Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-89-44

1989-10-01

A Declarative Approach to Visualizing Concurrent Computations

Gruia-Catalin Roman and Kenneth C. Cox

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Roman, Gruia-Catalin and Cox, Kenneth C., "A Declarative Approach to Visualizing Concurrent
Computations" Report Number: WUCS-89-44 (1989). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/754

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F754&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F754&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F754&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F754&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F754&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/754?utm_source=openscholarship.wustl.edu%2Fcse_research%2F754&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

A Declarative Approach to Visualizing
Concurrent Computations

Gruia-Catalin Roman and Kenneth C. Cox

WUCS-89-44

October 1989

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899

VISUALIZATION IN

o
AEAR

COMPUT

e

ING

A Declarative Approach to
Visualizing Concurrent
Computations

Gruia-Catalin Roman and Kenneth C. Cox

Washington University in St. Louis

he importance of visualizationas a
| communication tool has long been
acknowledged. Recently, how-
ever, a growing consensus has emerged re-
garding its potential for promoting the
understanding of complex behaviors ex-
hibited by physical phencemena and com-
putations. We explore visualization —
graphically representing objects and pro-
cesses — as a means for understanding
programs consisting of large numbers of
concurrent processes. Indirectly, we hope
to establish a new technical foundation for
research into the menitoring and debug-
ging of large-scale concurrent programs.
The extremely high volume of informa-
tion produced during the execution of a
concurrent program greatly exceeds hu-
man abilities to assimilate it in textual
form. This is in part due to the sequential
processing of textual information. The
human visual system is more suited to
processing information in the form of
images. Humans can process large quanti-
ties of image information in parallel, de-
tecting and tracking complex visual pat-
terns with incredible speed. Nevertheless,
as the number of processes grows, the
viewer’s ability to understand the resulting

October 1989

Program verification

promises to provide a

formal foundation for

visualizing concurrent

computations, a

technical endeavor

currently dominated
by empiricism and

aesthetics.

image can be rapidly saturated unless the
displayed information's level of abstrac-
tion is increased. For this reason, abstrac-
tion plays an important role in visualiza-
tion. By providing flexible abstractions, a
visualization system can help the program-
mer selectdisplays that are easily specified

0018-9162/89/1000-0025501.00 © 1989 IEEE

and understood.

We doubt, however, that powerful ab-
stractions of concurrent computations can
be built using the operational methods
currently employed in program animation.
Although helpful in understanding the
behavior of sequential programs, opera-
tional reasoning fails when faced with a
multitude of concurrent actions that may
be interleaved in arbitrary ways. These
conditions require a greater reliance on
formal verification. ‘We will explore a
methodology that attempts to derive visual
representations of concurrent computa-
tions from their proofs. Correctness proofs
involve either reasoning about computa-
tional sequences (for example, CSP!) or
about program states (for example,
Unity?). We consider the latter approach to
be better suited as a foundation for visuali-
zation because program states map more
readily to images. Moreover, we expect to
be able to render invariant properties of the
program state as stable visual patterns and
to render progress properties as evolving
visual patterns.

The departure from operational reason-
ing also has important ramifications for the
ease with which visualizations can be

25

specified. Instead of treating visualization
as a mechanism invoked whenever
changes in the display state are desired,
visualization may be defined as an abstrac-
tion, that is, a mapping from computational
states to the states of graphical objects
rendered by a display device, We will dis-
tinguish between the two approaches by
characterizing the former as imperative
and the latter as declarative. As currently
employed, the imperative approach in-
volves actual modifications to the program
code: Procedure calls inserted at appropri-
aie points in the code trigger desired
changes in the image being displayed. The
declarative approach, however, promises
to eliminate the need to alter program code
and to accommodate runtime changes in
the abstraction level of the information
being displayed.

Although the declarative approach can
be used with any concurrent language, we
have selected the shared dataspace
paradigm as the underlying model of
concurrent computation. Shared dataspace
languages communicate’ among concur-
fent processes via a common content-
addressable data structure (typically a set
of tuples) called a dataspace. Content-
based addressing of data is common in
artificial intelligence, and expert system
languages such as OPS5? can be classified
as shared dataspace languages. Linda®
became the first concurrent shared-data-
space language to be implemented and to
receive commercial attention. Swarm,™ a
language developed and used by our re-
search group as z vehicle for studying
programming and visualization meth-
odologies, became the first concurrent
shared-dataspace language to have an
assertional-style proof logic. Swarm is
particularly appealing for declarative
visualization because its dataspace fully
specifies the current program state (control
and data} and has a simple uniform-state
representation (a set of tuples).

Although we use Swarm as the basis for
our discussion, this article is not about a
particular language or visualization sys-
tem. (Actually, since efforts to implement
Swarm and its visualization testbed on a
hypercube-class multiprocessor are still in
their initial phases, all images in this ar-
ticle are from simulated executions of the
various programs.) Rather, we focus on
our concept of the future of program visu-
alization. We present arguments in favor
of the declarative visualization paradigm
and build a case for program verification as
the technical foundation for a formal ap-
proach to visualization.

26

Declarative
visualization

The visualization field can be divided
into three broad areas. Visualization in
scientific computing, or ViSC, refers to the
animation of data such as that produced by
supercomputer simulations, satellites, and
measuring devices used in astronomy,
meteorology, geology, and medicine. Vis-
uval programming is the specification of
programs in a notation using two or more
dimensions, as by flowcharts, graphs, dia-
grams, or icons. Program visualization,
also called algorithm animation, uses im-
ages to represent some aspect of a pro-
gram’s execution,

Program visualization research has been
motivated by the desire to explain, by
means of animated displays, the workings
of sequential algorithms. The Balsa’ sys-
tem was designed with this goal in mind.
Balsa was one of the earliest visualization
systems and is still probably the best
known and the most influential. Balsa uses
an animator to construct visualizations.
The animator determines which events in
program execution should be captured and
how they will be represented, The anima-
tor then augments the algorithm with calls
to library procedures that interface with
the mechanics of display generation. The
procedure calls, which are embedded in
the existing algorithm code at points where
the key events occur, trigger changes to the
display.

