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ABSTRACT OF THE THESIS 

 

Computational Fluid Dynamics (CFD) Modeling of  Mixed 

Convection Flows in Building Enclosures 

by 

Alexander Kayne 

Master of  Science in Mechanical Engineering 

Washington University in St. Louis, 2012 

Research Advisor:  Professor Ramesh K. Agarwal 

 

In recent years Computational Fluid Dynamics (CFD) simulations are increasingly used to 

model the air circulation and temperature environment inside the rooms of residential and 

office buildings to gain insight into the relative energy consumptions of various HVAC 

systems for cooling/heating for climate control and thermal comfort. This requires accurate 

simulation of turbulent flow and heat transfer for various types of ventilation systems using 

the Reynolds-Averaged Navier-Stokes (RANS) equations of fluid dynamics. Large Eddy 

Simulation (LES) or Direct Numerical Simulation (DNS) of Navier-Stokes equations is 

computationally intensive and expensive for simulations of this kind. As a result, vast 

majority of CFD simulations employ RANS equations in conjunction with a turbulence 

model. In order to assess the modeling requirements (mesh, numerical algorithm, turbulence 

model etc.) for accurate simulations, it is critical to validate the calculations against the 

experimental data. For this purpose, we use three well known benchmark validation cases, 

one for natural convection in 2-D closed vertical cavity, second for forced convection in a 2-

D rectangular cavity and the third for mixed convection in a 2-D square cavity. The 

simulations are performed on a number of meshes of different density using a number of 

turbulence models. It is found that k-ε two-equation turbulence model with a second-order 

algorithm on a reasonable mesh gives the best results. This information is then used to 

determine the modeling requirements (mesh, numerical algorithm, turbulence model etc.) for 
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flows in 3D enclosures with different ventilation systems. In particular two cases are 

considered for which the experimental data is available. These cases are (1) air flow and heat 

transfer in a naturally ventilated room and (2) airflow and temperature distribution in an 

atrium. Good agreement with the experimental data and computations of other investigators 

is obtained. 
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Chapter 1 
 
Introduction 

1.1 Motivation 
 

In the past decade, environmental concerns and the rising cost of energy have created a shift 

in building architecture towards more energy-efficient designs.  The primary environmental 

concern has been the increase in greenhouse gases, due to the increasing fossil fuel 

consumption for electricity generation and transportation.  Since buildings are major 

consumers of energy for heating, cooling, lighting, etc., an increase in energy efficiency of 

buildings contribute towards a significant decrease in emissions. 

 

In 2009, buildings were the second-largest energy-consuming sector in the United States 

(Figure 1.1), using up to 33.9% of the nation’s total energy consumption.  Buildings also 

represented 77.8% of the nation’s electrical energy consumption (Figure 1.2), 44.4% of 

which is generated through coal combustion (Figure 1.3).  Coal combustion accounted for 

34.6% of the nation’s carbon dioxide emissions (Figure 1.4), and thus for 28.2% of the 

nation’s overall greenhouse gas emissions (Figure 1.5).  Therefore, to reduce greenhouse gas 

emissions, there has been an emphasis on increasing the energy efficiency of buildings.  

Heating, ventilation and air conditioning (HVAC) has become an integral part of all 

buildings across the nation; the space conditioning now takes up to 53% of the energy 

consumption by the end user in the residential sector (Peréz-Lombard et al., 2008).  As a 

result, there is focus on reducing HVAC consumption as well as increasing its efficiency. 
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Fig. 1.1 United States Energy Usage by 

Sector [International Energy Agency (11)] 
 

Fig. 1.2 United States Electrical Energy Usage 
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Fig. 1.3:  United States Electrical Energy Production Sources in 2009 

[Energy Information Administration (11)] 
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Fig. 1.4 U.S. Energy-Related Carbon 

Dioxide Emissions in 2009 
[Environmental Protection Agency (18)] 

Fig. 1.5:  U.S. Greenhouse Emissions by 
Gas in 2009 [U.S. Energy Information 

Administration (17)] 
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1.2 HVAC Modeling 
 

Thanks to significant improvements in technology over the past several decades, HVAC 

is no longer considered a luxury but a basic need in most of the industrialized countries 

in the world.  Considering that the average person in the United States spends over 90% 

of his life indoors (U.S. EPA 1995), coupled with the realization that goods are 

“produced better, faster, and more economically in a properly controlled environment” 

(McQuiston, Parker and Spitler 2005), HVAC has become a vital need for both the 

health and productivity of the people worldwide.   

 

Because buildings in different regions of the United States and the world have different 

heating, cooling and ventilation requirements, it is impossible to create a single energy-

efficient and economical HVAC system that can be applied to every building.  This can 

be seen in the balkanization of HVAC industries and materials, in which everything 

from design to position to setting must be carefully chosen for optimal effect.  To the 

design of energy-efficient HVAC systems  and to assess and improve the energy 

efficiency of buildings, building architects and the HVAC industry are increasingly 

employing flow and heat transfer modeling software to study the flow field in building 

enclosures and the impact of various HVAC systems on the thermal comfort.   

 

1.3 Scope of the Thesis 
 
The main objective of the research conducted in this thesis is to study the flow field and 

heat transfer in 3D building enclosures using computational fluid dynamics (CFD) 

software.  For this purpose, the CFD software from ANSYS Inc., called FLUENT 12.1, 

is employed.  The software is first employed to study the flow field in 2-D enclosures 

for the purpose of code validation and for determining the numerical requirements 

(mesh, algorithm accuracy, etc.) for accurate simulations.  Three cases for which 

experimental data is available are studied.  These cases are: 
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• A 2-D rectangular cavity with forced convection 

• A 2-D vertical “tall cavity” with natural convection 

• A 2-D square cavity with mixed convection (combined forced and natural 

convection) 

 

After code validation with 2-D cases, flow fields in two 3D enclosures are computed.  

