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ABSTRACT

This paper describes how a signal can be written as a weighted sum of certain "ele-
mentary"” synthesizing functions, which are the dilated and translated versions of a
single parent function. The weighting constants in this sum define a transform of the
signal. This is much like Fourier analysis except that a wide choice is permitted in the
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A New Transform for Time-Frequency Analysis

Arun Kumar Daniel R. Fuhrmann Michael Frazier Bjorn Jawerth

1. Introduction

If a signal consists of two pure tones played in succession, we cannot tell where the signal changed
character by looking at a plot of its Fourier transform. Fourier methods yield a pure frequency
description of a signal. For a non-stationary signal, one whose “frequency”-content changes with
time, we would like a time~frequency description [1}, [2]. Speech spectrograms are an example of a
time-frequency description obtained by computing the Fourier transforms of a signal as seen through
a window that slides along the length of the signal. The problem with such an approach is that
there is no way to determine what the width of the window should be. If the window is too wide,
we can fail to capture the non-staionarities in a signal. If too narrow, we lose the ability to resolve

low—frequencies.

The Wigner distribution [3] was invented in 1932 in order to investigate the space-momentum lo-
calization of quantum-mechanical particles. Since space~momentum uncertainity and time—frequency
uncertainity are analogous phenomena [2], the Wigner distribution has been developed as a tool for
time—frequency analysis [4]-[6]. However, the Wigner distribution does not give us an accurate
time-frequency description. For example, if a signal is the suim of two pure sinusoids at frequencies
wy and we, then its Wigner distribution will incorrectly show the presence of the beat frequencies

(:1:&)1 + Lr.)g) [6]

In this paper we will describe the Phi-transform [7]-[9], which was developed in 1984 in order to
study the smoothness, size, and cancellation properties of functions, but can also be used to obtain
the time—frequency description of a signal. The essential idea behind the Phi-transform is to generate

a family of analyzing {unctions that are compactly-supported {or concentrated) in either the time



4 KuMmar, FUHRMANN, FRAZIER, AND JAWERTH

or the frequency domain, and that are small and rapidly-decaying outside a compact—support in the
complementary domain. We can “probe” a given signal with each of these analyzing functions by
computing a sequence of inner—products. The inner—product of the signal with an analyzing function
yields information about the signal in those regions of the time-{requency space where the analyzing
function lives. In contrast, Fourier analysis employs analyzing functions that extend indefinitely in

the time—domain, while they are perfectly concentrated in the frequency-domain.

In classical engineering literature (see for examnple Shannon [10], p. 13) signals are sometines rep-
resented as sums of functions like (sin t)/f. The Fourier transform of such a function is a rectangular
pulse, while (sin t)/t itself decays only as t~1. The Phi-transform is based upon a similar expansion
(or decomposition) of a function, except that here we use functions whose Fourier transforms are
smooth, not rectangular. The result is analyzing functions that decay rapidly in time, and vield

simultaneous localization in time and frequency.

In 1985, Lemarié and Meyer [11] introduced the Wavelet transform. The Wavelet transform also
gives a decomposition of a signal as a weighted sum of functions which are, as in the case of the
Pli-transform, concentrated in both the time and the frequency domains. The main advantage of
the Wavelet transforin is that the analyzing functions, called wawvelets, form an orthonormal set.
Although orthogonality may be desirable in some circumstances, it is not essential in many others
[12]. The advantage of the Phi-transform is that it is simpler and less rigid; in particular, greater
flexibility is permitted in the choice of the analyzing functions. The time—{requency representations

obtained by the Wavelet transformation of signals have been studied extensively [13]-[19].

We propose the Phi~transform as a tool of wide and general applicability in signal processing,
that will be of use whenever we encounter non-stationary behaviour. We consider the Phi-transform
to be a method for time—frequency analysis that is superior to the classical methods of Gabor and
Wigner. In comparison to the Wavelet transform, we consider the Phi-transform to be simpler to

understand, and apply.



A NEwW TRANSFORM 5

2. Notation

Throughout, by the constant » we mean the dimension of the space R” in which we work. Z, R,
C, and €%, denote the set of all integers (positive, negative, and zero), the set of real numbers, the
set of complex numbers, and the set of infinitely-differentiable functions, respectively. By RT we
mean the set of positive real numbers. By L2, and 2, we denote the Hilbert spaces of absolutely

square-integrable functions, and of absolutely square—summable sequences, respectively.

