Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-89-28

1989-06-01

Toward Formal Verification of Rule-Based Systems: A Shared
Dataspace Perspective

H. Conrad Cunningham and Gruia-Catalin Roman

Rule-based programs used in mission- and safety-critical applications need to be shown to be
free of hazards. This paper discusses formal proof-techniques which promise to assist
designers in this task. In this paper we show that the shared dataspace language Swarm has
many key features in common with rule-based languages. We outline an assertional
programming logic for Swarm programs and use the logic to reason about the correctness of a
simple program. This logic is a suitable foundation for the development of techniques specific
to present and future rule-based languages.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Cunningham, H. Conrad and Roman, Gruia-Catalin, "Toward Formal Verification of Rule-Based Systems: A
Shared Dataspace Perspective" Report Number: WUCS-89-28 (1989). All Computer Science and
Engineering Research.

https://openscholarship.wustl.edu/cse_research/741

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F741&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F741&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F741&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F741&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F741&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/741?utm_source=openscholarship.wustl.edu%2Fcse_research%2F741&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

TOWARD FORMAL VERFICATION OF
RULE-BASED SYSTEMS: A SHARED
DATASPACE PERSPECTIVE

H. Conrad Cunningham

Gruia-Catalin Roman

WUCS-89-28

June 1989

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899

ABSTRACT

Rule-based programs used in mission- and safety-critical applications need to be
shown to be free of hazards. This paper discusses formal proof techniques which
promise to assist designers in this task. In this paper we show that the shared
dataspace language Swarm has many key features in common with rule-based
languages. We outline an assertional programming logic for Swarm programs and use
the logic to reason about the correctness of a simple program. This logic is a suitable
foundation for the development of techniques specific to present and future rule-based

languages,

Toward Formal Verification of Rule-based Systems:
A Shared Dataspace Perspective

H. Conrad Cunningham and Gruia-Catalin Roman

Department of Computer Science
WasHINGTON UNIVERSITY
Saint Louis, Missouri, U.S.A.

Abstract

Rule-based programs used in mission- and safety-
critical applications need to be shown to be free of
hazards. This paper discusses formal proof tech-
niques which promise to assist designers in this task.
In this paper we show that the shared dataspace lan-
guage Swarm has many key features in common with
rule-based languages. We outline an assertional pro-
gramining logic for Swarm programs and use the logic
to reason about the correctness of a simple program.
This logic is a suitable foundation for the develop-
ment of proof techniques specific to present and fu-
ture rule-based languages.

1 Introduction

During the past decade, rule-based langnages [1, 5]
have become increasingly popular both in the artifi-
cial intelligence tesearch community and in the indus-
trial community at large. Nevertheless, in the area of
mission- and safety-critical software, rule-based sys-
tems have made few inrcads. The general expecta-
tion is that rule-based systems will become a useful
decision support tool for the human operator. Many
safety-critical systems, however, need to operate with
little (e.g., target tracking) or no (e.g., satellites, mis-
siles) human interaction. Because these kinds of ap-
plications require stringent software validation, the
lack of formal verification methods for rule-based lan-
guages makes such languages unacceptable to the
safety minded developer.

Proof methods, however, represent an important
and persistent concern for the programming langnage
community at large. Significant progress has been
made with respect to the verification of both sequen-
tial and concurrent programs. A large body of scien-
tific knowledge has been accumulated. Its systematic
application to the study and development of critical
algorithms is widespread and, with the assistance of
automatic theorem provers, the verification of small

industrial-grade programs have been attempted. At
this point the reader may wonder why the same for-
mal verification methods had hittle impact on rule-
based systems, despite the fact that both concurrent
and rule-based programming use a common underly-
ing operational model: interleaving of atomic actions.

The answer, we believe, lies with the distinct
nature of the basic paradigms used by the two
research communities. Concurrent programming
is currently dominated by the shared-variable and
message-passing paradigms. {In our opinion, remote
procedure call and object-oriented programming ad-
dress mostly packaging issues and do not represent
fundamental paradigm shifts.) Both paradigms use
name-based accessing of shared objects, i.e., variables
or channels. In contrast, rule-based programming in-
volves content-based addressing of entities stored in
a database of facts. The key to easy transferability of
formal verification results from concurrent program-
ming to rule-based languages seems to rest with the
ability to accommodate content-based addressing.

An equally significant, but subtle, distinetion be-
tween rule-based and concurrent programming is the
emphasis given to computation versus that given to
communication. In rule-based programming, one
rarely views the database of facts as a medium for
communication among the rules. On the other hand,
interprocess communication is always the central is-
sue in the design of concurrent algorithms. We pro-
pose to unify these two perspectives om comput-
ing by reducing both computation and communi-
cation to the notion of atomic transformation of a
content-addressable medium (called a shared data-
space) which includes the computing/communicating
agents.

