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ABSTRACT OF THE THESIS

Propulsion by Sinusoidal Locomotion: a Motion Inspired by Caenorhabditis elegans

by

Xialing Ulrich

Doctor of Science in Mechanical Engineering

Washington University in St. Louis, 2012

Research Advisor: Professor David Peters

Sinusoidal locomotion is commonly seen in snakes, fish, nematodes, or even the wings

of some birds and insects. This doctoral thesis presents the study of sinusoidal locomo-

tion of the nematode C. elegans in experiments and the application of the state-space

airloads theory to the theoretical forces of sinusoidal motion. An original MATLAB

program has been developed to analyze the video records of C. elegans ’ movement

in different fluids, including Newtonian and non-Newtonian fluids. The experimental

and numerical studies of swimming C. elegans has revealed three conclusions. First,

though the amplitude and wavelength are varying with time, the motion of swimming

C. elegans can still be viewed as sinusoidal locomotion with slips. The average nor-

malized wavelength is a conserved character of the locomotion for both Newtonian

and non-Newtonian fluids. Second, fluid viscosity affects the frequency but not the

moving speed of C. elegans, while fluid elasticity affects the moving speed but not

the frequency. Third, by the resistive force theory, for more elastic fluids the ratio of

resistive coefficients K = Cn/Cl becomes smaller.
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Inspired by the motion of C. elegans and other animals performing sinusoidal motion,

we investigated the sinusoidal motion of a thin flexible wing in theory. Given the

equation of the motion, we have derived the closed forms of propulsive force, lift and

other generalized forces applying on the wing. We also calculated the power required

to perform the motion, the power lost due to the shed vortices and the propulsive

efficiency. These forces and powers are given as functions of reduced frequency k,

dimensionless wavelength z, dimensionless amplitude A/b, and time. Our results

show that a positive, time-averaged propulsive force is produced for all k > k0 = π/z.

At k = k0, which implies the moment when the moving speed of the wing is the same

as the wave speed of its undulation, the motion reaches a steady state with all forces

being zero. If there were no shed vorticity effects, the propulsive force would be zero

at z = 0.569 and z = 1.3 for all k, and for a fixed k the wing would gain the optimal

propulsive force when z = 0.82. With the effects of shed vorticity, the propulsive

efficiency decreases from 1.0 to 0.5 as k goes to infinity, and the propulsive efficiency

increases almost in a linear relationship with k0.
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Chapter 1

Introduction

1.1 Sinusoidal Locomotion

Sinusoidal undulatory locomotion is widely used by gliding and swimming animals,

such as nematodes, snakes, and some slender fish [10, 14, 22]. These animals usually

have slender bodies. As they are moving towards one direction, sinusoidal waves are

generated and passing along the body in the opposite direction. Sinusoidal locomotion

is also seen in the motion of wings of birds and insects. These wings are flexible and

performing some kind of sinusoidal motion. For example, the wings of honeybees do

not move up and down stiffly but rotate and reverse while flapping [2]. The size of

animals that are using sinusoidal locomotion varies from a few micrometers to a few

meters, and the media they are going through can be sand, water or air. Although

some of these animals have legs or fins, the propulsion by sinusoidal locomotion is

significant. With different undulating frequencies and wavelengths, animals are able

to gain enough propulsion to drive themselves to their destinations in all kinds of

environments. However, it has not been revealed how much force can be generated

by these harmonic motions.

The first part of this dissertation (Chapter 2) is the experimental and numerical

studies of the locomotion of Caenorhabditis elegans (C. elegans), which is typically

considered to be sinusoidal locomotion [6, 10]. C. elegans is a free-living nematode

of 1 mm in length [19]. Due to the simplicity of its body structure, which has less

than 1000 cells total, C. elegans is one of the most popular biological models. Its

cylindrical body with tapered ends but no legs or fins makes it a simple enough model

1



Figure 1.1: Sinusoidal locomotion seen in nature. The dimensions of these animals are

varying from 1 mm to 5 m.

to study sinusoidal locomotion experimentally. The motion of C. elegans in a few dif-

ferent fluids have been recorded by a microscope video camera at a rate of 16 frames

per second. When completely immersed in a fluid, C. elegans usually undulates on a

horizontal plane and moves in a direction which is also in that plane. For this reason,

its locomotion is studied in two dimensions in this dissertation. The movie clips of

each undulation period are analyzed by an original MATLAB program. This program

automatically captures the worm from an uniform background and finds the coordi-

nates of its body centerline for each frame of the clip. The wavelength, frequency,

amplitude, moving speed and other parameters of the locomotion are calculated from

the coordinates of the body centerline. The statistic results are compared on the basis

of fluid viscosity and elasticity. A kinetic equation of sinusoidal locomotion is found

to match the statistical results of experiments.

2



1.2 Governing Equations

The governing equations of incompressible flow of Newtonian fluids are known as the

conservation of mass plus the Navier-Stokes equations.

∇ · v̄ = 0 , (1.1)

ρ(
∂v̄

∂t
+ v̄ · ∇v̄) = −∇p+ µ∇2v̄ + ḡ , (1.2)

where, v̄ is the velocity vector, ρ is the fluid density, t is the time variable, p is the

pressure, µ is the dynamic viscosity of the fluid, and ḡ is the body force per unit

volume. If the flow has a characteristic speed U , characteristic length L, and time T ,

then with all the variables in dimensionless form, v̄∗ = v̄/U , t∗ = t/T , p∗ = p/(ρU2),

ḡ∗ = ḡL/(ρU2), x∗ = x/L and y∗ = y/L, the governing equations become

∇∗ · v̄∗ = 0 , (1.3)

k

π

∂v̄∗

∂t∗
+ v̄∗ · ∇∗v̄∗ = −∇∗p∗ +

1

Re
∇∗2v̄∗ + ḡ∗ , (1.4)

where, k = πL/(UT ) and Re = ρUL/µ which is the Reynolds number. For sinusoidal

locomotion, U can be the moving speed, T the undulatory period which is 1/f (fre-

quency), L the chord length, then k is the reduced frequency k = πfL/U . For small

Reynolds numbers, Eq. (1.4) is usually replaced with the Stokes equations, which

have only viscous forces. For high Reynolds numbers, Eq. (1.4) will be replaced by

potential flow which only considers inertial forces.