Balsa uses an imperative approach to
algorithm animation. Image generation is,
in essence, treated as a side-effect of pro-
gram executfion: Specific events modify
the image in particular ways. This ap-
preach, while quite successful, has the
inherent drawback that the animator must
modify the program code. It is also gener-
ally difficult to change the information
being displayed and the way in which it is
dispiayed. Although many systems allow
the viewer to select from several abstrac-
tions provided by the animator, they do not
permit the viewer to specify an entirely
new abstraction. Generally, this would
require identifying new events and mark-
ing them in the code.

Possibly in response to these difficul-
ties, a recent trend is to use declarative
methods of algorithm visualization. In
several systems, the algorithm animator
declares a number of graphical objects —
usually considered to be icons — with
parameters that can be changed by pro-
gram operation. The Aladdin system® uses

this approach. However, as in imperative
systems, the Aladdin animator must still
modify the program cede to update ob-
jects.

Several other systems, by binding object
parameters to program variables, manage
to remove the animator’s need to modify
the program code. Changes to the variables
are transmitted to the visualization system,
which changes the icons and updates the
display. The Provide system,? intended for
use in debugging, considers all potentially
interesting aspects of algorithm behavior.
Therefore, procedure calls inserted by the
compiler automatically record all state
changes. The PVS system,'® intended for
the monitoring of manufacturing pro-
cesses, assumes all information of interest
Is stored in a database accessible to the
visualization system. This approach has
certain similarities to our own shared-data-
space model of concurrency.

Shared dataspace

Before presenting the visualization
methodology, we’ll introduce some
shared-dataspace concepts and notation by
means of a simple, nondeterministic, par-
allel algorithm. We first express it in a
traditional block-structured notation and
then restate it as a shared-dataspace pro-
gram, using notations borrowed from the
Swarm language. The algorithm can be
specified informally as follows:

Given an array X[1..N] of strictly posi-
tive integers, compute the sum of al! the
values stored in X and place the result in
one of the array entries; the other array
entries should be zeroed.

This algorithm’s first implementation is
given in a hypothetical block-structured
language that provides a cobegin-coend
construct, atomic predicate evaluation,
and conditional atomic multiple-assign-
ment statements.*

For each entry X[&] in the array we cre-
ate a concurrent branch of a cobegin-coend
construct. The branch corresponding to a
nonzero array entry X[] attempts to accu-
mulate into X[4] the values of array entries
having an index higher than & while simul-
taneously zeroing such entries.

*For example, the statement if a>0 then a,b 1= 2.5;
endif is logically equivalent to locking the variables a
and &, executing the statement if a>0 then a:=2; b :=
5; endif, and then unlocking the variables.

COMPUTER

N : positive natural;
X[1..N] : array of positive natural,

cobegin for each ki=1,.N-1;
for j:=(k+1)..N loop
if X[k] = 0 then exit; endif
if X[k] = 0 and X[j] # 0 then
X[k X[j) = (X[k] + X[j]), 0;
endif
end loop;
coend

The execution is nondeterministic. As-
sunting each branch is allocated to a sepa-
fate processor, the execution time, given in
terms of nonoverlapping assignment state-
ments, is at most O(N) and at best Ologh).
The algorithm’s performance, however, is
not germane to this discussion.

The activity taking place along each
branch k invelves a search for the next
eniry X[j] having a nonzero vaiue and the
action of adding the value of X[j1to X[k], as
long as X[k] is nonzero. Logically, the
search requires us to evaluate the predicate

3j:k<jEN:X[K]>0AX[]>0A
—@itk<i<j:X[i]>0)

and to perform the action
X[k, X{j} = (X[k] + X(D, O

using the value of j bound by the predicate
evaluation and ensuring that the predicate
evaluation and the assignment are per-
“formed as a single atomic action.

These requirements match directly with
the definition of a Swarm transaction: an
atomic inspection and transformation of
the dataspace. Swarm partitions the data-
space into several subsets. These include
the tuple space, a finite set of data tuples,
and the transaction space, a finite set of
transactions. Pairing a type name with a
sequence of values creates an elernent of
the dataspace. In addition, a transaction
has an associated behavior specification.
Transaction execution is modeled as a
transition between dataspaces. An execut-
ing transaction examines the dataspace,
then deletes itself from the transaction
space and, depending on the results of the
dataspace examination, modifies the data-
space by inserting and deleting tuples and
by inserting (but not deleting) other
transactions. Note that a query that fails
removes itself, leaving the dataspace
otherwise unchanged. A Swarm program
begins executing from a valid initial data-
space and continues until the transaction
space is empty. On each execution step, a

October 1989

transaction is chosen nondeterministically
from the transaction space and executed.
The transaction selection is fair in the sense
that each transaction in the space will
eventually be chosen.

Returning to our summation example,
we can store the array X as a collection of
tuples and reformulate each cobegin-
coend branch as a Swarm transaction. We
can represent X in tuple form by encoding
each array entry X[k] with value vasa tuple
(k,v) of type entry. The initial tuple space
configuration becomes

{k:1=k<N:entry(k, X[k]) }

The predicatefaction pair associated
with branch k& can be rewritten as the fol-
lowing transaction. In Swarm, a comma is
used in the place of the A operator in
predicates.

Sum(k) =
LLV: k<tgN ;
entry(k,i), entry(i,v),
—{38,0 : k<d<t : entry(8,06))
-
entry(k.\1, entry(1,v)t,
entry(k,j+v)

This transaction differs from the original
formulation in one important respect. In-
stead of maintaining information about the
array entries that have been zeroed (that is,
including a tuple entry(1,0) in the data-
space), we simply delete these tuples, as
indicated by the ¥ symbol in the action
part. This makes the original test — (3i :
kei<j @ X[i1>0) simply a test for the
presence of any tuple with index in the
specified range.

