Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-89-43

1989-10-17

The Synchronic Group: A Concurrent Programming Concept and
its Proof Logic

Gruia-Catalin Roman and H. Conrad Cunningham

Swarm is a computational model which extends the UNITY-model in three important ways: (1)
UNITY's fixed set of variables is replaced by an unbounded set of tuples which are addressed by
content rather than by name; (2) UNITY's static set of statements is replaced by a dynamic set
of transactions; and (3) UNITY's static ||-composition is augmented by dynamic coupling of
transactions into synchronic groups. Taking advantage of the similarities of the Swarm and
UNITY computational models, we have developed a programming logic for Swarm and UNITY
computational models, we have developed a programming logic for Swarm which is... Read
complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Roman, Gruia-Catalin and Cunningham, H. Conrad, "The Synchronic Group: A Concurrent Programming
Concept and its Proof Logic" Report Number: WUCS-89-43 (1989). All Computer Science and Engineering
Research.

https://openscholarship.wustl.edu/cse_research/753

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F753&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F753&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F753&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F753&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F753&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/753?utm_source=openscholarship.wustl.edu%2Fcse_research%2F753&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/753

The Synchronic Group: A Concurrent Programming Concept and its Proof Logic

Gruia-Catalin Roman and H. Conrad Cunningham

Complete Abstract:

Swarm is a computational model which extends the UNITY-model in three important ways: (1) UNITY's
fixed set of variables is replaced by an unbounded set of tuples which are addressed by content rather
than by name; (2) UNITY's static set of statements is replaced by a dynamic set of transactions; and (3)
UNITY's static ||-composition is augmented by dynamic coupling of transactions into synchronic groups.
Taking advantage of the similarities of the Swarm and UNITY computational models, we have developed
a programming logic for Swarm and UNITY computational models, we have developed a programming
logic for Swarm which is similar in style to that UNITY. The Swarm logic uses the same logical relations
as UNITY, but the definitions of the relations have been generalized to handle the dynamic nature of
Swarm, i.e. dynamically created transactions and the synchrony relations. The Swarm programming logic
is the first axiomatic proof system for a shared dataspace language, i.e. a language in which
communication is accomplished via a shared content-addressable data structure. To our knowledge, no
axiomatic-style proof systems have been published for Linda, a production rule language, or any other
shared dataspace language.

https://openscholarship.wustl.edu/cse_research/753?utm_source=openscholarship.wustl.edu%2Fcse_research%2F753&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/753?utm_source=openscholarship.wustl.edu%2Fcse_research%2F753&utm_medium=PDF&utm_campaign=PDFCoverPages

THE SYNCHRONIC GROUP: A
CONCURRENT PROGRAMMING CONCEPT
AND ITS PROOF LOGIC

Gruia-Catalin Roman

H. Conrad Cunningham

WUCS-89-43

QOctober 1989

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 83130-4899

The Synchronic Group:

A Concurrent Programming Concept and Its Proof Logic

Gruia-Catalin Roman H. Conrad Cunningham
Department of Computer Science Department of Computer Science
WaASHINGTON UNIVERSITY UNIVERSITY OF MISSISSIPPI

Campus Box 1045, Bryan 509 302 Weir Hall
One Brookings Drive University, Mississippi 38677
Saint Louis, Missouri 63130-4899
(314) 889-6190 (601) 232-5358
roman@wucsl WUSTL.edu hec@candy.cs. OLEMISS.edu

October 17, 1689

Abstract

Swarm is a computational model which extends the UNITY model in three important
ways: (1) UNITY s fixed set of variables is replaced by an unbounded set of tuples which are
addressed by content rather than by name; (2) UNITY s static set of statements is replaced
by a dynamic set of transactions; and (3) UNITY’s static |-composition is augmented by
dynamic coupling of transactions into synchronic groups. Taking advantage of the similarities
of the Swarm and UNITY computational models, we have developed a programming logic
for Swarm which is similar in style to that of UNITY. The Swarm logic uses the same logical
relations as UNITY, but the definitions of the relations have been generalized to handle the
dynamic nature of Swarm, i.e,, dynamically created transactions and the synchrony relation.
The Swarm programming logic is the first axiomatic proof system for a shared dataspace
language, i.e., a language in which communication is accomplished via a shared content-
addressable data struciure. To our knowledge, no axiomatic-style proof systems have been

published for Linda, production rule languages, or any other shared dataspace language.

1 INTRODUCTION

New programming approaches are needed to exploit the capabilities of multiple processors op-
erating in parallel. Although multicomputer implemnentations of traditional sequential program-
ming languages can effectively exploit some parallelism in programs, in general the conceptual
frameworks underlying such languages limit the degree of parallelism that can be achieved on cur-
rently available architectures. To overcome the weaknesses of sequential languages, a wide variety
of approaches to concurrent programming have been advanced, e.g., Ada’ {3], CSP [11], FP [4],
Concurrent Prolog [17], and Actors [1]. Although many of these approaches have strong features
and clusters of advocates, there is no broad agreement on which approaches are the “winners”
for concurrent programming. No approach has achieved a good balance among conceptual ele-
gance, support for program verification, programming convenience, and various pragmatic issues.
Research is still needed to explore new paradigms and concurrent programming techniques.

Landmark developments are rare—their full significance often not appreciated until a signifi-
cant amount of time has passed. Although Hoare’s paper “Communicating Sequential Processes”
[11] did receive considerable immediate attention, few would have expected the language frag-
ment he proposed to dominate a whole decade of research in concurrency. Although the CSP
approach is still important, the concurrency research community seems to be turning in other
directions. What current work will enjoy the same success? We probably will not know until
another decade passes. However, one relatively recent development has the makings of an emerg-
ing success story—the kind of power and simplicity that can capture the imagination of both
researchers and practitioners: Chandy and Misra’s UNITY [7].

Chandy and Misra argue that the fragmentation of programming approaches along the lines of
architectural structure, application area, and programming language features obscures the basic
unity of the programming task. With UNITY, their work has not been directed toward the
development of a new programming Janguage per se. Instead, their goal is to unify seemingly
disparate areas of programming with a simple theory consisting of a model of computation and
an assoclated proof system.

They build the UNITY computational model upon a traditional imperative foundation, a state-

transition systemn with named variables to express the state and conditional multiple-assignment

1 Ada is a registered trademark of the United States Government (Ada Joint Program Office).

statements to express the state transitions. Above this foundation, however, UNITY follows a
morte radical design: all flow-of-control and communication constructs have been eliminated from
the notation. This led to an assertional programming logic which frees the program proof from the
necessity of reasoning about the execution sequences, Unlike most assertional proof systems, which
rely on the annotation of the program text with predicates, the UNITY logic seeks to extricate
the proof from the text by relying upon proof of program-wide properties such as invariants and
progress conditions.

Despite its attractiveness, UNITY does have some shortcomings. The static set of statements
inhibits the programmer’s ability to cleanly specify dynamically evolving computations—those
involving frequent and unprediciable creation of subcomputations. The fixed set of variables also
makes the handling of problems with unstructured and unbounded data difficult. Although suited
for the specification and verification of programs which use a shared-variable or message-passing
approach, UNITY is less well suited for paradigms in which data elements are accessed by content
rather than by name, e.g., rule-based systems.