The propulsion of undulatory locomotion was first studied at low Reynolds numbers

to understand how micro-organisms such as bacteria flagella propel their bodies in

viscous fluids [5, 7, 25]. Though it was later found that bacteria flagellum spins

helically rather than undulates in a 2-dimensional plane [23], there are two major

theories applied to the understanding of the external forces by sinusoidal locomotion–

the slender body theory and the resistive force theory.

The slender body theory was first introduced by Sir GeoffreyTaylor in 1951 [25] to

solve the Stokes equation by singularity method. People are able to find the Green’s

function of the velocity field that meets the non-slip boundary condition on a slender

3



body [9, 13]. However, the Green’s function solution is not very useful because it

can only predict the velocity when the external forces acting on the body are known,

and there is no analytical inverse solution that gives the external forces from the

known velocity field. The velocity field can be experimentally measured, but the

propulsive force is unknown. On the other hand, Gray and Hancock [5] introduced

the resistive force theory to analyze the external forces on a slender body. The

fundamental assumption of this theory is that the external forces are the resistive

forces due to the movements. The magnitudes of resistive forces per unit length

are given as fn = Cnvn in the normal direction and fl = Clvl in the longitudinal

direction. vn and vl are normal and longitudinal velocities, and Cn and Cl are normal

and longitudinal resistive coefficients. The most important result of the resistive force

theory is that, for a steady motion when the external force in the moving direction is

zero, the ratio of moving speed to wave speed depends on Cn/Cl and the waveform

2πA/Λ of the motion. Cn/Cl is a function of the geometry property of a slender body,

and there are only estimated values of Cn/Cl for Newtonian fluids by the slender body

theory [13]. Therefore, the propulsive force in general has not been revealed.

Although microscopic organisms operate at low Reynolds numbers (of the order of

1), other creatures performing sinusoidal undulation (such as snakes) can have lager

Reynolds numbers. For example, a water snake of 1 m long which travels at a speed

of its length per second will have the Reynolds number of 106 [22]. Thus, it is in-

teresting to study sinusoidal motions at large enough Reynolds numbers to imply a

condition of potential flow. The state-space airloads theory [17], which is based on

potential flow with a non-penetration boundary condition, is applied to understand-

ing the drag, lift and generalized forces on a thin flexible wing. The flexible wing is

performing time-varying small deformations in a moving frame which can be experi-

encing large motions. The theory is formulated in terms of generalized deformations

and generalized forces within that frame.

In the second part of the dissertation (Chapter 3), the state-space airloads theory is

applied to calculate the propulsive force, lift and other generalized forces of sinusoidal

locomotion at high Reynolds numbers. By giving a general kinetic equation of sinu-

soidal locomotion, explicit forms of all forces are found. In the discussion section, we

will apply the experimental data to all these theories and compare.
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1.3 The State-Space Airloads Theory

The state-space airloads theory [17] is a new but mature theory that was developed

to calculate the forces for flexible, thin airfoils. This theory is based on potential flow

with a non-penetration boundary condition in two dimensions. The thin airfoil can

perform any small deformations with respect to a reference frame that can perform

arbitrarily large translations and rotations. Thus, a moving coordinate system (x, y)

is considered as illustrated in Fig. 1.2. The flow relative to the coordinate system

at y = 0, −b 6 x 6 b consists of a uniform x-velocity u0, a uniform y-velocity v0,

and a gradient v1 due to the translations and rotations of the coordinate system.

These velocity components can be time dependent. A thin airfoil of a chord length

2b is performing small motions h(x, t) (positive down) with respect to the moving

coordinates. Although the coordinate system itself can have arbitrarily large motion,

the motions of the airfoil with respect to the coordinate system are assumed to be

small, so that h� b, ∂h/∂x� 1, ∂h/∂t� u0.

Figure 1.2: A general moving coordinate system for the state-space airloads theory.

In keeping with other thin airfoil theories, the non-penetration boundary condition

is applied to the undeformed position of the airfoil on the x-axis with no loss of

generality. The non-penetration boundary condition can be written as

w = v̂ + λ = u0∂h/∂x+ ∂h/∂t+ v0 + v1x/b, (1.5)
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where, w is the velocity of total induced flow, λ is the velocity of induced flow from the

trailed circulation (positive down) and v̂ is the velocity of induced flow from bound

circulation (positive down) necessary to enforce non-penetration of the surface.

The state-space airloads theory gives the generalized deformations and generalized

forces in matrix forms. In order to use the results in matrix forms, all the variables

need to be expanded in Glauert series. To do this, we have to introduce the Glauert

change of variable,

x = b cosϕ, − b 6 x 6 b, 0 6 ϕ 6 π , (1.6)

where ϕ is the Glauert variable. Now, the motion of an airfoil can be written as the

polynomial below,

h(x, t) = h(ϕ, t) =
∞∑
n=0

hn(t) cos(nϕ) . (1.7)

Note here, the expansion of cos(nϕ) are equivalent to the Chebyshev polynomials,

and the coefficients of these terms can be found by following integrations,

h0(t) =
1

π

∫ π

0

h(ϕ, t) dϕ , (1.8)

hn(t) =
2

π

∫ π

0

h(ϕ, t) cos(nϕ) dϕ , (n > 1) . (1.9)

Similarly, we can expand other variables in Glauert series as Eq. (1.7). Now we

can write the variables in matrix form. The elements of these matrices will be the

coefficients of these Glauert series. That is,

{hn} =



h0

h1

h2

h3
...


, {Ln} =



L0

L1

L2

L3

...


, {vn} =



v0

v1

0

0
...


, {λ0} =



λ0

0

0

0
...


, {λ1} =



λ0

λ1

0

0
...


.

