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ABSTRACT

In this paper a resource allocation algorithm is presented for Markovian
queueing networks operating under state dependent routing and flow control. The
state of the network is described by the total number of packets in the network.
In addition, in this paper, a new proof based on feasible direction techniques is
presented for a classical result concerning Jacksonian networks. Specifically, the
result states that for a Jacksonian network whose Norton equivalent is a concave
increasing function with respect to the number of packets in the network, the
optimal flow control is a window flow control with the random point, if it exists, at

the end of the window. The result is proven for two distinct optimization criteria.

Index Terms: flow control, norton equivalent, optimization, partial information,

queueing networks, resource allocation, routing.
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1. Introduction

In [BOV98b] the optimal resource allocation for a Markovian network was
derived under the condition that the controller had complete information about the
state of the network. In this paper resource allocation algorithms for a Markovian
network are derived under the assumption that at any given moment the network
controller has only knowledge about the total number of packets in the network. In

practice this information can be easily obtained using acknowledgment packets.

Each of the problems analyzed in this paper is reduced to a centralized
optimization problem. The network controller has only partial information about
the activities inside the network. In [BOV89a], [BOV89b] and [BOV89c], the same

problem is investigated but with a controller using different information patterns.

The first problem that is analyzed is the derivation of the optimal flow control
problem of a product form network under two distinct constraint optimization
criteria. We present a new proof of the classical result proven in [LAZ83], that

the optimal flow contro] of a Jacksonian network whose Norton equivalent [WALSS|



is a concave increasing function with respect to the number of packets in it, is a

window flow control with the random point, if it exists, at the end of the window.

In this paper we also derive an algorithm for the derivation of good state
dependent routing and flow control parameters under two different optimization
criteria. Specifically, although a network operating under state dependent routing
does not have a product form solution, we approximate it with one that has a
product form solution. This approximation makes the analysis of the network

tractable.

This paper is organized as follows. In Section 2, the problem formulation is
mntroduced. In Sections 3 and 4, the optimal flow control problem is analyzed under
two distinct optimization criteria. In Section 5 properties of the optimal flow control
are proven. In Section 6, a resource allocation algorithm that computes good routing
and flow control parameters under two distinct optimization criteria is derived. In

Section 7, the algorithm introduced in Section 6, is applied to a particular example.

2. The Statement of the Problem

Each of the I processors of a queueing network has an infinite number of buffers
and serves packets with an exponential service rate. Let u be the service rate of
the 3** processor, 1 € I. The routing and flow control parameters are a function of
the number of packets in the network. Let Rx = [r}’] be the (I + Dx(I+1)
routing matrix (0 < 4 < I, 0 < j < I) when there are k packets in the network.
In this notation, packets join the network at node 7 with probability 72t Upon
completion of service at node ¢, packets leave the network with probability 0 or
are routed from node ¢ to node j with probability rlij . Let A; refer to the arrival rate
when there are k packets in the network. The evolution of the queueing network is

described by the stochastic process
I
QI - (Q%::Qt) ¥

where Q% refers to the number of packets at node 7, 1 < i < I. The state space of
the system is given by

B = {k = (kl;"-,kI)IOSkia iml,z,..,,_{}



In what follows, the states of Q} will be aggregated to form a new state space.

A new process Q; is defined by

Q= Qi+ +¢f
The state space of @, is given by

B= {ki+-+kf0 <k, i=1,2,---,1}

Definition 1. X = (Ag), k € E, denotes the control.
Definition 2. The class of controls A = (Ax), k € E, that satisfies the peak
constraint

0< Ak <ec ’
is called admsissible.

The decision concerning the controller’s policy requires the introduction of an
optimization criterion that is based on the information available to the controller.

In this paper two different criteria are utilized.

First Criterion: ([LAZ83]) Maximize the throughput of the network so that the
expected time delay of a packet in the network does not exceed an upper bound:

] 2.1
5o 7L BT (2.1)

Observe that the time delay constraint is not written in the form %_% < T, since
‘—EE% is not defined if A\p = 0, for all k € E. Instead, using Little’s formula, the
criterion is written in the form FQ — TEvy < 0, where EQ — TEly is a continuous

differentiable function with respect to the arrival rates.

