Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-89-36

1989-09-01

Axon: A High Speed Communication Architecture for Distributed
Applications

James P.G. Sterbenz and Gurudatta M. Parulkar

There are two complementary trends in the computer and communication fields. Increasing
processor power and memory availability allow more demanding applications, such as scientific
visualization and imaging. Advances in network performance and functionality have the
potential for supporting programs requiring high bandwidth and predictable performance.
However, the bottleneck in increasingly in the host-network interface, and thus the ability to
deliver high performance communication capability to applications has not kept up with the
advances in computer and network speed. We have proposed a new architecture that meets
these challenges called Axon, whose novel aspects include: an integrated design of hardware,...
Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Cf Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Sterbenz, James P.G. and Parulkar, Gurudatta M., "Axon: A High Speed Communication Architecture for
Distributed Applications" Report Number: WUCS-89-36 (1989). All Computer Science and Engineering
Research.

https://openscholarship.wustl.edu/cse_research/748

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F748&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F748&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F748&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F748&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F748&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F748&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F748&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/748?utm_source=openscholarship.wustl.edu%2Fcse_research%2F748&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/748

Axon: A High Speed Communication Architecture for Distributed Applications

James P.G. Sterbenz and Gurudatta M. Parulkar

Complete Abstract:

There are two complementary trends in the computer and communication fields. Increasing processor
power and memory availability allow more demanding applications, such as scientific visualization and
imaging. Advances in network performance and functionality have the potential for supporting programs
requiring high bandwidth and predictable performance. However, the bottleneck in increasingly in the
host-network interface, and thus the ability to deliver high performance communication capability to
applications has not kept up with the advances in computer and network speed. We have proposed a new
architecture that meets these challenges called Axon, whose novel aspects include: an integrated design
of hardware, operating systems, and communications protocols, stressing both performance and the
required functionality for demanding applications; the proper division of hardware and software function;
and reorganization of end-to-end protocols to take advantage of the increased functionality of the
emerging high speed internetworks.

https://openscholarship.wustl.edu/cse_research/748?utm_source=openscholarship.wustl.edu%2Fcse_research%2F748&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/748?utm_source=openscholarship.wustl.edu%2Fcse_research%2F748&utm_medium=PDF&utm_campaign=PDFCoverPages

AXON: A HIGH SPEED COMMUNICATION
ARCHITECTURE FOR DISTRIBUTED
APPLICATIONS

James P. G. Sterbenz
Gurudatta M. Parulkar

WUCS-89-36

September 1989

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Baint Louis, MO 63130-4899

ABSTRACT

There are two complementary trends in the computer and communications fields. Increasing
processor power and memory availability allow more demanding applications, such as scientific
visualization and imaging. Advances in network performance and functionality have the poten-
tial for supporting programs requiring high bandwidth and predictable performance. However,
the bottleneck is increasingly in the host-network interface, and thus the ability to deliver high
performance communication capability to applications has not kept up with the advances in
computer and network speed.

We have proposed a new architecture that meets these challenges called Axon, whose novel
aspects include: an integrated design of hardware, operating systems, and communications pro-
tocols, stressing both performance and the required functionality for demanding applications;
the proper division of hardware and software function; and reorganization of end-to-end proto-
cols to take advantage of the increased functionality of the emerging high speed internetworks.

Presented at the 4th IEEE Communications Society Workshop on Computer Communications,
Dana Point, Calilornia, October-November 1989,

An abridged version of this paper appears in the INFOCOM 00 Proceedings [StPa90b]. Minor
revisions April 5, 1990.

James Sterbenz is on leave of absence from IBM Corporation at Washington University in St.
Louls.

AXON: A HIGH SPEED COMMUNICATION
ARCHITECTURE FOR DISTRIBUTED
APPLICATIONS

James P. G. Sterbenz Gurudatta M. Parulkar
Jps@wucsl.wustl.edu guru@flora.wustl.edu
+1 314 726 4203 +1 314 889 4621

1. Introduction

The ongoing research in the computer communication and telecommunications fields suggests two
emerging trends which are complementary to one another. First, as time goes on we will continue
to witness communication networks which can support increasingly high data rates. For example,
networks with data rates of a few hundred Mbps are being prototyped, and networks with data rates
of a few Gbps are being planned. The future generation of internetwork, consisting of these high
speed subnetworks, will be referred to as the very high speed internetwork (vHst) [Pa90]. Second,
a diverse application set having differing bandwidth, latency, and reliability requirements will have
to be supported on the VHsI communication substrate. For example, video distribution, computer
imaging, distributed scientific computation and visualisation, distributed file and procedure access,
and multimedia conferencing are all target applications. These trends pose a number of new chal-
lenges and opportunities to the researchers in the field, One such challenge is how to support high
performance interprocess communication (IPC) in this environment.

We argue that the existing approach of supporting 1Pc cannot deliver the underlying high band-
width to newer and demanding applications because of a number of reasons: lack of integration
among host architecture, operating system, and communication protocols, performance bottlenecks
in the existing end-to-end protocols and their implementation, and almost no support for the shared
memory paradigm in a loosely coupled or network environment.

We propose a new comimunication architecture for distributed systems called Axon. The primary
goal of the Axon architecture is to support a high performance data path delivering vasI bandwidth
directly to applications. The significant features of Axon are: [1] an integrated design of host
and network interface architecture, operating systems, and communication protocols; [2] a network
virtual storage facility which includes support for virtual shared memory across a network [SiPa8%a,
StPad0a, StPa90c]; [3] a high performance, lightweight object transport facility which can be used by
both message passing and shared memory mechanisms [StPa89b]; [4] a pipelined network interface
which can provide a high bandwidth low latency path directly between the vHSI and host mMemory
[5t90].

This paper presents an introduction to the Axon architecture, and is organised as follows: Sec-
tion 2 gives motivation for the investigation of high performance 1Pc, and sumarises problems with
current implementations. Section 3 presents a description of the various Axon architectural compo-
nents. Section 4 describes other related work.

2 Axon architecture

2. Motivation

This section provides motivation for the Axon architecture by outlining the requirements of commu-
nications for future high performance applications. This is followed by a description of the limitations
of current architectures in meeting these application requirements.

supercomputer .
mass storage (1-10 Gflops) ;E:;;ZL
(1—10 Tbyte) ayshom

VHSI
(1-10 Gbps)

minisuper
computer

display

mainframe

graphics
workstation
(RKx2K pixel)
{(10—100 Mflops)

Figure 1: Target Environment

2.1. Target environment

Figure 1 depicts what we view as a typical future scientific and engineering computation environ-
ment. At the heart of this is a high bandwidth communication substrate (vHsI) which can support
communication at rates of at least 1 Gbps, and provide performance guarantees in terms of through-
put, delay, packet loss rate, and packet sequencing. The VHSI provides access to a number of large
mass storage facilities. These facilities store data and images obtained from computation, such as
simulations, finite element analysis, and molecular modeling, as well as from real-time data acqui-
sition, such as from satellite telemetry and medical scanning. User applications can use and cause
the generation of parts of this data during their execution.

In this scenario, users have high performance graphics workstations with compute engines (such
as the Ardent Titan or Stellar G52000). These workstations include a bit mapped display (~2Hx2K
pixel), floating point processor(s) (10~100 Mflops), and a large fast memory (32-512 MB). In a local
environment, the user will have access to modest parallel machines and mini-supercomputers (such
as the Intel ipsc-2) and to mainframe computers (such as a Cpc Cyber 180/990 and IBm 3090). The
local machines can be used to solve smaller problems or to perform trial runs of a bigger problem.
Access to supercomputers (such as the Cray-2, ETa-10, or NEC sx) and special purpose systems
(such as simulation engines) will be provided across the vHsI.