We believe a model of concurrency which preserves the gains made by UNITY, while overcom-
ing its limitations, can become a serious alternative to the two dominant concurrent programming
paradigms, message-passing and shared variables. Qur research has identified a concurrency model
that can accomplish this. We call it the shared daiespace paradigm. This paradigm, first so named
in [15)], refers to a class of languages and models in which the primary means for communication
among the concurrent components of a program is a common, content-addressable data struciure
called a shared daiospace. Elements of the dataspace may be examined, inserted, or deleted by
programs. Gelernter’s Linda {2, 6], Rem’s Associons [13, 14], Kimura’s Transaction Networks {12],
our own Swarm model {16], and production rule langnages such as OPS5 [5] all follow the shared
dataspace approach.

The Swarm model is our primary vehicle for study of the shared dataspace paradigm. In
designing Swarm, we attempted to merge the philosophy of UNITY with the methods of Linda.
Swarm has a UNITY-like program structure and computational model and Linda-like communi-
cation rnechanisms. We partition the Swarm dataspace into three subsets: a tuple space (a finite
set of data tuples), transaction space (a finite set of transactions), and a synchrony relation (a
symmetric relation on the set of valid transaction instances). We replace UNITY's fixed set of

variables with a set of tuples, and the fixed set of conditional assignment statements with a set

of transactions. A Swarm transaction denotes an atomic transformation of the dataspace. It is
a set of concurrently executed query-action pairs. A query consists of a predicate over (all three
subsets of) the dataspace; an action consists of a group of deletions and insertions of dataspace
elements. Instances of transactions may be created dynamically by an executing program.

A Swarm program begins execution from a specified initial dataspace. On each execution step,
a transaction is chosen nondeterministically from the transaction space and executed atomically.
This selection is fair in the sense that every transaction in the transaction space at any point in
the computation will eventually be chosen. An executing transaction examines the dataspace and
then, depending upon the results of the examination, can delete tuples {but not transactions) from
the dataspace and insert new tuples and transactions into the data.space’. Unless a transaction
explicitly reinserts itself into the dataspace, it is deleted as a by-product of its execution. Program
execution continues until there are no transactions in the dataspace.

The synchrony relation feature adds even more dynamism and expressive power to Swarm
programs. It is a relation over the set of possible transaction instances. This relation may be
examined and modified by programs in the same way as the tuple and transaction spaces are. To
accommodate the synchrony relation, we extend the program execution model in the following
way: whenever a transaction is chosen for execution, all transactions in the iransaction space
which are related to the chosen transaction by (the closure of) the synchrony relation are also
chosen; all of the transactions that make up this set, called a synchronic group, are executed as
if they comprised a single transaction.

By enabling asynchronous program fragments to be coalesced dynamically into synchronous
subcomputations, the synchrony relation provides an elegant mechanism for structuring (and
restructuring) concurrent computations, This feature, unique to Swarm, facilitates a programming
style in which the granularity of the computation can beAchanged dynamically to accornmodate
structural variations in the input. This feature also suggests mechanisms for the programming
of a mixed-modality parallel computer, that is, a compuier which can simultaneously execute
asynchronous and synchronous computations. Perhaps architectures of this type could enable
both higher performance and greater flexibility in the design of algorithms.

In this paper we show how to add this powerful capability to Swarm without compromising our
ability to formally verify the resulting programs. The presentation is organized as follows. Section

2 reviews the basic Swarm notation. Section 3 introduces the notation for the synchrony relation

and discusses the concept of a synchromic group. Section 4 reviews a UNITY-style assertional
programming logic for Swarm without the synchrony relation and then generalizes the logic to
accomodate synchronic groups. Section 5 illustrates the use of synchronic groups by means of a
program for labeling regions in an image unbounded on one side. Section 5 illustrates the use of
synchronic groups using a program for labeling regions in ar image unbounded to one side. The

prograrn proof in Section 6 is followed by a few concluding remarks in Section 7.

2 BASIC SWARM NOTATION

By choosing the name Swarm for our shared dataspace programming model, we evoke the
image of a large, rapidly moving aggregation of small, independent agents cooperating to perform
a task. In this section we introduce a notation for programming such computations. We first
present an algorithm expressed in a familiar imperative notation—a parallel dialect of Dijkstra’s
Guarded Commands [9] language. We then construct a Swarm program with similar semantics.

The algorithm given in Figure 1 {adapted from the one given in [10]) sums an array of N
integers. For simplicity of presentation, we assume that N is 2 power of 2. In the program
fragment, A is the “input” array of integers to be summed and = is an array of partial sums used
by the algorithm. Both arrays are indexed by the integers 1 through N. At the termination of the
algorithm, z(V) is the sum of the values in the array A. The loop compuies the sum in a tree-like
fashion as shown in the diagram: adjacent elements of the array ate added in parallel, then the

same is done for the resulting values, and so forth until 2 single value remains. The construct
{J| % :predicate :: assignment)

is a parallel assipnment command. The assignmeni is executed in parallel for each value of &
which satisfies the predicate; the entire construct is performed as one atomic action.

Swarm is 2 shared dataspace programming model. Instead of expressing a computation in
terms of a group of named variables, Swarm uses a set of luples called a dataspace. Bach tuple
is a pairing of a type name with a finite sequence of values; a program accesses a tuple by its
content—type name and values—rather than by a specific name or address.

Swarm programs compute by deleting existing tuples from, and inserting new tuples into, the

dataspace. The transactions which specify these atomic dataspace transformations consist of a

i=1
i=2
i=4

2(1) | =) | 2(3) | 2(4) | =) | =(6) | a7 | =(8)
2r DI D V- D3-S D DA D 9+ DDA D D
IO DU B V- D D DD DD ED VA I
- DI D -3 (D D D - DV D A D 4

j : integer;

z(i:1 < i< N): array of integer;

('kzlngN::m(k):zA(k));

(|| k:1<k<NAkmod(j*2)=0:z(k):=z(k—7)+(k);

J=1
doj< N —

Ji=3%2
od

Figure 1: A Parallel Array-Summation Algorithm using Guarded Commands

set of gquery-action pairs executed in parallel. Each query-action pair is similar to a production
rule in a language like OPS5 [5].

How can we express the array-surnmation algorithm in Swarm? To represent the array ., we
introduce tuples of type z in which the first component is an integer in the range 1 through N,
the second a partial sum. We can express an instance of the array assignment in the do loop as

a Swarm transaction in the following way:
v1,92: o(k —j,vl),2(k,v2) — =(k,v2)},=(k, vl +v2)

Above the part to the left of the —- is the query; the part to the right is the action. The identifiers
v1 and v2 designate variables that are local to the query-action pair. (For now, assume that j
and k are constants.)

The execution of a Swarm query is similar to the evaluation of a clause in Prolog [18]. The
above guery causes a search of the dataspace for two tuples of type * whose component values
have the specified relationship—the comma separating the two tuple predicates is interpreted as
a conjunction. If one or more solutions are found, then one of the solutions is chosen nondeter-
ministically and the matched values are bound to the local variables v1 and 42 and the action is
performed with this binding. If no solution is found, then the transaciion is said to fail and none
of the specified actions are taken.

