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ABSTRACT

This paper generalizes known results for nonblocking distribution networks {also
known as generalized connection networks) to the multirate environment, where
different user connections share a switch’s internal data paths in arbitrary fractions of
the total capacity. In particular, we derived conditions under which networks due to
Ofman and Thompson, Pippenger, and Turner lead to multirate distribution net-
works. Our results include both rearrangeable and wide-sense nonblocking networks.
The complexity of the rearrangeable multirate networks exceeds that of the
corresponding space division network by a log log factor while the complexity of the
wide sense nonblocking networks is within a factor of two of the corresponding space
division networks,

Ricearde Melen is with Centro Stude E Laboratori Telecomunicazioni (CSELT),
Torino, Italy and his work has been supported in part by Associazione Elettrotecnica
ed Elettronica Italiana, Milano, Ttaly. This work was done while on leave at Washing-
ton University.

Jonathan Turner’s work is supported by the National Science Foundation (grant DCI
8600947), Bell Communications Research, Bell Northern Research, Italtel SIT and
NEC.






NONBLOCKING MULTIRATE
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Jonathan S. Turner

1. Introduction

In reference [3], the authors introduce the concept of nonblocking multirate networks and
prove a collection of results generalizing the classical theory of nomblocking connection
networks. In this paper, we extend that work to cover distribution networks, that is networks
that are capable of distributing a signal from a single input to one or more outputs. Such
networks are also known as generalized connection networks.

2. Definitions

The topological design of switching networks determines their complexity and blocking
characteristics. We define a graph model for switching networks and introduce operations
by which complex networks can be constructed from simpler components.

We denote a network N by a quadruple (5, L, I, O), where S is a set of vertices, called
switches, L is a set of arcs called links, I is a set of input terminals and O is a set of
output terminals. Fach link is an ordered pair (z,y) wherez € U S and y € OU 5. We
require that each input and output terminal appear in exactly one link. Links that include
an input terminal are called inputs. Those including output terminals are called outputs.
The remainder are called internal. A network with n inputs and m outputs is referred to
as an (n,m)-network. We’ll generally use n to denote the number of network inputs and
m to denote the number of outputs. Inputs and outputs are numbered consecutively from
0 and are identified with their indexes. We let X, ,, denote the (n, m)-network comprising
a single switch connected to all # inputs and all m outputs. Such a network is called a
crossbar and is the basic building block from which other networks are constructed.

Note that in our model, the vertices are associated with the network’s switching com-
ponents and the arcs with the data paths. Another common graph model for networks
identifies a graph’s vertices with the data paths and its edges with crosspoints.
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If ¢ is a positive integer and N is an (n,m)-network, then ¢ - N denotes the network
obtained by taking i copies of N, without interconnecting them. Inputs and outputs to
N are numbered in the obvious way, with the first copy receiving inputs 0,...,n — 1 and
outputs 0,...,m—1 and so forth. The reverse of a network N is denoted N and is obtained
by exchanging input and output terminals and reversing the directions of all links.

The concatenation of two networks Ny = (51, L1, [1,01) and Ny = (Sg, La, Iz, 02) with
n = |01| = | I2] is denoted Ny;N; and is obtained by identifying output + of Ny with input
i of Np. More precisely, if we let N = (5,L,1,0) be N3Ny then § = 51 U5, I = I,
O = 0y and

L = {(m,y)l(a:,y) € Llay c Sl} U {(ma y)](m,y) € L2,m € SZ}
U{(z,¥)|3i € [0, — 1] such that (z,?) € L1 and (4,y) € La}

|_I_IJ_Ll
e b e

Figure 1: Network Construction Operators

If o is a permutation on {0...,n — 1}, we let & also denote the network (S, L,I,0)
where [ = {0,...,n -1}, 0 ={0,...,n~1},S=0and L = {(,c(d))[0 < i< n-1}.