Sterbenz and Parulkar 3

An example computation might involve large modeling or simulation programs to be run on
supercomputers and special purpose processors. Results may be accumulated on mass storage,
or piped in a stream to the workstation as produced, allowing the progress to be viewed. The
workstation takes raw output data, and performs visualisation computations to produce images.
The local rendering of images allows for the user to examine the visualisation in real time, e.g.
rotation of a 3-dimensional image, or variable speed playback of a time-varying animation. In
another scenario, the user may want to view images generated directly by the supercomputer, or
stored in an image database. Additionally, the user may wish to use the supercomputers in a time-
shared mode, ¢.g. rerunning parts of simulations with differing parameters to render new images.
"This demands very low latency (ideally sub-second). The important points to note about this type
of application environment are the following:

¢ An application is programmed as one distributed program which uses remote procedure calls,
shared memory segments, streams of data, and/or message passing primitives for communica-
tion.

s Application communication needs are bursty, and the bursts require large amounts (megabytes)
of data to be moved across the network.

¢ Applications require the interactive use of the resources across the network, to allow the control
and modification of the computations. This requires the blocks of data to be delivered with
low latency (sub-second), which coupled with the large size of data blocks demands very high
bandwidth (>1 Gbps).

¢ Both ends of communication may have to do processing of the data, allowing local processing
of data and real-time image interaction, in addition to the remote data access and processing.

» Communication processing overhead must be minimised to allow low latencies at high band-
width.

® As processor speed and network bandwidth increase, end-to-end latency is an increasingly
dominant factor, affecting the performance of communicating processes and the policy and
performance tradeoffs in system design.

2.2. Limitations of the existing model

These characteristics of communication pose a number of challenges to the designers of high per-
formance systems. Over the past few years significant progress has been made in the fields of
communications and computer architecture, but the major bottleneck remains at the host—network
interfaces.

Existing architectures support 1PC as follows (Figure 2a): At the user level, processes communi-
cate either by shared variables or by passing messages. At the system level, the two corresponding
paradigms are shared memory and message passing. The shared memory mechanism is supported
on tightly coupled systems with shared physical memory. Shared memory is not directly supported
across a network, and must be mapped onto system level message passing. Message passing is sup-
ported on both tightly and loosely coupled systems. The support for message passing on tightly
coupled systems is provided by reading and writing messages to shared physical memory, or by
sending and receiving messages using quenes or buffers. The support for message passing across a
network typically consists of a stack of network protocols and mechanisms to treat the network as
an I/o device. The problems with this approach are the following:

Axon architecture

| shared variables | | message passing i user L shared variables | | message passing |

| ‘

shared memory f ! message pRssing f I shared memory ! ! message passing !

virtual stormpge | cnti l net virtual storage I Inet. message passing]
[communication —

system
| protocols ol

)
[1/0 subsystem | I object transport i

J x

local memory hardware local memory

(a)} typical appreach (b} Axon approach

Figure 2: Interprocess Comrmunication Implementation

» There is a lack of integration of hardware, operating system, and communication protocols.

This results in considerable inefficiency and complexity for several reasons. The functionality
of operating system and communications system modules are not optimised for one another,
thus the interaction and interfaces between them is inefficient and complex. There is a lack
of correspondence between network and host data objects (e.g. packets and pages), which
results in inefficient control and synchronisation between the network and host (e.g. per packet
processing and page fault handling). This results in unnecessary control transfer, data buffering
and reformatting.

e The network interface is treated like an 1/0 device, and therefore, the per packet processing

involves servicing interrupts, context switches, and data copying to protocol and 1o buffers.
Furthermore, since /o processors are designed to handle a wide diversity of /o devices, ranging
from slow character and unit record devices to high speed mass storage, 1/0 processors are not
designed to perform optimally for VHSI type communications.

 There is no way to directly use the shared variables paradigm for 1Pc across a wide area

network, which leads to performance compromises for applications naturally suited for data
sharing.

* Many existing and proposed transport protocols are general purpose, and are not designed to

perform well for various classes of demanding applications. General purpose error and flow
control schemes are used which are complex to implement in hardware, and which do not
exploit the improved functionality of the newer high speed networks. Flow and congestion
control mechanisms are less able to respond to changing network conditions as data rates
increase, i.e. by the time adjustments are made, the conditions that induced the adjustment
may have drastically changed.

e Communication is handled through front end network interface or communication processors,

which are stored-program processors that manipulate packets in a store-and-forward manmner,
resulting in latency due to their programmed operation and buffering of data. The network
interface must also communicate with the host system using the standard 1/0 interface, which
1s not optimised for high speed communication (as mentioned above in the context of host

Sterbenz and Parulkar 5

architecture), resulting in an interface to the host not well suited for very high performance
commumnication.

3. The Axon Architecture

The Axon architecture provides the support for efficient, high performance (high bandwidth, low
latency) 1PC across the VHSI.

This section provides an introduction to the Axon architecture. A model to provide an end-to-
end high performance data path between applications is first presented. Then, 1PG primitives are
discussed within: the framework of the VHsT environment. Finally, a description of significant Axon
architectural components is presented. An example of the interaction of these components is given
by describing the transport of a segment across the vusI.

3.1. A model for high performance communication

A new host communications architecture is proposed, called Axon, to address the problems outlined
above, and meet the requirernents of high performance applications. The critical aspect of the
Axon architecture involves providing an end-to-end data path between distributed processes with
the characteristics of high bandwidth (sustained data rates of at least 1 Gbps), low latency, and
the required functionality for high performance applications. This requires that the data path be
pipelined to a fine granularity (bit/byte level rather than packet level store-and-forward).

rexmit timers

link foult congroem switch congram switch segment present
segment fault rote specification cddress decode page present
page foult header buiid header decode CMM ollocate
ALTP~host chksum generote chksum campare ALTP—host
page odr
CPU [_ 1 CMP, CMP, [I CPU
page odr pkt pres
A 1 i A
pkt odr fadr /troi hdr ftrail pkt adr
page olloc
f] f
CMM =1 CMP CM = CMM
read pkt d Pd write pkt
encrypt decrypt
encode dedcode

Figure 3: Axon Pipelined Communications Model

The Axon pipelined communications model, presented in Figure 3, provides the end-to-end data
path between applications with the required 1P¢ functionality. The cPUs use the random access
port of a comrnunications memory module (cMM), which is similar in concept to a vRAM. Data is
transferred through the vHSI using the cMM serial ports. The transport protocol is implemented as
an application-oriented lightweight transport protocol (ALTP), which is specifically designed to have
its critical path implemented in hardware, and is particularly oriented toward the end-to-end transfer
of objects for 1pc. To avoid any copying of data, the transferred object must be directly mapped into
the process address space. This is done in conjunction with the usual address translation mechanisms
by network virtual storage (Nvs). The communications processor (CMP) is the network interface,
implementing the required ALTP critical path and NVs assists. In the Axon pipeline model, the

6 Axon architecture

OMP consists of datapath (CMPg) and control (CMP.) functions. Thus the Axon model data pipeline
configuration is:
CMM +— CMP4q +— VHSI 3 CMPgq +— CMM

It should be evident that the Axon pipelined communications model requires significant changes
to existing operating systems, communications protoeols, and host-network interfaces. The Axon
architecture incorporates the necessary changes.

