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Abstract

Backpropagation as a learning rule is often confined to multi-layer Perceptrons or layered
feedforward networks, in which there are no lateral connections among the units of the same
layer nor any connections bypassing intermediate layers. We prove algebraically that these
restrictions are not necessary, i.e., backpropagation is applicable to any acyclic neural
network. Qur proof is based on a new formulation of backpropagation called an Acyclic
Neural Network (ANN}. In ANN, a net is defined as a partially ordered set of processing
units where every unit may receive an input value and/or a correction (teaching) value.

Therefore, there is no need to differentiate between the input, hidden, and outpnt units.



1. Introduction

The discovery of backpropagation [1}{2][3] is a turning point in the history of neural network research,
Though it has been suggested by some authors [4][5] that backpropagation is applicable to an arbitrary
acyclic neural network, its application is usually restricted to a layered feedforward network, where no lateral
connections exist among the processing units of the same layer and no connections bypasses intermediate
layers. Mathematical derivations of the rule usually assume the same, Almeida [6] and Pineda [7] showed,
in the efforts to extend backpropagation to non-feedforward networks, that backpropagation is applicable to
arbitrary feedforward networks, Their proof is indirect, using the theory of linear networks and the concept
of transposition. The purpose of this report is to construct a direct algebraic proof. This result would
provide neural network designers with more flexibility in their choice of network architecture.

A typical derivation of the backpropagation rule for a layered network is as follows (Figure 1):

Figure 1: Derivation of Generalized Delta Rule

Let a; be the activation value of the i-th unit and wij be the connection weight from the j-th unit to the i-th

unit. Let pj be the net input value to the i-th unit and A(x) be the logistic activation function. Then,

1
a z Api). b 3 Zwijaj where  A(x) y 7o (1.1)
j<i

In Figure 1, we assume that units }, i and k belong to three different successive layers. The i-th unit and
the h-th unit belongs to the same layer but no connection exists between them. Thus, Yj<i' in the summation
symbol for p; should read 'for all j belonging to the previous layer of i'.

Similarly, the activation value of the k-th unit is computed by,

ag s A(P):  DkF zwkiai- (1.2

i<k
Let E be the cost (error) function to be minimized by the gradient descent method. E is a function of the
activation values of all of the output units. Then, the learning rule can be derived by computing the following

weight modification value:



dE dE dp; oE
Aw; = N = e B = %2 5 = .b, - 13
Wi awij napl aWu Tiapl % i % =

where 1 is the learning rate constant, and

JdE JdE Oa; oE Ja.
big-5—=- b= ——n(a;) = q; - Wa; h =% _, a
LA api aai aPI aai ll(al) di H(al) where ﬁ(al 3 apl al( al)
T w3 B, 2Pk, 14
B o, g‘{ Ipy 03, sz “ da (14)

Note that (1.4) is justified because the effect of a change in a; on E is propagated through all the units in

the succeeding layer connected to the i-th unit, and there is no connection, therefore no interaction, among them.
Now, from the definition of pg in (1.2), with the assumption that no lateral connection exists among the

units connected to the k-th unit,

OPk day, 03y :

—_— = W N =0 h = . 1.5

3a; h%w“‘ da, 3e 0 BFD -
Substituting (1.5) into (1.4), we get

qi = ), Wiiby. (1.6)

i<k
Thus, for a layered network, the rule requires the backward propagation of the error values, by's, in a way
similar to that in which the activation values, a;'s, are propagated forward,
If, on the other hand, a connection from the i-th unit to the h-th unit exists, as indicated by a dashed arrow

in Figure 1, then the computation of g; is not as simple as in (1.5), because

9ay
da,

1

# 0.

It is not even clear whether it is sufficient to propagate back the single set of error values, It may be

necessary for each unit to compute more than one kind of error valtue in order to differentiate varions backward

paths for error propagation.
We will show that that is not the case. The computation of the error value, b;, remains the same as (1.6)

even when there is a connection from the i-th unit to the h-th unit. The only difference is the interpretation of
'i<k'in (1.6). It should read, for an acyclic network, as 'for each unit k which receives the output of unit i
directly as an input’. Thus the error value of the k-th unit backpropagates to both the h-th unit and the i-th unit,

while the i-th unit receives error values from both the k-th unit and the h-th unit in Figure 1.