In several earlier papers we have expounded upon
a mode] called the Shared Dataspace paradigm [6].
‘This model represents the underlying semantics of a
simple language called Swarm [7]. The original moti-
vation for the model was the simplification of the con-
current programming task {perhaps at the expense of
more complex language implementations). The work

on the Linda [2] language and the growing interest
in parallel computation among artificial intelligence
researchers has encouraged our work.

Like many rule-based languages, Swarm represents
data as tuples. However, unlike most rule-based lan-
guages, Swarm uses a dynamically varying set of pro-
duction rules. In Swarm, these rules are called trans-
actions. The set of data tuples existing at any point
in a computation is called a tuple space; the set of
transactions, a transaciion space. Both the tuple
space and the transaction space are subsets of the
dataspace.

Fach transaction has a tuple representation in the
dataspace and a separate type-specific behavior defi-
nition. A transaction can query the entire dataspace,
delete data tuples, and insert both data tuples and
new transactions. Transactions are selected for exe-
cution in a fair manner and are deleted implicitly as
part of their execution. To simulate the static set of
productions of a rule-based program, one must ini-
tialize the transaction space to contain a transaction
for each production rule and must define the behavior
of each transaction to reinsert itself alter each execu-
tion.

Recently we completed an assertional program-
ming logic for Swarm [4]. The Swarm logic is similar
to the programming logic for the UNITY [3] notation
proposed by Chandy and Misra, but has been gener-
alized to accommodate content-based accessing and
the dynamic set of transactions. (The UNITY model
assumes a fixed, finite set of conditional multiple-
assignment statements which modify a fixed, finite
set of variables.) In light of this new development,
rule-based programs which map directly to Swarm
programs can be subjected to formal verification. In
this paper weillustrate the proof strategy for a simple
region labeling program.

Because of the generality of Swarm’s underlying
formal model, we believe it feasible to customize the
Swarm programming logic to the specifics of individ-
val rule-based languages. Even so, some may argue
that formal program verification is not a practical
technique for rule-based programs—that definition
of correctness criteria in terms of predicate calculus
may not always be feasible for artificial intelligence
programs and that the correctuess proofls for large,
complex programs will be unwieldy. We choose not
to engage ourselves in this controversy here, except
to observe that rule-based programs used in safety-
critical applications will need to be shown to be free
of hazards. The proof technique illustrated in this
paper promises to assist designers with this task.

The remainder of this paper gives an overview of
the Swarm language, introduces the proof rules, and
illustrates the proof strategies on a very simple pro-
gram. Features of language and logic not used in the

example are ignored. More complete information is
given in [7].

2 The Swarm Language

In this section we introduce the Swarm langnage
by means of a simple example. Consider the task of
assigning unique labels to connected, equal-intensity
regions of some digital image. Each point in the im-
age, called a pixel, has three attributes: a unique
coordinate on a rectangular grid, an intensity value,
and a label. When the labeling is completed, all pix-
els belonging to the same region must have the same
label—the region label. For the sake of brevity, we
assume that initially the label attribute equals the
pixel’s coordinate. We start with a generic rule-based
solution and gradually reflormulate it as a Swarm pro-
gram.

The information associated with each pixel can be
stated as two facts:

1. each pixel P has intensity I (constant and spe-

cific to P},
2. each pixel P has label L (initially equal to P).

The exact tepresentation of these facts depends upon
the specific notation system being used. In Swarm,
for instance, the two types of facts are {reated as data
tuples stored in the dataspace and having the forms

hasntensity(P, I} and has fabel(P, L)

where has_intensity and haslabel are tuple type
names.

We turn next to the labeling process. If we can
assume some total ordering over the domain of co-
ordinates, e.g., lexicographical order, one single rule
suffices:

Ir
there is a pixel P which has a (eight-connected)
neighbor @ of equal intensity and the label of @
is smaller than the label of P

THEN
replace the label of P with the label of @.

Successive applications of this rule result in the
propagation of the smallest label present in some re-
gion to all pixels belonging to that region. The same
result, however, could be obtained by employing mul-
tiple instances of this rule, perhaps one for each pixel
P in the image. We find the latter solution more at-
tractive because it makes explicit the opportunities
for concurrent execution. To accommodate the no-
tion that each rule is specific to a particular pixel P,
we can modify the above rule slightly to get:

IF
the pixel P has an (eiglt-connected) neighbor Q
of equal intensity and the label of @ is smaller
than the label of P

THEN
replace the label of P with the label of Q.

In Swarm, the rule above can be represented as a
transaction type called Label parameterized by the
pixel coordinate P. The behavior exhibited by trans-
actions of this type is a direct encoding of the rule
above; the guery and the action are separated by the
symbol —.

Label(P) =
p,AL A2
has_label{ P, A1)t, has label(p, A2},
R_neighbors(P, p), A1 > A2
— hasabel(P, 22)

The identifiers p, AL, and A2 are free variables which
are bound by the query, if successful. The action
involves a tuple deletion marked by the symbol { (the
old label for P) and an insertion (the new label for
P). By definition all tuple deletions performed by
a transaction are assumed to precede any insertions.
The total effect of each transaction execution is an
atomic transformation of the dataspace.