The action of the above transaction consists of the deletion of one tuple and the insertion of
another. The 1 operator indicates that the tuple =(k,v2), where v2 has the value bound by the
query, is to be deleted from the dataspace. The unmarked tuple form z(k,v1 + v2) indicates that
the corresponding tuple is to be inserted. Although the execution of a transaction is atomic, the
effect of an action is as if all deletions are performed first, then all insertions.

The parallel assignment command of the algorithm can be expressed similarly in Swarm:
(l :1<k<NAEmod(j+2)=0=
v1,v2 : z(k — j,v1),z(k,v2) — z(k,v2)t,z(k, vl 4 v2)]
We call each individual query-aciion pair a subiransaciion and the overall parallel construct a
transaction. As with the parallel assignrnent, the entire transaction is executed atomically. The
cumulative effect of execuiing a transaction is as if the subtransactions are executed synchronously:
all queries are evaluated first, then the indicated tuples are deleted, and finally the indicated tuples

are inseried.

program ArraySum(N,A: N > 0, A(i:1 <i< N))
tuple types

[4,8:1 <1< N (i, s)]
transaction types

[f:7>0=
Sum(j) =
lk:1<k<NAkmod(j*2)=0:
v1,v2 : ok — 5, v}, o(k,v2) — =(k,v1+v2)]
i J<N ——s Sum(j * 2)
]
initialization
Sum(l), [i:1 <i< N =21, A())]
end

Figure 2: A Parallel Array-Summation Program in Swarm

Like data tuples, transactions are represented as tuple-like entities in the dataspace. A frans
action instance has an associated type name and a finite sequence of values called parameters. A
subtransaction can query and insert transaction instances in the same way as data tuples are, but
fransactions cannot be explicitly deleted. Implicitly, a transaction is deleted as a by-product of
its own execution—regardless of the success or failure of its component queries.

Two aspects of the array-summation program’s do command have not been translated into
Swarm-—the doubling of j and the conditional repetition of the lvop body. Both of these can be

can be incorporated inio z transaction. We define a transaction type called Sum as follows:

Sum(j) =
ll 5:1<k<NAkmod(jx2)=0u
v1,v2 :z(k — j,v1),x(k, v2) — 2(k,v2){, z(k, vl +v2)]
I J<N — Sum(j=*2)
Thus transaction Sum(j), representing one iteration of the loop, inserts a successor which repre-

sents the next ileration.

For a correct compuiation, the Swarm array-summation program must be initialized with the

following tuple space:
{ m(l, A(l))s m(?,A(?)}, T E(N,A(N)) }

The initial transaction space consists of the transaction Sum(1).

Since each z tuple is only referenced once during a computation, we can modify the Sum
subtransactions to delete both # tuples that are referenced. A complete ArraySum program with

this modification is given in Figure 2.

3 SYNCHRONIC GROUPS

In our discussion so far we have ignored the third component of a Swarm program’s state—
the synchrony relation. The interaction of the synchrony relation with the execution mechanism
provides a dynamic form of the |j operator. The synchrony relation is a symmetric, irreflexive
relation on the set of valid transaction instances. {Picture an undirected graph with transaction
instances represented as nodes and a synchrony relationship between transaction instances as an
edge between the corresponding nodes.) The reflexive transitive closure of the synchrony relation
is thus an equivalence relation. (The equivalence classes are the connected components of the
undirected graph mentioned above.) When one of the transactions in an equivalence class is
chosen for execution, then all members of the class which exist in the transaction space at that
point in the computation are also chosen. This group of related transactions is called a synchronic
group. The subtransactions making up the transactions of a synchronic group are executed as if
they were part of the same transaction.

The synchrony relation can be examined and modified in much the same way as the tuple and
transaction spaces can. The predicate

Sum(i) ~ Sum(j)
in the query of a subtransaction examines the synchrony relation for a transaction instance Sum(i)
that is directly related to an instance Sum(j). Neither transaction instance is required to exist in
the transaction space. The operator = can be used in a predicate to examine whether transaction
instances are related by the closure of the synchrony relation.

Synchrony relationships between transaciion instances can be inserted into and deleted from

the relation. The operation
Sum{i) ~ Sum(s)
in the action of a subtransaction creates a dynamic coupling between transaction instances Sum(1)

and Sum(j) (where i and j must have bound values). If two instances are related by the synchrony

relation, then

program ArraySumSynch{N,A: N > 0,4(i: 1 < i< N))
tuple types
[i,5:1<i< N (i, 3)]
transaction types
[k, 1<E<N1<j<N::
Sum(k,j) =
v1,v2:e(k — j,v1)t,z(k,v2)t — =z(k,vl+v2)
i i< N,kmod(j*4)=0 — Sum(k,j*2)
]
initialization
[1:1< i< N (4, AR,
[k:1 <k < N,kmod2=0: Sum(k,1)];
{k,j:1<k<N,1<j<N:uSumlk,j)~ Sum(k+1,5)];
end

Figure 3: A Parallel Array Summation Program Using Synchronic Groups

(Sum(i) ~ Sum(f))

deletes the relationship. Note that the closure relation a2 can be examined, but that only the base
synchrony rela.tion. ~ can be directly modified. (The dynamic creation of a synchrony relationship
between two transactions can be pictured as the insertion of an edge in the undirected graph
noted above, and the deletion of a relationship as the removal of an edge.)

Initial synchrony relationships can be spéciﬁed by putting appropriate insertion operations
into the initialization section of the Swarm program.

Figure 3 shows a version of the array-summation program which uses synchronic groups. The
subtransactions of Sum(j) have been separated into distinct transactions Sum(k,j) coupled by
the synchrony relation. For each phase 7, all transactions associated with that phase are structured

into a single synchronic group. The computation's effect is the same as that of the earlier program.

4 A PROGRAMMING LOGIC

The Swarm computational model is similar to that of UNITY [7]; hence, a UNITY-style
assertional logic seems appropriate. However, we canrot use the UNITY logic directly because of

the differences between the UNITY and Swarm frameworks.

In this paper we follow the notational conventions for UNITY in [7]. We use Hoare-style asser-
tions of the form {p} ¢ {g} where p and ¢ are predicates over the dataspace and t is a transaction
instance. Properties and inference rules are often written without explicit quantification; these
are universally quantified over all the values of the free variables occurring in them. We use the
notation [t] to denote the predicate “transaction instance ¢ is in the transaction space,” TRS to
denote the set of all possible transactions (not a specific transaction space}, and INIT to denote
the initial state of the program.

The proof rules for the subset of Swarm without the synchrony relation are given in [8]. We
summarize them below. The Swarm programming logics have been defined so that the theorems

proved for UNITY in {7] can also be proved for Swarm.

L. {r}t{q}.

The “Hoare triple” means that, whenever the precondition p is true and transaction instance
t is in the tramsaction space, all dataspaces which can result from execution of transaction

t satisfy postcondition g.

2. punlessg = (Vi:1€TRS: {pA-g}t{pVe}).
This means that, if p is truze at some point in the computation and ¢ is not, then, after the

next step, p remains irue or ¢ becornes irue,

3. stable p = p unless false.