3.2. IPC in the Axon architecture

A logical view of the Axon protocol hierarchy is presented in Figure 4. It is important to note that
this layered view is a logical view of functionality only, and does not imply that strict layering (in
the 150-05T sense) is being adhered to.

Host CPU+Memnory Host CPU+Memory
process IPC~ oo] process [PC
(s,7) | (7r,w) l GRPC Istream stream| GRPC | (rw)| (s7)
NMP NVS {08) CMP CMP NVS (0S) NMP
ALTP-QT ALTP f-———=~] ALTP ALTP-OT
MCHIP}~——————1 MCHIP
NAP NAP

PFigure 4: Axon Logical Protocol Hierarchy

Ipc is supported with shared variable read/write (r, w) and message passing send/receive (s,r)
primitives. Axon supports a more general form of RPc, in which the code and data segments can
be located on arbitrary and independent hosts, with execution specified for an arbitrary host. This
1s referred to as generalised remote procedure call (GRPC). Conventional remote procedure call
(rpc) [BiNe84] is thus a restricted form of Grpc. Finally, the special demands of high performance
visualisation and imaging applications motivate an additional shared memory based 1pPc paradigm.
Axon provides mechanisms to transfer segment streams at high bandwidth with low setup overhead.
The performance advantage is that a single ALTP-OT call performs the request for all of the segments,
and each segment can be transmitted when ready without the latency of a request. GRPC and
segment streaming are described in more detail in [StPa89a].

The shared memory mechanism for 1PC across the vHsI is implemented by Nvs (network virtual
storage). This can be utilised by an application either by referencing segments that are non-local,
through the facilities provided by GRPC, or by the use of segment streaming. Support for message
passing IPC is provided by a network message passing interface (NMP), which invokes the appropriate
message transfer ALTP calls. This is illustrated in Figure 2b.

The transport mechanism is provided by an ALTP (application-oriented lightweight transport
protocol) tailored for object transfer, called ALTP-OT. ALTP-OT resides as a set of software modules
in the host system, and as hardware in the cMmp {(communications processor). The underlying
internet/network layer of function is provided by a multipoint congram-oriented high-performance
internet protocol! (McHIP) [Pa90, MaPa89], and network access protocols (NAP).

ta congram combines the desirable features of a datagram with those of a (soft) connection. For the purposes of
this paper, it can be thought of a connection with the added attributes of rapid setup and survivability in the presence
of network failures.

Sterbenz and Parulkar 7

Three components of the Axon architecture are essential to support 1PC: system level 1PC (wvs
and NMP}, transport protocol for 1PC object transfer (aLTP-0T), and the host hardware architecture
and communications processor (CMP). Each of these will now be discussed to provide an overview
to the Axon architecture.

3.3. Network Virtual Storage

This section describes the data structures, segment types, and storage management policies for nNvs.
An operational description is deferred until Section 3.6, which presents an example of object transfer.

Nvs extends the typical virtual storage mechanisms to include systems throughout the VHSI. A
segmented programming model is used, with underlying paging to facilitate storage management,
as in the Multics operating system [Be72, Or72]). Nvs provides the ability to easily use the shared
variables paradigm across the visI. Additionally, segments that are transported across the VHSI are
mapped into the address spaces of processes by Nvs. This eliminates the need to copy segments from
intermediate system buffers into the process address space, resulting in lower latency and system
overhead.

Data structures. Nvs extensions allow the segments to be addressed when resident on a non-
local host. This is accomplished by including a host id. field in either the virtual address (network
virtual address), or in the segment descriptor table (sDT) entry (local virtual address). When a
segment fault oceurs for a nonlocal segment (indicated in the segment descriptor), the dynamic
address translation facility invokes ALTP-OT to get a copy of the segment from the appropriate
system. As the segment is returned, the appropriate page and segment descriptor presence bits
are set, so that program execution can resume with the normal fault recovery mechanisms. The
address translation data structures are presented in Figure 5. Address pointers and relative offsets
are represented by arrows on solid lines, and other location information (e.g. disk cylinder, track,
record) by arrows on lines with infrequent breaks. The copying of data structures {e.g. a segment) or
fields (e.g. descriptor information) is represented by arrows on dashed lines. The alternate paths for
the returning segment s labeled RS and As correspond to the remote placement policies (see below).

The local storage management data structures are extended to allow the addressing of segments
on other hosts. This is accomplished by adding a host id. field to the known segment table (xsT),
which holds the symbolic segment bindings. This is an index into the per process known host table
(kHT), which holds the symbolic host name to address/path bindings. This binding is resolved by
searching the host address table (HAT) for each host, which gets its binding by invoking an internet
name server, using the host name database (HND). There are also tables (not shown in the figure) to
assist in n-way IPC using multipoint connections. Depending on the method used for network-to-host
object mapping, a packet presence bit vector may be in page descriptor table (PDT) entries. A TLB
provides the typical performance benefits in avoiding table lookup most of the time.

Segment types. Axon segments are of two types: memory and video. Memory segments are
either code or data subtype. Memory segments are divided into pages, and may be organised
into segment groups, for performance reasons. Video segments are either text or graphics subtype.
Graphics segments are bit-mapped video image frames; text segments correspond to a text window
on a workstation. Video graphics segments are divided into scanlines, and may be organised into
multi-frame images (e.g. a color image of r,G,B frames).

Segments have attributes of read, write, execute, indicating the type of access allowed. These
access bits in the segment descriptor may differ from the (more restrictive) capabilities that individual
users possess, or the descriptors of individual processes. Code segments are assumed to be pure

8 Axon architecture

Process System Network
progrom address
S 8> |0 N
¥ KsST E
——————— e ——————— = - e e e e e e -
\ - :
EJ.D_ir__,_ ________ o S [N ! get~segment(<s>)
I I
| -] I i
known seg M | |
i
! 5 NS B N HND
]l [vATvSs up . wvo] veEV oot
] T T virtual nams
If T address database
I HAT
APT ’ KHT hast
—:— known addr
| hosts
! <h2) ot — ————— <h> T bl - e e <h>. h
i
1
1
i
! ~ -
| ot A, get—segment(h)}
1
i SOT AST
| segment active
! escr segments
t
1 f
. _ : _é) POT
i page
I degcr R
| req)
| ' store
% o I —] T
i
i ! r
I > - e
i 3
; :
| |
| !
i . 1 RS
! A auxiliary |
| store -
. R P I LS
L. . - i AS

Figure 5: Network Virtual Storage Address Translation

(refreshable), and therefore always have access attributes of execute-only. Data segments may be
readable and/or writable.

Storage management policies. NVs in Axon involves extensions and additions to storage man-
agement policies. The fetch policy is not affected by Nvs, except that demand-segment implies a
degree of anticipatory-page movement across the network (and is, in fact, desired to counter latency
effects). The (real) placement policy is not affected by Nvs at all, since placement is trivial for paged
storage management, and unaffected by Nvs.

An entirely new policy, the remote placement policy, is used to determine where remote segments
are placed while being used by the local system. These include real store (rs), auxiliary store (as), a
combination (RAS), or frame buffer (FB) placement, with a number of sub-policy options (swappable,
nailed, etc}. Due to the presence of segments from remote hosts, the conventional replacement policy

Sterbenz and Parulkar 9

1s affected. In particular, if RS remote placement is used, an entire segment worth of pages are placed
in real store, some of which are not really in the process locality set. This can have significant impact
on the availability of real storage, and indicates that the estimation of working sets must consider
local and remote segments differently. Nvs and its storage management policies are described in
more detail in [StPa89a, StPa90a, StPag0c).