In the next section, we will first define the backpropagation network in the most general form, In
particular, we eliminate the distinction among the input, hidden, and output units. Through this generalization
we underscore the elegant symmetry that exists between the forward propagation of the activation values and the
backward propagation of the error values. We will call the new model Acyclic Neural Network (ANN).

In Section 3, we will derive a learning rule for a simple ANN net, in order to demonstrate the basic idea
behind our proof,

In Section 4, we will prove the validity of the learning rule given in Section 2.

2. Acyclic Neural Network (ANN)

An ANN net consists of a partially ordered finite set of processing units and a finite set of connections
among them. Each processing unit may receive an input value from the environment and may send an
activation value to the environment. The vector of the input values to the processing units constitute an input
pattern, and the vector of the activation values constituie an output pattern. The purpose of the net is to
establish, through learning, a mapping between the input and output patterns defined by a sample training set of
input/output pairs. After computing the activation value for the current input value, each processing unit
receives a correction value from the environment that specifies the difference between the desired activation value
(teaching value) and the computed activation value. The correction value should be zero if the activation value
of the unit is irrelevant. Otherwise, the correction value is a function of the activation value. Each processing
unit also computes the error value that represents the unit's contribution to the overall difference between the
desired output and the actual output patterns.

The activation value of a processing unit is a function of both the activation values of all the predecessor
units and the corrent input value to the unit. The contribution of a predecessor unit is weighted by the
connection weight, Similarly, the error value of a processing unit is a function of both the error values of all
the successor units and the current correction value. The contribution of a successor unit to the error value is
also weighted by the connection weight to the successor unit. The net modifies its connection weights after
each presentation of a teaching pair so that the mean square sum of the error values of the all processing units is
minimized.

Figure 2 illustrates the scheme of an ANN net with n (>0) processing units. The processing units are
topologically sorted, and a unit with a smaller index is connected 1o a unit with a larger index. The input

pattern, the output pattern, and the correction values are represented by the vectors, {xi}, {aj}, and {ci)},

respectively.
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Figure 2: Scheme of an ANN net

We now formally define an ANN net. Let R = (—eo,00), the set of real numbers, and [ = (0,1), the set

of real numbers between 0 and 1.
Definition: An ANN net is a finite acyclic labeled digraph N = (I, I", W) where

nm={1,2,..,n}: the set of nodes representing the processing units,

FclIxII: the set of arcs representing the connections, such that
foranyije I, (ijje I'= i«j,

W:r>R: the label of the arcs representing the connection weights,

In order 1o define the behavior of the net N, we use the following values associated with each

processing unit, i € T

X=X the input value, where X :II— R,

ai =A@ the activation value, A:ll>1
bi=B() the back error value, B:II R,
ci=C(i) the correction value, C:II— (LD,
pj = P(i) the net input value, P:1— R,
gij= 2@ the net error value, Q:I1>5R,
ti=m T({) the teaching value, T:TI—>1

The behavior of N can be divided into two phases, the forward propagation phase and the backward
propagation phase. For a given input value X, the net N computes the activation value A in the
forward propagation phase, The difference between the activation value A and the teaching value 7 is
given (o the net as the correction value C'= T - A. In the backward propagation phase the net
computes the back error value B from C. Then, using A and B, the net modifies the connection weight

W as follows:



1

Forward:  2; 5 A(p;), PizF zwijaj X5 where  A.(x) 310"
j<i

Backward: bif Ka;)-q;, q; = zwkibk +¢;  where P(X) T x-(1-x%x)

i<k

AWij =N b;-a j where T € I (the learning rate).

Figure 3: Forward/Backward Propagation
Note that the above definition is a generalization of the multilayered backpropagation network. For

example, the backpropagation net of Figure 4 (a} is equivalent to the ANN net of Figure 4 (b).

X1 @---@\ Cs
N ‘\:/
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Figure 4 (a): A Backpropagation Net

Cs

Figure 4 (b): An ANN Representation



3. A Learning Rule for A Simple Net

In order to illustrate the intricacies involved in extending the generalized delta rule to acyclic networks, we

will derive a learning rule for the network of Figure 5.