If a,b € R™ are vectors, then by a-b we mean their scalar (or dot) praduct. The Euclidean norm
of a vector w = (wy, s, ..., wy,) Will be written jw|} = (0, Jwil>)Y/?. For ¢,d € R, [¢,d] is the

closed interval from ¢ to d, and [¢, d]" 2 [l d]. Also,
A 4
f(a:)da:z/.../f(a:l,‘..,a:n)d:ul...da:n. (¢8)]
[e,d]™ ¢ ¢

By the support of a function f : R® — C we will mean the topological closure of the set of
those points & € R" for which f(2) # 0. We will write supp f for this set. We say that supp f is
compact if, for some r > 0, supp fC {z € R" : ||2]| < »}. A bar drawn above a complex constant,
or & complex—valued function, will denote the complex—conjugate of the constant, or the function.

By } (t) we mean f(—t). If f and g are functions from R® to C, then by (f,g) we mean the

mner—product of f and g:

(he) & [ s i@ de= T 2

By “” we denote the forward, by “V” the inverse, Fourier transform. We will use a few results
from the Fourier series and Fourier transform representations of a function. These are listed in the

appendix.

In what follows we will be working with sets of functions that are all obtained from a single
parent function through a process of dilation and translation. We now establish a notation for such
functions. We define ¢, (w) = #(27*w), vER, wER™, as a dilation of ¢ in the frequency-domain.
We define ¢, (2) 2 gnv #(2"1), vER, tER", as a dilation of ¢ in the time-domain. Then (¢,) = v,

and (43,,) V = ¢,. We also define ¢,1(2) 2 gnuf 2$(2"¢ — k) as a dilation-and—translation of ¢ in the
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time domain. Please note: ¢,0(t) # ¢,(t). This subscript notation for ¢ will also be used for the

functions @, 4, ¥, and 6.

The transform and “decomposition” we discuss here apply to signals that belong to &', the
space of “tempered distributions” (see e.g. [20]). &’ is the dual space of &, the Schwartz space of
“smooth and rapidly-decreasing functions”. A function f is rapidly-decreasing if f and all its partial

derivatives decay at infinity at a raie faster than any polynomial.

&' is a very large space that properly includes L?, and distributions such as the Dirac—delta and
its derivatives. Here, in the interest of simplicity, we will state our results only for f € L?. We will
not consider issues relating to convergence; except to say that when using equations with infinite
sums, such as f(t) = 3 .o, gi(t), we will here implicitly mean the equality in the special sense of

L2—convergence. That is, if fy 2 SN o gi, then f = 352 g; if and only if

limpae ||F — fN”%z = limyN—oo /R” |f - fN]2 dt = 0. (3)

For a detailed study of convergence in &' and other spaces, of the decomposition discussed in

this paper, see [7]-[9].
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3. The Psi—decomposition of a Function

LetS 2 {¥me, Yok top ; My €Z; mfixed; v > m; k € Z™; be called a set of synthesizing functions.
The functions ¥, in § are the translates (in R") of the single function ¥,,0; and the 3, are all
translated—and—dilated versions of a single function . Similarly, let A 2 {®mr» Pur}ui be called a
set of enalyzing funclions. All functions in S|JA are defined from R" to C. We will show that if
we choose S and A appropriately, then any given signal or function, f : R® — C, f € L?, can be
written as follows:

FO = D (F, B Tonrt) + D > (F(2), durl®)) i (2). (4)

kGZﬂ v=m-}1 reZ™

We will call (4) an (inhomogeneous) Psi-decomposition of the function f. The homogeneous
version will be discussed later. The symbol & in (4) denotes a vector (&;,...,&,) € Z". Likewise,
the (unstated) argument ¢ of the functions f, @, Ypnr, o, and 9,1, is a vector (£1,...,1,) € R7,
In (4), f is expressed as a weighted sum of the synthesizing functions in 8. The weights in (4)
constitute a countable sequence ({f, Pint), {f, #o2)) of complex constants. We will call this sequence
the (inhomogeneous) Phi-transform of f. The expression (4) is not unlike the Fourier series or the

Fourier transform decomposition of f. Since f(w) = {f, el !}, we can write:

w i

= [, (e £ e ®)

Any decomposition of a signal, like that in (4) or in (5), is interesting because a decomposition

defines a transform, and a transform may reveal information that is not obvious in a time—domain
representation of the signal. Fourier methods permit but one choice of synthesizing and analyzing
functions—the complex exponentials. We will see, however, that in the case of the Psi-decomposition
we have considerable lattitude in the choice of cur synthesizing and analyzing function sets, S and

A. This freedom of choice can be an asset in application.

The rest of this section consists of two lenumas followed by a theorem. The theorem states our
main result that if the sets S and A are chosen as prescribed in Lemma 1, then (4) is true for all

functions f € L2
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Lemma 1. Given an m € Z; given ¢(w) such that the properties P1{(¢), P2(4), and P3($), below
are irue; given fi)(w) such that P1(&), P4($), and P5(P), are true; 31,5(0)) satisfying Pl('Ji) and

