Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-89-25

1989-06-01

Back Propagation with Integer Arithmetic

Takayuki Dan Kimura

The present work investigates the significance of arithmetic precision in neural network
simulation. Noting that a biological brain consists of a large number of cells of low precision, we
try to answer the question: With a fixed size of memory and CPU cycles available for simulation,
does a larger sized net with less precision perform better than smaller sized one with higher
precision? We evaluate the merits and demerits of using low precision integer arithmetic in
simulating backpropagation networks. Two identical backpropagation simulators, ibp and fbp,
were constructed on Mac Il, ibp with 16 bits integer representations of network... Read complete
abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

6‘ Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Kimura, Takayuki Dan, "Back Propagation with Integer Arithmetic" Report Number: WUCS-89-25 (1989). All
Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/738

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F738&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F738&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F738&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F738&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F738&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F738&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F738&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/738?utm_source=openscholarship.wustl.edu%2Fcse_research%2F738&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/738

Back Propagation with Integer Arithmetic

Takayuki Dan Kimura

Complete Abstract:

The present work investigates the significance of arithmetic precision in neural network simulation.
Noting that a biological brain consists of a large number of cells of low precision, we try to answer the
question: With a fixed size of memory and CPU cycles available for simulation, does a larger sized net
with less precision perform better than smaller sized one with higher precision? We evaluate the merits
and demerits of using low precision integer arithmetic in simulating backpropagation networks. Two
identical backpropagation simulators, ibp and fbp, were constructed on Mac Il, ibp with 16 bits integer
representations of network parameters such as activation values, back-errors, and weights; and fbp with
96 bits floating point representations of the same parameters. The performance of the two stimulators
are compared in solving the same Boolean mapping problem, the sine transfer function with eight binary
inputs and one analog output. The speed-up ratio from fbp to ibp is a single training cycle in
approximately 7.3 for smaller networks and 4.2 for larger ones. However, for total time necessary to
obtain a solution net, the speed-up ratio is 163 for the smaller nets, and 121 for the larger nets, because
ibp requires much less number of training cycles than fbp. We also found that networks trained by integer
arithmetic have more generalization capabilities than those trained by floating point arithmetic. At present
time we have no explanation on this matter.

https://openscholarship.wustl.edu/cse_research/738?utm_source=openscholarship.wustl.edu%2Fcse_research%2F738&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/738?utm_source=openscholarship.wustl.edu%2Fcse_research%2F738&utm_medium=PDF&utm_campaign=PDFCoverPages

BACK PROPAGATION WITH
INTEGER ARITHMETIC

Takayuki Dan Kimura

WUCS-89-25

June 1989

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899

Abstract

The present work investigates the significance of arithmetic precision in neural network
simulation. Noting that a biological brain consists of a large number of cells of low
precision, we try to answer the question: With a fixed size of memory and CPU cycles
available for simulation, does a larger sized net with less precision perform better than a
smaller sized one with higher precision? We evaluate the merits and demerits of using low
precision integer arithmetics in simulating backpropagation networks. Two identical
backpropagation simulators, ibp and fbp, were constructed on Mac I, ibp with 16 bits
integer representations of network parameters such as activation values, back-errors, and
weights; and fbp with 96 bits floating point representations of the same parameters. The
performance of the two simulators are compared in solving the same Boolean mapping
problem, the sine transfer function with eight binary inputs and one analog output .

The speed-up ratio from fbp to ibp in a single training cycle is approximately 7.3 for smaller
networks and 4.2 for larger ones. However, for total time necessary to obtain a solution
net, the speed-up ratio is 163 for the smaller nets, and 121 for the larger nets, because ibp
requires much less number of training cycles than fbp. We also found that networks trained
by integer arithmetic have more generalization capabilities than those trained by floating
point arithmetic. At present time we have no explanation on this matter.

1. Introduction

Many Al applications, such as speech recognition, character recognition, and pattern
classification problems, reduce to the problem of realizing a large scale Boolean function.
Traditional rule-based methodologies for digital system design are limited in implementing
such Boolean functions. Neural networks, or Parallel Distributed Processing (PDF)!,
offer an alternative design methodology. A neural net implements a Boolean function by
adapting its structure to a sequence of known input-output pairs, i.e., it learns the Boolean
function through an extensional specification of the function. Recent discovery of new
learning rules, such as the generalized delta rule2, promises a significant advancement of
the new design methodology.

There are four major problems associated with the neural net applications: First, no
algorithmic method is known to predict the complexity (ex. the number of hidden units) of
a solution net for a particular application problem. Second, training of a neural net is
computation intensive. Third, unless a stochastical learning algorithm such as the
simulated annealing is used, there is always the danger of a training being stuck at a local
minima; and the stochastical learning is very slow. Finally, the currently known neural
models have fixed number of input units. The first three problems are common to all
neural net applications. The last problem is significant in such applications as speech
recognition and language processing.