To complete the translation to a shared
dataspace program, we need to ensure that
for each % & Sum(k) transaction is initially
in the transaction space and that successful
transactions recreate themselves. The fol-
lowing definition of the initial transaction
space guarantees the former condition.

{ k : 15k<N~1 : Sum(k) }

The reinsertion of Sum(k) can be added
to the action part of the transaction:

Sum(k)=
LiLY t k<1<N :
entry(k,p), entry(1,v),
= (38,0 : k<8< : entry(5,0))
-
entry(k, 1)+, entry(t,v)t,
entry(k,u+v),
Sum(k)

The resulting Swarm program can now
be simplified by removing some of the
biases inherited from the original block-
structured formulation. There is no need to
ensure, when adding two entries, that the
entries in between have been zeroed — this
condition is only an artifact of the iterative
method used by the original program.
Associating a transaction with each entry
in the array (except for the last one) is also
unnecessary. A single transaction may be
created atthe start of the program, and with
each successful execution the transaction
may clone itself into two distinguishable
transactions. This method leads to an ex-
ponential growth in the degree of paral-
lelism employed by the program. The
growth can be controlled by assigning each
transaction an identifier from a finite set
(for example, 1..N). In any case, all trans-
actions eventually disappear when the
surnmation is complete. Once the summa-
tion is completed, the query part of the
Sum transaction always fails and is re-
moved. With these changes the Swarm
program becomes

Tuple space:
{ k:1k<N ¢ entry(k,X{k]) }
Transaction space:
{ Sum(1) }
Transaction type definition:
Sum() =
L2, plp2 o 1 S1l<i2gN
entry(ii,ul), entry(12,12)
__)
entry(1l, 1)1,
entry(12,u2)7,
entry (Ll 1I+42),
Sum(t1}, Sum{t2)

Figure 1 shows a sample execution of this
pregram.

Figure 2 shows two possible visualiza-
tions of this algorithm, one for the black-
structured program and one for the Swarm
version. Active branches of the cobegin-
coend construct, and transactions in the
dataspace, are represented as balls. In both
cases there are at most N balls. Each bali
has one parameter that defines the ball
positien along a predefined horizontal tine
in the image. In the block-structured pro-
gram, each bali’s position is determined by
the index value & associated with the par-
ticular branch. In the Swarm program, the
value / of the Sum(/) transaction deter-
mines each ball’s position.

The values associated with each array
eniry are mapped to a bar. The bar consists
of a series of rectangles aligned next to
each other along a predefined, horizontal

27

]entry(2,7)|

[Sum(1)] [entry(4,5)]

(@)

{Sum(4}] [entry(2,12}]

(b)

{Sum(2)]

Ientry(1.9)|

R

@)

Figure 1. Sample execution of the
Swarm array-summation program.
The input array has five elements,
Each cloud diagram represents the
contents of the dataspace at some
point in time, The topmost diagram
shows the initial dataspace; the bot-
tommost shows the final dataspace,
when no more transactions exist.
Tuples are in rectangles and t{rans-
actions in parallelograms. This ilius-
tration assumes a high degree of
concurrency. In any state, every
transaction attempfs to match the
dataspace.

(a} In this particular execution se-
quence, the initial transaction
Sum(1) matches the tuples entry(2,7)
and entry(4,5). Sum(1) and the two
tuples are removed; the tuple en-
try(2,12) and transactions Sum({2)
and Sum(4) are generated.

(b) Both Sum(2) and Sum(4) then
successfully match, adding en-
try(3,1).to entry(1,8) and entry(s,5)
to entry(2,12), respectively. Four
transactions are also added to the
dataspace,

{c) With only two entry tuples
now in the dataspace, only one
transaction can successfully match, -
The others fail and are removed
without generating new transac-
tions. The successful transaction
adds entry(2,17) to entry(1,9).

(d) Only one entry tuple is in the
dataspace; both transactions fail
and are removed.

{(e) In the fina! state, only the sum
of the original five elements re-
mains,

line in the image. The length and position
of each rectangle are determined by the
value and the index of some entry in the
array X.

We choose this particular visualization
because it captures key properties used to
prove the correctness of the two programs:

= The sum of the values of the array
entries is constant, and the length of
the bar stays constant.

+ The number of nonzero entries in the
array is reduced by one with each
successful assignment or transaction
execution, decreasing the number of
rectangles.

28

* Once the number of nonzero entries
drops to one, all active branches of the
cobegin-coend construct terminate,
and each transaction execution re-
duces the number of transactions in the
dataspace by one. In both cases, the
number of balls decreases until it
reaches zero.

The similarity between the two proofs
led to identical visualizations. Differences
in the operational details are made evident
by variations between the two sequences
of images.

Next, we will consider the problem of
specifying the visualization for each of the

two programs. In Figure 2 we used two
types of graphical objects:

Ball{position)
Rectangle(position, length)

Ball{n) indicates that the nth ball is to be
depicted. Rectangle(n,f) indicates that the
rectangle in position » of the baris to have
length /. We permit the length to be 0, and
if a rectangle for position # is missing, a
length of 0 is assumed.

Object generation rules provide a con-
venient way of specifying the mapping
from program states to graphical objects.
Given a particular program state, each rule
defines a set of objects that must be in-
cluded in the image. For example, in the
block-structured program the set of rec-
tangles is

{ k: 15ksN : Rectangle(k,X{k]) }
and is defined by the rule

k:1sksN:
true = Rectangle(k,X[k])

This is to be interpreted as “for each entry
X[k], generate a graphical object
Rectangle(k, X{£]).” The rectangles can be
similarly specified forthe Swarm program:

LV: 1IN
entry(1,v} = Rectangle(,v)

The interpretation of this is similar: “for
each tuple entry(i,v) in the dataspace,
generate a graphical object Rec-
tangle(t,v).”