3.4. Transport protocol

This section describes the transport protocol for Axon, by first discussing ALTPs in general, and
then describing the packet structure, flow control, error control, and retransmission policies used by
ALTP-OT.

To address the problems mentioned above with general purpose complex transport protocols, ap-
plications using the vHsI are best supported by a set of simple ALTPs (application-oriented lightweight
transport protocols) for various classes of applications [StPa89b, PaTu90]. Key issues in the de-
sign of an ALTP are the implementation of critical functions in hardware, rate based flow control,
application-oriented error control, and structured collections of packets.

ALTPs are designed so that their functionality can be split into critical and non-critical paths,
The critical path consists of the data path and routine control functions, which are implemented
in vLs1 hardware to sustain data rates above 1 Gbps. The non-critical path function consists of
everything else, specifically the control that must involve host interaction for connection setup and
initiation of object transfer. By optimising the critical path functions, and by processing multiple
packets in a single transport level operation, the per packet processing is sustained at the full visi
data rate. For the protocol to be efficiently implemented in hardware, its design must be well
integrated with the host architecture and operating system.

ALTPs are optimised to provide the kind of performance guarantees and functionality the specific
applications need. The ALTP type used in Axon is designed to support IPC object transfer, (especially
NVS segments), called ALTP-OT,

Packet structure and format. Information is transferred throughout the internetwork in pack-
ets. A structured group of packets corresponding to a single ALTP-0T semantic action is a super-
packet, consisting of an initial control packet (which may also contain a small amount of data), and
optionally followed by data packets. Bits in the packet header indicate whether the packet is control
(McHIP or ALTP) or data. ALTP-OT control packets require processing by the ALTP-oT logic in the
oMP (communications processor), as well as by the host system hardware and 0s. Data packets
require considerably less processing, all of which can be done in real time by the cMP hardware.
The format of a data packet is presented in Figure 6.

. .. |segment page
MCHIP |connid| ALTP | reqid (frame) (scanline) pkt data cksum
Bl type] ¢ [oltype| g gl k| st | 5 |4 %
2 2 2 1 1 1 2 2 1 4

Figure 6: Avrp-oT Data Packet Format

Fach data packet corresponds to a fragment 7; of a page p; of a segment s; of a segment-group
g, which are part of the superpacket . In the case of a video-graphics segment a page corresponds
to a scanline, a segment to a frame, and a segment group to a complete image. The connection-id.
and request-id. fields of the packet header allows the CMP to associate data packets with connections

10 Axon architecture

set up by the corresponding control packet. Control packets have fields that are dependent on the
type of operation.

The benefits of this packet/super-packet hierarchy is that most of the usual per packe? control
processing is only performed per super-packet in Axon. A structuring of the data that is recognised
by ALTP-OT allows the per packet processing to be simplified to the extent that vLsI implementation
is reasonable and efficient. In addition, since ALTP-OT is an integrated system program, it has
direct access to the appropriate operating system facilities (via lightweight system calls) and data
structures, resulting in efficient coordination between ALTP-0T and conventional 0s operations.

Flow control. ALTP-OT uses rate based flow control. When ALTP-OT opens a connection, it
specifies atiributes of the connection in terms of parameters such as average and peak bandwidth,
and a factor reflecting-the-burstiness. of the transmission. These parameters are used by all the
intermediate systems, including various packet switches and gateways, as well as the endpoint hosts
that the connection goes through, to make appropriate buffer and resource reservations. The rate
specification is negotiated between ALTP-0T and the internetwork/network layers, to ensure that the
requested rate does not exceed the capacity of internal network nodes (packet switches, gateways,
and subnetworks). Furthermore, any adjustments to the rate specification should be infrequent,
based on long term changes in application demands. It is assumed that the internet level below
(McHIP) [MaPa89, Pag0] has the functionality to support connections with specified bandwidth
requirements, and furthermore, that the probability of packet loss, errors, and resequencing is very
low, which is referred to as quasi-reliability.

"This results in very simple flow control at the host-network interface, involving clocking packets
at the specified rate, and can realistically be designed into the network interface hardware. As
long as both ends transmit subject to the rate specification, the probability of packet loss due to
buffer overruns is very low. Since the internet level is responsible for resource allocation, ALTPs are
not concerned with congestion control, further simplifying the ALTP and network interface. This
also means that the error control is decoupled from the flow control, which allows considerable
simplification as deseribed below.

Error control. In the VHSI environment error control is performed, as much as possible, on an
end-to-end basis, and is decoupled from flow (rate) control, as described above. The ALTP error
control is as simple as possible, based on the target application characteristics. For ALTP-0T, the
packet handling is as follows:

¢ duplicate packets are discarded

¢ corrupted packets are discarded, and retransmission requested based on application need

e missing packets are detected by the expiration of a timer, and retransmission is requested

 packet sequence is irrelevant due to sequence by placement (as described below)

Note that due to the orientation of ALTP-OT to this object transfer, the handling of duplicate
and out-of-sequence packets is considerably simpler and more efficient than would be the case for
a general purpose transport protocol. Since data packets have sufficient header information to
indicate the connection and request, and are placed directly into the proper location of target store,

the overhead of sequence buffering is not necessary. The simplified error control of ALTP-OT can be
efficiently imnplemented in vLs1 hardware.

Sterbenz and Parulkar 11

Retransmission strategies. Several options exist for the retransmission of packets: location of
retransmission requests, granularity of retransmission and timer values, retransmission fetch policy,
and preemption by the retransmission.

location: Requests for retransmission can originate from either the receiving end of the connection
(RECV), or from the sending end (SEND). Since the receiving end is best able to estimate when
packets should arrive [C187a), and since under some fetch policies retransmission may not be
requested, the obvious choice is RECV, which is used by ALTP-0OT.

granularity: The granularity of retransmission refers to how many missing packet events are accu-
mulated before a request for retransmission is made. In a general purpose transport protocol,
retransmission is typically based on selective or cumulative acknowledgement. Due to the
knowledge of the super-packet structure of segment (groups) by ALTP-OT, a richer set of op-
tions can be explored, that are based on the granularity of the data structure transmitted.
Four obvious possibilities for retransmission granularity exist: packet (PKT), page/scanline
(PGE), segment/frame (SEG), and segment-group/image (GRP).

fetch policy: The retransmission strategies can also be classified by whether packets are always
requested for retransmission, or only if a page is referenced that contains them. These are
referred to as fetch policies due to the analogy with 0s page fetch policies. In both cases timers
will be necessary. I all packets corrupted or missing are retransmitted, this corresponds to
anticipatory retransmission (AR) thus anticipating the future reference of all missing packets.
In this case the timers indicate when a packet retransmission request should be made. If the
only packets retransmitted are those corrupted or missing which are part of a page actually
referenced, the policy is demand retransmission (DR), and assumes that a number of packets
in the segment will not necessarily ever be referenced. In this case, the timers indicate how
long to wait before a referenced packet is assumed to be missing, and thus retransmitted.

preemption: Since error control is in-band, packets retransmitted use the same connection and
allocated bandwidth as the primary data stream. The relative priority of original data and
retransmitted packets needs to be considered. The extreme cases are to allow all of the orig-
inal request to flow before any of the retransmission requests are serviced, resulting in a
non-preemptive (NP) policy, or to preempt (PE) the primary data stream and immediately
retransmit.