This means that, if p becornes frue, it remains irue forever.

4. invariant p = (INIT = p) A (stablep).

Invarianis are properties which are irue at all points in the computation.

5. pensures g = (punlessg) A (3t:t € TRS: (pA—g=[t)A{pA—-g}t{a})
This means that, if p is frue at some point in the computation, then (1) p will remain true as
long as ¢ is felse, and (2) if ¢ is false, there is at least one transaction in the transaction space
which can, when executed, establish ¢ as true. The “pA—g = [t]” requirement generalizes the
UNITY definition of ensures to accomodate Swarm’s dynamic transaction space. (NOTE!
The second part of this definition guarantees g will eventually become {rue. This follows
from the characteristics of the Swarm execuiion model. The only way a transaction is
removed from the dataspace is as a by-product of its execution; the fairness assumpiion

guarantees that a transaction in the transaction space will eventually be executed.)

10

6. pr— gq.
This, read p leads-to ¢, means that, once p becomes true, ¢ will eventually become irue.
(However, p is not guaranteed to remain true until ¢ becomes true.) As in UNITY, the
assertion p —— ¢ is true if and only if it can be derived by 2 finite number of applications
of the following inference rules:

p ensures ¢
pr— g
r — q, q’———)'f‘

. (transitivity)
p P T

(Vm :m € W : p(m) gq)
(Im :m e W : p(m)) — ¢

e For any set W, (disjunction)

7. termination = (Vi:¢¢€ TRS: —[t]).
Unlike UNITY programs, Swarm programs can ierminaie when the transaction space is

empty.

The logic we defined for Swarm programs may be generalized to accomodate synchronic groups.
This involves the addition of a synchronic group rule and redefinition of the unless and ensures
relations. The other elements of the logic are the same.

We define a basic “Hoare triple” for synchronic groups

{p} 5 {¢}

meaning that, whenever the precondition p is #rue and S is a synchronic group of the dataspace,
all dataspaces which can result from execution of group S satisfy postcondition g. (For a formal
definition of the synchronic group rule, see {8].)

A key difference between this logic and the previous logic is the set over which the properties
must be proved. For example, the previous logic required that, in proof of an unless property,
an assertion be proved for all possible iransactions, i.e., over the set TRS. On the other hand,
this generalized logic requires the proof of an assertion for all possible synchronic groups of the
program, denoted by SG.

For the synchronic group logic, we define the logical relation unless as follows:
punlessg = (VS:S€ SG :{pA—g} S{pVvay}).

If synchronic groups are restricted to single transactions, this definition is the same as the definition

given for the earlier subset Swarm logic.

11

We define the ensures relation following way:

pensuresg = (punlessg) A
(3t:teTRS:(pA—q=[t]) A
(V5:5€ SGAteS:{pAa-g}S{g}))

This definition requires that, when p A —g is #rue, there exists a transaction £ in the transaction
space such that all synchronic groups which can contain ¢ will establish ¢ when executed from a
state in which pA—g holds. Because of the fairness criterion, transaction ¢ will eventually be chosen
for execution, and hence one of the synchronic groups containing ¢ will be executed. Imstead of
requiring that we find a single “statement” which will eventually he executed and establish the
desired state, this rule requires that a group of “statements” (i.e, set of synchronic groups) be
found such that each will establish the desired state and that one of them will eventually be
executed. If synchronic groups are restricted to single iransactions, this definition is the same as

the definition for the subset Swarm logic.

5 A REGION LABELING EXAMPLE

In this section we address the problem of labeling the equal-intensity regions of a digital image
unbounded on one side. The image to be processed is arranged on a grid with M rows and an
infinite number of columns. We identify the pixels by coordinates with z-values 1 or larger and
y-values in the range 1 through M. Although the full image is assumed to extend to the right
without bound, the length of each equal-iniensity region, i.e., the number of columns intersected
by the region, is assumed to be finite and bounded, but of unknown value. For convenience, we
let the constant MazLen designate this value for the image to be processed (but do not allow a
program to use this conséant directly).

‘We desire a program which labels the regions of unbounded images of this type. The program
must not use an unbounded amount of space: the number of tuples and iransactions existing
at any point during the computation must be bounded above by some constant; the values of
all integers used in the program must also be bounded above {and below). (Since the current

definition of Swarm does not contain true input or output cperations, we musi simulate these

operations. We do not impose the bounded-values restriction on “counters” used 4o record the
current position in the input or output stream.)

To keep the number of tuples and transactions bounded, we adopt a sliding window metaphor
for our solution to the problem. (See Figure 4.) The window is a contiguous group of columns
from the image. At any point in the computation, the window contains all pixels currently being
processed. The program stores information about these pixels in the dataspace. The computa-
tion begins with the leftmost (smallest z-coordinate) column of the image in the window. As a
computation proceeds, the window expands to the right—the column of the image immediately to
the right of the window is inserted into the window when the pixels in that column are “needed.”
The program needs the new column when some region extends across all columns of the window,
The window also contracts from the left—~the leftmost column of the window is deleted when all
pixels in the column have been “completed.” A pixel is complete when all pixels in its region have
been labeled with the region’s label. (We use the smallest coordinates of a pixel in the region
as the region’s label.) The window thus slides across the image from left to right; the maximum
width of the window is MaxLen <+ 1.

For the size of the numbers used by the program to be bounded, the program cannot use
the absolute coordinate system of the full image. Thus, for the pixels in the window, we adopt
a new coordinate system—the program addresses pixels relative to the leftmost column of the
window. When the program expands the window, all information inserted into the dataspace
concerning the new pixels must use window-relative z-coordinates. When the program contracts
the window, it must also modify all information concerning the pixels in the window to reflect the
new coordinate system base.

Figure 5 shows a Swarm program, named Unbounded, which uses this sliding window strategy
for labeling the regions of an unbounded region. Program parameter M denotes the number of
rows in the image. Parameter Intensify is an array of input intensity values indexed by the pixel
coordinates; parameters Lo and Hi denote the bounds on these intensity values. The defini-
tions section introduces named constants and “macros.” Predicates Pizel(P), neighbors(P, Q),
R_neighbors(P,Q), on_lefi(p), and on_righi(p) and the constant ONE allow the other sections to
be expressed in & more concise and readable fashion. The tuple types section declares the types

of tuples that can exist in the tuple space. The program declares three tuple types: has.lobel

13

“base” pixel being "last”
column column
IS M
e BN B e
L3
Yoy - iy i
VNS \.-‘ L L
b nan — .
v LY L - .,
R G Q O
A
4 - - 1 . -
R QO 3
3 L]
[- 1 -~ -~
O oo Q
1]
! -
o o R o -
PO A PO O
Vo R -
VO QO O
\ A
L R D LT e TR St
labeled Window > region not yet
region observed