(1.10)
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Eventually, the drag force per unit span D, generalized forces per unit span {Ln},
and total bound circulation per unit span Γ are given by the following equations.

1

2πρ
D =− b{ḣn + vn − λ0}T [S]{ḣn + vn − λ0}

+ b{ḧn + v̇n}T [G]{hn} − u0{ḣn + vn − λ0}T [K−H]{hn}

+ {u̇0hn + ū0ζn + u0vn + u0λ0}T [H]{hn} , (1.11)

1

2πρ
{Ln} =− b2[M]{ḧn + v̇n} − bu0[C]{ḣn + vn − λ0}

− u20[K]{hn} − b[G]{u̇0hn + ū0ζn − u0vn + u0λ0} , (1.12)

1

π
Γ =b{1}T [C−G]{ḣn + vn − λ1}+ u0{1}T [K]{hn} , (1.13)

where,

{1} =



1

0

0

0

0
...


, [K] =



0 1 2 3 4 · · ·
0 −1/2 0 0 0 · · ·
0 0 −2/2 0 0 · · ·
0 0 0 −3/2 0 · · ·
0 0 0 0 −4/2 · · ·
...

...
...

...
...

. . .


,

[C] =



1 1 0 0 0 · · ·
−1/2 0 1/2 0 0 · · ·

0 −1/2 0 1/2 0 · · ·
0 0 −1/2 0 1/2 · · ·
0 0 0 −1/2 0 · · ·
...

...
...

...
...

. . .


, [S] =



1 0 0 0 0 · · ·
0 0 0 0 0 · · ·
0 0 0 0 0 · · ·
0 0 0 0 0 · · ·
0 0 0 0 0 · · ·
...

...
...

...
...

. . .


,
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[G] =



0 1/2 0 0 0 · · ·
0 0 1/4 0 0 · · ·
0 −1/4 0 1/4 0 · · ·
0 0 −1/4 0 1/4 · · ·
0 0 0 −1/4 0 · · ·
...

...
...

...
...

. . .


, [H] =



0 0 0 0 0 · · ·
0 1/2 0 0 0 · · ·
0 0 2/2 0 0 · · ·
0 0 0 3/2 0 · · ·
0 0 0 0 4/2 · · ·
...

...
...

...
...

. . .


,

and [M] is tri-diagonal with

M00 = 1/2, M11 = 1/16, M02 = M20 = −1/4

Mnn =
n

4(n2 − 1)
(n > 2) ,

Mn−1,n+1 = Mn+1,n−1 = 1/8n, (n > 2) .

Particularly, L0 is the lift force per unit span, L1 is the pitching moment per unit

span, and L2 is the bending moment per unit span.
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Chapter 2

Sinusoidal Locomotion of

C. elegans

The locomotory behavior of C. elegans can be complicated. When crawling, C. elegans

shows a relatively consistent sinusoidal wave. However, when it is swimming, its body

displays “C” shapes and “S” shapes, which means its amplitude and wavelength could

be changing during the undulation. In order to create an environment close to the

ideal case of theoretical analysis, we focus on isolated C. elegans completely immersed

in different fluids, including Newtonian solutions and non-Newtonian solutions. With

the help of an original MATLAB image analysis program, we are able to see the

underlying motion of C. elegans with digital analysis.

2.1 Experimental Setup and Procedure

There are many strains and mutants of C. elegans. We deal strictly with young

adult hermaphrodites of the wild-type N2 strain. The young adult hermaphrodite

C. elegans is around 1 mm long and can be obtained by culturing an “L4” stage larva

at room temperature (22 ◦C) on a petri dish. An L4 stage larva can be recognized

under a microscope because it has a brighter spot on its ventral side and is about half

size of a mature adult [19]. A group of L4 C. elegans (15–20 worms) would be picked

up and transferred to a fresh petri dish, where the worms were fed with E. coli OP50

bacteria to grow for 12–16 hours.
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For each experiment, one young adult C. elegans is picked up by a worm picker

put on a clean agar surface (no bacteria). The worm picker is made by mounting a

25 mm piece of 32 gauge (about 0.202 mm in diameter) platinum wire into the tip of

a Pasture pipet. The worm is allowed to crawl on the surface for a few seconds to get

rid of the bacteria on its body. After that, the worm is picked up by the picker again

and put into a testing fluid. To reduce the impact from the worm picker and the

environmental fluid, the worm is allowed to swim off the picker by slowly detaching

itself from it. We waited about 2 minutes to start the video recording of its motion to

ensure the worm is adapted to the environment and functions normal. A Lumenera

microscope camera was used to record the motion of C. elegans at image size of 800

pixels by 800 pixels and a frame rate of 16 fps. For each testing fluid, at least three

worms were recorded in three movie files. For each recorded movie, 6 to 12 clips of

one complete period of undulation was analyzed.

Figure 2.1: The experiment setup and procedure. A featureless device made of a rubber

O-ring and a cover glass was used as the observation station of swimming C. elegans. A

microscope camera was used to record the motion and the movies were analyzed by a

MATLAB program.

Testing fluids were put in a device that is made of a rubber O-ring of 40 mm in

diameter and 2.5 mm in depth on a smooth cover glass. Compared to the size of

C. elegans (1 mm long and 0.08 mm wide), this device is considered large enough

to neglect the boundary effects. Since the density of C. elegans is a little heavier
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than that of water, it will sink to the bottom in water. However, for the testing

fluids we used, C. elegans stayed in the vicinity of where it was dropped off. The

testing fluids are Polyvinylpyrrolidone (PVP) aqueous solutions, and xanthan gum-