Second Criterion: Minimize the expected time delay of a packet in the network

so that the expected throughput does not fall bellow a lower bound T':

min ET (2.2)
Ev>T

This criterion was first introduced in [BOV87]. Its analysis in the subsequent

sections is the first systematic investigation of its properties.



3. Optimal Flow Control under the First Optimization
Criterion

In this section a new proof is presented of the classical result proven in [LAZ83],
that the optimal flow control of a Jacksonian network whose Norton equivalent
[WALBSS] is a concave increasing function with respect to the number of packets in
it, 1s a window flow control with the random point, if it exists, at the end of the

window.

Let the 1 x (I + 1) matrix @ et [6° 6% ... 6] be the solution of the traffic

flow equations

® = @R ,

where 8° = 1.

The service rate of the process (J; is the conditional service rate of the network
given that there are ; packets in the network [HSI86)]. For product form networks
this is given by the well known Norton equivalent [WALS8]. Let

def L rei\®

% v 1(%) (3.
I N Y

forall [, 1 >0, where 0 < k;, for4 =1,---,I, and for all k, k > 1. If k is the total

number of packets in processors 1,2,---, I, then the Norton equivalent, symbolized

by v, is given by

uy, B 1 (3.2)

Gk

forall &, & > 1.

In this section, we assume that the routing parameters R are fixed. Therefore
the problem of optimal resource allocation under the first optimization criterion is
reduced to a flow control problem.

For the sclution of the flow control problem a prime nonlinesr optimization
methodology is used ([LUE84]). The idea behind such an approach is o start
from an initial feasible point and to move to a better one. We prove that such

an approach is highly effective in the context of flow control.



Observe that when Ao = 0, the corresponding operating point is feasible
because EQ — T'Ey = 0. The current feasible point is A\ = 0 for & > 0. The

next operating point should be derived by the solution of the following optimization

problem: \
max( > (3.3)
under the constraints
(1- Tyl)(i—:) <o , (3.4)
and
0< i <c . (3.5)

In order for a nonzero feasible solution of the problem to exist, 1 — Tv; < 0. If the
previous inequality is not fulfilled, then the initial feasible point of the optimization

problem is the optimal point as well.

Let us assume in the sequel that 7' > "vlT From Equations 3.3-3.5 1t is concluded
that the next feasible point is Ag = ¢, and Ay = 0, for & > 1. Using feasible
direction techniques, a better operating point can be derived from this feasible
point. The next feasible point can be derived by formulating a linear program
using the methodology introduced in [BOV85], [BOV89b], and by permitting at
most two packets to enter the network. In this case the variables Ay for £ = 0 and
k =1 are unknowns, and the initial feasible point is the state (Ag, A1) = (¢,0). Such

an approach leads to the optimal solution of the problem.

Let the probability that there are & packets in the network be given by py.
Let r} refer to the probability that a new incoming packet joins the network, while
there are k packets in the network. Further, let ») refer to the probability that a

new incoming packet is rejected when there are k packets in the network. Obviously,

:r'gw%ri:l.

def def
Let o5 = ppri and y = piry.

Evyy and ETy denote the average throughput and average time delay,

respectively, of the network given that at most N packets can be in the network at



any given moment. Thus

N N
Eyy = Zpkvk = Z($k+yk)vk ) (3.6)
k=1 o1
and
N N
EQn = Y ph = > (zet+ye)k . (3.7)
k=1 k=1

The global balance equations (GBEs) are given by the following equations:

1
PETRC = Ph4aViey1

or, equivalently,

zxe = (Zhy1 + Ye41)ke1 forallk, 0<E<N -1 . (3.8)

Proposition 3.1 The optimal flow control parameters Ay, k € E, are given by

Ap = c<1———””°—> , (3.9)

Tr + Yk

the equations:

Jor alli, 1 <2 < I, where (zx,yr), k € E, is the solution of the following tterative
algorithm.:

Step 0: N=1.