P2(4); and 3 (w) satisfying PL(¥) and P4(¥); such that Yw € R,

Bl o) + 'i";m@,,(m -1 ©
where, for some constani c € R¥,
P1(4): ¢ € C*.
P2(¢): supp $(w) C {w: 7/4 < ||| < 7}
P3(§): [$(w) = ¢, forw € {w: (3n/8) — € < |jw|] < (3n/4) +¢}; some € € RY.
P4(®): supp &(w) C {w : [lwll < 7}.
P5(3): |$(w)| > ¢, forw € {w: llw]| < (37/4) + €}, some ¢ € RY.

Moreover, the functions ¥ and ¢ are rapidly-decreasing.

Before we prove Lemma 1, we would like to explain its statement, informally, as follows: this
lemma affirms the existence of functions % and ¥ satisfying (6), when we are given ¢ and & that
cover the frequency-domain as in Figure 1. The property PQ(E;) is designed fo ensure a compact

support for d(w); P4(P) to do the same for $(w). P3(¢) is designed to ensure that the frequency

“ 8,

O, A A A
P . lq’m+1’ |¢m+2| I¢1Tl+3|

t | | i | llefl
0 ,mzm-l pom n2m+1 m2m+2 7t2m+3

q log scale

e
I

Figure 1: We want the Fourier transforms of the analyzing functions in A to cover the frequency
space thus.
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space is nicely covered—that there is no “bald patch” between ¢, and q§y+1, for any v. P5(<i>) ensures
that &, properly caps the space left uncovered by all the ¢, » € {m+1,m+2,...}. The functions
é and & are not required to be radially-symmetric. Figure 1 should be seen as a representative
radial slice across the frequency space. Because ¢3 and & are C*° and have compact support, ¢ and
® are C* and rapidly-decreasing [20]. This rapidly—decreasing character of ¢ and @, together with
the compact support of ¢ and &, provides us with the means for determining the time—frequency

behaviour of a signal, as we shall see.

Proof of Lemma 1. Let §(w) be a € function from R” to Rt satisfying P3(f); and satisfying
supp 8(w) C {w: | d(w)]> ¢/2} Hw: |&(w)|> ¢/2}. Because #(w) satisfies P3(8), and because its

values lic in R¥, we have 350 ___ #:(w) > ¢ > 0, Vw # 0. Define

j=—oa

B { ) | F) T ) 0 € 30 ™

, otherwise,
Because supp 8(w) C {w: |$(w)|> ¢/2}, the ratio in (7) is well-defined. Because § is compactly
supported, and because cf) and 6 are C°, 1/; is C*° with compact support. Hence 1,’; is the Fourier
transform of some ¢ which is € and rapidly-decreasing. The function 3(w) satisfies P2(z) since,

by the definition in (7), supp (w) C supp §(w) . Define

(o 00(@)) / (Bm(@) 520 05(w)) , w # 0,and w € supp &

0 , w# 0,and w ¢ supp b,, (8)
1/8(0) , w=0,

¥ lw) £
Because supp 0(w) C {w: |B(w)] > ¢/2}, the first ratio in (8) is well-defined. Moreover, ¥{w)
satisfies P4(), since supp U n(w) C supp &,(w) by the definition in (8). Like v, ¥ is C* and
rapidly-decreasing. From (7), we have VYw # 0,

- B (N (w) = - b, (w) =Zic-,_-m+1éu("-’)
D b= 3 (zm %(w)) e ) (9)

v=m+1 v=m+1 j=—00 jz=—o0

From (8), we have VYw # 0,

—_— T b(w)
Iml)¥m(i) = e Biw)

Keeping in mind the fact that for w = 0 the left hand sides in the equations (9} and (10) are 0 and 1,

(10)

respectively; and upon summing these two equations; we find that (6} is true for all w. O
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This proof is constructive. Having decided upon a suitable set of analyzing functions, we can
build a set of synthesizing functions by following the recipe in the proof. Alternatively, we may find
it convenient to choose the analyzing and synthesizing functions directly so as to satisty (6), without
going through the explicit construction suggested in the proof. We will see an example of such a

direct choice later in Section 5.

Lemma 2 below establishes a result used in the proof of the main theorem. It uses a technique

similar to that used by Shannon [10] in his proof of the sampling theorem.