At initialization, the dataspace must contain an
instance of the transaction type Label for each pixel
P. Unfortunately, in accordance with the Swarm se-
mantics, each firing of a transaction results in the its
deletion from the dataspace unless an explicit rein-
sertion of the transaction is specified in the behavior
definition. To accomplish this, one needs to redefine
Label to force the reinsertion of the transaction being
executed:

Label(P) =
p, AL A2
has_label(P, A1)t, has lebel(p, A2),
R.neighbors(P, p), A1 > A2
— hasJabel(P, X2)
|| true— Label(P)

The symbel || is used to separate subtransactions
within a single transaction. Operationally, the sub-
transactions synchronize after the individual query
evaluations and again afier completing individual tu-
ple deletions. The effect of the second subtransaction
is to keep the rule in the dataspace forever.

Once the labeling is completed none of the trans-
actions will succeed, but they will continue to be se-
lected for execution. We could have added a ter-
mination detection mechanism to the program, but
it is not essential to demonstrating the verification
methodology.

This illustrates one important distinction between
rule-based languages such as OPS5 and Swarm.
Rule-based languages operate using a sequential
match-select-execute cycle with selection rules de-
signed to help the program make rapid progress to-
ward its computational goals. Termination generally
takes place when none of the rules can be applied. On
the other hand, each Swarm transaction is made up
of one or more subtransactions that execute concur-
renfly; the execution mechanism selects transactions
for execution in a fair manner, i.e., it eventually se-
lects every tramsaction in the transaction space. Pro-
gram termination occurs when the transaction space
becomes empty. These distinctions are the result of
the dynamic and concurrent nature of Swarm. Many
rule-based systems still have a sequential program-
ming view of the world.

A complete region labeling program is shown in a
later section as Figure 1. It includes program name
specification, formal parameters, auxiliary definitions
used to simplify query definitions, tuple and transac-
tion type definitions, and initialization. The purpose
of this section was simply to illustrate the relation be-
tween rule-based programming and shared dataspace
and to provide a simple example which will serve as a
vehicle for introducing a formal verification strategy.
Swarm’s ability to simulate directly any particular
rule-based system is not a concern here.

3 A Programming Logic

In this section we formalize our view of program
execution and present an assertional programming
logic. A more complete presentation of the formal
model sketched below can be found in [7]. For sim-
plicity in presentation, we are not considering the
synchrony relation feature of Swarm, but we do keep
the notation used here compatible with that needed
for the full language. The model and logic presented
here have been generalized to incorporate synchronic
gIoups.

A Swarm dataspace can be partitioned into a finite
tuple space and a finite transaction space. For data-
space d, let Tr.d denote the transaction space of d.
The transaction types section of a program defines
the set of all possible transaction instances TR.S.

A Swarm program can be modeled as a set of exe-
cution sequences, each of which is infinite and denotes
one possible execution of the program. Let e denote
one of these sequences. Each eclement e;, i > 0, of e
is an ordered pair consisting of a program dataspace
Ds.e; and a set Sg.e; containing a single transac-
tion chosen from Tr.Ds.ei. (If Tr.Ds.e; = @, then
Sg.e; = ﬂ)

The transition relation predicate step expresses
the semantics of the transactions in TILS; the val-

ues of this predicate are derived from the query and
action parts of the transaction body. The predicate
step(d, 5, d"} is true if and only if the transaction in
set S is in dataspace d and the transaction’s execu-
tion can transform dataspace d to a dataspace d'.
(For more detail, see [7].)

We define Exec to be the set of all execution se-
quences e, as characterized above, which satisfy the
following criteria:

¢ Ds.epis a valid initial dataspace of the program.

¢ For: >0, if Tr.Ds.e; # §
then step(Ds.e;, Sg.e;, Ds.eiy1);
otherwise Ds.e; = Ds.eiy1.

* eis fair, Le,

(Vi,t: 0 <iAte Tr.Ds.e;:
(Fi:i>i:8ge;={1} A
(VE:ig<k<j:t€ TrDse)))

Terminating computations are extended fo infinite
sequences by replication of the final dataspace.

Although we could use this formalism directly to
reason about Swarm programs, we prefer to reason
with assertions about program states rather than
with execution sequences. The Swarm computational
meodel is similar to that of UNITY; hence, a UNITY-
like assertional logic seems appropriate. However, we
cannot use the UNITY logic directly because of the
differences between the UNITY and Swarm frame-
works.

In this paper we follow the notational conventions
for UNITY in [3]. We use Hoare-style assertions of
the form {p} ¢ {4} where p and ¢ are predicates and
t is a transaction instance. Properties and inference
rules are often written without explicit quantifica-
tiorn; these are universally quantified over zll the val-
ues of the free variables occurring in them. We use
the notation p(d) to denote the evaluation of predi-
cate p with respect to dataspace d and the notation
(p A —q)(ei) to denote the evaluation of the predi-
cate p A~g with respect to Ds.e;. Below we also use
the notation [#] to denote the predicate “transaction
instance ¢ is in the transaction space.”

