that machine learning tools 

can greatly assist in building more advanced models of psychometric tasks that are designed with the 

inherent multidimensional nature of real tasks in mind. The result of this chapter is the introduction 

of the first estimator that is capable of successfully approximating full psychometric functions (i.e., 

all 4 parameters) with a novel binomial likelihood that accommodates testing at repeated discrete 

values. The modern GP framework presented by this research line not only worked as designed in a 

unidimensional simple span test case, but also has a large potential for extension that is simply 

nonexistent in conventional testing frameworks. The current study found clear support for the 

successful quantification of psychometric task performance using a GP based modeling procedure 

that accurately captures trends in the data without referencing individuals against one another and 

norming the results. In addition, this method provided interval estimates of model parameters that 

are useful to perform hypothesis testing and report the degree of confidence to which working 

memory in an individual at a particular time point is significantly different from baseline. The active 
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testing capability was encoded in the GP model by actively querying at the sequence of input values 

WKDW�PLQLPL]HV�WKH�PRGHO¶V�posterior uncertainty about its prediction. Broadly, equivalent active 

learning strategies could be implemented for threshold-seeking tasks that have independent variables 

like task difficulty. 

To conclude, batteries of unidimensional tests are typically used in behavioral science to quantify the 

executive functions of working memory, cognitive flexibility, and inhibitory control, but correlations 

within tasks in a test battery are not exploited. This extension remains a subject for future studies. 

The logical path of cognitive and perceptual testing methods is expected to head towards the creation 

of models that can capture interrelationships among each test, which may be nonlinear. It is 

important to recognize the need to extend the current work in order to build estimators that profit 

from the correlations among the individual model outputs for each test. As a final remark, it is vital 

to mention that latent variable models are anticipated to be an incredibly useful tool to conjointly 

estimate multiple variables. Ideally, latent variable models could uncover the relationships between 

latent task abilities, utilizing data originating from one test to improve model estimates for another 

test. Scalability is a very relevant feature that is predominantly absent in current methods and that 

this study contributes to incorporate. Therefore, subsequent investigations are needed to work 

towards expanding the dimensionality of the underlying Gaussian process to incorporate multiple 

tests and prior beliefs using previous individuals who have received combinations of the tests in 

question.
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