These cases are: 

 

• A 3-D room with a single heater with natural ventilation 

• A 3-D atrium with both mixed convection and solar radiation (from a single 

external glass wall) 

 

In the CFD calculations using FLUENT, we employ the Reynolds Averaged Navier-

Stokes (RANS) equations.  Because of the relatively low airspeed in each case, we apply 

the incompressible form of the equations with the Boussinesq Approximation to 

account for the buoyancy effects.  In all the studies, the computations are performed on 

a sequence of meshes to ascertain that the final solution is mesh-independent.  In 

addition, several turbulence models, in particular the two-equation k-ε realizable and k-ω 

SST models, are employed to assess the effect of turbulence models on the accuracy of 

the solutions. 
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Chapter 2 
 
Background Theory and Modeling 

2.1 Introduction 
 

Computational Fluid Dynamics (CFD) is a numerical approach for simulating fluid 

flow.  It allows the practitioners and researchers to predict characteristics of a system, 

including flow velocity, pressure, temperature and heat transfer.  CFD analysis takes 

place in three stages: 

 

First, a pre-processing application (in the present work, ANSYS GAMBIT) is used to 

establish the geometry of the model.  Boundaries (such as walls, inlets and outlets) are 

also defined in this step.  When the geometry and the boundary conditions for the 

problem are completed, the computational domain in defining the problem is divided 

into quadrilateral or triangular cells in 2-D; or hexagonal or tetrahedral cells in 3D, 

which form a mesh or a grid.  This mesh is then imported to ANSYS FLUENT 12.1 for 

generating the flow field solutions at mesh points. 

 

It is important that proper boundary conditions such as wall temperature, inlet velocity 

and gauge pressure are applied in the computational domain.   

 

The CFD Solver FLUENT generates the flow field data at each mesh point after 

solving the appropriate governing equations.  After the flow field is generated by 

FLUENT, it is exported to a data processor (in the present work, CFD-Post) to 

generate line plots and flow variable contours.  This data can also be exported to other 

software such as Excel to allow comparisons with the other calculations and data in a 

straightforward manner. 
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2.2 Fundamentals of CFD 
 

The use of computational flow dynamics (CFD) is a numerical methodology for solving 

the governing equations of fluid flow.  The governing equations of fluid flow are partial 

differential equations; when discretized on a mesh, they transform into algebraic 

equations which can be solved by a finite-difference/finite-volume algorithm (Basarir 

2009).   

 

The following sections will briefly describe the governing equations, turbulence models, 

flow conditions and properties employed in this work. 

 

2.3 Governing Equations 
For a Newtonian fluid, the governing equations of fluid flow describing the 

conservation of mass, momentum and energy in Cartesian coordinate systems can be 

written as follows (Currie, 2003): 
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z-Momentum Equation 

)(

)()()()(

2

2

2

2

2

2

z
w

y
w

x
w

z
P

ww
z

vw
y

uw
x

w
t

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

−=

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

µ

ρρρρ
     (2.4) 

Conservation of Energy 
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2.4 Turbulence Modeling 

2.4.1 Reynolds Averaged Navier-Stokes Equations 
 

Direct numerical simulation (DNS) of the governing equations described in Section 2.3 

is not feasible at present for complex 3D problems at high-Reynolds numbers, because 

very large computational hardware requirements are presently unavailable.  Although 

Large-Eddy Simulation (LES) is relatively less computationally intensive, it is still 

impractical for many three-dimensional applications.  As a result, a majority of the 

turbulent flows are computed by time-averaging the equations of Section 2.3.  This is 

done by replacing the instantaneous quantities in Equations (2.1)-(2.5) by the sum of 

their mean and fluctuating parts.  For example, u = ū + u’, where u is the time-mean 

quantity and u’ is the instantaneous fluctuating quantity (Cebeci and Cousteix, 2005).  

Performing these substitutions and invoking time-averaging Equations (2.1)-(2.5) 

transforms them into the well-known Reynolds Averaged Navier-Stokes (RANS) 

Equations: 
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Conservation of Momentum 
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y-Momentum Equation 
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As a result of Reynolds-averaging, Reynolds stresses appear in Equations (2.7)-(2.9) that 

need to be modeled.  They are modeled in an analogous manner as the laminar stress 

terms μt (known as the eddy viscosity). There has been considerable effort devoted over 

the last hundred years towards the modeling of μt.  This practice is known as 

“turbulence modeling.”  In the next two sections, we briefly describe the two models we 

have employed in this thesis. 
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2.4.2 The k-ε Turbulence Model 

The k-ε model is based on determining μt by solving two transport equations, one for 

the turbulent kinetic energy k and the other for the rate of dissipation of turbulent 

kinetic energy ε.  Eddy viscosity is determined by the equation
ε

ρµ µ

2kCt = . In the 

realizable k-ε equations, the Boussinesq approximation in the Reynolds Stress in an 

incompressible strained-mean flow become: 

kMbk
jk

t

j
i

j

SYGG
x
k

x
ku

x
k

t
+−−++

∂
∂

+
∂
∂

=
∂
∂

+
∂
∂ ρε

σ
µ

µρρ ])[()()(     (2.11) 

εεε
ε

ε
υε

ερερε
σ
µ

µ

ρερε

SGC
k

C
k

CSC
xx

u
xt

b
j

t

j

j
j

++
+

−+
∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

31

2

21])[(

)()(

  (2.12) 

where Gk represents the generation of turbulence kinetic energy due to mean velocity 

gradients, Gb is the generation of turbulence kinetic energy due to buoyancy, Ym 

represents the contribution of the fluctuation dilation in compressible turbulence to the 

overall dissipation rate, Sk and Sε are user-defined source terms, σε  and σk are the Prandtl 

numbers for k and ε respectively, and C1ε and C2 are constants.  ANSYS FLUENT 12.1 

has established the latter four terms to ensure that the model performs well for 

canonical flows.  The model’s constants are given as: 

C1ε = 1.44, C2 = 1.9, σk = 1.0, and σε = 1.2,  (2.13) 

which work well for a wide range of wall-bounded and free shear flows (FLUENT, 

2009). 