Label(p) ~Label() > I__—I::
Labeling
Synchronic
: : I I Groups
@

Contraci(p) ~ Contraci(q) =i .
Contraction

Synchronic
Group

O—(

Figure 4: The Window Metaphor and Related Synchronic Groups

14

program Unbounded(M, Lo, Hi, Intensity :
M > 1, Lo < Hi, Intensity(p : Pizel(p)),
[V : Pizel(p) :: Lo < Intensity(p) < Hi])
definitions
[P,Q,L::
Pizgel(P) = [Be,r:P=(e,r) e 21,1 < r < M];
neighbors(P, Q) =
Pizel(P), Pizel(Q), P # Q,
Az, y,a,b: P={z,9),Q@=(g,b)ma—-1<z<a+1,b-1<y<b+1];
R_neighbors(P, Q) =
neighbors(P, Q), (3¢ :: hasantensity(P, ¢), hasintensity(Q, ¢)];
onleft(P) = Pizel(P),[3r = P =(1,7)};
on.right(P) = Pizel(P),{3c,r: final(c) : P = {¢,7)];
ONE = (1,0)
]
tuple types
[P,L,I,C: Pizel(P), Pizel(L), Lo < I< Hi,C> 1=
has_label(P, L);
has_intensity(P,I);
Final(C)

transaction types
[P, Nezt : Pizel(P), Next > 1 =:
Lebel(P) = ---;
Fzpand(Nezt) = --- ;
Contract(P) = ---

initialization
[P :onleft(P)
has_intensity(P, Intensity(P)), haslabel(P, P), Label(P), Coniract(P)],
[P,Q : onleft(P),neighbors(P, Q), onle fi(Q), Intensity(P) = Intensity(Q) =
Label(P) ~ Label(Q)],
[P, Q@ : ondeft(P), neighbors(P,Q), onlefi(Q) :: Coniract(P) ~ Coniraci(Q)],
Ezpand(2), final(1)

end

Figure 5: An Unbounded Region Labeling Program in Swarm

Label(P) =
£, AL, A2 . has label(P, A1)t, R_neighbors(P, p), has label(p, A2),A2 < A1
—+ has_label(P, \2)
Il on_right(P} - skip
I OR — Label(P)
i 1, A: NOR, has_intensity(P,), has label(P,A)} — skip
fl NOR —— [p : neighbors(P, p) :: (Label(P) ~ Label(p))t]

Figure 6: Unbounded Region Labeling—ZLabe! Transaction

pairs a pixel with a label, has_iniensity pairs a pixel with its intensity value, and final records
the z-coordinate of the rightmost column of the window.

Program Unbounded uses three transaction types—Label, Ezpand, and Contract. The transac-
tions of type Label carry out the labeling of the pixels of the image; transactions of type Ezpand
and Contract implement the window expansion and contraction operations of the sliding window
strategy. Note that the computation begins with the window positioned over a single column—the
first column of the image. Figures 6, 7, and 8 show the details of these transaction definitions.

To organize the computation, we take advantage of the synchronic group feature of Swarm.
For instance, we use a synchronic group to contract the window, The program creates a Coniract
transaction for each pixel in the window, either at initialization or when a new column is brought
into the window by an FErpend transaction, and links all of these transactions together into a
synchronic group. When executed, this group simultaneously decrements the z-coordinates for all
information recorded for each pixel in the window.

The program also uses synchronic groups of Label transactions to carry out the labeling of
the regions and to detect when the labeling of a region is complete. The program creates a Label
transaction for each pixel of the window, either at initialization or when a new column is brought
inte the window by an Frpand transaction, and links the transactions for neighboring pixels of
the same intensity into the same synchronic group. When one of these Label synchronic groups
is executed, it either changes the labels of one or more pixels to a lower value or, when it detects
that labeling of the region is complete, deletes all information concerning the region from the

dataspace.

16

Ezpand(Next) =
Py A, ¢t on_right(p), has_ label(p,), ondefi(A), final(c)t
[rr:1<r<M,r={c+1,7)=u

has_intensity(r, Intensity((Nezt,r))),

has label{r, 1),

Label(7),

[8 : neighbors(r,6),6 < (¢ +1,M),
Intensity(r) = Intensity(§)

Label(r) ~ Label(5)],

Contract(r),

[6 : neighbors(r,8),6 < (c+1,M) =
Contraci(r) ~ Contract(8)],

final{e +1),

Ezpand(Next + 1)

Figure 7: Unbounded Region Labeling—Fxzpand Transaction

The special global predicates AND, OR, NAND, and WOR (having the same meanings
as in digital logic design) are used in transaction queries. These special predicates examine the
success status of all the simultanecusly executed subtransaction queries which do not involve
global predicates, i.e., the local queries. For example, the predicate OR succeeds if any of the
local queries in the transaction also succeed; NOR. (not-or} succeeds if none of the local queries
succeed. The scope of the global predicates extends to all local subtransactions in the synchronic
group.

Now we take a closer look ai the details of the transaction definitions. A Label(P) transaction
(Figure 6) conmsists of five subtransactions. The first two subtransactions involve local queries.
If pixel P has a neighbor pixel (in the same region) which has a smaller label, then the first
subtransaction relabels P to the neighbor’s label. The second subtransaction succeeds when pixel
P is on the right boundary of the window. This test is pari of the detection strategy for labeling
completion. A region is not yet complete if there can exist more pixels in the region that have not
vet been input. The remaining three transactions use the special global predicates OR and NOR.
The third subtransaction’s query succeeds when any of the local subtransactions of any transaction
in the synchronic group succeeds; on success it reinserts the Label{P} transaction. Gradually the

smallest label will propagate throughout the region during the successive executions of the Label

17

Contraci(P) =
¢ : onldeft(P), has_intensity(P,.) — skip
Il OR — Contraci(P)
Il c: NOR, final(e)t
—+ final(c — 1), Contract(P)
(| ¢: NOR, has intensity(P,.)t
— has_intensity(P — ONE,)
i A : NOR, has label(P, A)}
— has_label(P — ONE, X — ONE), Label{P — ONE)
I Hl p:neighbors(P, p) ::
NOR, (Label(P) ~ Label{p))t
~——+ Label(P — ONE) ~ Label(p — ONE)]

Figure 8: Unbounded Region Labeling— Contract Transaction

transactions on a region. The fourth and fifth subtransaction queries succeed when none of the
local subtransactions in the synchronic group succeeds. In this case the region has been completely
labeled and all information about the region can be deleted. (In its current form this program
does not generate any “output.”)

Only one Ezpand transaction (Figure 7) exists at any point in the computation; it is not
in a synchronic group with any other transaction. The Ezpand(Next) transaction simulates an
input operation—bringing the Nezt column of pixels from the “input” array Intensily into the
dataspace—and builds appropriate synchronic groups of Label and Contract transactions. The
input of a new column is enabled when there exists some region which spans the width of the
window; Frpaend detects this situation by testing for a pixel on the right boundary of the window
which is labeled by a pixel’s coordinaies from the left boundary of the window.

A Contraci{P) transaction contracts the window when the leftmost column has been com-
pletely processed; it consists of one local and several global subtransactions. The local subtrans-
action succeeds when pixel F is on the left boundary of the window and the dataspace contfains
tuples associated with P. If the local subiransaction fails for all pixels in the window, then the
lefimost column of the window is empty. All pixels in the column have been completely processed;
thus the entire window can be shifted one column to the right. The global subiransactions ac-

complish this shifting by decrementing by one column the pixel coordinates recorded in tuples

18

and synchrony relation links. The first and second global subtransactions alse keep the window

contraction activity aiive by reinserting the Coniraci(P) transaction.