Iteration:

Step 1:  For the current value of N, solve the following linear optimization problem:

N
maz > (2 + yr) vi (3.10)
k=1

under the following constraints:

N

N
D@ +y)k<TY (ze+ve)ve (3.11)

k=1 k=1



zee = (Tp41 + Yrr1)vipr for0<ESN -1 |

k=N
Dolme ) =1, (3.12)
k=0
where
zp2>20andyy >0 for 0<k <N . (3.13)
Step 2:  If Eyy = Eyy_i, stop; the derived flow control is optimal. Else,

N :=N 4 1, and repeat all the steps of the iteration, using the optimal
solution of the linear program as the initial feasible poini of the next

steration.

Proof: This proposition is an application of Proposition 4.2. of [BOV89b).

4. Optimal Flow Control under the Second
Optimization Criterion

As mentioned above, there are cases for which we require the minimization of
the time delay such that the throughput is greater than or equal to a given lower
bound, referred to as I'. In the sequel we present a methodology that reduces the

derivation of the optimal flow control policy to a linear optimization problem.

We introduce the following transformations:

def

z, = gz forallk, 0K<E<XN |, (4.1)
and
i S gy forallk, 0SESN (4.2)
where
def 1
g = (4-3)
> e (25 + i) v
From (4.3) we see that
N

S (Er+u)ve =1 . (4.4)

k=1



Equation 3.6 for the throughput then takes the form

. N N —1
Byy = =3 (sh+yf)ve = (Z (=% +y2)wc) (Z a} +y2") . (45)
k=1

k=1 {=0

The expected time delay is given by

N
Ery= )Y (=h+vd)k , (4.6)

k=1

and the GBEs (3.8) become

zie = (zhy, + Vi) Vitr forallk, 0<k<N -1 . (4.7)

Proposition 4.1 The optimal flow conirol parameters g,k € E, are given by

the equations:
m*
k
%, + Ui

M = c(l- ) (4.8)

where (2},y5), k € E, is the solution of the following iterative algorithm:

Step 0: N=1.

Heration:

Step 1:

N
min Y (z} + yi)k (4.9)
k=1

under the following constraints:

N
Doty =1, (4.10)
k=1
N
1> FZ (Zh1 + Vi) (4.11)

k=0
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zie = (ka1 + Yigs) ven (4.12)
forallk, 0< k<N -1,

where

2y >0andyy >0 for 0< k<N . (4£.13)

Step 2: If the linear program has a feasible solution; stop. The derived flow control
is optimal. Else, N := N+1, and repeat all the steps of the iteration.

5. Properties of the Optimal Flow Control Policy under
the Two Criteria

In this section we present structural properties of the optimal solution of the

two linear programs presented in Sections 3 and 4.

Proposition 5.1. The optimal solution of each of the two linear programs
contains at most one random point. Hence the optimal solution of each linear

program is of the form:

c fO<k<L-landk#m
Ak={0<,\mgc if k=m
0 FL<E<N-—1

Proof :  The proof of this proposition is identical to the proof of Proposition 4.3
in [BOV89b].

In the sequel a proof is presented [WEIS2] of the fact that with concave
increasing service rates (as in the case of Jacksonian networks [SHAS86],[WALSS],)
the optimal flow control under the first and second optimization criteria is of a
window type with the random point, if it exists, at the end of the window. In

[LAZ83] this property was proven only under the first optimization criterion.
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Proposition 5.2. If vy is a concave increasing function with respect to k, the
optimal flow conirol under the first and second optimization criteria is of window
type with the random point, if it exists, corresponding to the last packet of the

window. Thus, the optimal flow control is of the form

c f0<k<L-2
Ak:{0<)\L—ISC fhk=L~—1
0 f L <k
Proof :  Let us assume that under the current policy N packets can enter into the
network. Let (Ao, -+, An—1) and (A, -+, A%_,) correspond to two different control

policies. We show how to choose ¢ > A}, > A, Afi1 < a1, and A = Ay, for all
k, k # m and k # m + 1, such that By} > Eyy and E7}; < E7y. Observe that

(s Px) = (1 = 8)po, - -+, (1 = 8)prm—1, (1 + €)prny (1 ~ )Pty > (1 — n)pN)

We choose 4, ¢, and n, such that

N
> =1
k=0
and
EQy = EQn

In other words,
m~1 N
521% + n Z Pk = €Pm
k=0 k=m+1
and
m—1 N
8§ kpe + 1 Y kpp = empm
k=0 k=m-+1