The total number of strategies is the cross-product of these orthogonal sub-policies: location,
granularity, fetch, and preemption. Since ALTP-OT is designed assuming RECV location, the re-
maining three sub-policies determine the overall strategy, e.g. PGE-DRPE indicates retransmit a page
worth of packets (PGE) only when the page is referenced (DR), and preempt the primary data stream
(PE).

In addition, some combination schemes are supported, such as PGE-DRPE/sEG-ARNP. This pol-
icy uses a page granularity, requesting preemptive retransmission of any page referenced (i.e. page
fault). Otherwise, the primary data stream is allowed to complete before all other error packets
are retransmitted. This provides a compromise between the desire to maximise efficiency (by ac-
cumulating requests for the entire segment), vs. minimising the time for a page to obtain all of its
packets on reference. This policy may be superior to either a pure NP or PE scheme. Note that it is
the object transfer orientation of ALTP-0T that allows optimisations such as this to be possible, in
particular to reduce process blocking by dealing with retransmissions at PGE granularity. ALTP-OT
can default to the appropriate strategy using parameters from a particular request. On the other
hand, some intelligent 1pc applications may wish to explicitly choose the strategy to be used.

12 Axon architecture

Operations. The ALTP-OT requests and operations are listed below. More details on each one can
be found in [StPa89b]. The example segment transfer presented in Section 3.6 provides an overview
of ALTP-OT operation (for get-segment), as well as relating the operation of NVS.

Connection management

Jjoin-ipe join or establish multiway IPc connection
respecify-rate alter rate specification for existing connection
leave-ipc leave or terminate multiway 1PG connection

Object receive
get-segment obtain copy of named segment from specified host
acquire-segment obtain access to named segment for get-page
get-page obtain copy of page from acquired segment
get-copy obtain a permanent copy of segment from specified host
get-stream receive segment stream from specified host/connection
receive-message receive IPC message
retransmit-packets request selective packet retransmission

Object transmit
release-segment release or return local segment copy (after get/acquire-segment)
release-page release or return local copy of page (after get-page)
remote-execute initiate execution of process on specified host
send-copy send a permanent copy of segment to specified host
send-stream transmit segment stream to specified host/connection
send-message send IPC message
invalidate-segment invalidate segment copy on ancther host

3.5. Host and network inierface architecture

Host architecture. The Axon host architecture is presented in Figure 7. The Axon architecture
gives the cMP (communications processor) direct access to memory, by interfacing the cMPs to the
back end of a special dual-ported cMM (communications memory module). This is referred to as
memory interface architecture (M1a dashed box in Figure 7). The cMM has a conventional random
access port which appears like any other memory bank to the processor-memory interconnect. The
second port is a high speed serial access interface to the cMP. The design of the cMM is similar in
concept to that of vRAM. If all real storage is not cMM, the physical address space of the system must
be partitioned between conventional and communications memory. Note that it is also possible to
give the CMP a relationship to the system similar to that of /o processors, thus interfacing the cmp
directly into the processor-memory interconnection network, referred to as interconnect interface
architecture (11A dashed box in Figure 7).

On the network interface side, the cMP must be capable of receiving and transmitting packets
at the full network data rate. On the host side, the cMP must either interface to the oMM (Mm1a)
or the processor-memory interconnect (I14). More details on Axon host architecture configurations
are presented in [St90].

Communications processor (CMP). To perform critical path functions at full vHsI data rate
with no packet buffering, the cMP is organised as a pipeline, dynamically reconfigurable based on the
ALTP type and options for a particular connection. The cMP block diagram is presented in Figure 8,

The transmit data pipe and receive data pipe are the main data paths of the cMP, and perform
data encryption/decryption and format transformation. Data is clocked out the transmit data pipe
from the cMM by the rate control logic, which is responsible for adhering to the rate specification
for each connection.

Sterbenz and Parulkar 13

e e e D it “
| I
; i
= CMP [—— £ £ B
1 |
1
VHSI : | ITA
1
H
- » CMP |———8 = i -1
| |
1 |
e I T I S e S = MIA
[[— \
| ! 1
~—--{ NI I0C [IOP [———+1 £ £ B——f3 B!
1 1 |
t 1 | !
.' i i ;
' ' ; |
| 1
AS —| $ [10C || IOP ——f—F3F—+——3 & f——f3 B
I
I 4 i i
1 1
| |
: i
CPU| $ £ i f-——tp g
i i
| 1
I |
: !
CPU| $ = i B—+—f B
; :
H 1
[i
| %
EM M M || [CMM[--|CMM] !
| 1
1 |
P [
: :
i & [|CMP[--[CMP} !
! l
|
I L i
| 1
1 |
| 1
i 1
H 1
e e ——— L |
\
VHSI

Figure 7: Axon Host Architecture

Connection multiplexing is handled by the mux control logic, with the congram state registers
containing the state information for each connection/congram, allowing a fast hardware context
switch of the cMP based on the connection id of each packet. The arrival of each packet is tracked
by the packet presence logic which is responsible for determining when entire pages and segments
have arrived, so that the appropriate PDT (page descriptor table) and sDT (segment descriptor table)
presence bits can be set and the host program dispatched. The error control logic is responsible for
recording missing/corrupted packets, and generating the appropriate retransmission requests.

Associated with the transmit data pipe, the header build logic constructs the appropriate header
information from a template in the cMM, and inserts the proper packet identifiers (cq) and index
(ijk). The checksum generate logic generates the checksum as the packet passes through the pipeline,
and inserts it into the packet trailer. Associated with the receive data pipe, the header decode logic
decodes the header to determine the connection and request ids (cq) for cMP configuration, It also
determines the packet address in cMM from the packet index (ijk) and the base address of the page
from the corresponding congram state register. The checksum check logic sums the packet as it
passes through the pipe, and compares against the checksum field in the packet trailer. If the packet
has been corrupted, it is discarded by clearing the appropriate packet presence state. Greater detail
on the cMP design is presented in [St90)].

14 Axon architecture

My data vt T vHs1 link
transmit data pipe PF———u—m
| N N O |

4)
.‘M rate L, ——
jeontrol !
| »{ heeder E
_ CMM edr build 1
P }
T chksum !
»|generate !
error !
eontrol !

L congram

. siate
Cap mux
cantrol
13
! i
1
packet header !
presence[* decode !
logic al— +
chksum]
- check H
CHM adr IE
|
I
T
- receive deta pipe ———————
CMM data IR VHSI link

Figure 8: CmP Block Diagram

3.6. Summary of Axon object transfer

The operation and relationship of components in the Axon architecture will be introduced by the
description of a segment transfer. Explicit references to Figure 9 in this discussion are enclosed in
brackets: [J. Figure 5 can be consulted for the relationship between Nvs data structures. Note that
certain assumptions and policy choices have been made for clarity in this discussion.