6 PROOF OUTLINE

Although at any point in the computation the program only has access to a narrow window
imposed upon the image, we find the use of the full unbounded image to be convenient in reasoning
about the program. In the statement of properties we use pixel coordinates with respect to the
beginning of the full image and identify the regions of the image with integers beginning with
1. We define R(Z) to be the set of pixels in region i; w(i) to be the “winning” pixel for region
i—the pixel with smallest coordinates. For convenience, we also define lefi(i) and right(i) to be
the leftmost and rightmost coiumn numbers of region . We also let col(p) denote the column, or
x-coordinate, of pixel p, the predicate col_gone(c) assert that no tuples associated with pixels in
column ¢ exist in the dataspace, and the predicate reg.gone(i) assert that region i has its final
labeling and the associated tuples have been deleted. Unless otherwise stated we assume that free
variables occurring in property assertions are universally quantified implicitly over all valid values
of the appropriate type, e.g., p and ¢ over zll pixels in the full image, 2 and j over all regions, ¢
and d over all columns, and b over all intensity values.

We augment the program with auxiliary statements and data structures to capture additional
information about history of the computation. The auxiliary variable base always points to the
column immediately to the left of the current window. The variable is initialized to zero; it is
inctemented by one each time the Contract synchronic group shifts the lefi side of the window by
one unit. The variable last always points to the rightmost colwnn of the window. The variable
is initialized to one; it is incremented by one whenever the Ezpand transaction brings another
column into the dataspace.

To complement the Intensity array, we add a piz_label array; both of these arrays are indexed
by the absclute pixel coordinates. Whenever a Label transaction changes a has_label tuple for a
pixel, the corresponding piz_label array elemeni is changed to the corresponding label value. The

pizlabel array is not changed upon deletion of the has label tuple.

19

6.1 Important Invariants

Formally, we relate the values of the tuples in the dataspace to the auxiliary structures with the
Window Intensity, Window Label, and Window Boundary invariants. In addition, the Window
Integrity invariant requires that the window be at least one column wide. (For pixel coordinates
p in the full image, the notation p’ denotes the expression p — (base, 0).)

Property 1 (Window Intensity)

invariant (#n 1 hasintensity(p',n)) <1 A
(hasntensity(p', b) = Intensity(p) = b)

Property 2 (Window Label)

invariant (#1 :: has_label(p’,t)) < 1 A (hasJabel(p’, ') = piz_label(p) = 1)
Property 3 (Window Boundary)

invariant final(c) = (c = last — base)
Property 4 (Window Integrity)

invariant 0 < base < last

In addition to the Window properties, we constrain a pixel’s label to be the coordinates of
some pixel within the same region. Moreover, we require the label to be no larger than the pixel’s
own coordinates. We formalize this constraint as the Labeling Invariant.

Property 5 (Labeling Invariant)
invariant p € R(i) Apizlabel(p) =1 = 1€ R{{) A w(i) <I<p

To faithiunlly represent the problem, the labeling of all pixels to the left of the window must be
complete and the associated tuples must be deleted. We formalize this requirement, in a slightly
stronger way, as the Completion Invariant.

Property 6 (Completion Invariant)

invariant p € R(i) A col(p) < base = reg_gone(i)

The four Window invariants and the Labeling and Completion invariants comprise a first
correciness criterion—the faithfulness of the program structures to the problem.

The second criterion for correctness of the program is the Labeling Stability property. This
safety property asserts that, once a pixel is labeled with the winning pixel for its region, the pixel’s
label will not change as the computation proceeds.

Property 7 (Labeling Stability)

20

stable p € R(i) A pizc_label(p) = w(3)

The third criterion for correctness is the Bounded Window property. This property asserts
that the window is at most one column wider than the maximum length for individual regions.

Property 8 (Bounded Window)

invariant last — base < Mazlen +1

In the programming logic, unless properties must be proved with respect to the set of all
possible synchronic groups of 2 program. To simplify this proof process, we can specify properties
which characterize the actual structures of the synchronic groups that can arise during a compu-
tation. Once these synchronic group properties have been verified, we can use them in the proofs
of other properties.

The unbounded region labeling program has three types of transactions— Label, Ezpand, and
Coniract. One or more transactions of a single type ate combined to form a synchronic group.
Groups consisting of different types of transactions are not allowed by the program. This notion
is formalized as the Synchronic Group Integrity invariant.

Property 9 (Synchronié Group Integrity)

invariant —{Label(p) ~ Ezpand(c))A
-{Ezpand(c) ~ Contract{g)) A
—(Contract(q) ~ Label(p))

At any point during the computation there exists a single EFrpand transaction. I is associated
with the column of the image immediately to the right of the window—the next column to
be inserted. This transaction comprises a single element synchronic group. We formalize this
property as the Expand Group invariant.

Property 10 (Expand Group)

invariant (# ¢ :: Ezpand(e)) = 1 A Ezpand(last + 1)

The Contract Group invariant specifies the structure of the synchronic groups involving Con-
iract transactions. At any point during the cornputation there exisis a single synchronic group of
this type. The group includes one transaciion for each pixel visible in the window.

Property 11 (Contract Group)

invariant (Yp: base < col(p) < last : Contract(p’)) A
(Vp, g : Contract{p’) A Contract(q') : Contraci(p’) = Contract(q'))

21

The structures of the Label groups are more complex. The portion of an unfinished region
visible in the window may be divided into one or more subregions by the right boundary of
the window. At any point during the computation, for each unfinished subregion there exists
a synchronic group which exactly covers the subregion. (There is a Label(p) transaction for
each pixel p of the subregion; no additional transactions are part of the group.) The Label
Group invariant formally characterizes the structures of this type of synchronic group. (The
neighbors(p, ¢) predicate used in this property is defined in the definitions section of the program
Unbounded.)

Property 12 (Label Group)

invariant
(Vp,a:p€ R(i)Ag € R(i):
—reg_gone(i) A neighbors(p, g) A col(p) < lest Acol(g) < last

Label(p') A Label(q') A (Label(p') ~ Label(g')))

There are two proof obligations in proof of an invariant: showing that the initial state satisfies
the property and showing that all synchronic groups preserve the property. Once the synchronic
group invariants above have been proven, they can be used as theorems in the proofs of other
properties. We do not prove any of the invariants here; most of the proofs are not difficult and

are given in [8].

6.2 Progress Proof

The fourth criterion for correctness of the region labeling program is the Labeling Completion
property. This progress property asseris that, when the computation is begun in a valid initial
state, it will eventually reach a state in which labeling of any finite prefix of the image will be
finished.

Property 13 (Labeling Completion)
INIT AC >0 — base > C

The Labeling Completion property asserts that any execution of the unbounded region labeling
program will actually label the regions. Specifically, the property guarantees that any finite prefix
of the columns of the full image will eventually be labeled and the associated data tuples deleted.

In terms of the sliding window meiaphor, the window will eveniually slide o the right of any

22

arbitrary prefic of the full image. Because of the Completion Invariant, we can conclude that the
portion of the image to the left of the window has been labeled as desired.