In the Swarm program, the definition of
the balls is equally straightforward:

t: 116N : Sum{1) =+Ball{1)

However, it is not immediately apparent
how the definition might be specified for
the block-structured program, unless addi-
tional variables are added to capture the
necessary controf state information and
encode it as data. We can introduce such
additional variables, often called auxiliary
variables, in the form of a Boolean array
B[1..N] where B[4] is true if and only if
branch & of the cobegin-coend is active:

B[1..Nj:array of Boolean :=true;
cobegin for eachk:=1..N-1;
for j:=(k+1)..N loop
if X[k]=0 then exit;
if X[k]20 and Xfj]=0 then

COMPUTER

X[kLX[j] = (X[K]+X[31).0;
endif
end loop;
B(k) := false
coend

The definition of the balls for this program
then becomes

k : 1=k<N : B(k) = Ball(k)

The need to add auxiliary variables to
properly capture the state information in
the block-structured program highlights
one of the advantages of the shared data-
space paradigm: All state information is
contained in the dataspace.

Visual abstraction

Declarative approaches treat the visuali-
zation of computations as the application
of a function to the computationa) state,
yielding an image. We call this function
the visualization function. The major parts
of our visualization model'! are the repre-
sentation of the function's domain and
range and the method of declaring the
function.

Formally, the visualization function
maps the set of all states to the set of all
images:

V : States — Images

The function could be declared in this
manner. However, we wish to use visuali-
zation as a tool for understanding compu-
tations, and we feel that understanding
results from proper abstractions. We are
therefore primarily interested in abstrac-
tion, the translation of state information
into symbolic form. The problem of ren-
dering, the representation of symbols in an
image, is less important, although it does
involve some interesting and difficult
problems.

We therefore divide the visualization
function into two parts, an abstraction
function and a rendering function. These
can be formally described as

A : States — Objects
R : Objects — Images

with the visualization function equal to the
composition of these functions. Again, our
primary interest is in the specification of
the abstraction function.

To specify the abstraction function, we
need some information about its domain

October 1989

400000080
2 oo s o s i B B —
® 60 e [K K XK K
A A WO U SO DO P | —1
.o se L K o e
CT T 17 -
000 ® L K]
[I — —
e [] ® L]
[I { I 1
o LK. ¢ ®
[I) 1
® [N @
I I 1 I |
[] [] [
[T T 1
® L.

[I 1
L]

(a) I]

input values.

comes to a hait.

Figure 2. Visualization of the array summation programs. These two dia-
grams visualize the operation of the block-structured and Swarm programs
for array summation. Each program is run on the same 10-element array of

(a) The first visualization shows the execution of the block-structured pro-
gram, The initial state of the computation is at the top, and the final state is
at the bottom. Each state consists of a bar, composed of a number of rectan-
gular efements, and a number of balis above the bar, Each rectangle in the
bar has length equal to the value stored in some element of the array, while
each ball represents an active branch of the cobegin-coend construct.

(b) The second visualization shows the execution of the Swarm program.
As in figure (a), the initial stafe is at the top Emd the final state at the bottom,
and each state consists of a bar and a number of balls. Each rectangle in the
bar has length equal to a value stored in an entry tuple, while each ball rep-
resents a Sum transaction. Note that the Swarm implementation starts with
only one transaction. The number of transactions then grows as necessary to
handle the amount of data to be processed.

Kn both visualizations, the fact that the entire bar remains the same length
shows correctness; the sum of all the array elements remains constant. The
decrease in the number of rectangles in the bar, and the disappearance of
the balls, shows progress. Array elements are zeroed, and the computation

L]
I P o o e I I S | |
[] *®
s s) B —— |
L]
| T1 S O S—
® LK e
Cr 1 A S —— |
ae [] ®
L T S E— — |
| K] L]]
1 I } ———
[L] []
I N — |
L [] - L
L 1 -
L] o LK
[I 1
°] LN
[1
() ¢ 1

(States) and range (Objects). States is the
set of all possible computational states. In
many paradigms for concurrent computa-
tion —- for example, communicating proc-
esses — the state is difficult to define and
even more difficult to capture, as it in-
volves a variety of such widely separated
and diverse data as contents of process
memories, program counters and code, and
message buffers. This adds unnecessary
complexity to the process of visualizing a
computation.

However, in the shared-dataspace para-
digm, and particularly in the Swarm lan-
guage, all state information is represented
in the dataspace. The visualization system

cany in principle, examine the dataspace
without interfering with the underlying
computation. Representing all information
as typed tuples further simplifies the para-
digm compared to other models. There-
fore, using the shared-dataspace paradigm
as the computational model has definite
advantages in declarative visualization.
The range of the abstraction function
(Objects) is the set of all possible symbolic
representations of states; each such repre-
sentation is a set of primitive graphical
objects. We can extend our uniform data
representation to Objects by representing
each graphical object using the tuple nota-
tion. A graphical object will be represented

29

by a tuple type(parameters), where the type
specifies the general class of object (Circle,
Line, Rectangle) and the parameters spec-
ify the particular object, giving position,
size, orientation, color, etc. .

We specify the abstraction function it-
self by a set of rules having the form

variables : query over dataspace
=
list of object tuples

where the variables are existentially quan-

tified implicitly. Such arule defines a setof -

constantly changing object tuples as fol-
lows. The query is evaluated against the
current dataspace, and for each successful
match the variable bindings are used to
instantiate the list of tuples on the right-
hand side. All the resulting tuples are
members of the set. For-any state of the
computation, the resulting set of graphical
objects is the union of the sets produced by
each visualization rule.

Thus, if a new dataspace tuple is asserted
that matches with some visualization rule,
all resulting tuples are immediately added
to the set of objects. Likewise, if a data-
space tuple is retracted, ‘any members of
the set generated by a rule matching the
tuple are immediately removed. Please
note, though, that this is a model of our ap-
proach to visualizatiom; an implementa-
tion would not necessarily compute the
graphical objects and image in this fashion.