It is easy to see that if € > 0, then § > 0 and n > 0. Letting

€Prm
P fm<hk<N

€Pm

{ﬁ& fo<k<m
o =

we have ay > 0, for k # m with

Zakﬂl



12

and

Ekak = m

kZm

By the concavity of v, with respect to k&,

Z vpok < Um

k#tm
Thus,
Evy 2 Bvv
and
ETKT § ETN
Furthermore, because n > 0,
Py <pPn - (5.1)

The feasible direction technique is greatly simplified by the use of structural
properties regarding the next feasible point. If v is a concave increasing function

of k, the optimal feasible point which permits L packets to enter the network is of

the form
o= € for0<k<L-2
P T lo< A1 <c fork=L—1

under the first and second optimization criteria. In this case the following simplified

iterative algorithms can be introduced.
Tterative Algorithm for the First Optimization Criterion

Step O: L = 1. Set Xy := cand Ay := O forallk, k > 1. Check to see whether
Ery <= T. If yes, continue to Step 1. Otherwise stop; no packets can

enter into the network.

Step 1: L = L+1 Setdy = cforallk, 0< k< L—1. Check whether
Bty <T. If yes, repeat Step 1. Else, find the exzact rate (which is between
0 and c) with which the last packet should be accepted and which results in
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EQ —TE~ = 0; the resulting flow control is the optimal flow control; thus
stop.

Iterative Algorithm for the Second Optimization Criterion

Step 0: L = 0. Set Ay, := 0 forallk, k>0.

Step 1: L := L+41. Setdy:=c,forallk, 0<k<L—1. If Exy, 2 T, go to Step
2; else, repeat Step 1.

Step 2: If Ey =T, the resulting flow control is the optimal flow control; thus stop.
Else, find the value of Ap_1 (which is between 0 and ¢) which results in
By =T; the resulting flow control is the optimal flow control; stop.

In the last part of this section we would like to comment on the complexity of

the introduced algorithms.

Observe that each time we solve the linear program, we use the solution of
the previous step as an initial feasible point. The proximity of such a point to
the solution of the current linear program results in an accelerated execution of
the linear programs. This systematic approach to optimal flow control requires
obviously less computation than any other approach. Since the dimensionality of
the problem is kept at a minimum, this iterative algorithm is optimal for the solution

of the above class of problems.

For the case in which the service rate is a concave increasing function with
respect to the number of packets in the network, there is o one-to-one maepping
between the flow control solution given under the first and the second optimization
criteria.

The optimization problems

max Hey
Er<T

and

min B+
E~>T

have the same class of window flow control solutions. If the window size is the same,

it is easy to see that
I'T'=EQ
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6. Resource Allocation Algorithm Based on Product
Form Approximation

We approximate the original network with one that has a product form solution.

6.1. State Dependent Routing

For fixed, state independent routing, the Norton equivalent v, of the network

analyzed is a concave increasing function with respect to the number of packets k
[SHAB6], [WALSS].

The near optimal routing inside the network is computed by mazimizing the
value of the Norton equivalent of the approzimate product form network Jor each

state in the stale space E.

Let R} be the routing that maximizes the value vg, for all k, k > 1. R} is the
near optimal state dependent routing of the original network. Let (vz) r: be the

value of the vy for the routing parameters R} for all k > 1.

Proposition 6.1
i) (k) g+ 15 an increasing function of k all k, & > 1.
R; g
%) —X— 15 an increasing function of k, for allk, k > 1.
(Vk).a; g
(i) ming, v is a concave increasing function of k, for all k, k> 1.

Proof:

(2)
(Vk)R’;; < (Vk+1)R; < (Vk—l-l)}-'e;Jr1

Thus, (v) Rr: 18 an increasing function of k.
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(12) Let us assume that c ijn* > (kaj)';* . It is known [WALSS8] that (T:Ji*_" <
A k41 k1
k+1 . . k ke
(Vk+1)nz+1 The previous two relations suggest that e > Oy The last

relation furthermore implies that (vk) B < (vi) Ry, which is incorrect. Thus,

_"(wjm is an increasing function of k, for k=1,2,---, N.
k

(#4i) The proof of this statement is straightforward.