We use the following approach for this progress proof. To show that the window eventually
slides past a finite prefix, we show that the left boundary of the window will always eventually
advance one column. For the left boundary to advance past a column, all pixels in that column
must be finished, i.e., labeled with the winning label and the associaied data tuples removed.
Because of the Completion Invariant, we only need to comsider left-anchored regions, regions
which begin in the leftnost column of the window and extend to the right. These regions will
eventually be completed and all pixels removed.

To show that labeling of a left-anchored region will eventually finish, we must prove:

o if the region extends beyond the right boundary of the window, eventually all missing

columns will be inserted into the window,

s if the region is completely contained within the window, it will eventurally be labeled and

deleted, -

If the region exiends beyond the right boundary, then eventually a Label synchronic group will
propagate z label from the left boundary across to the right boundary. This enables the input of
the next column. Eventually a left-anchored region will be completely within the window. The
same label propagation mechanism will then eventually complete the labeling and remove the
region from the dataspace.

Below we sketch a proof of the Labeling Completion property. For pedagogical reasons, we
proceed in a top-down fashion. We first outline how a higher level leads-to property can be proved
using other leads-to, ensures, and unless properties, then we address each unproven property in
a similar fashion. To keep track of the outstanding proof obligations, we will list periodically the

properties requiring proof in a box as shown below.

Properties to prove: Labeling Completion.

€ Proof of Labeling Completion. To show that the window eventually slides past a finite
prefiz, we show thal the left boundary of the window will always eventually advance one column.

The Labeling Completion property is proved by an induction needing a simpler “one-step”

property:
Property 14 base=cr—— base=c+1

23

iProperties to prove: 14.]

§ Proof of Property 14. For the left boundary of the window to edvance past a column, all
pizels in thal column must be labeled with the winning pizel and deleted from the dataspace. All
pizels in the column will eventually be labeled and deleted.

Consider two cases for the leftmost column of the window: col_gone(c+1) and —col_gone(c+1),
where col_gone(c+1) is {rueif and only if there do not exist any tuples in the dataspace associated
with the pixels in column ¢ + 1. Note that base = ¢ unless base = c+ 1.

(1) Case col_gone(c + 1). This case is covered by the following property:
Property 15 base = ¢ A col.gone{c + 1) ensures base = ¢+ 1

(2) Case —col_gone(c+1). First, using the leads-to property 16 below and the unless property
noted above, apply the Progress-Safety-Progress (PSP) Theorem [7], then apply the Cancellation
Theorem for Leads-to [7] using case (1).

Property 16 base = ¢ A =col_gone{c+ 1) — colgone(c+ 1)

| Properties to prove: 15, 16, l

As an ensures, property 15 has two proof obligations. Let LHS and RHS refer to the left-
and right-hand sides of the ensures assertion. (1) We must show LES unless RHS. (2} We must
also show that, whenever LHS A ~RHS is irue, there exists a transaction in the dataspace such
that execution of any synchronic group containing that transaction will always estzblish RHS as
irue.

€ Proof of Property 15. The left boundary of the window will be advanced when the lefimost
column has been processed and oll pizels removed.

Prove the assertion base = c A col_gone(c + 1) ensures base = ¢+ 1.

(1) Unless part. Clearly base = c unless base = ¢+1 and stable c+1 < last Acol_gone(c+1).

Since base < last by the Window Integrity invariant, we can conclude
base = ¢ A col_gone(c + 1) unless base = c+ 1

using the Simple Conjunction Theorem for Unless {7].
(2) Exists part. Because of the Window Integrity and Contract Group invariants, we know

there exists a pixel P, P = (c + 1,1), such that

24

base = ¢ A col_gone(c + 1) => Coniract(P’).

Because of the Synchronic Group Integrity and Contract Group invariants, it is easy to see that
all synchronie groups containing Coniraci({ P’} establish base = c+1 when the precondition base =

¢ Acol_gone(c+ 1) is true. I

lProperties to prove: 16.

Y Proof of Property 16. The unfinished pizels in the lefimost column of the window are in
regions which begin tn thai column end exiend io the right. Labeling of these regions will eventually
be completed and all pizels remnoved.

Prove the assertion base = ¢ A —col_gone(c+ 1) +— col_gone(c + 1). Consider two cases for a
region 7 which intersects column e+ 1: lefi(i) < ¢ and lefi(i) = c+ 1.

(1) Case left(i) < c. Because of the Completion Invariant and definition of reg_gone,
base =cAleft(i) < c = (Vp:p € R{) Acol(p) = ¢+ 1: piz_gone(p))

where piz_gone(p) is true when there are no has_label or has_intensity tuples in the dataspace
which are associated with pixel p. The Implication Theorem for Leads-to 7] allows the “=" to
be replaced by a “—".

(2) Case lefi(i) = ¢ + 1. The following property is the essence of this case.
Property 17 base = ¢ A mcol_gone(c+ 1) Alefi(i) = c+ 1 —— reg_gone(i)

Because of property 17, the definition of reg_gone, and the Implication Theorem, we can deduce

base = ¢ A —col_gone{c+ 1) Alefi(i) = ¢+ 1
(Vp:p € R(i) Acol(p) = c+ 1: piz_gone(p)).

Since col(p) < last A piz_gone(p) is stable and base < last is invariant, we apply the Completion

Theorem [7] over the regions intersecting column ¢+ 1 to deduce

base = ¢ A —col.gone(c + 1} — col_gone(c + 1}).

| Properties to prove: 17.

For convenience, we define ezcess(i) to be the total amount the labels on region 4 exceed the

desired labeling (all pixels in the region labeled with the “winning” pixel}. More formeally,

25

excess(i) = (Sp:p € R(E) : pizdabel(p) — w(i))

where the “T" and“—” operators denote component-wise summation and subtraction of the co-
ordinates, We use excess as to measure the amount of labeling work remaining to be done on a
region. In assertions involving ezcess we often use 0 (boldface zero) to denote the pair (0,0).

¥ Proof of Property 17. To show that a lefi-enchored region eveniueally is finished, we
must prove: (a) if the region ertends beyond the right boundary of the window, then eventually
all missing columns will be inseried into the window; (b) if the region is complelely coninined
within the window, then it will eventually be labeled completely with the winning pizel and all
pizels deleied.

Prove the assertion base = c A —~col_gone(c + 1) A lefi(i) = ¢+ 1 +— reg_gone(i). Consider

three cases for the state of left-anchored regions:
e righi(i) < last A ezcess(i) = 0,
o right(i) < last A eméess(i) >0,
s 7righi(i) > last.

Note that base = cA—col_gone(c+1)Alefi(i) = c-+1 unless reg_gone(i) and stable right(i) < last.
(1) Case right(i) < last A excess(i) = 0. This case is covered by the following ensures
property:
Property 18
base = ¢ A mcol_gone(c + 1) A lefi(i) = c + 1 A right(i) < last A excess(i) =0

ensures reg.gone(i)

(2) Case right(i) < last A ezcess(i) > 0. First apply the PSP Theorem [7] using the leads-to
property below and the conjunction of unless and stable properties noted above, then apply the

Cancellation Theorem for Leads-to [7] using case (1).