Visualization
methodology

Our visualization methodology provides
guidelines for constructing animations in
the declarative model. Most systeins recog-
nize that certain methods of representing
data are more effective than others, but they
lack the concept of a methodology, at least
in the sense of general rules for construct-
ing animations. We hope to address this
problem, and place visualization on a more

30

igure 3. Input 1mage to reglon-labehng program. _The
npht consists-of an" lmage divided into'a rectangular -
_ p:xeis of various mtensnt:es The program
“should mark all connected’ reglons of approx1mately_
ual lntens;ty with - the same label O

firmly technical foundation. We base our
methodology on program correctness. Pro-
gram correctness iechniques express and
prove properties about programs with the
dual goals of demonstrating that the pro-
gram is correct and understanding why itis
correct.

Our rationale for using program correct-

' ness in our methodology is based on two

observations. First, program correctness
seeks to explain the behavior of computa-
tions. Since our own goal is the use of
visualization for understanding, the two
mesh nicely. Second, program correctness
has proved to be quite successful in its
goals, suggesting that the translation of its
principles to visualization might be
equally successful. Systems for expressing
and proving program properties have been
developed for several programming para-
digms. 213 A system for expressing and
proving properties of shared dataspace
programs has also been developed.®

The types of properties that can be ex-
pressed in these systems fall into two broad
categories, safety and progress properties.
Safety properties (such as invariants) give
conditions that the program may not vie-
late. Referring to the array summation
program, property (1) — the sum of the
values of the array entries is constant — is
a safety property. Progress properties tell
what the program is required to do. Proper-
ties (2} and (3) in the summation prograrms
— the number of nonzero entries is stead-
ily reduced, and the program terminates
after the number of such entries reaches
one — are progress properties,

We believe that the same properties used
to prove programs correct can be used to
indicate what aspects of those programs
should be represented in the visualization.
Further, we believe that the structure of the
property, as it is expressed in whatever
proof logic is used, provides a guide to how
that property should be visualized. At the
highest level, this means that invariants
would normally be visualized as stable
patterns while progress properties would
be visualized as evolving patterns.

Application to
region labeling

To illustrate our methodology, we use
the image-processing region-labeling
problem. In this problem, we are given a
digitized black-and-white image such as
that shown in Figure 3. First, we want to
divide this image into connected regions
where each region’s pixels are of approxi-
mately the same grey level. We then select
one pixel from each region to identify that
region in later processing activities. We
can state the program requirements more
formally as follows.

The problem input is an M-by—N array
(Intensity) and a function (Threshold). In-
tensity represents a digitized image di-
vided into pixels; ii assigns to each pixela
value representing its brightness. Thresh-
old maps the intensities to a smaller range;
for example, given an intensity i,
Threshold(i) might be the integer part of
if10. Two pixels are in the same bucket if
the Threshold function produces the same
result when applied to their intensities.

Two pixels are neighbors if they share a
side; the pixel at coordinate {x,y) neighbors
the pixels {x-1,y}, {x+1,3), {x,y~1}, and
{x,y+1). Two pixels are in the same region
if they are connected by a path of neighbor-
ing pixels, all of which are in the same
bucket. The output of the region-labeling
program is to be an M-by-N-array Label,
where two pixels are assigned the same
label if and only if they are in the same
region. In addition, a single “master pixel”
is to be identified in each region.

A nondeterministic algorithm for this
problem can be described as follows:

Assign a unique label to each pixel
while
there are neighbering pixels
pl and p2 in the same bucket,
with p2°s label less than
that of pl
loop

COMPUTER

Relabel pt with the label of p2
end loop
The “master pixels” are those
that retain their original label

Figure 4 illustrates a Swarm implemen-
tation of this algorithm. The dataspace at
all times contains a tuple of the form

is_labeled(P,I,L)

for each pixel P. This tuple indicates that
the pixel with coordinate P and intensity 7
is currently labeled with label L. Pixel
Iabels are just coordinates; each pixel is
initially labeled with its own coordinate.
We assume that a primitive operation to
compare two labels is provided; we use the
symbol < for this.

We wish to visualize the operation of
this algorithm. The first problem with con-
structing a visualization is to determine the
graphical objects that will be used and their
layout, that is, the arrangement of the ob-
jects. In this region-labeling example,
there is a very natural layout where pixels
are translated into squares, and the squares
are arranged in a grid according to the
coordinates of the pixels. We will provide
the squares with borders. Both squares and
borders can be colored in various ways,

Our graphical-object universe therefore
" consists of two object types: squares and
borders between two squares. Both types
of objects have properties that define their
position and color. These can be repre-
sented in tuple notation:

Square{coordinate, color)
Border(coordinatel, coordinate2,
color)

The representation of colors may be de-
vice-dependent. We will assume a colorize
function is available that maps pixel labels
to the color space. The function is one-to-
one, so distinct input labels have distinct
colorization values. The range of colorize
does not include all colors that can be
produced by the device. Colors not in the
range of colorize are called recognizable.

The rendering function will translate
collections of these objects into a screen
image. The overall result will be a grid as
illustrated in Figure 5. We are not inter-
ested in such rendering function details as
the mapping of square coordinates to
points on the screen, and the determination
of the location of borders from the two
coordinates in the tuple. However, we will
assume the rendering function has the fol-
lowing properties:

October 1989

i ,;_-Deﬁhitions:
o Pixels = { xy, : 15x<N, I<ysM @ (x,y) }

- Tuple space: - -

" {p:pe Pixels : is_labeled(p,Intensity(p).p) |

i Transaction space:
{ p : pePixels : Label(p} }

Transaction type definition:

Label(P) =
1LAL,A2:
is_labeled(P,11,A1), p neighbors P, is_labeled(p,12,A2),
Threshold(11) = Thresheld(12),A2<A1
.—)
is_labeled(P11,A1)t,
is_labeled(P,11,A2}

true
.—)
Label(P)

Figure 4. Swarm program for region labeling. The Label(®) transaction per-
forms two operations. The first operation searches for a pixel p which neighbors
P, is in the same bucket, and has a smaller label. If such a pixel is found, the
transaction relabels P with the label of p by removing the old is_labeled tuple
and adding a new one.