PVP aqueous solutions. The PVP aqueous solutions were prepared by mixing certain

weight percentage PVP (mol wt = 360,000, from Sigma-Aldrich) with D.I. water at

room temperature (around 22◦C) and stirring the mixture by a magnetic bar for

24 hours. Xanthan gum-PVP aqueous solutions were prepared by adding xanthan

gum (from Sigma-Aldrich) to pre-mixed PVP aqueous solutions and stirring the mix-

ture by a magnetic stirring bar for another 24 hours. Specifically, these testing fluids

are 5 wt% PVP aqueous solution (5PVP), 8 wt% PVP aqueous solution (8PVP), 10

wt% PVP aqueous solution (10PVP), 1000 ppm xanthan gum (by weight) in 8 wt%

PVP solution (8PVP-1000XG), 1000 ppm xanthan gum (by weight) in 10 wt% PVP

solution (10PVP-1000XG), 2000 ppm xanthan gum (by weight) in 10 wt% PVP solu-

tion (10PVP-2000XG), 2500 ppm xanthan gum (by weight) in 10 wt% PVP solution

(10PVP-2500XG), and 3000 ppm xanthan gum (by weight) in 10 wt% PVP solution

(10PVP-3000XG). For simplification, we will use the short names of these solutions in

the parentheses for the rest of this thesis. All testing solutions are set for 24–72 hours

after mixed to release any pre-stress before the experiments.

The rheological properties of these solutions were tested using a TA Instruments

AR 2000 stress controlled rheometer, primarily using a cone-and-plate geometry of

40 mm in diameter (cone angle 1◦59′50′′, truncation 53 µm). A solution sample was

put on the Peltier plate of the rheometer, the temperature of which was controlled

at 22◦C during the test. A solvent trap was used to minimize the evaporation of the

sample. A series of steady shear test were performed to measure fluid viscosity, with

shear rate from 0.01 s to 100 s. The steady flow procedure shows that PVP aqueous

solutions having 10 wt% PVP or less have constant viscosity (Newtonian behavior),

and xanthan gum-PVP solutions are shear-thinning. We also performed a series of

small-amplitude oscillatory strain (SAOS) test to measure the viscoelastic properties

of fluids. The results were plotted as storage modulus G′ (solid-like behavior) and loss

modulus G′′ (liquid-like behavior) versus angular frequency from 0.01 Hz to 1000 Hz.

The angular frequency ω∗ where the first crossover of G′ and G′′ occurs gives the

longest relaxation time τr of the solution, that is, τr = 2π/ω∗ [15]. For pure viscous

materials, the relaxation time is zero, but for pure elastic materials relaxation time

can be viewed as infinity. Therefore, the longer τr, the more elastic the material.
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Table 2.1: Zero shear viscosity and relaxation time of the testing fluids.

testing fluids zero viscosity µ0 [Pa.s] relaxation time τr [sec]
5PVP 0.03 0.00
8PVP 0.12 0.79
10PVP 0.2 0.90

8PVP-1000XG 4.00 2.09
10PVP-1000XG 7.00 2.51
10PVP-2000XG 35.00 62.8
10PVP-2500XG 75.00 209.33
10PVP-3000XG 75.00 348.89

As shown in Table 2.1, zero shear viscosity indicates the viscosity of a fluid and

relaxation time indicates the level of the elasticity of a fluid. The rheological analysis

shows that 5PVP is Newtonian fluid, 8PVP and 10PVP are Bogor fluids (constant

viscosity but elastic) [8], and all the xanthan gum-PVP fluids are shear thinning

viscoelastic fluids. Generally, the concentration of PVP increases the fluid viscosity

and the concentration of xanthan gum increases the fluid elasticity.

2.2 Data Analysis

The kinetic equation of a two dimensional undulatory locomotion of a slender body

can be most simply approximated by a sine function in the y direction,

x(s, t) = x(s, t0) + g(s, t) ,

y(s, t) = A sin

[
2πx(s, t0)

Λ
− 2πft

]
. (2.1)

Here, s is the body coordinate along the centerline (0 6 s 6 L, s = 0 is the head,

and s = L is the tail), L the body length, t the time variable, t0 the initial time, A

the amplitude, Λ the wavelength, and f the frequency. g(s, t) is not specified, which

means the x-direction movement can be erratic. However, for steady progression in x

direction it is usually assumed that the slender body has a constant moving speed for

all parts of the body. That is, g(s, t) = Vmt, and Vm is defined as the moving speed
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of the object. For general cases, the velocity of each body point is

vx(s, t) =
∂x

∂t
=
∂g

∂t
, (2.2)

vy(s, t) =
∂x

∂t
= −2πAf cos

[
2πx(s, t0)

Λ
− 2πft

]
. (2.3)

From Eq. (2.2), we know x-velocity is not specified for sinusoidal locomotion but

will contribute to the shape of the body. To investigate the details of the loco-

motion, we defined the time-averaged moving speed of each body point as Vm(s) =∫ t0+T
t0

vx(s, t) dt/T , and the moving speed of the whole object as Vm =
∫ L
0
Vm(s) ds/L.

For the ideal case of steady progression in the x direction, vx(s, t) will be constant and

the body shape will be conserved in a same wave form. However, the body shape of

swimming C. elegans is observed as “C” shapes and “S” shapes. To examine whether

the locomotion of C. elegans is sinusoidal, we have to look at the y-velocity which

should fit Eq. (2.3). Therefore, we developed an image and data analysis program,

which is based on the edge-detection algorithm of MATLAB, to read the coordinates

of the body centerline of C. elegans.

Figure 2.2: The user interface of the MATLAB image processing and data analysis program.
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Our image analysis program can convert a movie clip containing integer periods n of

undulation to the coordinates of 11 body points on the centerline. (The movie clip

has to be in the “AVI” format). From head to tail, the coordinates of these body

points are recorded as (x(i,m), y(i,m)), i = 1, 2, ..11;m = 1, 2, .., N), where i is the

body coordinate, m is the frame number, and N is the total number of frames. By

knowing the coordinates of the body centerline of C. elegans, we can calculate the

velocity of each body point as function of time.

vx(i,m) = [x(i,m+ 1)− x(i,m)]/∆t , (2.4)

vy(i,m) = [y(i,m+ 1)− y(i,m)]/∆t , (2.5)

where ∆t is time interval between two consecutive frames.