If d1 and d; are positive integers, we define 74, 4, to be the permutation on {0,...,d1dz —
1} satisfying

le,dz(jd1+i)=id2+j fOI‘OﬁiSd]—l,OSdezwl
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Figure 2: Network Definitions

Let N be a network with ny outputs and Ny be a network having n, inputs. The product

of N; and N, is denoted Ny X N2 and is defined as

(ng - Nl)iTm,ﬂz; (nl : NQ)

If N1 has n; outputs, N has n, inputs and nz outputs and Nz has n; inputs, the

three-way product Ny M Ny W N3 is defined as

These definitions are illustrated in Figure 1

(n2 - Nl); Tny,nas (nl ) -NQ); Taznyt (n3 . N3)

Several well-known networks can be conveniently defined using the network construction
operators. The three stage Clos network Crsr.,d,q is defined by Cf:‘d,q = Xaq W Xnjagna ™

X, 4, where we require of course that d divides n.

The delta network [5] D, 4 is defined by

Dgg=Xgd

Dpag=XaaXDyyaa

where n = d* for some integer k. The number of stages in the delta network is exactly k.
The banyan network [2] ¥, 4 is defined by

Yeou= Xad

Yod = Tnjaa; (0/d - Xa);Tanyas (4 Yoja,a)
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The banyan network is isomorphic to the delta network, and so is equivalent in all respects.
However, it is useful to define it separately as certain properties are more easily proved
using the banyan definition.

The delta networks can be extended by adding stages of switching. If d, k, h are positive
integers with A < k and n = d*, we define the extended delta network D}, ;, as follows

Dyso=Dna Dign=Dana™ Dypn g™ Dy g
An equivalent definition is
*®
md0 = Dnd Dhan = Xaa™ Dl 451> Xaa

If we take h = k£ — 1 we obtain the Benes network, denoted B, 4. By placing several Benes
networks in parallel with one another we obtain the Cantor network Ky, 4, defined by

Ifn,d,q = Xl,q M -B'n.,d g Xq,l

These networks are illustrated in Figure 2

We define three parameters that constrain the traffic placed on a network; b is called
the minimum connection weight, B the maximum connection weight and 8 the maximum
port weight. By definition, 0 <5< B < B < 1.

We discuss four different classes of networks, connection networks (or simply connectors)
which provide one-to-one communication between specified inputs and outputs, concentra-
tion networks (concentrators), which provide one-to-one communication between specified
inputs and unspecified outputs, distribution networks (distributors), which provide one-
to-many communication between specified inputs and specified sets of outputs and finally
replication networks (replicators) which provide one-to-many communication between spec-
ified inputs and unspecified sets of outputs. Our primary interest here is in distribution
networks (also known as generalized connectors). We discuss the other network types pri-
marily for their use in constructing distribution networks.

A connection request is a triple (z, v, w) where z is an input y is an output and w € [b, B]
is the weight of the request and represents the fraction of the capacity of the network’s
internal data paths required by the request. A connection assignment is a set of requests
for which, for every input or output z, the sum of the weights of the connection requests
including = is at most S.

A connection route is a list of links forming a path from an input to an output together
with a weight. A route realizes a request (z,y,w) if it starts at z, ends at y and has weight
w. A state is a set of routes for which, for every input or output «, the sum of the weights
of the routes including z is at most 8 and for every link £, the sum of the weights of all
routes including £ is at most 1. We say that a state realizes a given assignment if it contains
one route realizing each request in the assignment and no others. The weight on a link £ in
a given state is the sum of the weights of all routes including £. A link or switch y is said
to be w-accessible in a given state from an input z, if there is a path from z to y, such that
the weight on each link in the path is at most 1 —w. We say that a state s; is below a state
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sq if 81 C s9. Similarly, we say that s is above s;. We say a connection request (z,y,w) is
compatible with a state s if the weight on z and y in s is at most B - w.

A network is a rearrangeable connector if for every connection assignment, there is a
state realizing that assignment. A network is a strictly nonblocking connector if for every
state s and connection request » compatible with s, there exists a route realizing r that is
compatible with s. A network is a wide-sense nonblocking connector if the state space has
a subset S (called the safe states) such that for every state s € S all states below s are
in § and for every connection request r compatible with s, there exists a route p realizing
r that is compatible with s and such that s U {p} is in §. Intuitively, a network is wide-
sense nonblocking if blocking can be avoided by judicious selection of routes. Note that
every strictly nonblocking connector is also wide-sense nonblocking and every wide-sense
nonblocking connector is also rearrangeable.