 

2.4.3 The k-ω Turbulence Model 

The k-ω model is based on the transport equations for the turbulence kinetic energy k 

and the specific dissipation rate ω.  The k-ω model is supposedly “more accurate than k-

ε in the near wall layers, and has therefore been successful for flows with more 

moderate adverse pressure gradients, but fails for flows with pressure-induced 
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separation” (Menter, Kuntz and Langry, 2003).  Thanks to the Wilcox Shear-Stress 

Transport modification, k-ω is widely used in industrial, commercial and research codes; 

however, because of its free-stream sensitivity to the values of ω, it has yet to overtake 

k-ε in popularity.  The transport equations for k and ω are given as: 
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where Γk and Γω represents the effective diffusivities, S is the strain rate magnitude, Ğk 

represents the generation of turbulence kinetic energy due to mean velocity gradients, 

Gω represents the generation of ω, Y represents the dissipation of its respective variable 

due to turbulence, Sk and Sω are user defined source terms, and Dw is the representative 

cross-diffusion term 

jj xx
kFD
∂
∂

∂
∂

−=
ω

ω
ρσωω

1)1(2 2,1       (2.16) 

where F1 is the blending function and σw,2 = 1.168. 

2.5 Radiation Modeling 
In addition to both natural and forced convection, one of the 3D cases studied in this 

thesis includes solar radiation.  To account for the effects of solar radiation, the Discrete 

Transfer Radiation Model (DTRM) built in FLUENT is employed.  This model solves 

the Radiation Intensity equation 

π
σ 4TaaI

ds
dI

=+         (2.17) 

by integrating it along a series of rays s coming from the faces of the radiating body.  So 

long as the gas absorption coefficient a is constant, the intensity I(s) can be estimated as 

asas eIeTsI −− +−= 0

4

)1()(
π

σ        (2.18) 

where σ is the Stefan-Boltzmann constant, T is the temperature, and I0 is the radiant 

intensity at the beginning of the path given by the equation 
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π
σ 4

0
)1( wwinw Teqe

I
+−

=        (2.19) 

In Equation (2.19), qin is the radiative heat flux entering the wall from the surroundings 

and ew and Tw are the wall emissivities and temperatures, respectively (FLUENT 2009). 

 

 

2.6 Numerical Solution Method 
The RANS equations and turbulence models (as well as the radiative transfer model) 

create a system of seven equations that need to be solved numerically.  An analytical 

solution for these equations is impossible; therefore, an iterative numerical solution 

method is used on a mesh to approximate the partial differential equations into of 

approximate algebraic equations.  The linearized algebraic equations iteratively converge 

to the nonlinear solutions by employing a suitable algorithm built in FLUENT.  A 

convergence criteria is specified to achieve an acceptable accuracy.  When all the flow 

properties in all cells of the mesh reach the convergence criteria, the solution is 

considered “converged” and the iterative process ends (Basarir 2009). 

 

 
Fig. 2.1 Example of Residual History of Various Flow Variables and Governing Equations 

During the Iterative Process 
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2.7 Solver Settings 
The choice of solver settings in FLUENT has been based on existing literature and 

guidelines for modeling of large air spaces (Cornell 2011).  

 

The following solver settings were used in all the 2-D and 3D cases studied in this thesis 

except for the 3D Atrium case: 

 

• Double Precision, Segregated Steady Solver 

• Standard Method for Pressure 

• Second Order Upwind Discretization for Momentum, Turbulence and Energy 

Equations 

• Under-relaxation factors for pressure, density, body forces, momentum, 

turbulent kinetic energy, turbulent dissipation rate, turbulent viscosity and 

energy are equal to 0.3, 1, 1, 0.7, 0.8, and 1 respectively 

• SIMPLE! Algorithm with Pressure-Velocity Coupling 

• Convergence criteria of 0.000001 

 

In the final (Atrium) case, in order to be able to compare the results with those of 

(Basarir 2009), the Body-Force Weighted method was chosen for solving for pressure 

and the convergence criteria was relaxed to 0.0001.  

 

2.8 Assumptions for Validation Cases 
The following fluid properties were used for the 2-D validation cases: 

• Newtonian Fluid (Air) 

• Steady-State 

• Two-Dimensional 
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• Bousinessq Approximation for buoyancy forces, which states that in buoyancy-

driven flows, variation in density may be neglected in the continuity equation 

and should be included only in the direction of gravity (Currie, 2003).  The 

density changes only with temperature in the buoyancy term in the y-

momentum equation. 

• Gravitational acceleration acting in the negative y-direction at a rate of 9.81 m/s2 

• Adiabatic Walls 

• Density of Air = 1.204 kg/m3 

• Specific Heat of Air = 1006.43 J/kg-K 

• Thermal Conductivity of Air = 0.0242 W/m-K 

• Viscosity of Air = 1.825 x 10-5 kg/m-s 

• Thermal Expansion Coefficient of Air = 0.0017884 1/K 
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Chapter 3 
 
Simulation of  Forced Convection in a  
2-D Rectangular Cavity 

 

3.1 2-D Model 
 
The 2-D model employed to study the forced convection on a rectangular cavity was 

studied experimentally by Restivo (1979).  In this model, the rectangular cavity is of 

height H = 3 m and length L = 9 m.  An inlet slot with height h = 0.168 m is made near 

the upper wall of the cavity, and an outlet slot for air is made near the wall bottom with 

a height t = 0.48 m.  A steady airflow is forced into the cavity chamber at 0.455 m/s, 

introducing circulation into the room.  The incoming air has a Reynolds Number of 

5000, based on the inlet size, inlet velocity and ambient air conditions. It induces 

turbulent flow in the chamber.  Experiments of Restivo (1979) measured the streamwise 

(u) velocity along the vertical axis at x = 3 m and x = 2 m, and along the horizontal axis 

at y = 0.084 m and y = 2.916 m. Results from our study are presented along with the 

computational results of by Horikiri, Yao and Yao (2011), and by De Villiers (2010). 

 
Fig. 3.1  Sketch of the 2-D Forced Convection Model [de Villiers 2010 (8)] 
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In addition to the goal of validation of CFD solvers for computing forced convection 

flows, one of the key focuses of this study was to determine the effect of mesh density 

and turbulence models on the accuracy of the results.  For this purpose, six cases were 

computed.  Computations were performed for mesh spacings of 0.05, 0.01 and 0.005 

for both k-ε realizable and k-ω SST models.  These meshes resulted in 10800, 270000 

and 1080000 nodes. 