Thus the near optimal flow control of a network operating under the worst
possible routing is a window flow control with a random point, if it exists, at the
end of the window. This statement relates to the lower bound of the performance
of the network.

Two issues should be analyzed before the introduction of algorithms designed

to improve the routing and flow control of the network.

(1) What is the effect of an increase of the value of v ? In Proposition 10.2
it is proven that an increase in vy results in a decrease in the expected number of
packets FQ. Furthermore if A; is a decreasing function of the number of packets

in the system, then E'y is increasing, and consequently E7 is decreasing.

(ii) What is the effect of an increase in Mg, the rate with which packets enter in
the network? In Proposition 10.1 it is proven that an increase in A results in an
increase in the expected number of packets EQ. Furthermore if v}, is an increasing
function of the number of packets in the system, then E+ is increasing. If % is

increasing, Bt is increasing as well.

Because (vg)r; and tﬁ are both increasing functions of k for & > 1, the

optimal flow control is given by

c HO<Ek<L<L-1, k#m
Ak={6<)\m§c fk=m
0 HL<Ek

If () R; 1s a concave increasing function with respect to %, then the random

point, if it exists, is at the end of the window [LAZS83].
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6.2. Resource Allocation under the Two Optimization
Criteria

From Proposition 10.2(i) and (iv), it is known that any increase in the value
of the Norton equivalent leads to an increase in the throughput of the network and
a decrease in the expected time delay of the packets. It it thus advantageous to
operate the network under the routing parameters which result in the maximum
value of the Norton equivalent (v;)g, for all k, k = 1,2,---, L. The maximization
of the value of the Norton equivalent is a convex nonlinear optimization problem
that can be solved using a Flow Deviation Algorithm [KOB83].

In this subsection, combining results presented above, we develop resource
allocation algorithms that evaluate a network’s state dependent routing and flow

control parameters under the first and second optimization criteria.

Iterative Algorithm :
Let L(j) be the maximum ¢ for which X; # 0 (s.e., let L(j) be the window size after

the j** iteration).
Let Ev(j) be the expected throughput when the network is subject to the

routing parameters and flow control derived during the j** iteration.

Step 0 : Set L{(0):=0, L(1) := 1, and n := 1.
nt? Iteration :

Step 1 : Using the Flow Deviation Algorithm [KOB83], for each value of k&
such that L(n — 1) < k < L(n), find the optimal routing parameters R
which mazimize the Norton equivalent vg, by solving the following convez

nonlinear optimization problem:

min ____Efy OBk
under the constraints:

Se- Yoo,

JEIN(2) JEOUT(3)
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Jor every i =1,... I, where :
IN(1) is the set of channels incoming to node i of the forward network,
OUT(i) is the set of channels outgoing from node 4 of the forward network.

Step 2: For the routing parameters computed in Step 1, update the flow control
policy using the linear program presented in the Sections 4, 5 and 6 of
the present paper. The solution of the linear program gives the new flow

control of window size L(n + 1).
Step & : If L{n+ 1) = L(n), go to Step 4. Else,n := n+1, go to Step 1.

Step 4 : For the routing and flow control parameters computed above, solve the
global balance equations. From the equilibrium probabilities, compute the
ezpecied throughput and the ezpected time delay of the packets in the

network,

7. Applications

In this section the resource allocation algorithm introduced in Subsection 6.2
is applied and thoroughly examined in an example modeling a network of parallel

Processors.

Let us assume that we wish to derive good state dependent routing and
flow control parameters of a network of parallel processors depicted in Figure
7.1, in order to maximize the network throughput. The service rates of the
processors are u! = 2 packets/sec, p? = 1 packet/sec, and u® = .5 packets/sec.
Packets arrive into the network with state dependent arrival rate };, where
0 packets/sec < A; < 8 packets/sec.

The flow control parameters are computed by first approximating the service
rate of the network when % packets are in it, by (v;) ry, for all values of &, &k > 1.