Concentrators support one-to-one communication between specified inputs and unspec-
ified outputs. A concentration request is a pair (z,w) where 2 is an input and w € [b, B] is
the weight. A concentration assignment is a set of requests with total weight at most fm
(where m is the number of network outputs) and for which, for every input or output z,
the sum of the weights of the connection requests including x is at most 8.

A concentration route is a path from an input to an output together with a weight. A
route realizes a request (x,w) if it starts at = and has weight w. Network states are defined
as previously. We say a concentration request (z,w) is compatible with a state s if the
weight on z in s is at most § — w and if the total weight in s is at most Bm —w.

A network is a rearrangeable concentrator if for every concentration assignment, there
exists a state realizing that assignment. A network is a strictly nonblocking concentrator
if for every state s and concentration request r compatible with s, there exists a route
realizing » that is compatible with s. A network is a wide-sense nonblocking concentrator it
the state space has a safe subset § such that for every state s € § all states below s are in
S and for every concentration request r compatible with s, there exists a route p realizing
r that is compatible with s and such that sU {p} is in S.

Replicators are networks that support one-to-many communication between specified
inputs and unspecified sets of outputs. A replication request is a triple (z, fyw) where z is
an input, w € [b, B] is a weight and f € [1,m] (m is the number of network outputs) is called
the fanout of the request. A replication assignment is a set of requests R = {(zi, fi,wi)}
for which, for every input z, the sum of the weights of the connection requests including =
is at most @ and such that >_; fiw; < fm.

A replication routeis a list of links forming a tree whose root is an input and whose leaves
are outputs, together with a weight. A route realizesa request (z, f,w) if it starts at z, has f
leaves and weight w. States are defined as previously, but with respect to replication routes.
We say a replication request (z, f,w) is compatible with a state s realizing an assignment
A = {(=;, fi,wi)} if the weight on z in s is at most § — w and if fw+ Yo fiws £ fm. A
network is a rearrangeable replicator for every replication assignment, there exists a state
realizing that assignment.

Distributors support one-to-many communication from a specified input to one or more
specified outputs. A distribution request is a triple (z,Y,w) where z is an input, ¥ is a
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set of outputs and w € [b, B) is a weight. A distribution assignment is a set of requests
for which, for every input or output , the sum of the weights of the distribution requests
including z is at most 8.

A distribution route is a list of links forming a tree whose root is an input and whose
leaves are outputs, together with a weight. A route realizes a request (z,Y,w) if its root is
z, its leaves are exactly the set ¥ and it has weight w. A stateis defined as before, but with
respect to distribution routes. We say a distribution request (z,Y, w) is compatible with a
state s if the weight in s on z and all y € ¥ is at most 8 — w.

An augmentation request for a distribution network in a state s Is a pair (r,y) where
r = (z,Y,w) is a request in the assignment realized by s and y is an output not in Y. An
augmentation request is compatible with s if the weight on y in s is at most 3 —w. We say
that an augmentation request can be satisfied in s if the route realizing r can be extended
by adding links so that y becomes a leaf of the route. This extension must not of course
increase the weight on any link beyond 1.

A network is a rearrangeably nonblocking distributor if for every distribution assignment,
there exists a state realizing that assignment. A network is a strictly nonblocking distributor
if for every state s and distribution request r compatible with s, there exists a route realizing
r that is compatible with s and if every augmentation request r compatible with s can be
satisfied. A network is a wide-sense nonblocking distributor if the state space has a safe
subset $ such that for every state s € 5 all states below s are in 5; for every distribution
request r compatible with s, there exists a route p realizing 7 that is compatible with s
and such that s U {p} is in §; and every augmentation request r compatible with s can be
satisifed in such a way that the resulting state is in 5.