An executing process has associated with it a virtual address space, which is a subset of the
segments available to the user which owns the process.. When a process refers to a remote segment,
either explicitly by name, or vic a GRPG, the appropriate segments must be transported from the
desired system. The segment is located, either by an explicit reference to the segment and host
name, or by resolution of the host name associated with the segment capability stored in the user
context directory (Ubpir). The first time a segment is referred to symbolically, a link fault resolves
the name and location, and adds the segment binding to the ksT (known segment table), and host
name binding to the KHT (known host table) for the process. This allows further symbolic references
to avold the overhead of searching the user context for segment attributes. In addition, an entry is
added to the process sDT (segment descriptor table), which contains the process specific attributes
of the segment. An entry is added to the system AST (active segment table), which contains the
attributes of the segment common to all processes sharing the segment, if the segment is not already
in use by another process. The mechanism for sharing is to have the sDT entries of multiple processes
pointing to a single AST descriptor, which refers to a single instantiation of the segment. When a
remote segment transfer is necessary, the transport mechanism is accomplished by ALTP-OT.

The critical path function of ALTP-0T is implemented in the cMp hardware [ALTP-critical], and
includes the data path and routine control functions (error and flow control). The non-critical

Sterbenz and Parulkar 15

Host CPU+M
0S sched
A CMP
ALTP
host |- ———-m | ALTP
. critical —
* ! s y 3 8 5
: 2 P P v P
tag?es d’atla I’I’?IE [EA S Y G R E e ESE L bt Y (B E KT A AR |
internet link
real /"-—'—-\
storage . aux storeg
frames £ 1/0 \"T’E/
pirog slots
Lt 7 i
- ¥ [\\%__:
7 st = I1/0 o I
7 et = bufferf " =
"-—_p_——‘
P
e e
IOP
N

Figure 9: Interaction of Axon Components

part resides in the systems software on the host (or cMp assist processor [St90]), and is tightly
integrated with the host architecture and operating system [ALTP-host]. In particular, the host
portion of ALTP-0T must have direct access to operating system services such as the scheduler [os-
sched]] through lightweight system calls, and be able to manipulate virtual storage management data
structures [vs-tables].

The remote transfer is initiated by an ALTP-OT operation such as get-segment, which retrieves a
segment from a remote host for local use. This requires a connection between the two hosts, thus
ALTP-OT issues an open call to MCHIP which establishes the connection if not already present from
a previous call. In addition, the cMP data pipeline is configured appropriately for the connection.
ALTP-OT then sends the get-segment control packet out the vusI link interface and through the
internet, using the established connection.

At the remote end, the CMP receives and decodes the control packet at the internet link interface,
and passes it to the host operating system. The normal mechanisms for locating the segment and
authenticating the request are used. When the segment is found, locks are set (if necessary), and a
copy of the segment is returned to the requesting host in a super-packet along the same connection.
The data packets consist of fragments from each page of the segment, with an integral number of
packets per page. Note that if multiple segments are defined within a segment access group, all of
them are returned in a single super-packet. Thus the unit of structure is a superpacket o] consisting
of a segment group [g] of segments [s] of pages [p] of packets [].

At the local end, storage has been allocated for the returning segment(s), based on the estimated
segment, size || and remote segment placement policy in use (either [real store frames] or faux store
slots]). The data packets contain the actual segment size |s|, allowing adjustments to be made in

16 Axon architecture

the estimated storage allocation. The header of each data packet also indicates the packet and page
(and segment) number (4, j, k), as well as the connection and request ids. Since the connection has
been established, the cMP pipeline configured, and storage allocated, packets are placed directly in
storage according to the remote placement policy; no buffering of the data by the cMp takes place,
the order of packet arrival is not significant (sequence by placement), and there is no involvement of
MCHIP or the host software portion of ALTP-0T, The structure of data between the cMP and target
memory is the page [p']. Note that the peer-to-peer connection between ALTPs is physical, without
the strict calling and data copying involved in the 0$1 or other layered models, and there is none of
the overhead associated with multiple packet encapsulation/decapsulation between layers.

When certain events occur, the CMP issues a signal to the host software portion of ALTP-0T. For
example, each time all of the packets of a given page have been received, the presence bit in the
PDT (page descriptor table) must be set, and a lightweight system call must indicate to the low level
scheduler that the process can be dispatched,as in the standard page fault recovery mechanism.
When the entire segment has been received, the presence bit in the asT (active segment table) is
set, and the ALTP-OT connection idles until the process ends, or an explicit leave-ipc is issued.

4. Related Work

This section briefly describes related projects and research efforts.

Early work in the research community on IPC and the design of distributed systems was done in
the context of tightly coupled multiprocessor systems, as opposed to loosely coupled systems situated
across local and wide area networks. There were only a few exceptions to this trend, including Dcs
[Fa88, FaFe73, FaHe70), and the Newhall ring [MaPe75], but these both were in the LAN context.

There has been some research on exploring the shared memory paradigm for IPC over the net-
work, exemplified by Memnet and Locus. Locus [PoWa85, WaPo83], a UNIX variant based on a
distributed file system, has had UNIX System V communication primitives added, specifically, mes-
sages, semaphores, and shared-memory [F186], with current work extending this support to provide
the shared-memory across a network [F187].

In the case of Memnet [De88, DeSe88], processes communicate across a ring LAN by reading and
writing into shared memory. Memnet’s emphasis has been on studying cacheing algorithms and their
hardware implementations, to reduce the network traffic and to avoid network latency for remote
memory accesses. However,. Memnet. assumes a perfect communication medium with no erTorS,
and does not allow virtual storage. The CapNet project [TaFa89] is extending the Memnet work
in directions complementary to Axon, but with different emphasis. The Apollo DOMAIN [LeLe83]
system also provides a shared memory interface on a LAN ring.

There are also other research groups that are starting to explore use of shared memory for PG
across network, including current work on Ivy, Mermaid, Shiva, and Ra. The Ivy [Li86, LiHu90],
Mermaid [LiSt88], and Shiva [LiSc89] research explores a shared virtual memory, with particular
emphasis on providing page level coherency, and accommodating heterogeneous systems. Unlike
Axon, the granularity of object transfer is the page, rather than the segment. The Ra [AuHu87)
kernel project for the Clouds distributed system includes-an investigation of distributed shared
memory (DsM). This consists of exploring alternative address translation schemes and memory
management hardware [RaKh88b)], with particular emphasis on the object orientation of the system
[RaKh88a).

A segmented, paged virtual store was first implemented by Multics [Be72, 0Or72] on a GE-645
and the IBM 360/67 running Tss/360 [Co65, Le65). The Multics line continued on the His 645, 6180,
pPs-60/68, DPs-8/M, but has now been terminated. Modern systems that owe significant heritage

Sterbenz and Parulkar 17

to Multics include the Cpc Cyber 800 Nos/VE [Cpc84] and Prime 50 Primos [AuLa83). Segmented
virtual store was not used by other operating systems in the IBM System/360 and 370 family, until
the addition of features provided by Esa/370 [ScGa89] under Mvs/ESA.

Additionally, systems that provide a segmented paged virtual store include the IBM As/400
[I1BM88] and System/38 cpr [IBMT78], AT&T 3B series [HeKu83), Intel iapx432 [In81] 1486 [In89b]
and 80960 [In88], and Motorola 68030 [Mo87].

Several protocols have been proposed for use in higher performance versions of the pop Internet.
These include vMTP [Ch86a, Ch88] and NETBLT [Cl87a, CI87b]. VmTP is designed as a general
purpose transport protocol, with emphasis on RPc and page level file access. Significant aspects of
VMTP design applicable to this research include the packet grouping and selective retransmission
based on bit vectors. NETBLT is a protocol designed for transport of large blocks of data with high
throughput. The most significant aspect of NETBLT design applicable to this work is the decoupling
of error and flow control, as well as a simple rate-based flow control mechanism, with selective
retransmission determined by timers at the receiving end of a transmission. Both of these protocols
group packets to increase efficiency of transport.