With the image processing program, we are able to examine the details of the loco-

motory gaits, such as the body length at each frame L(m), amplitude of each body

point A(i), and wavelength at each frame Λ(m). The wavelengths are given by fast

Fourier analysis of the body shape at each frame. The average amplitude of one un-

dulatory period is given by A =
∑11

i=1A(i)/11, and the average wavelength is given

by Λ =
∑N

m=1 Λ(m)/N . The time-averaged moving speed of each body point over

one undulation is defined as Vm(i) = [x(i, N)− x(i, 1)]/T , where T is the undulatory

period, and the moving speed of the whole C. elegans Vm is defined as the average of

Vm(i) that Vm =
∑11

i=1 Vm(i)/11.
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Figure 2.3: The procedure of image processing and data analysis. 1) A sequence of sinu-

soidal locomotion over one period is manually selected. Sample shown is from C. elegans

in 5PVP. 2) After image processing, the coordinates of 11 body points (dots) are found

for each frame. The first and last frame of the sequence are overlaid to find the moving

direction and other important parameters. 3) Tracks of body points are used to find the

amplitudes A(i).

2.3 Results

2.3.1 The locomotory gaits of C. elegans

First, we learned that C. elegans keeps the same body length during crawling or

swimming. Unlike an earthworm (Lumbricus), the body of which is very stretching,

C. elegans has relatively stiff body in the longitudinal direction. This feature of C.

elegans can be related to the alae, which are a pair of cuticular ridges along both sides
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of its body.[3] For the purpose of comparison, our experimental results are normalized

with the body length L. For example, we use normalized amplitude A/L, normalized

wavelength Λ/L, and normalized moving speed Vm/L.

Second, we observed that the amplitude of each part of the body of swimming C.

elegans is not consistent. As shown in Fig. 2.4, the middle part of the body has

larger amplitude. However, crawling C. elegans keeps the same amplitude along its

body. Third, the wavelength of a swimming C. elegans is also changing periodically

with time, while for crawling C. elegans the wavelength is almost constant. Generally,

the average amplitude and the average wavelength of swimming C. elegans are larger

than those of crawling one. As the fluid becomes more viscoelastic, the deviations of

both A(i)/L and Λ(t)/L become smaller.

Figure 2.4: The body length, normalized amplitude, and normalized wavelength of C.

elegans in 5PVP, 10PVP, 10PVP-1000XG, and 10PVP-3000XG. Only one sample is shown

for each testing fluid. The data from crawling C. elegans (the last column on the right) are

shown to compare with the swimming gaits.

We also examined the strokes at each frame, y-velocity of each body point vy(i,m)/L,

and time-averaged moving speed of each body points Vm(i)/L. We compared the

experimental data with the standard equation of sinusoidal motion shown in Eq. (2.1).

In Fig. 2.5, the computed results is for normalized amplitude of 0.17, normalized
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wavelength of 0.88 and constant normalized moving speed of 0.25. These numbers

are the averages of experimental data of C. elegans in 5 wt% PVP aqueous solution.

Although the strokes of the swimming C. elegans are not as regular as the numerical

prediction, one can still see the sinusoidal waveform C. elegans tries to follow. vx is

varying along the body and with time (results not shown), however, by filtering out

the x direction noises, the contours of vy also show that the locomotion has the form

of wave propagation. Moreover, the time-averaged moving speed of each body point

is almost constant along the body. For these reasons, we consider that the locomotion

of C. elegans can be described by Eq. (2.1) with non-constant vx(s, t). The relatively

erratic strokes of the body can be a result of slippage. However, when it is considered

over one period time, we will use the average of Vm(i) to replace vx.
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Figure 2.5: A comparison between the experimental data and computed data by Eqs. (2.1-

2.3). The computed data is base on amplitude of 0.17, wavelength of 0.88, and moving

speed 0.25 (the statistic results in 5PVP shown in Table 2.2). The contours of vy(s, t)

show the locomotory gaits of C. elegans is sinusoidal with consistent wavelength within the

experimental errors.

2.3.2 Statistical results and viscoelastic effects

Karbowski et al., 2006 [10] studied the locomotion of crawling C. elegans(young adult

wild-type N2 strain) and show that the average normalized wavelength is 0.62, the

average normalized amplitude is 0.09, the average frequency is 0.36 Hz, and the

average normalized moving speed 0.17. Korta et al., 2007 [11] studied the locomotory

gaits of swimming C. elegans in Newtonian fluids. Their studies show that wavelength
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of swimming C. elegans is around 0.9 of its body length for all viscous fluids they

used, but the undulatory frequency drops 20% with every 10 fold increase of viscosity.

In a very recent paper, Shen et al., 2011 [21] studied the undulation of C. elegans in

viscoelastic fluids. They found the the moving speed of C. elegans in a viscoelastic

fluid can decrease up to 35% of the moving speed when it is in a Newtonian fluid of

the same viscosity.

Table 2.2: Statistical results of the locomotory data. # is the number of samples
studied. The results are given as the average ± the standard deviation.

testing fluids # L [mm] f [Hz] A/L Λ/L Vm/L

5PVP 19 1.03± 0.05 1.71± 0.17 0.17± 0.03 0.87± 0.04 0.25± 0.05

8PVP 21 0.85± 0.07 1.50± 0.20 0.14± 0.01 0.88± 0.05 0.17± 0.04

10PVP 27 0.82± 0.08 1.16± 0.16 0.15± 0.01 0.88± 0.05 0.12± 0.03

8PVP-1000XG 23 0.85± 0.02 1.26± 0.12 0.12± 0.02 0.85± 0.03 0.09± 0.02

10PVP-1000XG 25 0.85± 0.05 1.16± 0.14 0.13± 0.02 0.92± 0.03 0.09± 0.03

10PVP-2000XG 17 0.90± 0.02 0.97± 0.09 0.13± 0.01 0.86± 0.04 0.09± 0.03

10PVP-2500XG 13 0.87± 0.03 0.92± 0.11 0.12± 0.01 0.92± 0.03 0.06± 0.01

10PVP-3000XG 22 0.88± 0.05 1.08± 0.10 0.10± 0.02 0.87± 0.11 0.04± 0.01

Our testing fluids, except for 5PVP, are non-Newtonian. Particularly, 8PVP and

10PVP are Boger fluids, and others are shear thinning viscoelastic fluids. The basic

parameters of sinusoidal locomotion are shown as the mean values and their standard

deviations in Table 2.2. While we use zero shear viscosity µ0 to characterize the

viscosity of the fluid, we use Deborah numbers De to characterize the elasticity of

the fluid. Deborah number is defined as the ratio of relaxation time and character-

istic time of an experiment, so De = τrf for sinusoidal locomotion. For non-elastic

materials, De is zero.