UNITY assignment statements are deterministic;
execution of a statement from a given state will al-
ways result in the same next state. This determinism,
plus the use of named variables, enables UNITY s as-
signment proof rule to be stated in terms of the syn-
tactic substitution of the source expression for the
target variable name in the postcondition predicate.
In contrast, Swarm transaction statements are non-
deterministic; execution of a statement from a given
dataspace may result in any one of potentially many
next states. This arises from the nature of the trans-
action’s queries. A query may have many possible
solutions with respect to a given dataspace. The ex-
ecution mechanism chooses any one of these solutions

nondeterministically—fairness in this choice is not as-
sumed. Since the state of a Swarm computation is
represented by a set of tuples rather than a mapping
of values to variables, finding a useful syntactic rule
is difficult.

Accordingly, we define the meaning of the assertion
{p} t {¢} for a given Swarm program in terms of the
transition relation predicate step as follows:

{r}t{a} =
(vd,d": step(d, {t},d') : p(d) = q(d"))

Informally this means that, whenever the precondi-
tion p is true and transaction instance ¢ is in the
transaction space, all dataspaces which can result
from execution of transaction t satis{ly postcondition
¢. In terms of the execution sequences this rule
means:

(Ve,i:e€ ExecA0 <1
plei) ASg.e: = {1} = gleit1))

Asin UNITY s logic, the basic safety properties of
a program are defined in terms of unless relations.
The Swarm definition mirrors the UNITY definition:

punless ¢ =
(Vt:teTRS: {pA—g} t{pVvq})

Informally, if p is {rue at some point in the computa-
tion and g is not, then, after the next step, p remains
true or ¢ becomes {rue, (Remember TRS is the set
of all possible transactions, not a specific transaction
space.) In terms of the sequences this rule implies:

(Ve,i:e € ExecAO0 < i
(PA—g)es) = (pV a)(eisa))
From this we can deduce:

(Ve,i:e € ExecAD <1
ples) = (Yi:j2i:(pV-g)e))Vv
BE:i<kglex) A
(Viti<i<k:(pA-q)es))))

In other words, either p A —g¢ continues to hold indef-
initely or ¢ holds eventually and p continues to hold
at least until 4 holds.

Stable and invariant properties are fundamen-
tal notions of our proof theory. Both can be defined
easily as follows:

stable p = punless false
invariantp = (INIT = p) A {stable p)

Above INIT is a predicate which characterizes the
valid initial states of the program. A stable predicate
remains true once it becomes true—although it may
never become frue. Invarianis are stable predicates
which are érue initially. Note that the definition of
stable p is equivalent to:

(Vi: 1€ TRS: {p} t {p})
We also define constant properties such that:
constantp = (stablep) A (stable —p)

We use the ensures relation to state the most
basic progress (liveness) properiies of programs.
UNITY programs consist of a static set of statements.
In contrast, Swarm programs consist of a dynami-
cally varying set of transactions. The dynamism of
the Swarm transaction space requires a reformulation
of the ensures relation. For a given program in the
Swarm subset considered in this paper, the ensures
relation is defined:

pensures g =

(r unless g) A
(Ft:t € TRS: (pA=g=[{])A
{pA-g}t{d})

Informally, if p is érue at some point in the computa-
tion, then (1) p will remain true as long as ¢ is false,
and (2) if g is false, there is at least one transaction
in the transaction space which can, when executed,
establish ¢ as true. The second part of this definition
guarantees ¢ will eventunally become true. This fol-
lows from the characteristics of the Swarm execution
model. The only way a transaction is removed from
the dataspace is as a by-product of its execution; the
fairness assumption gnarantees that a transaction in
the transaction space will eventually be executed.

In terms of the execution sequences the ensures
rule implies:

(Ve,i:e€ ExecAD <1
ple) = (37:i<7ale;) A
(Vhii<h<gn(en))

The Swarm definition of ensures is a general-
ization of UNITY’s definition. To see this, note if
(Vi: 1€ TRS : [t]} is assumed to be invariant, the
above definition can be restated in a {form similar to
UNITY’s ensures.

The leads-to property, denoted by the symbel
—, is commonly used in Swarm program proofs.
The assertion p = g is true if and only if it can
be derived by a finite number of applications of the
following inference rules:

p ensures ¢
P g
pr—q g — T

. py— (transitivity)

o For any set W, (disjunction)
(Vm :m € W : p(m) — q)
(Bm :m € W : plm)) — ¢

In terms of the execution sequences, from p — g,
we can deduce:

(Ve,i:e € ExecAD <1
ples) = (35:i< 71 4(e))))

Informally, p —+ ¢ means once p becomes true, g will
eventually become true. However, p is not guaranteed
to remain érue until ¢ becomes irue.