Lemma 2. Let supp §, supp & G {w: [|w|| € 72"}, v € Z; and §,h € L2. Then for s,t € R™, we
can write the convolulion of g and h as:

(g% ))& /Rn g(s) h(t—s)ds = 3 27 g(k2~*) h(t — k2™). (11)
ke

Proof of Lemma 2. By the statement of the lemma, supp § C [—72%, 72]". Let §° be a periodic
continuation of §, so that
Fw = Y gw-— k22", (12)
kezﬁ

Then §°(w + 2) = §°(w) for @ = 721 W, any W € Z". We can now expand §°(w) in a Fourier

series:
n +3 . -
ﬁC(w) = Z ak(HeuJQﬁk,w;IRE )= Z ake—j‘w-k? u, (13)
ke i=1 ke d?
where
ap = e ED / (W) e du, (14)
[ m2¥, w2¥]"

Since §(w) = §°(w) within the interval of integration in (14), we can replace §° by § in (14) above.

Further, since supp §(w) C [—#2%, z2°]7, we can write (14) as:

ap = ﬂ_—-n2—ﬂ(u+}-) /Rn g(w) ejw-f.:Z_" dw jusnd 2“””0(;’.’2"”). (15)
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Substituting (15) into (13),

Flw)= Y 27 g(ka")e duka™, (16)
reZ™

Since supp h(w) C {w: ||| < 72},
(g M)(®) = (30)'() = (5°R)"(0). (17)

From (16) and (17) we get the desired result:

eW@ = [3 27™alk2)e ¥ Rw)¥(0) (18)
kezu

= 3 2 g(k2 ) h(w)e () (19)
keZ™

= > k2Tt~ k27Y). (20)
ke

O

Theorem 1 (see [7], p. 780). Given é, &, b, and ¥, satisfying all conditions in the stalement of

Lemma 1; and given a function f € L2, f: R™® — C; we can wrile:

f: Z (f; (ﬁmk)‘l‘rmk + Z Z (f: ¢uk)'§[)yk~ (21)

kEZn p=m+1 kEZn

Proof of Theorem. From Lemumna 1, &;;:\if m + Eilm 1 qAS,, 'J),, = 1. Taking the inverse Fourier

fransform,

=]
B * ‘I;m + Z 45” * ¢’u = 5: (22)
v=mi

where § (1) = g(—7). Convolving both sides with f,

o0
F=F#®m*Ws + Z fxd, xt,. (23)

p=m-1
Since supp (f + Bm)" € supp Spm; supp &y, supp Wy, C fw: |0l < 727); and (f + Bm)3 ¥ € L2
we have (using Lemma. 2):

(F4Bm) k- Tm= D 27 (F 4 Do )(k2™™) Upn(t — k2™™), (24)
reZ"
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Simplifying the convolution within the sunmmation above,

(F*Bm)(R27™) = (F * B )(t) limpa-m

RrRr f(t’) (I)m(t’ - kQ“"‘) dt' = 2nm/2 (f: ‘I’mk)-

Substituting (26) into (24),

[ Bm*Um= 3 2,0y Ut —k27™) = > (F, Byt) Vo

ke keZ™
Similarly,
Frdurthe= Y {fidue) Yus
reZ™

Substituting (27) and (28) into (23) we get the desired result.

(25)

(26)

(27)

(28)
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4. Some Properties of the Psi—-decomposition

Theorem 1 says that the set S = {Tpp, Yur}vx Is complete in L2, ie. any function in L? can be
written as a sum of elements in S. It is easy to see, however, that S is not a basis for L?. It follows
that every function can be written as the sum of the elements of § in an infinity of different ways.
There is an infinity of the sequences ({f, ®mi), {f, #v&)) € I? that correspond to every f € L2.
Yet Theorem 1 defines a single—valued function from L? to I?, where the image of f is determined

uniquely by the inner—products in (21).

The equality in the Psi—decomposition of (21) is meant in the sense of (3), for f € L?, where
A N
fN = z (f: ‘Dmk)‘I’mk + Z Z (fx ¢vk)":buk- (29)
reZi™® v=m+1 kezﬂ
In fact, as in the case of the Fourier transform [20], if it is assumed that [Rn | f(z)| dz < co and
Jr» | f(w)] dw < co, then the representation of f in (21) holds pointwise: f(@) = limpy_eo fn(2),
for every £ € R™. If f is not continuous, the convergence of fi to f cannot be uniform. In this case

the representation (29) will show Gibb’s phenomenon.