Our results (in Fig. 2.6) show that the average wavelength of C. elegans is still a

constant, around 0.9, in the range of µ0 from 0.03 Pa·s to 75 Pa·s and the range of De

from 0 to 300. The amplitude decreases slightly over the same wide ranges of µ0 or

De. It is not clear whether the viscosity or the elasticity affects the amplitude. But

compare to the change in µ0 or in De, we can almost neglect the change of amplitude.
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Figure 2.6: Normalized wavelength Λ/L and normalized wavelength A/L vs. zero shear

viscosity η0 and Deborah number De. Triangles indicate Newtonian fluid (5PVP in this

study), squares are Boger fluids (8PVP and 10PVP ), and circles are viscoelastic fluids (all

xanthan gum-PVP solutions). The error bars shows the standard deviations.

Figure 2.7: Frequency f and moving speed Vm/L vs. zero shear viscosity η0 and De

number. Relations of f -η0 and Vm-De are shown to fit the experimental data. Triangles

indicate the Newtonian fluids, squares are Boger fluids and circles are viscoelastic fluids.
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As shown in Fig. 2.7, the experimental data of frequency distribute along the line

f = −0.2 log(µ0)+1.4 when plotted against µ0. This means the frequency f decreases

20% with every 10 fold increases of zero shear viscosity µ0, which is the same ratio

as found in Korta’s paper for Newtonian fluids. Therefore, the effect on undulatory

frequency is due to the viscosity of fluids alone. However, the elasticity of fluids

reduces the moving speed of C. elegans, and effect of fluid viscosity to the moving

speed Vm are negligible. As the zero shear viscosity increases from 0.2 Pa·s to 35 Pa·s,
Vm is almost constant. On the other hand, as seen in Fig. 2.7, Vm reduces 4% with

every 10 fold increase in De number. That is, Vm = −0.04 log(De) + 0.15.

2.3.3 Resistive coefficients of viscoelastic fluids

According to the resistive force theory, the ratio of the moving speed and the wave

speed Vm/Vw is related to the ratio of resistive coefficients Cn/Cl and the wave form

of a slender body. If we define K = Cn/Cl, B = 2πA/λ, and γ = Vm/Vw, the equation

of their relationship from the resistive force theory [5] is

γ =
(K − 1)B2

2 +KB2
. (2.6)

From the slender body theory, K can be determined by the wavelength and radius

of a slender body if it is for Newtonian fluids. In 1976, Sir James Lighthill gave an

estimation of K for sinusoidal locomotion of a slender body in Newtonian fluids,

K =
2 log(2q/r)

log(2q/r) + 1/2
, (2.7)

where q = 0.09Λ∗ and Λ∗ is the wavelength measured along the body [13] .

We can rewrite Eq. (2.6) as

1/γ =
2

K − 1

1

B2
+

K

K − 1
. (2.8)

Since swimming C. elegans has almost constant wavelength, and if it is in Newtonian

fluid, we should expect a linear relationship between 1/γ and 1/B2. As shown in
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Fig. 2.8, we do see the data distribute along a straight line for small De numbers

(De < 20). The best fit line by Eq. 2.8 shows K is around 1.4. We know the diameter

of C. elegans is around 0.08 and Λ/L is around 0.9. Therefore, if r = 0.04 and

Λ∗ = 1, Eq. (2.7) gives K ≈ 1.13. However, Snztimann et al. [24] estimated the same

K ≈ 1.4 from their experiments. In Gray and Lissmann’s paper [6], they found Cn/Cl

of golden syrup by measuring the settling velocity of small metal wires also around

1.4.

For large De numbers, the resistive force theory implies smaller K. We show the

lines of the Eq. (2.8) with K = 1.28 and K = 1.22 in Fig. 2.8. There is not much

known about the resistive coefficients of a slender body in viscoelastic fluids, neither

experimentally nor theoretically. However, It is found that in viscoelastic fluids the

resistive force of a spherical object is smaller than that in Newtonian fluids for the

same settling velocity [12]. It is also found that the normal resistive force of a long

cylinder is reduced in viscoelastic fluids [1]. Here, we propose a possible explanation.

The elasticity of a viscoelastic fluid is due to polymers of long molecular chains, which

can act like springs. These molecular springs can absorb part of the energy in the

normal direction and result in less normal resistive force, but can not affect much

in the longitudinal direction. That is, Cn become smaller when fluid is elastic, so is

K = Cn/Cl.

Figure 2.8: 1/γ vs. 1/B2. The makers (triangle, squares and circles) are the means of the

experimental data for each testing fluid. The values of De number is indicated by the color.

The solid line are the theoretical prediction by the resistive force theory with different K

values. The slop of the lines is given by 2/(K − 1) and the constant is K/(K − 1).
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Chapter 3

Propulsion by Sinusoidal

Locomotion at High Reynolds

Numbers

3.1 Coordinate System and Equation of Sinusoidal

Motions

A coordinate system x-y is considered moving in the negative x-axis direction at a

speed of u0 in a mass of still fluid or air. A thin flexible wing of chord length 2b

and span length S is making a sinusoidal wave in this moving coordinate system.