Figure 5: A Simple Net

In the forward propagation phase, the activation values will be computed as follows:

a1 = A(p1) p1=Xx]
ag = A(p2) P2=X
a3 = Mp3) p3=w31ag +wsizaz 3.1
a4 = A(p4) P4 = W42 22 + W43 a3
a5 = Mps) D5 = W53 a3 + W54 4.
Let E be the error function defined as:
1 1 1
E==ci=—(-yP==(t—a.)> 3.2
55075 (t—y) > ( 5) (3.2)
Using the definitions given in Section 1,
Awij =7N-" bi . aj, 3<i<5, 1<j<4, (3.3)
where b; = q; - W(a;),
aE aas
s———=(t—ag) —> 3.4
15 5, (t—as) %, (3.4)
8a5 aai . .. . . .
However, —==1and —'=(a;), 1<i<5, by the definition of 1 and m given in Section 2.
das dp;
Thus, from (3.1),
aas 88.5 ap5 aa3 83.4
= = 1A ) Wer —=+ W
aai aps aai u( 5) 33 aai 34 aai




ie.,

Similarly,

and from (3.1),

Therefore,

and from(3 4),

das _ daz day .. 933 _
aa4 = }J.(as){W53 3 " +Wsy aa_4} p,(aS )W54 A E = ().
das daz da d
E = M(a:s){wss 8—3’ FTWss 4} ﬂ(as){wﬁ +Wsy %}, (3.5
da, 0da, dpy day dag .. 02,
525 9ps das =U(@agy Wy S5 + Wy 92 =H(ag)wyg - 5;;—0-
a

a4
das
‘é‘;‘ = (a5 )wsz + 1(as)wsylh(agIwys ,

das

qs =(t—as)- e 5“(t“as)-—05 bs = l(as)-gs
qq = (t—a5)-W(as)wsy =Csli{as)wsy = bswsy by =l(24) qy

gz =(t—as)- {P—(as Iwss + H(as)wsgli(ay )W43}
= Csu(a5){W53 + W54P~(a4)W43}
= bsWs +bswsyll(ag)wys
= bswss +qgli(ay )Wz = bswss +bywys by =(a3)-qs.

In summary, we have the following updating rules for wij's, which are exactly the same rules for
muliilayered backpropagation networks.,

bs = (as) qs gs=cs=t-as

b4 = [L(a4) g4 Q4 = w54 bs

b3 = U(a3z) q3 Q3 = w53 bs + w43 by
Awsg = Mbs a4

Awsz = Mbs a3
Awgz = Mbyg a3
Awgy =mnbgay
Awszz = Mbs a2
Awsp =1bs a;



4. The Main Theorem

In this section we prove that the behavior of an ANN net N = (TI, ', W) defined in Section 2 minimizes the
mean square sum of the error values of the all processing units. For simplicity, we assume that the training set

is a singleton set. We use the same definitions and notations as in Section 2.

1
Let a; = A(p;), where A(X)= —
taTTH Al+e™
DiF D, Wi +X;,  Isisn, @n

j<i

1S 2 1 2

and let Eiui Zcm=52(tm—am) . where  Cpy Tty —ay,, 1<m<n
m=1 m=1

be the error function to be minimized by weight modifications. Using the gradient descent method,

JE JdE dp; JE
Aw =-1m =-1n L =-7q a:=1-b;-a;
4 aWIJ ap1 aWu apl J v
oE JE oa; oE
where i e L = T e Y=g, - 1(a: ), 4.2)
dE oa da
and qif—é—mz(ti—ai)—k E(tkmak)a—k—mci—i-ZCk 3 k (4.3)
! i<k 2 i<k %%
Note that in derivation of (4.3), we use the fact that if k<i, day =,
aai
Theorem: @; = Zwkibk +¢;, lsi<n.
i<k
Proof: Since the net is acyclic, we can assume that wij=0if igj. Let
bl c q]_ —Wll Wig e Wln— i 0 0 e 0—
b, cy s W1 Wi st Wou| [wgp O - O
Bz! . Cxl . 2= . W=l | =
b c
n n G [ Wn1 Wp2 0 Wpp | [Wn Wpp os0 O]
QG| {0 wy - wyu|bi] o
Then, we want to show that Q@ =W'B+C je., q_2 = 0 O wfﬁ b_2 + C_2
Jn 6 0 - 0 |b, Cp