 

3.2 Results and Discussion 
Figure 3.2 shows the comparison of our results from three mesh spacings of 0.05 m, 

0.01 m, and 0.005 m using the k-ω SST model with the experimental flows of Restivo 

(1979) and the computations of Horiki, Yao and Yao (2011) along the line x = 3.   

 

Figure 3.3 shows the comparison of our results from three mesh spacings of 0.05 m, 

0.01 m, and 0.005 m using the k-ω SST model with the experimental results of Restivo 

(1979) and the computations of Horikiri, Yao and Yao (2011) along the line x = 6. 

 

From Figures 3.2 and 3.3, it can be seen that the agreement between computation and 

experiment improves between x = 0.7 and x = 3; the discrepancy is larger near the wall 

between x = 0 and x = 0.7.  It can also be noted that coarser meshes made with a 

spacing of 0.05 m give poor results.  Best results with reasonable computational time are 

obtained on a mesh of 0.01 m spacing and use of the k-ε realizable turbulence model.  

Further refinement of mesh spacing to 0.005 m increases the computational time 

significantly without significant impact on accuracy.  Also, the k-ω SST turbulence 

model gives less accurate results when compared to the k-ε realizable model, especially 

near the vertical walls. 

 

Figure 3.4 shows the computed velocity vectors inside the cavity obtained with the k-ε 

model.  A large region of recirculating flow can be seen near the left wall, as expected. 
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Present Results for Three Different Mesh Spacings with Experimental Data of [Restivo 1979 (16)] 

and the Computations of [Horikiri, Yao and Yao 2011 (11)] at x = 3 Using the k-ω Turbulence 
Model 
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Present Results for Three Different Mesh Spacings with Experimental Data of [Restivo 1979 (16)] 

and the Computations of [Horikiri, Yao and Yao 2011 (11)] at x = 6 Using the k-ω Turbulence 
Model 
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Fig. 3.4 Computed Velocity Vectors for Forced Convection in the Rectangular Cavity Using the 

k-ε Realizable Turbulence Model 

 
After determining the appropriate mesh density for accurate simulations, we studied the 

influence of turbulence models on the accuracy of solutions.  Figures 3.5 and 3.6 show 

the computed solutions with both the k-ω SST and k-ε realizable models on a mesh 

spacing of 0.008 m at x = 3 m and x = 6 m, respectively, and their comparisons with the 

experimental data of Restivo (1979) and the computations of De Villiers (2010).  It can 

be seen from Figures 3.5 and 3.6 that the k-ε turbulence model gives a better agreement 

with the experimental data.   

 

Figures 3.7 and 3.8 show the velocity profiles along the x-direction at y = 0.084 m and y 

= 2.916 m, respectively.  Although in Figures 3.7 and 3.8 none of the models do a good 

job when compared with the data, the k-ε realizable turbulence model appears to be 

more accurate compared to the k-ω SST model. 
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Fig. 3.5 Comparison of CFD Results With Experimental Data at x = 3 m [de Villiers 2010 (8)] 

Using the k-ε Realizable and k-ω SST Turbulence Models 
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Fig. 3.6 Comparison of CFD Results With Experimental Data at x = 6 m [de Villiers 2010 (8)] 

Using the k-ε Realizable and k-ω SST Turbulence Models 
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Fig. 3.7 Comparison of CFD Results With Experimental Data at y = 0.084 m [de Villiers 2010 (8)] 

Using the k-ε Realizable and k-ω SST Turbulence Models 
 

    
Fig. 3.8 Comparison of CFD Results With Experimental Data at y = 2.916 m [de Villiers 2010 (8)] 

Using the k-ε Realizable and k-ω SST Turbulence Models 
 



 

  22 
 

The simulations conducted in this chapter demonstrate that a suitable mesh spacing and 

k-ε realizable turbulence model can model the forced convection flow with acceptable 

engineering accuracy.  It appears that better turbulence models are needed for more 

accurate prediction. 
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Chapter 4 
 
Simulation of  Natural Convection in a 
2-D Vertical Rectangular Cavity 

4.1 2-D Model 
 

This model is based on an experimental study performed by P.L. Betts and I.H. Bokhari 

(2000).  The model in their experiment (Figure 4.1) is a tall, hollow closed cavity with no 

inlets or outlets. The cavity has height H = 2.18 m, width W = 0.076 m, and depth D = 

0.52 m.  The vertical walls (closest to one another) are polished aluminum plates, one 

heated to 288.25 K and the other at 307.85 K.  The top and bottom walls are assumed 

to be adiabatic.  These boundary conditions correspond to a Rayleigh Number (Ra) of 

8.6 x 105, defined as 

va
HTTg

Ra th
3)( −

=
β

  

where Tt is the air temperature at the center of the cavity.  Although the experiment was 

performed in 3-D, the enclosure in Fig. 4.1 can be modeled as nominally 2-D. 

 

Having established in Chapter 3 that nearly 150000 to 700000 are sufficient to obtain 

reasonably accurate results, a mesh spacing of 0.001 was employed in this case for 

acceptable accuracy without excessively increasing computational time. The key goal of 

this study was to determine the relative accuracy of the two turbulence models for 

natural convection flow.  Present computations are compared with the experimental 

data of Betts and Bokhari (2000) and the computations of Zuo and Chen (2009) and De 

Villiers (2010).  



 

  24 
 

 
Fig. 4.1  Sketch of the 2-D Natural Convection Model [Zuo and Chen 2009 (20)] 

  

4.2 Results and Discussion 
Figures 4.2-4.7 show the comparison of present computations with the experimental 

data of Betts and Bokhari (2000) and with the computations of Zuo and Chen (2009) 

and de Villiers (2010) at various locations in the cavity for both the velocity and 

temperature profiles. 