There is also a homogeneous version of the Psi-decomposition. For any f € 8', we can write

F=27 20 {Fdur) (30)

vel ked®

with the understanding that the equality is meant “modulo polynomials” (see e.g. [9], appendix
B.4}. By that we mean that if P(¢) is any polynomial in ¢ with complex coefficients, then the
decomposition of f and f + P will be identical. This is only to be expected since the support of
the Fourier transform of P is {w = 0}. If f € L?, the homogeneous version still converges in the L2
sense with partial sums

s ¥
NS Y0 D A duihder (31)

v=—N pcf"
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While neither of the sets A or S is orthogonal in our construction of Lemma 1, these sets could
be designed to satisfy the following two conditions: & = ¥, and ¢ = ¢. To do this, let <'i>(w) satisfy

the following properties (see I'ig. 2):
Q1: ¥(w) € R, for w € R™.
Q2: supp B(w) C {w: ||| € w1}; some w; € RF.
Q3: d(w) =1, for w € {w: JJw]| < wa}; wy > wy € RF.

Qt: Jlw'll < ll"]] = (") < $().

&)

l ”ﬂ)”

0 Wq w4
Figure 2: A $(w) that satisfies properties Q1-Q4.

a2 A A2 a2 .-
Define ¢ (w) = &"(27'w) — & (w), for w € R™. By the monotonicity property Q4, we know that

q';(w) is real. Then,

N N N
SIb@E= Y dw) = 3 [#° @0 - ') (32)
=0 p==0 =0

= & (2" DY) — $%(w). (33)

Define Kn(w) 2 ég(w) + O 1, (w) 2. Then by (33), Kn(w) = &)2(2'(1\'4'1)1;)). By property
Q3, Kn{w) = é2(2"‘(N+1)w) 2 1, for w € {w: [Jw]] € 2¥+1wa}. Therefore,

Koo(w) =8 P+ [d, ()P =1, forw € R™. (34)

=0

Equation (34) is just like equation (6) with & = ¥, and ¢ = . a0
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Tlus the Phi-transform of a function f, obtained with analyzing functions constructed as above,
can be computed by repeatedly filtering f with a set of low-pass filters, with resulis decimated at
each stage. This is similar to the method used by Burt and Adelson [21], [22], in their picture—

compression work.

‘We now lock at the energy—conservation properties of the Phi-transform.

Theorem 2 (Parseval-like) . [f A and S are consiructed as in the stulement of Lemma 1; if)
further, ® = ¥ and ¢ = v; and if Tf denotes the transform sequence ({f, ®me), (fidur}) of

Junction f; then ||Tf|l1z = || fliz=-

Proof of theorem 2. From (21),

( ( Z (f: q’mk)‘lfmk + Z Z (f: ¢uk)¢‘vk) 1f) (35)

reZn vEmtl ez

A = (£, )

= Z (f: (I)mi:)(q’mk, j) -+ i Z (f: ‘?Suk) (¢uk; .f) (36)

keZ™ v=m4l g Zn

= 2 HAEmy P+ Y D ) P (37)
reZi? p=m+lp o 7n

= (THTf) = 175l (38)

[}

In general (i.e. for ® 3 ¥, ¢ # /) we can show that the Phi-transform of a signal is norm—
equivaleni to the signal; ie. [Tz & [[f]lz=. By that we mean that there exist constants Cy and

C; in R, such that for all f € L2,

iz < GillTS 2y and || 75> < Collfllza. (39)

Norm-equivalence is a property desired of all transforms.
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5. Examples of the Phi—transform

Lemma 1 permits considerable flexibility in the choice of the sets A and S of analyzing and synthesiz-
ing functions. This suggests that the Phi—transform is actually a large family of transforms. In this
section we give specific examples of the sets A and 8, and of the transformation and reconstruction

of signals defined from R to R.

In our first example we choose the sets A and S fo satisfy (6) a priori; instead of constructing the
set S according to the prescription in the proof of Lemma 1. If we choose the “window—function”

é(w) such that it is a raised cosine pulse whose argument is the logarithm of the frequency variable,

iy { 20 cosmem ) e o< )
then the sum of all the dilations of § is 1, for all w # 0. Each of the functions ¢ and % can now
be chosen to be the square-root of §. The DC cap functions & and ¥ can be chosen to cover the
lower frequencies, so as to satisfy (6) near w = 0. In Figures 3 and 4 we plot these cosine-of-log
functions in the frequency and the time domain, respectively. We should point out that the analyzing
funetions in this first example do not belong to €, an assumption in the development of Section
3. The square-root of the cosine-of-log function in (40) has discontinuous first and higher—order
derivatives at the edges of its support. The only difficulty this poses is that ¢, ®, v, and ¥, are not

rapidly—decreasing at infinity.