The wing is moving up and down on the y-axis with a maximum amplitude A. The

sinusoidal wave is propagating in the x-axis direction with a wavelength Λ and a

frequency f . In this paper, we neglect the small changes along the span direction

and focus on the motion on the x-y plane as shown in Fig. 3.1. Since the x-y plane is

moving to its left at a speed of u0, the flow relative to the x-y coordinate system at

y = 0,−b 6 x 6 b only consists of a uniform x-velocity u0. We assume A/(2b) << 1

and the projection of the wing on the x-axis is fixed as 2b for the purpose of applying

the non-penetration boundary condition. Thus, the deformation of a flexible wing

performing sinusoidal motion in two dimensions is

h(x, t) = −A sin(
2πx

Λ
− 2πft) , (3.1)

where A is the amplitude, Λ is the wavelength, f is the frequency, and t is time.
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Figure 3.1: A 2D coordinate system of a flexible wing performing sinusoidal locomotion.

v0 and v1 are zeros here.

After a Glauert change of variables shown in Eq. (1.6), the equation of motion can

be expressed as the polynomial below,

h(ϕ, t) = −A sin(
π cosϕ

z
− ωt) =

∞∑
n=0

hn(t) cos(nϕ) , (3.2)

where, z = Λ/(2b) is the dimensionless wavelength, and ω = 2πf is the angular

frequency. The expansion terms of cos(nϕ) are equivalent to the Chebyshev polyno-

mials, and the coefficients of these terms can be found by doing the integrations in

Eqs. (1.8-1.9). Applying Eq. (3.2) to the integrals in Eq. (1.8-1.9), that

h0(t) =− 1

π

∫ π

0

A sin(
π

z
cosϕ− ωt) dϕ

=
A

π
[− cos(ωt)

∫ π

0

sin(
π

z
cosϕ) dϕ+ sin(ωt)

∫ π

0

cos(
π

z
cosϕ) dϕ] , (3.3)

hn(t) = − 2

π

∫ π

0

A sin(
π

z
cosϕ− ωt) cos(nϕ) dϕ (n > 1)

=
2A

π
[− cos(ωt)

∫ π

0

sin(
π

z
cosϕ) cos(nϕ) dϕ+ sin(ωt)

∫ π

0

cos(
π

z
cosϕ) cos(nϕ) dϕ] .

(3.4)
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Note that, the integrals in Eqs. (3.3-3.4) are Bessel integrals [4], whose values are∫ π

0

sin(
π

z
cosϕ) cos(nϕ) dϕ = π sin(

nπ

2
)Jn(

π

z
) , (3.5)∫ π

0

cos(
π

z
cosϕ) cos(nϕ) dϕ = π cos(

nπ

2
)Jn(

π

z
) , (3.6)

where Jn are Bessel functions of the first kind (n are integers). Therefore, hn(t) (n >

0) are simplified to

h0(t) = AJ0(
π

z
) sin(ωt) , (3.7)

hn(t) = 2AJn(
π

z
)[− sin(

nπ

2
) cos(ωt) + cos(

nπ

2
) sin(ωt)] , (n > 1) . (3.8)

Let us write these {hn} in an uniform format of cos(ωt) and sin(ωt),

{hn} = b{αn} cos(ωt) + b{βn} sin(ωt), (n > 0) . (3.9)

If we compare Eq. (3.9) to Eq. (3.7-3.8), then

α0 = 0 , β0 =
A

b
J0(

π

z
) ,

αn = −2A

b
sin(

nπ

2
)Jn(

π

z
) , βn =

2A

b
cos(

nπ

2
)Jn(

π

z
) , (n > 1) . (3.10)

In this way, the time-derivatives of {hn} can also be written in the same format.

{ḣn} = bω{βn} cos(ωt)− bω{αn} sin(ωt) , (n > 0), (3.11)

{ḧn} = −bω2{αn} cos(ωt)− bω2{βn} sin(ωt) , (n > 0). (3.12)

3.2 Propulsion, Lift and Generalized Forces

A positive propulsive force for the sinusoidal locomotion will be the drag force in the

negative x-axis direction. Therefore, a dimensionless propulsive coefficient is defined

as

CF = − D

2πρbu20
, (3.13)
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where, D is the drag force per unit span in Eq. (1.11), and ρ is the density of envi-

ronmental fluid or air. At certain reduced frequencies k = ωb/u0, there will be shed

vortices. In order to separate the effect of shed vorticity, we will use the following

notation

CF−with wake = CF−no wake −∆CF , (3.14)

where CF−with wake is the coefficient of propulsion with the existence of shed vortices,

CF−no wake is the coefficient of propulsion without shed vorticity effects, and ∆CF is

the loss of propulsion due to shed vorticity alone.

By applying Eq. (1.11) to Eq. (3.13) and separating the effect of shed vorticity, we

will have

CF−no wake =
ḣ20
u20
− 1

4u20

[
ḧ0h1 +

∞∑
n=1

(ḧn−1 − ḧn+1)hn

]
+

1

u0

∞∑
n=1

n(ḣ0−ḣn)hn/b , (3.15)

∆CF = 2
λ0ḣ0
u20

+
λ0
u0

∞∑
n=1

nhn/b−
λ20
u20

, (3.16)

where λ0 is the velocity due to shed vorticity.

Similarly, we also define a coefficient of lift as CL = L0/(2πρbu
2
0), a coefficient of

pitching moment as CL1 = L1/(2πρbu
2
0), and a coefficient of bending moment as

CL2 = L2/(2πρbu
2
0). L0 is the lift force per unit span, L1 is the pitching moment per

unit span, and L2 is the bending moment per unit span. We use the same notation as

for propulsive coefficient and apply Eq. (1.12), the coefficients of lift and generalized

forces are

CL−no wake = − b

4u20
(2ḧ0 − ḧ2)−

1

u0
(ḣ0 + ḣ1)−

∞∑
n=1

nhn/b , (3.17)

∆CL = −λ0
u0

, (3.18)

CL1−no wake = − b

16u20
(ḧ1 − ḧ3) +

1

2u0
(ḣ0 − ḣ2)−

1

2
h1/b , (3.19)