 

Unlike the Forced Convection case in Chapter 3, in this case the k-ω SST model gave 

more accurate results.  While the realizable k-ε realizable model gave a reasonable 

prediction of temperature and velocity profiles in the De Villiers (2010) study, the k-ω 

SST model employed in the present study gives results in closer agreement with the 

experimental data, especially in capturing the velocity peaks at various x-locations.  It 

also gave more accurate results for the velocity and temperature in the y-direction (y/H 

= 0.05, y/H = 0.1, y/h = 0.9, and y/h = 0.95), thus supporting the claim in the 
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literature that the k-ω SST turbulence model is superior in modeling the near-wall layers 

(Menter, Kuntz and Langry, 2003). 

 

This case provides an excellent validation of the CFD solver for computing natural 

convection flows. 

 
Fig. 4.2 Comparisons of Present Computations Using the k-ω  SST and k-ε Realizable Vertical 

Velocity Profiles with Experimental Data of [Betts and Bokhari 2000 (2)] and the Computations 
of [de Villiers 2010 (8)] 
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Fig. 4.3 Comparison of Present Computations for Velocity Profiles at Various y/H With the 

Experiments of [Betts and Bokhari 2000 (2)] Using the k-ε Realizable Model 
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Fig. 4.3 Comparison of Present Computations for Velocity Profiles at Various y/H With the 

Experiments of [Betts and Bokhari 2000 (2)] Using the k-ω SST Model 
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Fig.  4.5 Comparisons of Present Computations Using the k-ω  SST and k-ε Realizable 
Temperature Profiles with Experimental Data of [Betts and Bokhari 2000 (2)] and the 

Computations of [de Villiers 2010 (8)] 
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Fig. 4.6 Comparison of Present Computations for Temperature Profiles at Various y/H With the 

Experiments of [Betts and Bokhari 2000 (2)] Using the k-ε Realizable Model 
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Fig. 4.7 Comparison of Present Computations for Velocity Profiles at Various y/H With the 

Experiments of [Betts and Bokhari 2000 (2)] Using the k-ω SST Model 
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Chapter 5 
 
Simulation of  Mixed Convection in a   
2-D Square Cavity 
 

5.1 2-D Model  
 

This case is based on the experimental study of Blay et al (1992).  In this case (Fig. 5.1), 

air is forced into a 1.04-m square cavity through an inlet of length h = 0.018 m on the 

chamber’s ceiling.  Like the forced convection case of Chapter 3, the air creates 

circulation within the chamber, and comes out through an outlet of length t = 0.024 m 

near the floor.  Also, like the natural convection case of Chapter 4, the walls ceiling and 

floor are kept at different temperatures.  The temperature of the sides, walls and ceiling 

is fixed at Twl = 288.15 K, while the floor is kept at Twh = 308.65 K. As a result, the air 

in the cavity is subjected to both a mixture of inertial and buoyancy forces. This case 

therefore represents mixed convection. 

  
Fig. 5.1 Sketch of the Mixed Convection Model [Zuo and Chen 2009(20)] 
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The key goal of this study is again to validate the CFD solver for computing mixed 

convection flow, and to determine the relative accuracy of k-ε realizable and k-ω SST 

models. 

5.2 Results and Discussion 
 

Figures 5.2 and 5.3 respectively show the vertical temperature profile in the middle of 

the cavity and the horizontal temperature profile in the middle of the cavity.  In this 

case, present computations with the k-ε realizable model are in closer agreement with 

the experimental data, although the k-ω SST model also gives acceptable results.  The 

computational results of de Villiers (2010) show a greater disagreement with the 

experimental data. 

 

 
Fig. 5.2 Comparison of Present Computations With k-ε Realizable and k-w SST Models for the 

Temperature Profile at x = L/2, With Experimental Data [Blay et al. 1992 (3)] and the 
Computations of [De Villiers 2010 (8)] 
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Fig. 5.2 Comparison of Present Computations With k-ε Realizable and k-w SST Models for the 

Temperature Profile at y = L/2, With Experimental Data [Blay et al. 1992 (3)] and the 
Computations of [De Villiers 2010 (8)] 

 

Figures 5.4 and 5.5 show the comparison of experimental velocity contours (shown by 

arrows) with those computed by Zuo and Chen (2009) using the k-ε realizable and k-ω 

SST turbulence models, respectively.  It can be seen that the flow field velocity contours 

computed with the k-ω SST model are in better agreement with the experimental data.  
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Fig. 5.4 Comparison of Experimental Velocity Contours (left) with Present Computed Velocity 

Contours using the k-ε Realizable Model [Zuo and Chen 2009 (20)] 
 

 
Fig.  5.5  Comparison of Experimental Velocity Contours (left) with Present Computed Velocity 

Contours using the k-ω SST Model [Zuo and Chen 2009 (20)] 
 

Figures 5.5 and 5.6 show the computed temperature contours using the k-ε realizable 

and k-ω SST turbulence models, respectively.  These contours indicate that the k-ε 

realizable model is more accurate near the walls, while the k-ω SST model is more 

accurate in the middle region of the cavity. 
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Fig. 5.6 Computed Temperature Contours Obtained With the k-ε Realizable Model 

 

 
Fig. 5.7 Computed Temperature Contours Obtained With the k-ω SST Model 
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Chapter 6 
 
Modeling Air Flow in a 3-D Enclosure 
Under Natural Ventilation 
 

6.1 3-D Model  
 
 
This model is based on the experimental study of Jiang and Chen (2003) to simulate the 

indoor environment of a 3-D chamber with a single outlet.  In the study, a 5.16 x 3.57 x 

2.18 m3 room was supplied with a single 1,500 W baseboard heater to generate 

buoyancy forces.  In addition, a 0.9 x 1.80 m2 opening was constructed in the opposite 

wall to simulate fluid flow between the room and a “windless” outdoor environment, 

thereby creating a single-sided ventilation driven by buoyancy forces.  Figure 6.1 shows 

the two views describing the floor plan of the room. 