In our second example we look at the problem of deriving a set of analyzing and synthesizing func-
tions which are optimal in some sense. The importance of the Psi—lecomposition for time—frequency
analysis lies in the fact that both the analyzing and synthesizing functions are simultaneously local-
ized in both the time and the frequency domain. As is well-known, a function cannot be compactly
supported in both domains. However, it is possible to pose an optimization problem in which the
function is compactly supported in one domain and is “concentrated” in the other. One example
of this kind of function is the prolate spheroidal wave function [23] which is strictly bandlimited

on the frequency interval [-B, B}, and has the maximum fraction of its energy in the time interval

[~T/2,T/2].
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In this example, we have constructed analyzing functions which are solutions to the eigenvalue

problem

PpPrf = Af. (41)

Pp is a projection operator onto the space of bandpass bandlimited functions, and FPr is a
projection operator onto the space of time-limited functions, with spectral support given as in
Section 3. It can be shown that such a function solves the following problem: find a bandlimited
function with given spectral support with the maximum fraction of energy in a given time interval.

We omit the details as our only purpose here is to generate an example.

The difficulty with ¢ and & generated in this way is that they are not continuous. We modify
these analyzing functions further by convolving them with a compacily supported pulse in the class

C*°, of the form

_ cer@tR)Pem(w-t)T _p e <k
glw) = { 0 , otherwise (42)

where ¢,k € RV are some constants. This “smoothing” operation yields new functions é and
& which are C*°, yet closely approximate the original, optimally-concentrated, functions. The
analyzing functions for this second example are plotted in the frequency and the time domains in

Figures 5 and 6.

In both the above constructions the analyzing functions are real and symmetric in both frequency
and time domains. The localization of the analyzing functions in the time domain is comparable
in both of the examples above. In Figures 7-10 we show the analysis and synthesis of two signals,
carried out with the cosine-of-log analyzing and synthesizing functions. The time axis £ points to
the right, while the frequency axis v points down. In Figures 7 and 9, the number of Phi-transform
coefficients at frequency—level v is half that at level ( + 1). The Phi-transform coeflicients are all
real since f and the elements of A arve. In the reconstruction pictures in Figures 8 and 10 we plot

the partial sums (29) for m = —5, and N = —5(top) to N = 1(bottom).

In Figure 10, notice that the high—frequency information required to pass from the ¥ = -2

reconstruction to the N = —1 reconstruction is contained in a small number of numerically significant
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coefficients. This is in contrast to the usual Fourier reconstruction methods, where in general twice
as many sample values are required to double the frequency range. This indicates that for signals
with localized high—frequency components, it is reasonable to expect the Psi~decomposition to yield

data compression.

Lastly, in Figure 11, we plot the difference between the Phi-transform coeflicients of the two
signals at the top. The signals differ at a very few points, and their Phi-transform differs at a few
points too. This behaviour of the Phi-transform is in sharp contrast to Fourier analysis, where

change al a single point in a signal reverberates across the entire spectrum.



A NEW TRANSFORM

19

Fal
1
0.53 s ﬂ
0
1 i I i v
-1 ~05 0 0.5 3
A
1
0.5] %y /m
0
I I [ I X
- 05 0 0.5 3
1— 2
a4 i
0
[ 1 i z
-1 0.5 0 0.5 M3
1 A
P AN
0
| 1 | E T
1 0.5 0 0.5 3
1
i1 AN
0 i | I I Hs
-1 05 0 0.5
1 Pl
0'5] 950 /\ /‘\

-0.5

1

I
—0.5

053 %1/\

| I
0.5 1

Figure 3: The analyzing/synthesizing functions generated as the cosines-of-logs are plotted here in

the frequency domain.



20 KuMmar, FUHRRMANN, FRAZIER, AND JAWERTH

0.6
0.27] P-s
-0.2
] I I | I sec
~200 ~100 0 100 200
0.6 —
0.2 4
027 ™ N
| T 1 T T sec
-200 -100 0 100 200
0.6 —
0.2 qé‘é’
-0.27 N
1 l I | T cec
~200 ~100 0 100 200
0.6 —
0.2 ‘?‘iz
0.2 Vv
T I T l | cec
—200 -100 0 100 200
0.6 —
02 F1
020
| | | I T Sec
—200 ~100 0 100 200
0.6
0.2 -] QSO 1““
-0.27]
I T T ] T sec
200 -100 0 100 200
0.6 —
025 qB1
0.2
| I | T cec
-200 -100 0 100 200

Figure 4: Cosine-of-log analyzing/synthesizing functions in the time domain.