UNITY makes extensive use of the fixed-point
predicate P which can be derived syntactically from
the program text. Since FP predicates cannot be de-
fined syntactically in Swarm, verifications of Swarm
programs must formulate program postconditions
differently—often in terms of other stable proper-
ties. However, unlike UNITY programs, Swarm pro-
grams can terminale; a termination predicate TERM
can be defined as follows:

TERM = (Yt:teTRS:-[1])

Other than the cases pointed out above (i.e., trans-
action rule, ensures, and FP), the Swarm logic is
identical to UNITY’s logic. The theorems (not in-
volving FF) developed in Chapter 3 of [3] can be
proved for Swarm as well. We use the Swarm ana-
logues of various UNITY theorems in the proofs in
the next section.

4 Region Labeling

This section applies the programming logic given
in Section 3 to the verification of the Swarm program
presented informally in Section 2, a program to label
the equal-intensity regions of a digital image. In this
section we “start from scratch.” We formally define
the problem and correctness criteria, elaborate the
program data structures, and then state a program
and argue that it satisfies the correctness criteria.

4.1 Setting Up the Problem

A region labeling program receives as input a dig-
itized image. Lach point in the image is called a
pizel. The pixels are arranged in a rectangular grid
of size N pixels in the z-direction and Af pixels in the
y-direction. An zy-coordinate on the grid uniquely
identifies each pixel. Also provided as input to the
program is the intensity (brightness) attribute asso-
ciated with each pixel. The size, shape, and intensity
attributes of the image remain constant throughout
the computation.

The concepts of neighbor and region are important
in this discussion. Two different pixels in the image
are sald to be neighbors if their z-coordinates and
their y-coordinates each differ by no more than one
unit. A connected equal-intensity region is a set of

pixels from the image satisfying the following prop-
erty: for any two pixels in the set, there exists a path
with those pixels as endpoints such that all pixels on
the path have the same intensity and any two consec-
utive pixels are neighbors. For convenience, we use
the term region to mean a connected equal-intensity
region.

The goal of the computaiion is to assign a label
to each pixel in image such that two pixels have the
same label if and only if they are in the same region.
Furthermore, we require the programs herein to label
all the pixels in a region with the smallest coordinate
of a pixel in that region.

Since the number of pixels in the image is finite,
there are a finite number of regions. Without loss of
generality, we identify the regions with the integers 1
through Nregtons. We deline function R such that:

R(1) = {p: pixel p is in region i : p}

From the graph theoretic properties of the image, we
see that the R(i) sets are disjoint. We also define the
“winning” pixel on each region, i.e., the pixel with
the smallest coordinate, as follows:

w(i) = (minp: pe R{E): p)

We represent the input intensity values for the pixels
in the image by the array of constants Intensity(p).

We define the predicates INIT and POST. INIT
characterizes the valid initial states of the computa-
tion, POST the desired final state, ie., the state in
which each pixel is labeled with the smallest pixel
coordinate in its region. More formally, we define
POST as follows:

POST = (Vi:1<1i< Nregions:
(Vp:p€ R(1): pis labeled w(i)))
The key correctness criteria for a region labeling
program are as follows:

1. the characteristics of the problem and solution
strategy are represented faithfully by the pro-
gram structures,

2. the computation always reaches a state satisfy-
ing POST,

3. after reaching a state satisfying POST, subse-
quent states continue to satisfy POST.

In terms of our programming logic, we state the latter
two criteria as the Labeling Completion and Labeling
Stability properties defined below. As we specify the
problem further, we elaborate the first criterion.

Property 1 {Labeling Completion)
INIT — POST

Property 2 (Labeling Stability)
stable POST

The Swarm program RegionLabel uses a static set
of transactions to label the pixels of an image. Tach
transaction is “anchored” to a pixel in the image;
the transactions are re-created upon their execution.
Each transaction “pulls” a smaller label from a neigh-
boring pixel to its own pixel. Eventually a region’s
winning label propagates throughout the region.

4.2 The Data Structures

To develop a programming solution to the re-
gion labeling problem, we need to define data struc-
tures to store the information about the prob-
lem. In Swarm, data structures are built from
sets of tuples (and transactions). Thus we define
the tuple types hasintensity and hes.dabel: tuple
hasdniensity(P,]) associates intensity value I with
pixel P; tuple has Jabel(P, L) associates label L with
pixel P. These types are defined over the set of all
pixels in the image.

To simplify the statement of properties and proofs,
we imiplicitly restrict the values of variables that des-
ignate region identifiers and pixel coordinates. If not
explicitly quantified, region identifier variables (e.g.,
i} are implicitly quantified over the set of region iden-
tifiers 1 through Nregions, and pixel coordinate vari-
ables (e.g., p and ¢) over all the pixels in the image.
Because of this simplification, we do not prove any
properties of areas “outside” of the image.