 

 
Fig. 6.1 Floor Plan of the 3-D Natural Convection Experiment [Jiang and Chen 2003 (12)] 
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Fig. 6.2 Location of Temperature and Velocity Probe Positions In the Vertical Cross-Section 

[Jiang and Chen 2003 (12)] 
 

In this study, “air velocity and temperature distributions were measured with six hot-

sphere anemometers at different heights (0.1 m, 0.5 m, 0.9 m, 1.3 m, 1.7 m, and 2.1 m 

from the floor) in five different locations” (Jiang and Chan 2003) as shown in Figure 

6.2.  These devices displayed considerable uncertainty at air velocities of less than 0.1 

m/s; temperature measurement error was 3 K.  In addition, since the goal of the study 

was “to examine the overall airflow pattern in a room scale driven by buoyancy forces” 

(Jiang 2012), the heater’s surface temperature and micro-scale thermal environment was 

not measured.  Figure 6.3 shows the 3-D sketch of the room used in the computational 

study. 

 

 
Fig. 6.3 Sketch of the 3-D Natural Convection Model 



 

  38 
 

In the absence of the availability of detailed data from the experiment, several 

assumptions were made in the computations regarding the wall, heater and air 

temperatures.  While the heater was modeled with the same dimensions (0.16 m x 0.74 

m x 0.18 m) as stated in the experimental study, the temperature along all five exposed 

walls was assumed to be 350 K.  The surrounding walls were assumed to be adiabatic, 

held at 300 K, and the air characteristics were assumed to be the same as those given in 

Section 2.8 for the 2-D cases..  The window was assumed to be a pressure outlet with a 

gauge pressure of 0; the air outside the enclosure was assumed to be at 288 K.  Based 

on our good experience with the k-ω SST model in the 2-D natural convection problem 

described in Chapter 4, it was chosen for this study. 

 

4.2 Results and Discussion 
 

Figure 6.4 shows the computed temperature contours in the room’s section that 

contains temperature probes P2, P3 and P5.  As can be seen from the contour the 

solution satisfies the adiabatic wall conditions in the room, with the exception of the 

window outlet through which air flows through freely.  The contours also show that 

aside from the air immediately surrounding the heater, temperature remains between 

288 and 300 K. 

  

Figures 6.5 and 6.6 are the velocity vector plots in the same section that contains the P2, 

P3 and P5 probes.  Figure 6.5 shows the velocity vector contours from the study of 

Jiang and Chen (2009) and Figure 6.6 shows the velocity vector contours obtained in 

the present computations.  Both Figures 6.5 and 6.6 show qualitatively similar results 

inside the chamber; however, there is significant difference in the flow field near the 

ceiling.  In both figures the air enters through the lower section of the window, moves 

rapidly near the floor and the wall, and circulates back along the ceiling to exit the room 

on the upper section of the outlet.  The computation shows evidence of recirculation in 

the upper left corner of the room; however, unlike the Jiang and Chen results in Figure 

6.5, the airstream diverges into two distinct areas:  one continues the recirculation 
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pattern and the other moves at higher speed straight towards the ceiling.  The reason 

for this behavior is currently under investigation. 

 

 
Fig. 6.4 Temperature Contours in the Room at a Section Containing Probes P2-P3-P5  

 

 
Fig. 6.5 Velocity Vector Contours Inside the Section Containing the P2, P3, and P5 Probes  

[Jiang and Chen 2003 (12)] 
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Fig. 6.6 Computed Velocity Vector Contours Using the k-ω SST Model Inside the Section of the 

Room Containing the P2, P3, P5 Probes            
 

Figures 6.6 and 6.7 respectively show the comparisons of experimental and computed 

temperature and velocity profiles at four of the five probe locations.  The fifth probe, 

being outside of the room, has been neglected.  Since the computational model was 

created based on a number of assumptions on due to paucity of information, a direct 

comparison with the experimental data is not possible; therefore, a qualitative analysis is 

given.  The experimental temperature profiles show close resemblance with their 

numerical counterparts.  Specifically, temperatures remain low near the floor and 

increase with height. Velocity profiles also show similar results, indicating a period of 

stagnation near the center of the room which is surrounded by the circulating air.  

Qualitatively, the experimental and computational results show similar trends in velocity 

and temperature profiles. 
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Fig. 6.7 Comparison of Experimental (Left) and Numerical (Right) Results for Mean Air 

Temperature Profiles at P2, P3, P4, and P5 Locations [Jiang and Chen 2003 (12)] 
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Fig. 6.8 Comparison of Experimental (Left) and Numerical (Right) Results for Mean Air Velocity 

Profiles at P2, P3, P4, and P5 Locations [Jiang and Chen 2003 (12)] 
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Chapter 7 

Modeling of  Air Flow in a 3-D Atrium 
Under Forced Convection and Solar 
Radiation 
7.1 3-D Model  
 

This test case is based on the experiments performed by Basarir (2009)  in the atrium of 

Concordia University’s Engineering building (Figs. 7.1-7.3).  The atrium’s size is 12.05 

m x 9.39 m x 13.02 m, and it contains both a supply and return vent on its east wall.  

The supply vent forces air at a temperature of 288 K into the room at a speed of 4.5 

m/s; the Reynolds number is 146633 based on the floor conditions at the supply vent.  

The Reynolds number indicates that the flow is turbulent. 

 

The atrium’s main feature is an argon-filled double-glazed glass façade that covers the 

entire south wall.  This glass façade has a transmittance of 36%, an absorptivity of 

17.5%, a thermal conductivity of 0.0626 W/m-K and thickness of 24 mm.  Noting 

variables such as wind speed and clear weather, the effective sky temperature was 

calculated to be 14.21° C, and the solar direction vector was calculated to be (-0.60, 

0.69, -0.40) at the time of the experiment (Basarir 2009). 

 

Our goal is to create a CFD model that could reproduce the experimental results; in 

particular, the temperature profile of the building at 4:00 PM on August 1, 2007 (Basarir 

2009).  The mesh inside the atrium model was constructed using a mesh of 0.125 m.  

This generated a mesh with 844584 nodes, necessitating a computationally intensive 

simulation.  To reduce the computational time, the convergence criteria were reduced to 

1 x 10-4.  The k-ε realizable turbulence model was chosen for this case since it had 

proven to be more accurate in both the 2-D Forced- and Mixed Convection cases 

described in Chapters 3 and 5 respectively.  The Discrete Transfer Radiation Model was 
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activated in FLUENT to track the effects due to solar radiation.  It is important to note 

here that the glass façade cannot be opaque because it transmits the solar radiation 

inside the atrium.  Therefore its material properties should be carefully taken into 

account in the CFD model. 