Another approach to the performance problem is to implement existing transport protocol mech-
anisms in hardware. This is manifest in the work on the express transport protocol (xTP) and the
protocol engine {(PE) [Ch86b, ChEi88]. While the goals for XTP are similar to those for ALTPs in
VHSI, there are also some significant differences. The XTP approach is to streamline existing proto-
cols mechanisms and packet formats for pipeline processing, and implement each step in the pipeline
using a customised VLSI processor.

The underlying assumptions-and trade-offs that these proposed protocols are based on are very
different than the vusT model. Specifically, these assumptions include the quasi-reliability provided
by an underlying connection-oriented internet protocol (McHiP) [Pa90, MaPa89], and data rates
that are several orders of magnitude greater than these proposed protocols assume. More detail
concerning the incompatibility of current and proposed protocols extended to the VHsI environment,
and the justification of ALTPs has been discussed in [BhSt88)].

5. Conclusions

We have proposed a new host communication architecture for the distributed systems called Axon,
which can support 1Pc with high throughput and low latency across the visi. The significant
features of Axon are the network virtual storage facility, which includes support for virtual shared
memory on loosely coupled systems, a high performance object transport facility which can be used
by both message passing and shared memory mechanisms, and a pipelined network interface. Our
emphasis in the design of Axon has been to provide a direct data path between communicating
applications, using an integrated design of host architecture, operating systems, and communication
protocols.

In this paper we have presented the overall design of Axon and its main components. Work is
in progress on analytical and simulation models to evaluate these tradeoffs more rigorously, on a
detailed design of the communication processor, and a prototype implementation of the architecture.

18 Axon architecture

References

[AnHu87] Auban, José M. Bernabéu, Phillip W. Hutto, and M. Yousef Amin Khalidi, The Archi-
tecture of the Ra Kernel, Georgia Institute of Technology, School of Information and
Computer Sciences, GIT-1c5-87/35, Atlanta, 1987,

[AuLa83] August, Martha and Sarah Lamb, PRIME 50 Series Technical Summary, Prime Corp.,
Framingham, Mass., rev 19.1, DOC8904-191, 1%* ed., 1983.

[Be72] Bensoussan, A., C.T. Clingen, and R.C. Daley, “The Multics Virtual Memory: Con-
cepts and Design”, Communications of the ACM, Vol.15 #5, AcM, New York, May
1972, pp. 308-318.

[BhSt88] Bhatia, Anil, James P.G. Sterbenz, and Gurudatta M. Parulkar, Commenits on Pro-
posed Transport Protocols, Washington University Department of Computer Science,
technical report wucs-88-30, St. Louis, Oct. 1988.

[BiNe84] Birrell, A. and B. Nelson, “Implementing Remote Procedure Calls”, ACM Transactions
on Computer Systems, Vol.2 #1, AcM, New York, Feb. 1984, pp. 39-59.

[Cncgd] System Architecture: Cyber 180 Systems, Control Data Corp., Minneapolis, 204 137,
1984,

[Ch86a] Cheriton, David, “VMTP: A Transport Protocol for the Next Generation of Computer
Systems”, SIGCOMM’86 Symposium (Computer Communication Review), Vol.16 #3,
AcM, New York, 1986, pp. 406-415.

[Ch86b] Chesson, Greg, “Protocol Engine Design”, Proceeding of the Useniz Conference, 1986.

[Ch88] Cheriton, David, “VMTP: Versatile Message Transaction Protocol”, DARPA — Informa-
tion Processing Techniques Office, RFc-1045, Arlington Va., Feb. 1988

[ChEi88] Chesson, Greg, Brendan Eich, Vernon Schryver, Andrew Cherenson, and Al Wha-
ley, “XTP Protocol Definition”, Revision 3.1, Protocol Engines, Inc., PEI 88-13, Santa
Barbara, Calif., 1988.

[ChGr88] Chesson, Greg, and Larry Green, “XTP - Protocol Engine V1sI for Real-Time LANs”,
EFOC/88 Amsterdam, Protocol Engines, Inc., PEI 88-53, Santa Barbera, Calif., 1988.

[Cl87a] Clark, David D., Mark L. Lambert, and LiXia Zhang, “NeTBLT: A High Throughput
Transport Protocol”, SIGCOMM'87 Symposium (Computer Communication Review),
Vol.17 # 5, AcM, New York, 1987, pp. 353-359.

[C187D] Clark, David D., Mark L. Lambert, and LiXia Zhang, “NeTBLT: A Bulk Data Transfer
Protocol”, DARPA — Information Processing Techniques Office, RF¢-998, Arlington Va.,
Feb. 1988.

[Co635] Comfort, Webb T., “A Computing System Design for User Service”, Proceedings of the
Fall Joint Computer Conference, Vol.27 Part 1, AFips, Spartan Books, Washington
D.C., 1965, pp. 619-626.

De88 Delp, Gary 8., The Architecture and Implementation of Memnet: A High-Speed Shared-

P

Memory Computer Communication Network, University of Delaware Department of
Electrical Engineering, technical report #88-05-1, Newark, Delaware, May 1988.

Sterbenz and Parulkar 19

[DeSe88)

[Fa88]

[FaFe73]

[FaHeT0]

[F186]

[F187]

[HeKu83]

[Tem78]
[IBM88]
[In81]

[In88]
[In89b)

[Leb5]

[LeLe83]

[Li86]

Delp, Gary S., Adarshpal S. Sethi, and David J. Farber, “An Analysis of Memnet: An
Experiment in High-Speed Shared-Memory Local Networking”, SIGCOMM’88 (Com-
puter Communication Review), Vol.18 #4, AcM, New York, 1988, pp. 165-174.

Farber, David J., “Some Thoughts on the Impact of Ultra-High-Speed Networking
on Processor Interfaces”, University of Pennsylvania Distributed Systems Laboratory
unpublished note, April, 1988.

Farber, David J., Julian Feldman, Frank R. Heinrich, Marsha D. Hopwood, Keneth
C. Larson, Donald C. Loomis, and Lawrence A. Rowe. “The Distributed Computing
System”, COMPCON’73, IEEE Computer Society, New York, 1973, pp. 31-34.

Farber, David J. and Frank R. Heinrich, “The Structure of a Distributed Computer
System — The Distributed File System”, First International Conference on Computer
Communication, Washington, D.C., 1970, pp. 364-370.

Fleisch, Brett D., “Distributed System V 1Pc in LocUs: A Design and Implementation
Retrospective”, SIGCOMM’86 Symposium (Compuier Communication Review), Vol.16
#3, AcM, New York, 1986, pp. 386-396.

Fleisch, Brett D., “Distributed Shared Memory in a Loosely Coupled Distributed
System”, SIGCOMM’87 Symposium (Computer Communication Review), Vol.17 #5,
AcM, New York, 1987, pp. 317-327.

Hetherington, LK. and P. Kusulas, “3B20D Processor Memory Systems”, Bell Sysiem
Technical Journal, Vol.62 #1 Part 2, AT&T Co., New York, 1983, pp. 207-220.

IBM System/38 Technical Developments, IBM, Rochester, Minn., G580-0237, 1978.
IBM Application System/400 Technology, IBM, Rochester, Minn., SA21-9540-0, 1988.