A NEwW TRANSFORM

21

1 FaS
0‘5} P_¢ A
0 ; | l | He
-1 -0.5 0 05
~
1— o
0.53 ~h M
0
| i T 1 =
-1 -0.5 0 0.5 3
A
1
0.55] ®3 /U\
0
] I [ i H
-1 -0.5 0 0.5 3
VA
1
qE AN
0
[ | | i o
-1 -0.5 0 0.5 $
P
1
O'SEI =
0
| T ] | 0
-1 0.5 0 0.5 3
o
1
9.53 % /\ /\
0 | i I 1 HS
-1 ~0.5 0 05
VAN
1
S~
0
I | | I M
-1 0.5 0 0.5 3

Figure 5: The smoothed—eigenfunction analyzing functions in the frequency domain.



22 KuMAR, FURRMANN, FRAZIER, AND JAWERTH

0s] -
-0.2
| { | | | sec
-200 —100 0 100 200
053 P
-0.2
[ I | ] ] sec
~200 -1G0 0 100 200
0.6 (’é
02 "3
-0.2 N
| i | | [ SEC
—200 -100 0 100 200
0.6 — &b
- Yz
0.2
027 ~/\»
{ ] [ | [ Ses
200 -100 0 100 200
0.6 — qﬁ
02 T
027 !
[ I I ] | S
—200 -100 0 100 200
0.6 —
027 ¢¢ w
-0.2
i ] | I i sSec
200 -100 0 100 200
0.6 —
027 %
-0.24
T T [ ! seea
200 -100 0 100 200

Figure 6: The smoothed-eigenfunction analyzing functions in the time domain.



A New TRANSFORM

23

—1000 500 0 500 1000
5 _
0 1 I ] | 1 I I w3 T 1
-5 [
I ] i I I
—1000 —500 0 500 1000
> Lt
“g 0 Hxlllil 'I! m IF 'l"tll
| [ [ I I
—1000 —500 0 500 1000
5 —_
-g S ElTll I'"Tllﬁil'} | l i l i‘iﬂl']" .
| ] | | |
—1000 —500 0 500 1000
5 —_
0 .
5 I I ] I
—1000 —500 0 500 1000
5 —
G
= I E I l
—1000 —500 0 500 1000
5 -
0
S I l I T
—1000 —500 0 500 10060
5 _
0
-5 I i I T I
—1000 —500 0 500 1000

Figure 7: The Phi~transform coeflicients of a chirp are computed as the inner—products of the chirp
with the analyzing functions.



24 KUMAR, FUHRMANN, FRAZIER, AND JAWERTH

—1000 —500 0 500 1000
1
0 3 /\/\/\/~
-1
T ] ] i |
—1000 —500 0 500 1000
1
0 3 /\/\/\/\j\/\/\/\AN ~
-1
| l | ] |
—1000 —500 0 500 1000
1
0] uVAVATAT
-1
T | T ] T
~1000 —500 0 500 1000
1
0] sAVATAITT
-1
T I ] ] T
—1000 —500 0 500 1000
1
0] NS VWA
-1 ! | | | 1
—1000 —~500 0 500 1000
1
0] aAVATATTT
-1
I T | ! T
~1000 —500 0 500 1000
1
o] AVATAT
-1 T T | l T
—1000 —500 0 500 1000

Figure 8: The reconstruction of the chirp from its Phi-transform. The plot on the top is the original
signal and the one at the bottom is the reconstructed signal. Tn between we show the partial
reconstructions.



A NEw TRANSFORM

25

—200 —100 0 100 200
4
= L
I I E ] ]
—200 —100 0 100 200
: 1 L T
| I I I I
—200 —100 0 100 200
T | I . ]
—200 —100 0 100 200
] I | T T
—200 —100 0 100 200
I T a T I
—200 —100 0 100 200
4 —
0 -
] I T | 1
—200 —~100 0 100 200
= .
] I | I T
—200 ~100 0 100 200

Figure 9: The Phi-transform coefficients of a ramp.



26 Kumar, FUHRMANN, FRAZIER, AND JAWERTH

~200 ~100 0 100 200
1
£ —_
0
I | ! I I
~200 ~100 0 100 200
i —__
i ; a i i
~200 ~100 0 100 200
] | | | 1
~200 ~100 0 100 200
0 53 /\ﬁ“
0
i | I I I
~200 ~100 0 100 200
057 e
] | i : i
~200 ~100 0 100 200
03 1
i | | | i
~200 ~100 0 100 200
o
3
] ! I i i
200 -100 0 100 200

Figure 10: The reconstruction of the ramp from its Phi~transform. Gibb’s phenomenon is visible at
the point of discontinuity.