3. Pippenger’s Network

Let Q = {Qa, Qg2s...,@g--.} be a family of concentrators where @ has n inputs and
n/d outputs. Define Py = Xy 4 and Pp(Q) = X1, X (Q@n; Prya(@)) for all n that are powers
of d. See Figure 3. Pippenger [6] showed that for b = B = f = land d = 2,if @ is
a family of wide-sense (rearrangeably) nonblocking concentrators then P, is a wide-sense
(rearrangeably) nonblocking distributor. To understand this result, note that a route from
aqn input z to an output y, must pass through a unique sequence of recursively constructed
subnetworks. The branch switches X 4 allow the route to pass to the required subnetworks
without conflict and the route must be able to pass through the required concentrators
if 4 is idle since each of these concentrators must have at least one idle output. This is
illustrated in Figure 3. Note that branching is restricted to the branch switches and the
crossbars in the last stage.

Ofman [4] shows that the reversed banyan network, Y .2 is a rearrangeable concentra-
tor when b = B = 8 = 1, yielding an explicit construction of a rearrangeable distribution
network in the classical context. Similarly, since the Cantor network K, g is a strictly
nonblocking connector when m > (2/d)(1+ (d — 1)logy n/d) it is also a strictly nonblock-
ing concentrator and Pippenger’s construction yields a wide-sense nonblocking distribution
network. Our first two theorems generalize these results to the multirate environment.
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Figure 3: Pippenger’s Network

Let Y, ;¢ denote the reversed banyan network Y .« but with the outputs restricted to
any m consecutive elements of [0,n — 1].

THEOREM 3.1. Let Q = {Y, n/aq}- Then Po(Q) is a rearrangeable distributor if (1/8) = 2.

THEOREM 3.2. Let Q = {Bnq}. Then P,(Q) is a wide sense nonblocking distributor if

/(B4 B) 2 g (14 (4= Dlogu(n/d).

Theorem 3.1 follows from Pippenger’s basic construction and the following theorem
which gives conditions under which the reversed banyan network is a rearrangeable concen-
trator.

THEOREM 3.3. Given any concentration assignment for Y, 4 with total weight w < n and
any y € [0,n ~ 1], there is a state of Y, 4 that realizes the assignment using only outputs
in § = {y,(y +1) mod n,...,y+ (r ~ 1) mod n} of Y . 4, where r < min {2w,n}. Hence,
for allm < n, Y o ;.4 is a rearrangeable concentrator if § < 1/2.
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Figure 4: Reversed Banyan Network

Proof. The proof is by induction on the number of stages. The state constructed
to establish the theorem also satisfies two other properties not explicitly mentioned above.
First, for all z,(2+1) mod n € S, the total weight on the outputs 2, (z+ 1) mod n is strictly
greater than 1. Second, the distribution of weights on consecutive outputs is insensitive to
the choice of y; that is, the weight on the j-th output in the group is a property of our
overall routing strategy and is not affected by the specified starting output.

We show that given any concentration assignment with total weight w < =, and any
output y, there is a state of ¥, 4 that realizes the assignment using only outputs in § =
{y,(y +1) mod n,...,y+(r —1) mod n} of Y, 4, where » < min {2w,n} and for which, for
all z,(z+ 1) mod n € S, the total weight on the outputs z, (z+ 1) mod n is strictly greater
than 1. The routing strategy we use to establish the assertion has the property that the
distribution of the weights on consecutive outputs is insensitive to the choice of y; that is,
the weight on the j-th output in the group does not depend on the output we start with.

For a single stage network, we route the requests of the form (0, w) to output y. We then
route as many of the requests of the form (1,w) as will fit on output y without overloading,.
When we can’t place any more connections on output y, we proceed to output (y+1) mod =.
Continuing in this fashion, results in a state that satisfies the conditions given above.

Assume, then that the induction hypothesis is true for all n = d*, where { < k and
consider a k stage network with k& > 1. Figure 4 shows the structure of Y, 3. Notice how
it is made up of recursive subnetworks that are connected through a set of switches to
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the outputs. Let w; be the total weight in the connection assignment involving inputs in
[i(n/d),(§ + 1)(n/d) — 1]. By the induction hypothesis, these connections can be routed
to outputs {y;,(y; + 1) mod (n/d),...,(y; + (r; — 1)) mod (n/d)} of recursive subnetwork
4, for any chojce of y; in [0, (»/d) — 1] and for r; < min {2w;,n/d}. Furthermore, for any
consecutive pair of outputs with non-zero weight, the total weight will be strictly greater
than 1.