[u(a;)) O
0 ay)

Lf :
Y 0
[dp 9py

aal aa2

dpy  dp,

U f afil at":lz
9Pn 9Py

L aa1 aaz

Since p; is independent of a; for i<j, and similarly, a; is independent of a; for i<j,
J J

9p;
aaj

Therefore, 1] =

[ 0 0
ap,
0a; 0
Pn 9Py
L. aal 83.2

ie.,

da,,

0 Wp1

[ 9ay
aal
dap
da;

]

92,
L aal

0a;
={Q if igj, and —2 =0 if i<,

Jay.
aaz
aa2

aa2

92y
Baz

331

L 8a1

dag

%ay

N
oa,
day
da, |

day

da,

0
92y
aa?_
[ 1 0
aaz
aa1 1
da, o2,
| da; da,

4.4)



Now, since —é—a_; = -ép—lg—j— = H(ai)“g%= for j<i, i.e.,

"0 0 - 0] wa) 0 e QT 0 0 =0
?..ﬁa;l 0 -0 _Qp_g 0 - 0
aal _ 0 }i(az) 0 v aal
day day 0 0 0 - uy) 9%y 9n . 0

L aal 83.2 J - - L aal aa2 .

we get (V-I=LU where I is the unit matrix. 4.5)
From (4.2), B=LQ (4.6)
and from (4.3), 0=v7TC, ie., @.7)
a: aal 331 1
q_z =0 1 % X C.2
: da2
q T S c
Yoo e 1] T
We want to show that from (4.1) - (4.7) we can derive @ = W B +C,
From (4.4) and (4.5),
V=UWW+I=RV +1 4.8)
0 0 0
a 0 e )
where R LW = He 2:)“'21 ) L 4.9)
H(&n)wnl “‘(an )Wn2 - 0

Then, since RM =@ when ngm, from (4.8),

n—-1
V=R =3 R
i=(0

-10-



RV+I=RU+R+--+R"H+1
=I+R+--+R" 4+ R"
=V

Since v =(®RHT =(rTY,
from @7, @=VC=RY'C=UT+RT +--+®R"")C

0=RTQ+C (4.10)

Finally, substituting (4.9) into (4.10),

Q=IW'Q+C
=WIL'Q+C
=wTrLg+c wL=LT
=W'B+C from (4.6).

Q.E.D.

-11-



(1

[2

(3]

4]

(3]

[6]

(7]

5. References

Le Cun, Y, "A learning scheme for asymmetric threshold network," in Cognitiva 85", CESTA-AFCET
{ed.), 1985, pp. 559-604.

Werbos, P. Beyond regression: new tools for prediction and analysis in behavioral sciences, Ph.D.

Thesis, Harvard University, 1984.
Rumelhart, D. E. & McClelland, J. L. Parallel Distributed Processing, Vol. 1 and 2, MIT Press, 1986.

Soulie, F. F., Gallinari, P., Le Cun, Y., and Thiria, S. "Automata networks and artificial intelligence,"
in Awtomata networks in computer science, F. F. Soulie, Y. Robert, and M, Tchuente (ed.), Princeton

University Press, 1987,
Arbib, M. A. Brains, Machines, and Mathematics, Second Edition, Springer-Verlag, 1987.

Almeida, L. B. "Backpropagation in non-feedforward networks,”" in Nueral Computing Architectures, 1.
Aleksander (ed.), The MIT Press, 1989.

Pineda, J. "Generalization of backpropagation to recurrent neural networks," Proc. of the IEEE
Conference on Neural Information Processing Systems - Natural and Synthetic, Boulder, CO, November
1987.

-12 -



	A Learning Algorithm for Acyclic Neural Networks
	Recommended Citation
	A Learning Algorithm for Acyclic Neural Networks

	tmp.1459809062.pdf.C2zz_