Tach pixel can have only one intensity attribute;
this value is constant and equal to Intensity(p)
throughout the computation. In terms of the Swarm
programming logic, the program must satisfy the In-
tensity Invariant defined below.

Property 3 (Intensity Invariant)

Invariant (#b : hasintensity(p, b)) =1 A
hassntensity(p, Intensity(p))

{Above the “#” operator denotes the operation of
counting the number of elements satisfying the quan-
tification predicate.} The first conjunct of this in-
variant guarantees the uniqueness of the intensity at-
tribute. The second conjunct guarantees the con-
stancy of the attribute.

Fach pixel can have only one label. This label is
the coordinate of some pixel within the same region.
We also require a pixel’s label to be no larger than
the pixel’s own coordinate. These three requirements
are captured in the Labeling Invariant stated below.

Property 4 (Labeling Invariant)

invaviant (#q :: haslabel(p,g)) =1 A
{p € R(i) A has label(p, 1) =
1€ R(i) A w(i) <1< p)

The solution to the region labeling problem ex-
ploits the Labeling Invariant to achieve the desired
postcondition: initially every pixel is labeled with its
own coordinates; each label is decreased toward the
w(i) for the region ¢ around the pixel.

We can now restate the predicate POST in terms
of the data structures as follows:

POST = (Vi:1<i< Nregions:
(Yp:pc R{):
haslabel(p, w(i))))

For convenience we define the function ezcess on
regions such that excess(i) is the total amount the
labels on region { exceed the desired labeling (all pix-
els in the region labeled with the “winning” pixel).
More formally,

excess(i) =
(Zp,1:p€ R(E) Ahasdabel(p,) : | — w(i))

where the “©” and“—" operators denote component-
wise summation and subtraction of the coordinates.
Using excess, the predicate POST can be restated

POST = (Vi:1 <1< Nregions : encess(i) = 0)

where 0 denotes the coordinates (0,0).

We consider a region labeling program which uses
the has_intensity and has.abel tuple types to be cor-
rect if it satisfies the Labeling Completion, Labeling
Stability, Intensity Invariant, and Labeling Invariant
properties. For each of the two programs given in
the following subsections we prove these properties.
The proofs of these properties require us to define
and prove additional properties.

4.3 A Correctness Proof

In addition to fransaction type Label and tuple
types hasintensity and hasdabel, the Swarm pro-
gram RegionLabel (shown in Figure 1) defines pred-
icates Pizel and R_neighbors. The predicate Pizel(P)
is true for every pixel P in the image and false other-
wise. The predicate R_neighbors(z,y) is true if and
only if pixel = pixel y are neighbors in the image
(as described previously) and have egual intensity ai-
iributes.

The Initialization section establishes the initial
dataspace for execution of the program. Initially, for
each pixel P in the image, the dataspace contains a
haslabel(P, P) tuple and a Label(P) transaction. A

has_intensily tuple also associates the proper inten-
sity value with each pixel.

As noted earlier, verifying the correctness of Re-
gionLabel requires the proof of the Intensity Invari-
ant, Labeling Invariant, Labeling Stability, and La-
beling Completion properties. In proving these, we
introduce and prove other properties.

program RegionLabel(M, N, Lo, Ifi, Intensity :
1< M,1 < N, Lo < Hi, Intensity(p: Pizel(p)),
[Vp: Pizel(p) : Lo < Intensity(p) < Hi])
definitions
[PQ,L:
Pigel(P) =
Bzy:P=(2,y) 1<z < N,1<y< M}
R_neighbors(P, Q) =
Pizel(P), Pizel(Q), P # @,
[Az,9,a,b: P ={(z,9),Q = (a,b) =:
a—1<z<a+L,b-1<y<b+1}
[3::: hasantensity(P, 1), has_intensity(Q,)]
]
tuple types
[P, L, I: Pizel(P), Pizel(L), Lo< I < Hi =:
haslabel(P, L);
has_intensity(P,I)
]
transaction types
[P : Pizel(P) =
Label{ PY =
2, A1, A2
has label(P, A1)t, has dabel(p, A2),
R_neighbors(P,p), A1 > A2
— haslabel(P,A2)
| true— Label{P)

initialization
[P Pizel(P) ::
has label(P, P),
has_intensity(P, Inlensity(P)),
Label(P)

end

Figure 1: Nonterminating Region Labeling

Proof (Intensity Invariant): Prove

(F b hasdntensity(p, b)) =1 A
has intensity(p, Intensity(p))
is invariant. Clearly the assertion holds at initializa-

tion. No transaction deletes or inserts has_tniensily
tuples. Hence, the invariant holds for the program. B

Proof (Labeling Invariant): For convenience,
we rewrite the invariant assertion as three conjuncts:

(# ¢ hastabel(p,q)) = 1 A
(p € R(3) A hasdabel(p,) = 1 € R(3)) A
(p € R(3) A hasdabel(p,1) = w(Ei) <1< p)

Initially each pixel p is uniquely labeled p, hence the
first conjunct holds. For the initial dataspace the left-
hand-side { LHS) of the implications in the second and
third conjuncts are false for p I; for p = I both the
LHS and the RHS (right-hand-side) are true. Thus
the assertion holds initially. We prove the stability
of each conjunct separately.