To establish the truth of the theorem, we must select values of y; that will allow the
connections to be routed tlirough the final stage of the network to the output set S. We start
by letting 4o = ¥ mod (n/d). This will route the connections from subnetwork 0 to switches
in the last stage that have access to outputs y,...,¥ + (ro — 1) mod n. We configure the
last stage switches to route the connections in this fashion and then proceed to subnetwork
1. Let z = y+ (ro — 1) mod n. We wish to route the connections from subnetwork 1 to
the set of outputs starting at either z or (z + 1) mod n. The choice between these two
alternatives will depend on whether the resulting weight on z would be acceptable or not.
In particular, if routing the connections from subnetwork 1 to outputs 2,z + 1 mod =,...
would lead-to a load less than or equal to 1 on output z, we route them that way; that is,
we let 3 = z mod (n/d). Otherwise welet y1 = (z+ 1) mod (n/d). We make a similar
decisions when selecting g, y3 and so forth. Proceeding in this fashion yields a network
state satisfving the condition to be proved, and hence establishing the theorem. D

To prove Theorem 3.2 we need the following theorem which is proved in [3]

THEOREM 3.4. B, g is a strictly nonblocking connector if

(1182 Frmrpy 7L + (€= DoBu(n/)).

Now, to establish Theorem 3.2, we need a routing strategy that ensures that the con-
ditions required to make the concentrators strictly nonblocking are met. Whenever setting
up or augmenting a connection we require that it not place a weight greater than f + B
on the input or output links of any of the concentrators. Given the bound on S+ B in the
statement of Theorem 3.2, this will ensure that routes can be found through the required
concentrators.

Suppose we are adding z to an existing route (z,Y,w) and let i be the largest integer for
which there exists a y € ¥ with |z/d*~*] = |y/d*~?]. Then, the current route includes a
path which leads toward = for the first 7 levels in the recursive construction of P,. At level
i+1, that path reaches a branch switch from which the subnetwork containing z contains no
current element of Y. There is a unique sequence of concentrators along this path. Consider
any such concentrator and let m be the number of outputs the concentrator possesses. The
number of network outputs that can be reached from this concentrator is also m, hence
the total weight on the concentrator’s outputs is at most Sm — w. Hence, there is at least
one output of the concentrator with a weight of less than 8, and since w < B, the new
path can be routed through this output without violating the weight constraint of § + B
on concentrator outputs. A similar argument applies to inputs. This completes the proof
of Theorem 3.2.
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4. Modified Ofman-Thompson Network

Ofman [4) and Thompson [8] showed that the network Y n.2;Ynz2; Br2 is a rearrangeable
distributor when b = B = # = 1. We show that a similar network is a rearrangeable

distributor in the multirate environment.
THEOREM 4.1. By 4;Yn 4; Bn 4 is a rearrangeable distributor when

1(8+B)2 14+ S5 H(B/(S + B logu(n/4)

or
1/(8+ B) > 2+ max {0,lnlog,(n/d) — In|1 + 8/B]}

So for example, if n = 1024, d = 32 and § = B then (1/8) > 3 is sufficient fo ensure
rearrangeable operation. If n = 215, d = 32 and 8 = B, (1/8) > 4 is sufficient.
To use By, 4; Yn,¢; Bn,¢ as @ rearrangeable distributor, we use point-to-point routing in

the first and last subnetworks, allowing branching to occur only in the middle subnetwork.
The proof of Theorem 4.1 requires a couple tesults describing the blocking characteristics

of the subnetworks. The following theorem is proved in [3].

THEOREM 4.2. B, 4 is a rearrangeable connector when

(118) 2 1+ 22 2(B/ ) logu(n/ )

or

(1/8) > 2 + max {0, lnlogg(n/d) - In| 6/ B}

A less general version of the following proposition is proved in [4].

PROPOSITION 4.1. Let 0 < r < n — 1 and let C = {(z0,%0:1)s---,(Tr—1,¥r—1,1)} be a
connection assignment for Yy, 4, where yo < +++ < gy and for 1 £ 1 < r -1, z; =
z;—1 + 1 mod n. Then, there is a state of Y, 4 that realizes C.