 

 
Fig. 7.1 Concordia University’s Engineering Building Atrium [Basarir 2009 (1)] 
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Fig. 7.2 Dimensions of the Supply and Return Vents on the East Wall of the Atrium 

[Basarir 2009 (1)] 
 

 
Fig. 7.3 Floor Plan of the Atrium [Basarir 2009 (1)] 
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7.2 Results and Discussion 
 
Figures 7.4 and 7.5 show the temperature contours on the building’s façade from the 

Basarir (2009) experimental study and the present computational study using the k-ε 

model.  It can be noted that from both the figures that the left side of the façade is 

considerably warmer than the rest of the façade.  This means that the left side of the 

atrium will be warmer than the rest of the atrium due to “a wall that partially traps the 

hot air.” Furthermore, the lower right side has a considerable accumulation of cold air 

near the right wall, possibly due to the “impingement of the cool supply air on this 

wall.”  There is also evidence of circulation in both of the figures, particularly in the 

lower middle of the room.  It should be noted, however, that on the whole, the 

computational results computed with the k-ε model is show lower temperatures than 

Basarir’s experiments. 

  

Figures 7.6 and 7.7 show the contour plots of the numerically predicted temperatures by 

Basarir (2009) and the writer of this thesis at heights of 2, 6.165 and 10.25 meters above 

the floor. Once again it can be noticed that, there is a considerable accumulation of cold 

air on the lower end of the west wall, and the effects of the trapped air on the east end 

of the façade have become more pronounced.  Especially noteworthy are the low-

temperature contours running parallel to the façade in the y=2 plane.  These contour 

plots, and the fact that they are below the supply vent, lends credence to Basarir’s claim 

that the circulation is responsible for the cool air against the east wall.  Again, the 

temperature distribution obtained with the k-ε realizable model is cooler than those 

obtained by Basarir (2009). 
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Fig. 7.4  Temperature Contours on the Glass Façade In Basarir’s Experiment [2009 (1)] 

 

 
Fig. 7.5  Computed Temperature Contours on the Glass Façade Using the k-ε Realizable 

Turbulence model 
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Fig. 7.6 Temperature Contours in the Atrium of y=2, y=6.165 and y=10.25 Planes in Basarir’s 

Computations [2009 (1)] 
 
 

 
Fig. 7.7 Temperature Contours in the Atrium at y=2, y=6.165 and y=10.25 Planes in the Present 

Computations Using the k-ε Realizable Turbulence Model 
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Experimental data for this study was collected via a network of 12 thermocouples on 

the glass façade and 21 additional thermocouples distributed in the interior space of the 

atrium.  As a result, it is possible to compare experimental data with numerical results in 

greater detail as shown in Tables 1 and 2.  As can be seen from the tables, the k-ε model 

yields very accurate results for the façade, particularly on the upper level of the building 

where deviation from experimental results is ~-0.5%.  The same could not be said of 

the air temperature results, as they are consistently 12-15% lower than the experimental 

data.   

 

 

GLASS 
HIGH Coordinates 

Temperature T (°C) ΔT 
(°C) 

Percent 
Difference Experimental Numerical 

FL_G_T 0,10.25,7.26 34.20 34.66 0.46 1.3% 
FM_G_TH 0,10.9,4.22 34.90 33.80 -1.10 -3.2% 
FM_G_TL 0.9.35,4.22 33.60 33.47 -0.13 -0.4% 
FR_G_T 1,10.25,1.24 32.80 32.93 0.13 0.4% 

Average 33.88 33.72 -0.16 -0.5% 
 

GLASS 
HIGH Coordinates 

Temperature T (°C) ΔT 
(°C) 

Percent 
Difference Experimental Numerical 

FL_G_M 0,6.165,7.26 31.70 34.19 2.49 7.8% 
FM_G_MH 0,6.9,4.22 34.10 32.00 -2.10 -6.1% 
FM_G_ML 0,5.2,4.22 31.70 31.56 -0.14 -0.5% 
FR_G_M 0,6.165,1.24 32.50 30.45 -2.05 -6.3% 

Average 32.50 32.05 -0.45 -1.4% 
 

GLASS 
HIGH Coordinates 

Temperature T (°C) ΔT 
(°C) 

Percent 
Difference Experimental Numerical 

FL_G_B 0,2.1,7.26 30.90 33.33 2.43 7.9% 
FM_G_BH 0,3.05,4.22 30.10 31.41 1.31 4.3% 
FM_G_BL 0,1.35,4.22 29.50 32.63 3.13 10.6% 
FR_G_B 0,2.1,1.24 29.80 28.76 -1.04 -3.5% 

Average 30.08 31.53 1.46 4.9% 
Table 1: Temperatures on the Glass Façade:  Comparison Between Experimental  

[Basarir 2009 (1)] and Present Numerical Data
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AIR HIGH Coordinates Temperature T (°C) ΔT 
(°C) 

Percent 
Difference Experimental Numerical 

FL_R_T 0.24,10.25,7.26 26.80 23.55 -3.25 -12.1% 
FM_R_TH 0.24,10.9,4.22 28.20 23.44 -4.76 -16.9% 
FM_R_TL 0.24,9.35,4.22 27.20 22.86 -4.34 -15.9% 
FR_R_T 0.24,10.25,1.24 26.60 24.00 -2.60 -9.8% 
EW_16 5.96,10.25,7 26.20 22.24 -3.96 -15.1% 
WW_16 5.78,10.25,1.05 26.10 22.98 -3.12 -11.9% 
AA_16 8.81,10.25,4.44 26.30 23.26 -3.04 -11.6% 

Average 26.77 23.19 -3.58 -13.4% 
 

AIR HIGH Coordinates 
Temperature T (°C) ΔT 

(°C) 
Percent 

Difference Experimental Numerical 
FL_R_M 0.24,6.165,7.26 25.90 22.52 -3.38 -13.1% 
FM_R_MH 0.24,6.9,4.22 25.60 21.68 -3.92 -15.3% 
FM_R_ML 0.24,5.2,4.22 24.40 21.69 -2.71 -11.1% 
FR_R_M 0.24,6.165,1.24 26.30 21.00 -5.30 -20.1% 
EW_15 5.96,6.165,7 24.50 21.39 -3.11 -12.7% 
WW_15 5.78,6.165,1.05 25.10 21.72 -3.38 -13.5% 
AA_15 8.81,6.165,4.44 24.60 21.61 -2.99 -12.2% 
  25.20 21.66 -3.54 -14.1% 