Simultaneously with the previous operation, the predicate true is evaluated.
This obviously succeeds, so the program adds a new Label(P) transaction to the
dataspace.

of the region-labeling is to map each pixel
to a square having a color determined by its
current label:

« If no object tuple is mapped to some
screen point, that point is rendered ina
recognizable color called the back-
ground color.

= If two or more object tuples with dif-
ferent colors map to some screen point,
that point is rendered in a recognizable =
color called the overlap color.

vO0: p,LA
is_labeled(p,l,A)

Square(p,colorize(A))

Perhaps the most direct representation Figure 6 illustrates this visualization.

Figure 5. Layout for region-labeling
visualization, Graphical ebjects of
type Square are rendered in the
large square regions, Graphical ob-
jects of type Border are rendered in
the smaller rectangular and square
regions.

31

Figure 6. First visualization of region labeling. This sequence of four images visualizes the operation of the region-labeling
program using the abstraction rule V0. Each image results from applying V0 and the rendering function to the dataspace at

some point in the computation.

The leftmost image represents the initial state of the computation. Each pixel has a unique label and is assigned a unique

color by the colorize function.

The next image shows the state after some time has elapsed. Some of the pixels have been relabeled and have changed

This rather simple visualization may ap-
pear to be all that one needs to understand
the program’s behavior. However, this
visualization contains several flaws, It is
impossible to tell if the final result is a
correct labeling. The desired output of a
“master pixel” for each region, although
present in the data, is not in the visualiza-
tion. Finally, and most severely, the dis-
play captures the low-level mechanics of
the program execution rather than the fun-
damental program properties used to rea-
son about the computation.

We will now apply our visualization
methodology to generate another visuali-
zation of this algorithm (Figure 7). The
principal invariants and progress condi-
tions used in the correctness proof (not pre-
sented here) for the program are:

II: Region boundaries are stable.

I2: Two neighboring pixels belonging
to two different regions never have
the same Iabel.

13: Inevery region, the pixel having the
smallest coordinate is labeled by its
own coordinate.

P1: If a pixel p has a neighbor belonging
to the same region and labeled by
the smaliest label in that region, p
will eventually be labeled by the
smallest label in that region.

As stated earlier, invariants are rendered
as stable patterns such that violations of
the invariant are easily observed. How-
ever, when formally stated in a logical
calculus, I1, 12, and I3 have very distinct
forms. I1 is universally quantified such
that all region boundaries remain the same.
I2 involves anegation: itis not the case that
two neighbors in different regions have the
same label. I3 includes an embedded exis-
tential quantification (for every region,
there is some pixel that has the smallest
coordinate and is labeled with its own
coordinate). Because of this, we expect
each to be visualized in a different manner.

(We are currently investigating the hy-
pothesis that the form of the invariant can
be used to indicate the manner in which it
should be visualized.)

Il requires a part of the computation
state to remain unchanged throughout the
computation. This strongly suggests the
need to render this part of the state in the
visualization; if the state changes illegally,
the change will be detectable in the image.
We will therefore render the region
boundaries in some recognizable color, for
example white. If I1 is violated these bor-
ders will move or disappear during execu-
tion.

We will use the layout borders to render
the region boundaries. By using the
eight_neighbors relationship, the small
bordering boxes at the corners of the
squares will be filled, largely for aesthetic
reasons, The rule that visualizes [1 is

Vi: plalAl,p212,42:
is_labeled(p1,11,A1),

Figure 7. Second visualization of region-labeling. This sequence of four images visualizes the operation of the region-label-
ing program using the abstraction rules V1 through V4. The two program runs in F igures 6 and 7 are identical, and corre-
sponding photographs were taken after equal amounts of computation; only the visualization differs. The bright yellow,
overlap (error) color does not appear because the program and implementation ran correctly.

The leftmost image represents the initial state of the computation. The boundaries between regions are clearly shown in
white (by V1). Each pixel has its own coordinate-as-label, and so is colored by V3. V4 renders the borders between pixels in

32

COMPUTER

color. Note that small regions of the same color are beginning to form.
The third image shows the state after additional time has elapsed. The relabeling has continued, and the regions of the

same color have grown larger.
The fourth image shows the state when the computation has completed. Two pixels have the same label (are the same

color) if and only if they are in the same region,

is_labeled(p2.12,A2),

pl eight_neighbors p2,

Threshold(11) # Threshold(12)
=%

Border{pl,p2, white}

Invariant I2 expresses a condition that
must not occur, We therefore detect viola-
tions of I2. This can be done by rendering,
in arecognizable color such as the overlap,
the border between any two neighboring
pixels that violate I2. This rendering is
accomplished by the rule:

V2: pl,il,p2,12,A:
is_labeled(pl,11,A),
is_labeled(p2,12,A),
pl neighbors p2,
Threshold(11) # Thresheld(12)

=
Border(p1,p2,0overlap)

Visualizing I3 seems to cause difficul-
ties, because the invariant refers to a pixel

that, although known to exist and to be
unique for each region, must be precom-
puted. However, a closer examination of I3
shows that this invariant specifies the
“master pixel” in each region—a pixel that
is only identified when the algorithm has
completed. I3 can therefore be visualized
by introducing some initial uncertainty that
is eliminated as the computation pro-
gresses. The idea is to color all pixels that
retain their initial label assignment. Ini-
tially all pixels are colored; as the program
proceeds, pixels revert to the background
color, leaving only the pixel with the small-
est coordinate (the master) colored. The
following rule can be used for this:

V3: p,u:
is_labeled{p,i,p) ,
=
Square(p,colorize(p}))

Progress properties are to be captured by
pairs of patterns, such that a state generat-

the same region, but with different labels, in red.
The next two images represent the state after some time has elapsed. Some of the pixels have been relabeled. Those that
do not retain their original label have disappeared, as V3 no longer renders them. The white borders have not changed.
The number of red borders has steadily decreased, indicating progress.
The fourth image shows the state when the computation has completed. No pixels can be relabeled, as indicated by the
total absence of red boundaries. The single, master pixel in each region is clearly indicated by V3,