Proof. By induction on the number of stages. For a single stage, Y, 4 is a crossbar so
clearly it satisfies the theorem. Consider then a network with more than one stage.

Each of the subnetworks formed when the first stage is removed is a banyan network, so
we need only show that the first stage can route all connections to the proper subnetworks
and that the connection requests passed on to the subnetworks satisfy the condition in the

statement of the theorem.

Consider subnetwork j; £; = j(n/d) and h; = £;+(n/d)—1 are the first and last outputs
of subnet j. Let a be the smallest integer such that {; < y, £ h; and let b be the largest
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integer such that I; < y3 € hj. Note that the connection requests that are to be routed to
subnet j all have indices in the interval [a,b] implying that b —a + 1 < n/d.

Because all the connection requests involving subnet 7 appear on consecutive inputs to
the network, and there are at most n/d of them, they appear on inputs connected to distinct
switches in stage 1. Consequently, all can be routed to subnet j without conflict. Also,
because the connection requests for subnet j appear on consecutive inputs to the network,
they pass through consecutive stage 1 switches, which in turn connect to consecutive inputs
on subnet j, implying that the connection requests seen by subnet j satisfy the conditions
of the theorem.

The above argument holds independently for each of the subnetworks. Applying the
induction hypothesis to each of the subnetworks then, yields the theorem. O

The following proposition is an easy generalization of the previous one.

PROPOSITION 4.2. Let 0 < 7 < n — 1 and let A = {(z0,2Z0,1),-..s(%r-1,2r-1,1)} be a
distribution assignment for Z, 4, where y1 € Z; and y2 € Z;y1 implies that y1 < ¥ and for
1<i<r—1,z; = z;—1 + 1 mod n. Then, there is a state of Y, 4 that realizes A.

Proof of Theorem 4.1 Let A = {r; = (2;, Z;,w;)|0 < ¢ < ¢ — 1} be a distribution
assignment for By 4; Yy, 4; Br ¢, and assume the r; are sorted by weight, so that w; > wiqq
for i € [0,¢ — 2). Also, let f; = |Z;| and s; = 3;¢; fi for i € [0,¢ — 1]

Assume for the moment, that |(si-1 + 1)/n] = [si/n] for i € [1,¢ — 1] and let 4; =
{r;||s:/n] = j}. (This assumption will be eliminated later.) We constrain the choice
of toutes so that for r; € A;, the selected route starts at z; and passes through input
(i — 7) mod n and outputs (s;—1 + 1) mod n,..., s; mod n of the central subnetwork, before
proceeding through the third subnetwork to the members of Z;. Notice that forall j > 1,
the route for the last request in A;-; and the route for the first request of A; pass through
a common input of the central subnetwork.

Given these constraints and Proposition 4.2, the requests in each of the 4; can be routed
through the central subnetwork without using any common links. Consequently, each link
in the central subnetwork is included in at most one route realizing requests in A;. Hence,
the weight on each link in the central subnetwork is at most

Z maxw; = B+ (fn—-B)/n< f+ B
J.EOT;EA,‘

Since this is < 1, the indicated routes car be handled by the central subnetwork. Since the
weight on the input and output links of the first and last subnetworks is at most §+ B, the
bounds on 8+ B given in the statment of the theorem together with Theorem 4.2 imply
that the indicated routes can be handled by the first and last subnetworks.

Now all that remains is to eliminate our earlier assumption that |(s;_1+1)/n] = |si/n].
Suppose now that for some i, | (si~1+1)/n| # |si/n]. Insuch a case, we split request r; into
two requests ri1 = (x4, Zi1,w;) and 7;2 = (24, Zij2,wi) where Z;1UZ; 2 = Z; and si.1 +|Z: 1]
is evenly divisible by n. By doing this for all requests that violate our assumption we obtain
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Figure 5: Recursive Structures of By g and R, 4

a new set of requests that satisfies the assumption. Hence we can apply the routing strategy
given earlier to this new set of requests. Notice that because the our routing strategy routes
the last request in 4;_; and the first request of A; through a common input of the central
subnetwork, this does not require branching in the first subnetwork. O

5. A Nearly Wide-sense Nonblocking Distributor

The definitions of wide-sense and strictly nonblocking distributors require that the network
handle both distribution requests and augmentation requests. If we require only the ability
to handle distribution requests, we obtain a class of networks that is intermediate in power
between the rearrangeable and wide-sense nonblocking distributors. We call such networks
nearly wide-sense nonblocking distribuiors.