A NEwW TRANSFORM

27

—200 —100 0 100 200
1
°3 ]
T i i ] E
—200 —100 0 100 200
0.15 —
0
0.15 I e s I I
—200 —100 0 100 200
0.15 —
0
-0.15 I | I | |
—200 ~100 0 100 200
0.15 —
0 -
-0.15 I I I I ]
~300 —100 0 100 200
0.15 —
0 an
-0.15 I I I I ]
—200 —100 0 100 200
0.15 — !
0 1(5) il[ [Il;
0. I I I I I
—200 —100 0 100 200
0.15 —
0 1g H
-0. I I I i I
—200 —100 0 100 200
0.15 — 1
0 1g 1
0. I I I | |
—200 ~100 0 100 200

Figure 11: The difference of the Phi-transform coeflicients of the twosignals (at the top) is plotted. A
local difference in the two signals is seen to produce local differences in the Phi~transform cocfficients.



28 KUMAR, FUHRMANN, FRAZIER, AND JAWERTH

6. Conclusions

We have seen that the Phi~transform provides us with a simple and versatile tool for time—frequency
analysis, and overcomes the limitations of the classical methods of Gabor and Wigner. The Phi-
transform is also very flexible. It gives us considerable control over the design of the analyzing and

synthesizing functions, and this control can be exploited in a practical way.

There are more general decompositions [9], similar to the Psi-decomposition, that are not treated
here. Methods completely different from those used in Lemnma 1 could be used to generate the sets A
and S of analyzing and synthesizing functions [9]. We need not identify the supports of the functions
in A and S. We might require that the elements of A, or S, or both, be compactly-supported in
the time—domain and not in the frequency~domain. Or we may forego compact support in both the
time and the frequency domains, requiring only that our functions be small and rapidly decaying

outside appropriate compact intervals.

We emphasize that the transform considered in this paper is applicable to functions defined
continuously in time, f € L*[R”]. The examples given in the last sections were generated by
a discretization of the continuous world. However, the eontinuous—time Phi-transform is not a
computational device; it was developed in order to characterize distribution spaces. One goal of our
research is the use of these time—{requency techniques for computational problems such as coding
and compression, and we are working on a discrete formalism of the Phi-transform that would work

with signals f € I?[Z"], or with f & I2[Z"]].

Our immediate interest in the Phi-transform arises out of work in the compression of moving pic-
tures. In the commercial world of video-conferencing systems, pictures are currently segmented into
blocks, the Discrete Cosine Transform (DCT) of each block is computed, and the DCT coefficients
are transmitted instead of the space-domain information. The advantage of this scheme is that the
DCT coefficients can be quantized differentially in order to exploit the differential response of the eye
to different spatial frequencies. This differential quantization—coarser at the higher frequencies—
yields compression. This DCT-scheme is really a kind of space—frequency transformation, where

space-discrimination is obtained through the artifice of blocking; but this blocking produces an un-
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seemly “blocking artifact” at the receiving end. We expect the Phi-transform to do better because
it uses a gentler method to attain spatial diserimination. The Phi~transform can take advantage
of differential quantization without generating the “blocking artifact”. In the matter of “motion
compensation” too we expect the Phi-transform to come out ahead. For small interframe-image—
differences the image could be updated through the transmission of a few Phi-transform coefficients;

and we may not have to resort to the “motion compensation” schemes used with the DCT.

Other areas in which the Phi and the Wavelet transform are being applied are: the compression
of static pictures; the recognition of handwritlen characiers; statistical models for non-stationary
signals in radar and underwater acoustics; the computer—aided design of surfaces; and the solution
of partial differential equations. We also contemplate applications to antomatic music transcription,

and to the design of aciive noise—cancellation systems.
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8. Appendix

Fourier series
Let f(x 4+ X;) = f(z); Yo € R and some X; € RY,i€[l,...,n]. Let ¢; € R,7 € [1,...,n] be some

set of constants. Let ¥ = []7;[e:, ¢; + X;). Then

@) = z ak(He—ji’rkams/A's)

keZ? =1

where,

ap = (HX’)_an(m)[H ej?vrk;a:g/Xgl da
i=1

izl

Fourter iransform
fw) = Jgn F(H)e? dt; w,t € R?

fty = @2n)™" fgr fw)ed* dw

scaling theorems

L(f(at))(w) = a™" f(w/a),a € R

2.(f(bw))¥(t) = b= f(t/b),b € R

convolution theorems

L(f ®9)"(w) = F(w) §(w)
2.(f ® 9)V(1) = (2m)"£(¥) 9(1)

shift theorems

L{f(t+%0)) (w) = e/ f(w)
2.(flw + @) (¥) = e~iwt f(1)

conjugalion theorems
L) () = Hew) =f @)
2@ =T =1 @)
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