In this work we concentrate on the second problem. Qur software strategy for the second
problem is to experiment with integer arithmetic based network simulation. The trade off
between the number of processing units and their precision is not clearly understood at
present time. With the same memory capacity and available CPU cycles, a larger sized net
with less precision may perform better than a smaller sized one with higher precision. A
biological brain consists of large number of cells of low precision. Against the obvious
advantage of speed up, it is expected that a net consisting of lower precision units is more
susceptible to the local minima problem.

The present work investigates the significance of arithmetic precision in neural network
simulation. In particular, we compare the merits and demerits of using low precision
integer arithmetics in simulating backpropagation networks. This is a part of our ongoing
investigation on different strategies to develop computationally efficient neural networks.
Our experiments consist of the following:

(1) Designing and implementing two identical simulators on Mac II, one with 16 bits
integer representations of network parameters such as activation values, back-
errors, and weights; and the other with 96 bits floating point representations of the
same parameters.

(2) Evaluation of the memory and CPU requirements (computation time) of the two
simulators for solving the same Boolean mapping problem. We have chosen the 8
bits infout SINE transfer function as the target problem.

1 p. E. Rumelhart and J. L. McClelland, Parallel Distributed Processing: Explorations in the Microsiructures of
Cognition, Volume 1 & 2, MIT Press, 1986,

2Y.Le Cun, "A learning scheme for asymmetric threshold network," in Cognitiva 85, CESTA-AFCET (ed.) 1985,
599-604.

2. Experiments

We have constructed two identical simulation programs, ibp and fbp, in MPW C on
Macintosh II, ibp with 16 bits integer representations of activation values, back-errors, and
weights; and fbp with 96 bits floating point representations of the same parameters. Note
that Macintosh IT has MC68881 floating point processor. Both programs are designed to
simulate backpropagation nets with one hidden layer.

We use the standard sigmoid function,

M) =1
1+e*
as the activation function and no momentum term is used. In ibp, the evalnation of A(x) is
implemented as a single table-look-up operation, where A(x) is a table of 64KB size with
216 entries. The learning rate is fixed to 0.5 for both simulators.

The performance of the two simulators are compared by solving the same Boolean mapping
problem, the sine transfer function with eight binary inputs and one analog output as shown
below.

J = y
sin(x) |—— 0.600616

o B R o B A ™

Training:
1.0 Ax = (m/2)y*(7/256)

/’M o
0.6006 Testing:

Ax = (r/2)*(1/256)

123 98 AX 256 X

The experiment consists of four simulations. In each simulation, a network is trained by the
set of 37 training pairs constructed by sampling every 7th point of the interval (0,7/2)
divided by 256, and tested by the full 256 input patterns. The performance of a network is

measured by the mean square error (mse) of the difference between the output values and
the teaching values. Each simulation is terminated when the mse value is reduced to 0.01 or
less. After each presentation of an input pattern, the errors are backpropagated and the
connection weights are modified.

3. Results

The results of the four simulations are summarized in the table below.

type hidden conn. iteration time speed mse mse
units (sec) (ms) (train) (test)
(1) ibp 8 12 2100 27 12 0.0078 0.0076
(2) ibp 16 144 1000 46 46 0.0038 0.0039
(3) fbp 8 72 50000 4410 88 0.0027 0.1282

4 fbp 16 144 29000 5597 192 0.0057 0.1097

The first simulation uses the ibp simulator to train a network with 8 hidden units (in one
layer) and 72 connections. To reach 0.0078 for mse, it required 2100 presentations of a
training pair, randomly selected from the set of 37 pairs, and took 27 seconds on Macintosh
11, that is to say, each iteration took 12 ms. The resulting network was tested by the entire
256 inputs, and its performance was 0.0076 mse. Similarly, for the other three simulations.

The first and third simulations have the exactly same network architecture, and so are the
second and the forth. The speed-up ratio from fbp to ibp in a single training cycle is
approximately 7.3 for smaller networks, i.e., (1) and (3), and 4.2 for larger ones, (2) and
(4). However, for total time necessary to obtain a solution net, the speed-up ratio is 163 for
(1) and (3), and 121 for (2) and (4), because ibp requires much less number of training
cycles than fop.

Note that in (1) and (2), there is very little difference between the training mse value and the
testing mse value, i.e., 0.0078 vs 0.0076 in (1) and 0.0038 vs 0.0039 in (2). It follows
that the networks of (1) and (2) have a good generalization capability. On the other hand in
(3) and (4), the differences are significant and their generalization capabilities are poor.
Therefore, it is reasonable to conclude that the networks trained by integer arithmetic have
more generalization capabilities than those trained by floating point arithmetic. At present
time we can offer no explanation on this matter.

Finally, during the training of (1) and (2), we observed many connection weights reaching
at the limit (overflow) value. Once that happens, a connection becomes ineffective and the
network performance decreases. However, the degradation is short lived as if the rest of the
network learns to compensate the loss of the connection in time. We observed none of these
phenomena during the simulations of (3) and (4).

	Back Propagation with Integer Arithmetic
	Recommended Citation
	Back Propagation with Integer Arithmetic

	tmp.1459809062.pdf.0qH7X