THEOREM 5.1. By g; B4 Is a nearly wide sense nonblocking distributor when

1/(B+B)2 dmx(; (1L + (@ = 1)logu(n/).

Proof. For convenience we introduce an alternative description of the Bene§ network.
Let Rpg = Dypyga XN Xgag X Dyygg. It is not difficult to show that R, g is topologically
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equivalent to B, 4. Figure 5 compares the recursive structure of the two networks. We
can view R, q as being an “inside-out” version of B, 4. For simplicity of description, the
remainder of the the proof addresses the network B, 4; R, 4, but the results hold equally
well for By, g; By 4.

Let S be the set of states of By g; Ra¢ in which branching occurs only in the second
subnetwork and in which the weight on any input of the second subnetwork is at most
B + B. Given any state s € § and a distribution request, (z,Y,w) compatible with s, we
first identify an input 2 to the second subneiwork carrying a weight of at most §# and from
which more than half the middle stage switches in the second subnetwork are w-accessible.
The key to proof is showing that given the conditions of the theorem, there must exist such
a z. We also show that given the conditions of the theorem, more than half the middle
stage switches of the second subnetwork are w-accessible from each output in ¥ and that 2
is w-accessible from z. These facts together imply the existence of a route r realizing the
request for which sU {r} € §.

For 0 < ¢ < k = logyn, define L;(u) to be the set of stage ¢ links that can be reached
from input v in an idle network R, q. We note that L;(u) = L;i(v) if [u/d'] = |v/d’], so

L), L (¢),..., L (') ..., L (¢ = 1) &)

partitions the links in stage 7 into d*~* groups of d* links each.

To find an input z to the second subnetwork, we work backward from the middle stage
of the second subnetwork, seeking the most “lightly loaded™ portion of the subnetwork at
each step. Define W;(4) to be the weight on the links in L; (jd*) let W7 = min; Wi(j). Note
that W < (fn —w)/d*~* < Bd' and hence that there is a z such that for 0 £ ¢ < k— 1 the
total weight on the links in L;(z) is < 8d'.

Let @Q; be the set of links (u,v) in stage ¢ of the second submetwork for which v is
w-accessible from z but » is not. Also, let A; be the total weight on all links in @; and
note that |Q;| f(w) < A; < Bd?, where f(w) = max {b,1 — w}. The number of middle stage
switches of the second subnetwork that are not w-accessible from z is exactly

k-1
E IQildk—i—l < f(w)d E dk—-—l}\

i=0 1==Q
k—1 k—is 3i {1
< f()d Bd +Zd ‘- d1)g
< SoprEn(l + (@ 1)logu(n/d)
< nj2d

Hence more than half of the middle stage switches are w-accessible from z.

Next, we show that for all ¥ € Y, more than half of the middle stage switches of the
second subnetwork are accessible from y. The argument is similar to the one given above.
Redefine @; to be the set of links (u,v) in stage 2k — 1 — 7 of the second subnetwork for
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which v is w-accessible from y but u is not. Also, let A; be the total weight on all links in
Q; and note that |Q:|f(w) < A;. Also, note that A; < Bd* since the number of outputs that
can be reached from links in §; is exactly df, none of them can carry a weight of more than
8 and at least one (y) must carry a weight of less than 8. The number of middle stage
switches of the second subnetwork that are not w-accessible from y is then

ki:l feiml o L kildk-i/\
i=0 @ T flwd 5 l
< 1 ﬁdk— kildk—i(di _ di-—l)ﬁ
Fw)d )d =
< nf2d

Hence more than half of the middle stage switches are w-accessible from y.

Finally, we need to show that a route can be found from input z of the first subnetwork
to z. This follows from Theorem 3.4 and the fact that the input and output links of the
first subnetwork carry a weight of at most § 4+ B. O
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