Property 19 If the region is completely conlained within the window, the winning pizel’s label is

gradually propagaeted throughout the region. (Proof omitied.)

base = ¢ A —col.gone(c + 1) A left(i) = ¢ + 1 A right(s) < last A ezcess(i) > 0

— ezcess(i) =0

26

(3) Case right(i) > last. First apply the PSP Theorem [7] using the leads-to property 20
below and the unless property noted above, then apply the Cancellation Theorem for Leads-to
[7] using the disjunction of cases (1) and (2).

Property 20

base = ¢ A —col_gone(e + 1) A lefi(i) = ¢ + 1 A right(d) > last
bt Pight(i) < last

Properties to prove: 18, 20.

€ Proof of Property 18. Jf the region is labeled with the winning pizel, it will eveniually be
deleied.

Prove the assertion

base = c A —col_gone{c+ 1} A lefi(i) = ¢+ 1 A righi(z) < last A exzcess(i) = 0
ensures reg.gone(i).

(1) Unless part. Consider the synchronic groups allowed by the synchronic group invariants.
Clearly Ezpand and Contract groups and Label groups for regions other than ¢ preserve the LHS
of the ensures. The Label group on region ¢ will establish reg_gone(i) as irue for the given
precondition,

(2) Exists par}, Because of the Window Iniegrity and Label Group invariants, we know
base = ¢ A —col_gone(c+ 1) A lefi(i) = ¢ + 1 A right(3) < last = Label(w(3)').

Because of the Synchronic Group Integrity and Label Group invariants, it is easy to see that all syn-
chronic groups containing Label{w(i)’) establish reg_gone(i) when the precondition ezcess(i) = 0

is true. 1

Properties to prove: 20.|

§ Proof of Property 20. [f the Tegion extends beyond the right boundery of the window,
missing columns will gradually be inserted into the window.

Prove the assertion
base = c A —col_gone(e -+ 1) A left(i) = ¢ + 1 A right(i) > last —— right(d) < last.

27

Note that
base = ¢ A —col_gone(c+ 1) Alefi(z) = ¢ + 1 A right(i) > last unless right(i) < last.

First, apply the PSP Theorem (7] using the leads-to property 21 below and the unless property
noted above, then apply the Induction Principle for Leads-to [7].
Property 21

base = ¢ A ~col_gone(c + 1) A lefi(i) = ¢ + 1 A right(i) > lasi Alast = d
— lasi =d+41

Properties to prove: 21.

Property 21 means that, if the region extends beyond the right boundary, then eventually a
Label synchronic group will propagate a label from the left boundary across to the right boundary.
This enables the input of the next column. We omit the proof of this property here. The proof

can be found in [8].

7 CONCLUSIONS

The Swarm programming logic is the first axiomatic proof system for a shared dataspace
“language.” To our knowledge, no axiomatic-style proof systems have been published for Linda,
production rule languages, or any other shared dataspace language. Taking advantage of the simi-
larities between the Swarm and UNITY computational models, we have developed a programming
logic for Swarm which is similar in style to that of UNITY. The Swarm logic uses the same logical
relations as UNITY, but the definitions of the relations have been generalized to handle the dy-
namic nature of Swarm, i.e., dynamically created transactions and the synchrony relation. In this
paper we have shown how one can extend the proof logic for Swarm to accomodate the dynamic
formation of synchronic groups specified by the runtime redefinition of the synchrony relation.

Swarm’s synchrony relation is an elegant new language construct for dynamically organizing
concurrency. Sometimes programmers want to organize the concurrency in a program to match
the structure of the program’'s “input” data. These data may be spazse, loosely structured, or

unbounded in some manner, Sometimes programmers may also want to alter the structure of the

28

concurrency as a result of a previous subcomputation. The dynamically modifiable synchrony rela-

tion, in conjunction with dynamically created transaction instances, provides a sirnple mechanism

for achieving such program structuores,

Acknowledgements: This work was supported by the Department of Computer Science,

Washington University, Saint Louis, Missouri, We thank Jerome R. Cox, department chairman, for

his support and encouragement. We also thank Ken Cox for his suggestions concerning this article.

The unbounded region labeling program used in this paper is based on a program developed by

Rose Fulcomer Gamble and the first author.

References

[1] G. Agha. Actors: A Model of Concurrent Compuiation in Disiribuled Systems. MIT Press,

[3]

Carmbridge, Massachusetts, 1986,

S. Ahuja, N. Carriero, and D. Gelernter. Linda and friends. Computer, 19(8):26-34, August

1586.

ANSI, Inc, Reference Manual for the Ade Programming Language. American National Stan-

dards Institute, Inc., Washington, D.C., January 1983. ANSI/MIL-STD-1815A-1983.

J. Backus. Can programming languages be liberated from the von Neumann style? A func-
tional style and its algebra of programs. Communications of the ACM, 21(8):613-641, August
1978.

L. Brownston, R. Farrell, E. Kant, and N. Martin. Programming Ezpert Sysiems in OPS535: An

Iniroduction to Rule-Based Programming. Addison-Wesley, Reading, Massachuseits, 1985.

N. Carriero and D. Gelernter, Linda in context. Communications of the ACM, 32{4):444-458,

April 1989.

K. M. Chandy and J. Misra. Parcllel Program Design: A Foundaiion. Addison-Wesley,

Reading, Massachusetts, 1988.

H. C. Cunningham. The Shared Dataspace Approach to Concurrent Computation: The Swarm
Programming Model Noiation, and Logic. PhD thesis, Washington University, Depariment

of Computer Science, St. Louis, Missouri, August 198%. Advisor: G.-C. Roman.

28

[¢]

(10}

[11]

[17}

[18]

E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood Clifls, New Jersey,

1976.

W. D. Hillis and G.. L. Steele Jr. Data parallel algorithms. Communicalions of the ACM,
28(12):1170-1183, December 1986.

C. A. R. Hoare. Communicating sequential processes. Communiceiions of the ACM,

21(8):666—677, August 1978.

T. D. Kimura. Visual programming by transaction network. In Proceedings of the 21st Hawaii

International Conference on Sysiem Sciences, pages 648-654. IEEE, January 1988.

M. Rem. Associons: A program notation with tuples instead of variables. ACM Transactions

on Programming Languages and Systems, 3(3):251-262, July 1981.

M. Rem. The closure statement: A programming language construct allowing ultraconcurrent

execution. Journal of the ACM, 28(2):393-410, April 1981.

G.-C. Roman. Langunage and visualization support for large-scale concurrency. In Proceedings
of the 10th International Conference on Software Engineering, pages 286-308. IEEE, April

1988.

G .-C. Roman and H. C. Cunningham. A shared dataspace model of concurrency—Language
and programming implications. In Proceedings of the 9th Inlernational Conference on Dis-

tributed Computing Sysiems, pages 270-279. IEEE, June 1989.
E. Shapiro. Concurrent Prolog: A progress report. Compuier, 19(8):44-58, August 1986.

L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, Cambridge, Massachusetts, 1986.

30

	The Synchronic Group: A Concurrent Programming Concept and its Proof Logic
	Recommended Citation
	The Synchronic Group: A Concurrent Programming Concept and its Proof Logic

	tmp.1459809062.pdf.GlAHB