 

AIR HIGH Coordinates Temperature T (°C) ΔT 
(°C) 

Percent 
Difference 

  Experimental Numerical   
FL_R_B 0.24,2.1,7.26 23.90 21.70 -2.20 -9.2% 
FM_R_BH 0.24,3.05,4.22 23.90 21.49 -2.41 -10.1% 
FM_R_BL 0.24,3.05,4.22 23.40 21.10 -2.30 -9.8% 
FR_R_B 0.24,2.1,1.24 23.00 20.53 -2.47 -10.7% 
EW_14 5.96,2.1,7 24.00 20.90 -3.10 -12.9% 
WW_14 5.78,2.1,1.05 22.30 20.77 -1.53 -6.8% 
AA_14 8.81,2.1,4.44 23.00 21.13 -1.87 -8.1% 
  23.36 21.09 -2.27 -9.7% 
Table 2:  Air Temperatures:  Comparison Between Experimental [Basarir 2009 (1)] and Present 

Numerical Data 

 
It can be noticed from Table 2 that temperatures in the experiment and simulations are 

in close agreement.  In particular, the temperatures remain low near the floor and 

increase with height. Velocities show similar trends, indicating a period of stagnation 

near the center of the room which is surrounded by the circulating air.            
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Chapter 8 

Conclusions 
The goal of the work presented in this thesis has been to assess the modeling 

requirements and accuracy of CFD computations using RANS equations for forced-, 

free- and mixed convection flows in 3-D building enclosures.  The CFD simulation 

software FLUENT 12.1 is employed for this purpose.  In order to determine the 

modeling requirements and accuracy of the RANS simulations, the experimental test 

data is used for validation of computation. 

 

In Chapter 3, forced convection flow in a 2-D cavity is considered.  The influence of 

mesh size and turbulence models on the accuracy of the solution was evaluated by 

comparing the computations with the experimental data of Restivo (1979).  It was 

concluded that a mesh size containing between 150000-700000 nodes may be 

considered sufficient for obtaining solutions with acceptable engineering accuracy.  

While the solutions with a greater number of nodes are slightly more accurate, they 

require significantly greater computational time.  Between the two (k-ε realizable and k-

ω SST) turbulence models employed, it was found that both models produced 

satisfactory results; however, the k-ε realizable model was slightly better in overall 

accuracy. 

 

In Chapter 4, the accuracy of the two turbulence models was examined for computing 

natural convection in a tall, vertical rectangular cavity.  The solution mesh contained 

165680 nodes.  The computations were compared with the experimental data of 

Bokhari and Betts (2000).  It was found that the k-ω SST model provided slightly better 

correlation with the experimental data than the k-ε realizable model for this case.  

 

In Chapter 5, the accuracy of the two turbulence models was examined again for mixed 

convection flow for a square cavity.  The solution had 173056 nodes.  Computations 

were compared with the experimental data of Blay et al. (1992).  It was discovered that 
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the k-ε realizable model gave slightly better correlation with the experimental data than 

the k-ω SST model for this case. 

 

The 2-D simulation cases reported in Chapters 3-5 served as the validation cases for the 

CFD software and provided guidelines about the mesh size and turbulence models that 

should be employed for obtaining solutions of acceptable engineering accuracy. 

 

In Chapter 6, a 3-D room with natural ventilation has been modeled; this configuration 

corresponds to the experimental model studied by Jiang and Chen (2003).  A mesh with 

184992 nodes was used in this simulation.  Based on our experience with the k-ω SST 

model in natural convection flow in Chapter 4, this model was employed in our CFD 

simulation.  The computations for velocity and temperature profiles in various regions 

of the room shared qualitative agreement with the experimental data.  Good 

quantitative comparisons could not be obtained because of lack a of detailed 

information about the flow conditions and other parameters from the experiment (e.g. 

the information about the surface heater temperature).  Nevertheless, the CFD 

simulations were satisfying. 

 

Finally in Chapter 7, the flow field inside an atrium was computed; the experiment data 

for the atrium was obtained by Basarir (2009).  Since the flow in the atrium represents a 

mixed convection flow with solar radiation, the k-ε realizable model was employed in 

the simulation based on our experience with 2-D simulation of mixed convection in 

Chapter 5.  The number of nodes used in simulation was 844584.  On the whole, good 

comparison between the computation and experiment was obtained for the velocity and 

temperatures inside the atrium.  The maximum discrepancy between the computations 

and experiments was 10-15%, depending on the region inside the atrium.  In many parts 

of the atrium, the agreement between computation and experiment was excellent, within 

0.5% of each other.  It is surmised that a finer mesh will improve the accuracy of CFD 

predictions in regions where there is greater discrepancy. 
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In summary, it is demonstrated in this thesis that CFD can model the flow field and 

heat transfer in building enclosures quite accurately with a proper choice of mesh 

density and the turbulence model. 



 

  54 
 

Chapter 9 

Future Work 
1.  The cause of significant discrepancy between the numerical simulation and the 

experimental data in the 3-D natural ventilation reported in Chapter 6 should be further 

investigated both experimentally and numerically.  It appears that it may be worth 

repeating the experiment to generate good data for CFD validation. 

 

2.  Further grid refinement of the atrium model developed in Chapter 7 is needed, in 

order to correct for the 10-15% underestimation of the ambient air temperature within 

the atrium in the computation when compared to the experimental data. 

 

3. Additional simulations should be conducted using other turbulence models, including 

the different variations of the k-ε and k-ω models.  Some models, such as the Spalart-

Allmaras (S-A) model, were not employed since they require prior knowledge of 

turbulence length scales within the room (Daiber 2011).  Others models, such as the 

transition k-kl-ω models, may be considered for future study.
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