Qctober 1989

ing the first pattern will lead to a state
generating the second pattern. To repre-
sent P1, we wish to capture the idea that if
some pixel p can be relabeled, iteventually
will be relabeled. This can be visualized by
marking the boundaries between pixels
that are in the same region, but have differ-
ent labels, with some recognizable color
such as red. Progress is recognized by the
reduction in the total number of red
boundaries:

Vé: phil Alp2,a2,A2:
is_labeled(pl.1l A1),
is_labeled(p2,12,12),
p1l neighbors p2,
Threshold(11) = Threshald(12),
Al#A2

=
Border(pl,p2.red)

Examining all four of these rules to-
gether, V1 outlines the boundaries of the
regions in white, V2 detects violations of

33

foboded bl v g

- e o

e 2

Figure 8. Visualization of polygon-construction free of intervention. This sequence of images visualizes the operation of 2
program that constructs polygons representing the edges of an image. The sequence shows several states of the computa-
tion for a small portion of the image. The earliest state is at the left. The visualization is overlaid on a black-and-white pho-

tograph of the terrain being scanned.

Processing of a particular edge pixel occurs in four distinct phases, as discussed in the text, In this sequence of images all

the desired output properties, V3 marks the
pixel having the smallest label in each
region and thus the final master pixel, and
V4 marks the boundaries between pixels
that are in the same region but have differ-
ent labels. As the algorithm progresses, the
arcas within red boundaries expand toward
the white boundaries. The disappearance
of all red boundaries marks completion.
Figure 7 depicts a visualization of the re-
gion-labeling program in which rules V1
through V4 are in effect.

This simple example demonstrates the
use of formal program properties as the
basis for deciding which visualization
rules are appropriate. We hope that this
approach wiil lead to the development of a
set of general rules for constructing pro-
gram visualizations based on the structure
of the properties used in the program cor-
rectness proof and not on knowledge of the
operational details of the program. Such an
approach would aid true exploration and
understanding of the program.

Intervention semantics

During monitoring and debugging of
concurrent programs, one maust minimize
the degree of interference with the pro-
gram execution to avoid altering the phe-
nomenon being observed. However, when
using visualization to study and under-
stand concurrent computations, the nonin-
terference requirement can be relaxed
somewhat, This is because there are no
errors that could be masked by slight
changes in the order in which events occur.
The questions we want to address here are:
What interventions are permissible, and
how do we guarantee that they do not
change the semantics of the program being
observed?

To answer these questions, we must
consider the underlying model of concur-
rency used to define the semantics of the
language and to construct the proof sys-
temn. Most models of concurrency, includ-

ing the operational model employed by
Swarm, have no notion of time. They rely,
instead, on fairness and atomicity assump-
tions. In Swarm, for instance, each transac-
tion present in the dataspace is eventually
executed, and its execution is an atomic
transformation of the dataspace. This
means that one has a great degree of lati-
tude in changing the scheduling policy, the
order in which transactions are selected
and executed, without fearing any changes
in the program semantics, as long as fair-
ness is preserved. Since the notion of fair-
ness itself is a very weak requirement —
each transaction is eventually executed —
certain transactions may be ignored for
very long periods of time while others may
be selected quickly.

We are only now starting to consider the
implications of manipulating the schedul-
ing policy on the visualization methodol-
ogy. Consider, for instance, the sequence
of photographs shown in Figure 8. They
depict several states in the execution of a

Figure 9, Visualization of polygon-construction with scheduling restrictions, The program from Figure 8 is run on the same

portion of the image, but the scheduling policy has been changed to force each phase to complete before the next begins.

34

COMPUTER

bl E]

L]
H
i
]
4

phases are allowed {o eperate simultaneously. Thus, we see newly created pixels (the red and blue pixels to the left of the

image), nonedge elimination {(the red pixels and some blue pixels disappear), master selection (the multicolored pixels,
which change color as they are relabeled), and polygon construction (the blue growing lines and red final lines). Overlap
among the four phases makes understanding the computation more difficuit.

relatively complex program.* The pro-
gram assumes an airborne platform that
scans an airport below, conmstructing an
image that is unbounded on one side. For
presentation purposes, we show only a
small arca of the unbounded image. A
hardware edge-detector transforms the
incoming irnage into a binary-edge image,
which the program converts to a symbolic

representation as polygons.

Although this visualization captures
faithfully the order in which actions would
occur inan actual execution, different parts
of the image are in different processing
phases, which makes the understanding of
the program difficult for someone secing
the visualization for the first time. In Fig-
ure 9, the same visualization rules are
applied to the same program, but the sched-
uling policy has been altered. For a finite
portion of the input image, transactions are
being delayed in a manner that reveals the
logical sequence of operations associated

with each pixel in the input image:

(1) A hardware edge-detector trans-
forms the incoming image into a
binary-edge image.

{2) Nonedge pixels and edge pixels
having three or more neighboring
edge pixels are eliminated.

(3) As a preliminary step to generating
the pelygons, a version of the re-
gion-labeling program selects a
master in chains of connected edge
pixels.

(4) The master defines the starting point
for the polygon construction along
each chain.

The scheduling policy imposed in Fig-
ure 9 inhibits, over a small area of the
image, the execution of any transaction
involved in performing one of the process-
ing phases listed above until all transac-
tions associated with the preceding phase
terminate. Since the processing associated
with each phase is independent of the
subsequent phases, and is completed in a

finite number of steps for any bounded
image, the fairness of the execution is
preserved. This would not be the case if the
scheduling restrictions were applied to the
entire image; because the image is un-
bounded to one side, the input phase would
never terminate.

This example shows that schedule ma-
nipulation can become an important com-
ponent of a visualization methodology
aimed at exploring properties of concur-
rent computations. Yet an appropriate
methodology and associated support tools
for the investigation of such manipulations
must still be developed.