Iniroduction to the {APX {32 Architecture, Intel Corp., Santa Clara, Calif., 171821-
001, 1981, reprinted in: Tuforial on Advanced Microprocessors and High-Level Lan-
guage Computer Archileciure, Veljko Milutinovié (ed.), IEEE Computer Society Press,
Washington, D.C., 1986, pp. 358—421.

80960MC Programmer’s Reference Manual, Intel Corp., Santa Clara, Calif., 271081-
001, 1988.

1486 Processor Programmer’s Reference Manual, Intel Corporation, Santa Clara, Calif.,
240486-001, 1989.

Lett, Alexander S. and William L. Konigsford, “TSS/360: A Time-Shared Operating
System”, Proceedings of the Fall Joint Computer Conference, Vol.30, AFips, Thompson
Book Co., Washington D.C., 1968, pp. 15-28.

Leach, Paul J., Paul H. Levine, Bryan P. Douros, James A. Hamilton, David L. Nelson,
and Bernard L. Stumpf, “The Architecture of an Integrated Local Network”, JEEE
Journal on Selected Areas of Communication, Vol. sac-1 #5, IEEE, New York, Nov.
1983, pp. 842-856.

Li, Kai, Shared Virtual Memory on Loosely Coupled Mulliprocessors, Department of
Computer Science, Yale University, technical report YALEU/DCs/RR-492, New Haven,
Conn., Sep. 1986.

20

Axon architecture

[LiHu90]

[LiSc89]

[LiSt88]

[MaPa89]

[MaPe75]

[Mo87]
[Or72]

[Pag0]

[PaTu90]

[PoWa85]

[RaKh88a]

[Rah88b]

Li, Kai, and P. Hudak, Memory Coherence in Shared Virtual Memory Systems, ACM
Transactions on Computer Systems, Vol.7 #4, AcM, New York, Nov. 1990, pp.
321-359.

Li, Kai and Richard Schaefer, An Operating System Transforming e Hypercube into
a Shared-Memory Machine, Department of Computer Science, Princeton University,
techmical report cs-TR-217-89, Princeton, N.J., April. 1989.

Li, Kai, Michael Stumm, David Wortman, and SongNian Zhou, Shared Virtual Memory
Accommodating Heterogeneily, Computer Systems Research Institute, University of
Toronto, technical report ¢sRI-220, Toronto, Dec. 1988.

Mazraani,- Tony. Y. and Gurudatta M. Parulkar, “Specification of a Multipoint
Congram-Oriented High Performance Internet Protocol®, Proceedings of the Ninth
Annual Joint Conference of the IEEE Compuier and Communicalions Societies
(INFOCOM’90)} 1e8E Computer Society, Washington D.C., June 1990, abridged from:
Washington University Department of Computer Science, technical report wucs-89-20,
St. Louis, Aug. 1989.

Manning, Eric and R.W. Peebles, “Segment Transfer Protocols for a Homogeneous
Computer Network”, Proceedings ACM SIGCOMM /SIGOPS Interprocess Communi-
cation Workshop (Operating Systems Review), Vol.9 #3, AcM, New York, 1975, pp.
65-73.

MC68030 Enhanced 32-Bit Microprocessor User's Manual, Motorola, Inc., Phoenix,
MC68030UM/AD, 1987.

Organick, Elliot 1., The Multics System: An Ezamination of Hs Structure, MIT Press,
Cambridge, Mass., 1972.

Parulkar, Gurudatta M., “The Next Generation of Internetworking”, Computer Com-
munication Review, Vol.20 #1, AcM SiccoMM, New York, Jan. 1990, pp. 18-43, also:
Washington University Department of Computer Science, technical report wucs-89-19,
St. Louis, May 1989.

Parulkar, Gurudatta M. and Jonathan S. Turner, “Towards a Framework for High
Speed Communication in a Heterogeneous Networking Environment”, [EEE Network,
Vol.4 42, IEEE, New York, March 1990, pp. 19-27, also: Proceedings of the Eighth
Annual Joint Conference of the IEEE Computer and Communicalions Societies {IN-
FOCOM’89), IeEe Computer Society, Washington, D.C., Vol.II, pp. 655-667, also:
Washington University Department of Computer Science, technical report wuos-88-7,
St. Louis, 1988.

Popek, Gerald J. and Bruce J. Walker, The LOCUS: Distributed System Architecture,
MIT Press, Cambridge, Mass., 1985.

Ramachandran, Umakishore and M. Yousef Amin Khalidi, An Fmplementation of Dis-
tributed Shared Memory, Georgia Institute of Technology, School of Information and
Computer Sciences, technical report GIT-1¢5-88/50, Atlanta, Dec. 1988.

Ramachandran, Umakishore and M. Yousef Amin Khalidi, An Evaluation of Mem-
ory Management Structures for Object-based Systems, Georgia Institute of Technology,
School of Information and Computer Sciences, technical report GIT-1Cs-88/53, Atlanta,
Dec. 1988.

Sterbenz and Parulkar 21

[ScGaBg]

[StPag89a]

[StPa89b]

[St90]

[StPag0a]

[StPag0b]

[StPag0c]

[TaF289]

[WaPo83]

Scalzi, C.A., A.G. Ganek, and R.J. Schmalz, “Enterprise Systems Architecture/370:
An Architecture for Multiple Virtual Address Space Access and Authorization”, JBM
Systems Journal, Vol.28 #1, 1M Corp., Armonk, New York, 1989, pp. 15-38.

Sterbenz, James P.G. and Gurudatta M. Parulkar, Azon: Network Virtual Storage
Design, Washington University Department of Computer Science, technical report
wuUcs-89-13, St. Louis, May 1989.

Sterbenz, James P.G. and Gurudatia M. Parulkar, Azon: Application-Oriented
Lightweight Transport Protocol Design, Washington University Department of Com-
puter Science, technical report wucs-89-14, St. Louis, Sept. 1989.

-Sterbenz, James P.G., Azon: Host—Network Interface Design, Washington University
+-Department of Computer Science, technical report wucs-90-7, St. Louis, March 1990.

Sterbenz, James P.G. and Gurudatta M. Parulkar, “Axon: Network Virtual Storage
Design”, Computer Communication Review, Vol.20 #2, Acm SiccoMM, New York,
April 1990, pp. 50-65.

Sterbenz, James P.G. and Gurudatta M. Parulkar, “Axon: A High-Speed Communica-
tion Architecture for Distributed Applications”, Proceedings of the Ninth Annual Joini
Conference of the IEEE Computer and Communications Societies (INFOCOM’90)
IEeE Computer Society, Washington D.C., June 1990, pp. 484-492.

Sterbenz, James P.G. and Gurudatta M. Parulkar, “Axon Network Virtual Storage for
High Performance Distributed Applications”, 10th International Conference on Dis-
tributed Computing Systems, IEEE, Washington D.C., June 1990.

Tam, Ming-Chit and David J. Farber, “CapNet — An Alternative Approach to Ultra-
High Speed Network”, International Conference on Communications 90, IEEE Com-
munications Society, Piscataway, New Jersey, April 1990.

Walker, Bruce, Gerald Popek, Robert English, Charles Kline, and Greg Thiel, “The
Locus Distributed Operating System”, Proceedings of the Ninth Symposium on Op-
erating Systems Principles (Operating Systems Review), Vol.17 #5, AcM, New York,
1983, pp. 49-70.

	Axon: A High Speed Communication Architecture for Distributed Applications
	Recommended Citation
	Axon: A High Speed Communication Architecture for Distributed Applications

	tmp.1459809062.pdf.qEbn2