Step 2, of the algorithm then computes an approximate throughput and expected
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FIGURE 7.1. A network of three parallel processors
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Comparison of the Approximate and the Exact Solution

3.5

approximate

2.5 4

Expected
Throughput
in packets/sec

[ | I i
0.5 1 15 2 2.5

Expected Time Delay
in secs

FIGURE 7.2. Expected throughput versus expected time delay.
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time delay of the packets in the network. The dotted curve of Fig. 7.2, shows this
approximated network behavior. This curve is computed by applying the algorithm
introduced in Subsection 6.2 up to Step 3. By ignoring Step 4 of the algorithm,
the complexity of the algorithm is substantially reduced. The solid curve of Figure
7.2, shows the exact (through the application of Step 4 of the algorithm) network
performance. Notice that as the network load increases the relative error between

the two curves decreases.

8. Conclusions

A study of the resource allocation problem for Markovian queueing networks

operating under state dependent routing and flow control has been presented.

In addition, a new proof based on feasible direction techniques has been
presented for a classical result concerning Jacksonian networks. Specifically, the
result states that for a Jacksonian network whose Norton equivalent is a concave
increasing function with respect to the number of packets in the network, the
optimal flow control is a window flow control with the random point, if it exists, at
the end of the window. The result has been proven for two distinct optimization

criteria.
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10. Appendix

Monotonicity Properties for a Controlled Finite Birth-Death Process

In order to advance our understanding about the behavior of a single-class
network subject to state dependent flow control, we analyze the behavior of the
closed network depicted in Fig. 10.1. If k is the total number of packets in the
upper processor, the upper and the lower processors serve the packets with state
dependent rates ux and A; respectively. Let E-yx be the throughput of this network.
Let EQ% and E7f be the expected number of packets and the expected time
delay of the packets, respectively, in the lower processor of the network shown in
Fig. 10.1. Similarly, let EQy and E7y be the expected number of packets and
the expected time delay of the packets, respectively, in the upper processor of the
network depicted in Fig. 10.1. Observe that

EQn EQ% N
Ery Erg; - Ern + ET§;

Byy =

Proposition 10.1

(i) If ur 1s an increasing function of k, the ezpected throughput Evyn 1s increasing
in A} for k=0,1,---,N — 1.

(1) The ezpected number of packets EQy is increasing in A, fork=0,1,--- N—1.
(#1) The expected number of packets EQY, is decreasing in A% for k =0,1,---, N—1.

(w) If ur is an increasing function of k, the expected time delay of the packets in
the controller Evf; is decreasing in A} for k =0,1,---,N — 1,

(v) If f; s an increasing function of k, the expected time delay Ety is increasing
in A} for k=0,1,---,N — 1.

Proof:

def

« def = (Ag,---,A*N), and let

Let p* = (p§,---,p%) correspond to the control A\*
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p# & (pg"&, e ,pﬁ) correspond to the control A% & (AO#, TR )\ﬁ) Let us assume

that }\? > Al for all 2 € Ey. Then

P _ Ak—1 <Ak#—1 _ Pf
Pr—1 Be T Mk pk#—1 ’

for E=1,--- N — 1, from which it follows that

N N
dop<y ot
i=k i=k

Since the p; are increasing,

2

N
Z PPk < Z ey

k=1 k=1

which completes the proof of (z).

(2) EQy = Ei\r___l kpy. The arguments of (i) hold here if & is substituted for uy.
(44) EQy = N — EQy. The statement is then true because of (47).

(v) This statement holds because Brf, = =2

(v) Ety is a weighted average of u_ﬁ’ fork=1,---, N, with weights ¢} = f}f;u?';_,:‘
fe=1 HiP;

The arguments of () hold if g} is substituted for Pk, and the statement follows.

In a similar way we can prove the following relations.

Proposition 10.2

(1) If Ax is a decreasing function of k, the expected throughput Evyy is increasing
i py, for k=10,1,--- N — 1.

(i) The ezpected number of packets BEQS; is increasing in u} fork =0,1,---,N—1.



g,@, ............... ETN <= T ........... o

N packets

0 <= lk<: Ck

FIGURE 10.1. A single-class network which can contain at most N

packets, subject to state dependent flow control.
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(i41) The ezpected number of packets EQn is decreasing in pf fork=0,1,.--, N —1.
(1v) If Ag is a decreasing function of k, the expected time delay of the packets in the
network ETy ts decreasing in uf for k=0,1,---, N — 1.
v) If £=k is o decreasing function o k, the ezpected time delay ET5 is increasing
An g N

wm uy for k=0,1,---, N —1.
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