(1) Consider the first conjunct of the invariant.
No transaction deletes a has Jabel(p,*) tuple with-
out inserting a haslebel(p,) tuple, and vice versa.
Thus the number of haslabel(p,+) tuples remains
constant.

(2) Consider the second conjunct of the invariant.
Any transaction which changes pixel p’s label sets it
to the value of a neighbor’s label in the same region.

(3) Consider the third conjunct of the invariant.
Any transaction which changes a pixel’s label sets
the label to a smaller value. Suppose a pixel’s label
is decreased below the region’s w(i}. This introduces
a contradiction because of part 2 and the definition of
w(?) as the minimum pixel coordinates in the region.
Therefore, all three conjuncts are stable. 1

To prove the stability of the “winning” label as-
signment for the image as a whole (the Labeling
Stability property), we first prove the stability of
the “winning” label assignment for individual pixels.
This more basic property is the Pixel Label Stability
property shown below.

Property 5 (Pixel Label Stability)
stable p € R{(i} A haslabel(p, w(i))

Proof: No transaction increases a label. By the La-
beling Invariant no transaction decreases the label of
a pixel in region { below w(z).]
Given the Pixel Label Stability property we can
now prove the Labeling Stability property.
Proof (Labeling Stability): We must, prove the
property:

stable POST

The stability of the assertion ezcess(i} = 0, for any
region i, follows from the Pixel Label Stability prop-
erty for each pixel in the region, the unless Conjunc-
tion Theorem from 3], and the definition of excess.
Applying the Conjunction Theorem again for the re-

gions in the image, we prove the stability of POST.
E

The remaining proof obligation for RegionLabel is
the Labeling Completion property, a progress prop-
erty using leads-to. We use the following method-
ology: (1} focus on the completion of labeling on a
region-by-region basis, (2) find and prove an appro-
priate low-level ensures property for pixels in a re-
gion, (3) use the ensures property to prove the com-
pletion of labeling for regions, and {4) combine the
regional properties to prove the Labeling Completion
property for the image as a2 whole.

The following definition is convenient for expres-
sion of the properties in this proof:

BOUNDARY(i,p,q) =
7 € R(i} A q € R(i) A neighbors(p, q) A
@FAlm:l>m:
has Jabel(p, I) A has dabel(g, m))

The predicate BOUNDARY(%, p, ¢} is true if and only
if p and ¢ are neighboring pixels in region ¢ such that
p’s label is greater than ¢'s.

To prove Labeling Completion, we first seek to
prove a Regional Progress property, ezcess(i) >
0 —— excess(i) = 0. We can prove this by in-
duction using the simpler property 0 < exzcess(i) =
k — excess(t) < k. This, in turn, we can prove us-
ing the Incremental Labeling property defined below.
The Incremental Labeling property guarantees that,
whenever BOUNDARY (i, p, g) Aezcess(i) > 0, there
is a transaction in the dataspace which will decrease
excess(i).

Property 6 (Incremental Labeling)
BOUNDARY (i,p,q) A 0 < ezcess(i) =k

ensures excess(i) < k

From the definition of the ensures property in the
previous section, we must:

1. prove LHS unless RHS (where LHS and RHS
denote the left- and right-hand-sides of the en-
sures relation);

prove, when LHS A -RHS, there exists a trans-
action in the transaction space which will, when
executed, establish the RHS (if it hasn’t already
been established).

We prove these parts separately.

Proof (Ineremental Labeling—unless part):
All transactions either leave the labels unchanged or
decrease one label by some amount. Hence, the un-
less property

L2

BOUNDARY (i,p,q) A O < ezcess(i) =k
unless excess(t) < k

holds for the program. |

The proof of the existential part of the ensures
needs an additional property, the Static Transaction
Space invariant. The Static Transaction Space in-
variant gnarantees there is always a Label transaction
“anchored” on every pixel in the image.

Property 7 (Static Transaction Space)
invariant Label(p)

Proof: Initially the property holds. Every trans-
action always re-creates itself and never creates any
other tramsactions. |

Given the Static Transaction Space invariant, we
can now prove the existential part of the Incremental
Labeling property.

Proof (Incremental Labeling—exists part):
We must show there is a ¢ € TRS such that

(PRE = [t]) A {PRE} t {escess(i) < k}
where PRFE is
BOUNDARY(i,p,4) A0 < excess(i) = k.

By the Static Transaction Space invariant, a Label(p)
transaction is in the transaction space. Execution of
this transaction establishes ezcess(i) < k. I

Thus the Incremental Labeling property holds for
RegionLabel. We now use this property to prove la-
beling completion for each region in the image. More
formally, we prove the Regional Progress property
defined below.