*This particular program was actually written in a
shared-dataspace language called SDL., the predeces-
sor of Swarm. Because the visualization does not
change under recoding into Swarm, we take the libenty
of discussing the program as if it were written in
Swarm.

These images show the computation midway through each of the four phases. The separation of concerns enhances under-

standing of the program’s operation.

October 1989

-
&
E
]
£
&
B
Eﬁ

35

hat visualization can play a key
T role in the exploration of concur-

rent computations is central to the
ideas we have presented. Equally impor-
tant, although given less emphasis, is our
concern that the full potential of visualiza-
tion may not be reached unless the art of
generating beautiful pictures is rooted in a
solid, formally technical foundation. We
have shown that program verification pro-
vides a formal framework around which
such a foundation can be built, Making
these ideas a practical reality will require
both research and experimentation.(}

Acknowledgments

. This work was supported by the Department
of Computer Science, Washington University,
St. Louis, Missouri. The authors express their
gratitude to Jerome R. Cox, department chair-
man, fer his support and encouragement. We
also thank Conrad Cunningham for his input re-
garding this article and his contribution to the
development of the shared dataspace concept.

References

1. C.A.R. Hoare, Communicaiing Sequential
Processes, Prentice-Hall Int’l, Englewood
Cliffs, N.J., 1985.

2. K.M. Chandy and J. Misra, Paralie! Pro-
gram Design: A Foundation, Addison-
Wesley, New York, 1988,

3. L. Brownston et. al., Programming Expert
Systems in OPS5: An Introduction to Rule-
Based Programming, Addison-Wesley,
Reading, Mass., 1985.

4. 8. Ahuja, N, Carriero, and D. Gelernter,
“Lindz and Friends,” Computer, Vol. 19,
No. 8, Aug. 1986, pp. 26-34.

5. G.-C. Roman and H.C. Cunningham, “A
Shared Dataspace Model of Concurrency
— Language and Programming
Implications,” Proc. Ninth Int'! Conf. Dis-

‘tributed Computing Systems, CS Press, Los
Alamitos, Calif., 1989, Order No. 1953, pp.
270-279, '

6. H.C. Cunningham and G.-C. Roman, “A
Unity-Style Programming Logic for a
Shared Dataspace Language,” Tech. Re-
port WUCS-89-5, Computer Science Dept.,
Washington Univ., St. Louis, Mar. 1989.

7. M.H. Brown and R. Sedgewick, “A System
for Algorithm Animation,” Computer
Graphics (Proc. SIGGraph 84), Vol, 18,
No. 3, July, 1986, pp. 177-186.

8. E. Helttula, A, Hyrskykari, and K.-J. Riihi,
“Graphical Specification of Algorithm
Animations with Aladdin,” Proc. Hawaii
Ine'l Conf. Systems Sciences, Vol. i, Soft-

ware Track, CS Press, Los Alamitos, Calif., -

Order No. 1912, 1989, pp. 40-54.

9. T.G. Moher, “Provide: A Process Visuali-
zation and Debugging Environment,” [EEE
Trans. Software Eng., Vol. 14, No. 6, June
1988, pp. 849-857.

10. 1.D. Foley and C.F. McMath, *Dynamic
Process Visualization,” [EEE Computer
Graphics and Applications, Vol. 6, No. 2,
Mar. 1986, pp. 16-25.

11. G.-C. Roman and X.C. Cox, “Declarative
Visualization in the Shared Dataspace Para-
digm,” Proc. 11th Int’l Conf. Software
Eng., CS Press, Los Alamitos, Calif., 1989,
Order No. 1941, pp. 34-43,

Moving?

Name (Please Print)

PLEASE NOTIFY

State/Country Zip

US 4 WEEKS

IN ADVANCE New Address
City

MAIL TO:

IEEE Setvice Center ATTACH
445 Hoes Lane LABEL
HERE

Piscataway, NJ 08854

+ This notice of address change will apply to all
[EEE publications to which you subseribe.

* List new address above.

« If you have a question about your subscription,
place {abel here and clip this form to your letter,

36

12, L. Lampeort, “A New Approach to Proving
the Correctness of Multiprocess
Programs,” ACM Trans. Programming
Languages and Systems, Vol. 1, No. 1, July
1879, pp. 84-97.

13. Z. Manna and A. Pneuli, “How to Coock a
Temporal Proof System for Your Pet
Language,” Proc. 10th ACM Symp. Prin-
ciples of Progranmming Languages, 1983,
pp. 141-154,

Gruia-Catalin Roman is an associate profes-
sor in the Department of Computer Science at
Washington University in St. Louis. He is cur-
rently researching language and visualization
support for large scale concurrency and interac
tive, high-speed computer-vision algorithms.
His consulting work involves developing cus-
tom software engineering methodologies and
training programs, His previous research was
concerned with requirements and design meth-
odologies for distributed systems.

Roman was a Fulbright Scholar at the Uni-
versity of Pennsylvania at Philadelphia, where
he received a BS degree in 1973, an MS degree
in 1974, and a PhD degree in 1976, all in
computer science. He is a member of Tau Beta
Pi, ACM, and the IEEE Computer Society.

Kenneth C. Cox is a doctoral student at Wash-
ington University in $t. Louis. His previous
research has been concerned with image pro-
cessing, feature detection, and visualization of
concurrent aigorithms,

Cox received a BS in both computer science
and electrical engineering in 1985, and an MS
in computer science in 1987, all from Washing-
ton University,

The authors’ address is School of Engineer-
ing and Applied Science, Dept. of Computer
Science, Washington University, Campus Box
1045, One Brookings Dr., 8t. Louis, MO 63130-
4899. Roman’s electronic mail address is
roman@cs.wustl.edu; Cox can be reached at
kec@cs.wustledu.

COMPUTER

	A Declarative Approach to Visualizing Concurrent Computations
	Recommended Citation

	tmp.1459809062.pdf.ystzQ