Property 8 (Regional Progress)

excess(t) > 0 —— excess(f) =0

The proof of the Regional Progress property
needs an additional property, the Boundary Invari-
ant. The Boundary Invariant guarantees that, when
excess(i) > 0, there exist neighbor pixels in the re-
gion which have unequal labels.

Property 9 (Boundary Invariant)

invarviant ezcess(i) > 0 =
(3p,q = BOUNDARY (i, p, q))

Proof: For single pixel regions excess(i} = 0 holds
invariantly; hence the Boundary Invariant holds.
Consider multi-pixel regions. Initially excess(i) >
0. Because of the Pixel Label Stability property,
the invariance of has label(w(d), w(i)) is clear. When
ewcess(i) > 0, because of the definition of excess and
the Labeling Invariant, there must be some pixel
in region i which has a label greater than w(z). Thus
along any neighbor-path from % to w(Z) within region
1, there must be two neighbor pixels, p and ¢, which
have unequal labels. |

Proof (Regional Progress): Since
excess(t) =0 — excess(i) = 0

is obvious, only
exscess(f) > 0 +— excess(i) =0

remains to be proven.
From the Incremental Labeling progress property
we know

BOUNDARY(1,p,¢) A 0 < excess(i} =k
ensuvres excess(i) < k.

Becanse of the Boundary Invariant, we also know
excess(i) > 0 = (3p, g : BOUNDARY(i,p, ¢)).

Using the disjunction rule for leads-to (third part of
the definition) over the set of neighbor pixels p and ¢
in region ¢, we deduce

0 < excess(i) = k —— excess(i) < k
which can be rewritten as

ercess(i) > O A excess(i) = &
(ezcess(i) > 0 Aexcess(i) < k) v

excess{f) = 0.

excess(i) is a well-founded metric. Thus, using the
induction principle for leads-to [3], we conclude the
Regional Progress property. |

Given the Regional Progress and Labeling Stabil-
ity properties, the proof the Labeling Completion
property is straightforward.

Proof (Labeling Completion): Prove the as-
sertion INIT +—— POST. Clearly,

INIT = (Vi:ezcess(i) > 0).
Hence, for each region 1,

INIT ensures ezcess(i) > 0.

From the Regional Progress property,

excess(i) 2 0 +—— ezcess(:) = 0.

The Labeling Stability property, the Completion

Theorem for leads-to [3], and the transitivity of leads-

to allow us to conclude INIT »— POST. |
The proof of program RegionLabelis now complete.

We have shown the program satisfies the required

properties.

5 Conclusions

Mission- and safety-critical software demands the
systematic application of program verification meth-
ods. In this paper we have shown that the shared
dataspace language Swarm has many key features in
common with rule-based languages. Consequently,
the axiomatic proof logic we have constructed for
Swarm is a suitable foundation for the development
of proof techniques specific o present and Tuture rule-
based langnages. This could extend the applicability
of rule-based programming to areas where strict val-
idation is required.

Acknowledgements: This work was supported by
the Department of Computer Science, Washington
University, Saint Lonis, Missouri. The anthors ex-
press their gratitude to Jerome R. Cox, department
chairman, for his support and encouragement. We
thank Jayadev Misra, Jan Tijmen Udding, Ken Cox,
Howard Lykins, and Wei Chen for their suggestions
concerning the Swarm programming logic. We also
thank Rose Fulcomer for her helpful comments on
this paper.

References

[1] L. Brownston, R. Farrell, E. Kant, and N. Martin.
Programming Ezpert Systerms in OPS5: An In-
troduction to Rule-Based Programming. Addison-
Wesley, Reading, Massachusetts, 1985,

[2] N. Carriero and D. Gelernter. Linda in con-
text. Communications of the ACM, 32(4):444—
458, April 1989.

[3] K. M. Chandy and J. Misra. Parallel Program
Design: A Foundation. Addison-Wesley, Read-
ing, Massachusetts, 1988.

[4] H. C. Cunningham and G.-C. Roman. A UNITY-
style programming logic for a shared dataspace
language. Technical Report WUCS-89-5, Wash-
ington University, Department of Computer Sci-
ence, St. Louis, Missouri, March 1989.

[5] C. L. Forgy. The OPS83 report. Technical Re-
port C5-84-135, Carnegie-Mellon University, De-
partment of Computer Science, May 1984.

f6] G.-C. Roman. Language and visualization sup-
port for large-scale concurrency. In Proceedings
of the 10th International Conference on Software
Engincering, pages 296-308. IEEE, April 1988,

(7] G.-C. Roman and H. C. Cunningham. A shared
dataspace model of concurrency—language and
programming implications. In Proceedings of
the 9th International Conference on Distributed
Computing Systems, pages 270-9. IEEE, June
1989.

10

	Toward Formal Verification of Rule-Based Systems: A Shared Dataspace Perspective
	Recommended Citation

	tmp.1459809062.pdf.MK14K