∆CL1 =
λ0
2u0

, (3.20)
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CL2−no wake = − b

24u20
(−6ḧ0 + 4ḧ2 − ḧ4) +

1

2u0
(ḣ1 − ḣ2)−

1

2
h1/b , (3.21)

∆CL2 = 0 . (3.22)

When applying {hn}, {ḣn} and {ḧn} of sinusoidal locomotion, Eqs. (3.9-3.12) to

Eqs. (3.15-3.22), there will be summations of nαn, nβn, n(α2
n − β2

n) and nαnβn from

n = 1 to infinity. These summations can be greatly simplified for the case of sinusoidal

locomotion, because of the special property of Bessel functions of the first kind that

Jn(x) = x[Jn−1(x) + Jn+1(x)]/(2n) [4]. In particular,

∞∑
n=1

nαn = −k0β0 ,

∞∑
n=1

nβn =
1

2
k0α1 ,

∞∑
n=1

n(α2
n − β2

n) = −k0α1β0 ,

∞∑
n=1

nαnβn = 0 , (3.23)

where k0 = π/z. The derivations of these identities are shown in appendix A.

3.2.1 Case of no shed vorticity

First we consider a special case when there is no shed vorticity effects, that is, λ0

is zero. For simplification, we will use reduced frequency k = ωb/u0, reduced time

τ = u0t/b, and critical reduced frequency k0 = π/z. With these definitions, ωt = kτ

in the harmonic functions. We are able to obtain very simple closed forms of the

coefficients of all forces for sinusoidal motions. They are

CF−no wake = (k − k0)kβ0
[
β0 cos2(kτ) +

α1

2
cos(kτ) sin(kτ)

]
, (3.24)

CL−no wake = −(k − k0)
[
β0 cos(kτ) +

α1

2k0
(k − k0) sin(kτ)

]
, (3.25)
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CL1−no wake =
(k − k0)

2k0

[
(
α1

k0
− β0)k − α1

]
cos(kτ) , (3.26)

CL2−no wake = 2
(k − k0)2

k20
(
α1

k0
+ β0) sin(kτ) . (3.27)

These forces are time-dependent and oscillate as sinusoidal functions of time. When

k = k0, all forces are zero. Therefore, we call k0 the critical reduced frequency. Note

here, α1 = −2(A/b)J1(k0) and β0 = (A/b)J0(k0), so the coefficients without shed

vorticity effects depend on amplitude A, critical reduced frequency k0, and reduced

frequency k. CF−no wake is a function of (A/b)2 and other coefficients are in linear

relationships with A/b. However, since we have assumed a moderate amplitude to

be able to apply a non-penetration boundary condition, we will not consider the

amplitude A/b greater than 0.2.

3.2.2 Shed vorticity effects

As the Reynolds number increases, a laminar flow will transit into a turbulent flow.

Since sinusoidal motion is time-dependent, this transition is also related to the reduced

frequency k = ωb/u0, which represents the ratio of the motion in the transverse

direction and the motion in the moving direction. In the actual motion at reduced

frequency k, there will be shed vortices. We use Theodorsen theory [26] to find λ0,

the velocity due to shed vorticity.

λ0 = Re[λ̄0e
ikτ ] ,

λ̄0 = (w̄0 +
1

2
w̄1)[1− C(k)] , (3.28)

where λ̄0, w̄0, w̄1, and C(k) are complex numbers [16]. The term w̄0 + w̄1/2 is the

complex form of total velocity components, w0 + w1/2, which can also be expressed

in the components of motion [17], that is

w0 +
1

2
w1 = Re[(w̄0 +

1

2
w̄1)e

ikτ ] (3.29)

= ḣ0 +
1

2
ḣ1 + u0

∞∑
n=1

nhn/b .
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C(k) is the Theodorsen function. Let 1−C(k) = M(k)+N(k)i, where the numerical

values of M(k) and N(k) can be approximated as

M(X) = 0.5−0.5(1−X)4−0.1X(1−X)2−0.152X(1−X)3+0.47X(1−X)4 , (3.30)

N(X) = −X ln(X)(1−X)3 + 0.0905X(1−X) + 0.609X(1−X)2− 0.686X(1−X)3 ,

(3.31)

where X = k/(k+ 1) [18]. Figure 3.2 shows the value of M and N as functions of X.

At X = 0, k = 0, and X = 1, k =∞.

Figure 3.2: Numerical approximation of M(k) and N(k) verse scaled reduced frequency

k/(k + 1). The value of M −M2 −N2, which is a factor in lost power CW , is also shown.

Combine Eqs. (3.28-3.31) and components of motion in Eq. (3.9), the velocity due to

shed vorticity for a sinusoidal motion at reduced frequency k is found to be

λ0
u0

= (k − k0)
[
(Mβ0 −

1

2
Nα1) cos(kτ) + (−1

2
Mα1 −Nβ0) sin(kτ)

]
. (3.32)

For simplification, we rewrite Eq. (3.32) as

λ0
u0

= (k − k0) [λα cos(kτ) + λβ sin(kτ)] . (3.33)
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where λα = Mβ0 − Nα1/2 and λβ = −Mα1/2 − Nβ0. As shown in Eq. (3.33), the

ratio of velocity due to shed vorticity and moving speed of the wing has zero mean

over one undulation, but its amplitude is increasing with the reduced frequency k.

At k = k0, there is no shed vorticity.

Replacing the value of λ0/u0 in Eq. (3.16), Eq. (3.18) and Eq. (3.20) with Eq. (3.33),

we are able to derive the closed forms of the force losses due to shed vorticity,

∆CF = (k − k0)
{

[(2λαβ0 − λ2α)k − (λ2α − λαβ0)k0] cos2(kτ)

+[(2λββ0 − 2λαλβ)k − (λββ0 −
1

2
λαα1 + 2λαλβ)k0] cos(kτ) sin(kτ)

+[−λ2βk + (
1

2
λβα1 + λ2β)k0] sin2(kτ)

}
, (3.34)

∆CL = −(k − k0)[λα cos(kτ) + λβ sin(kτ)] , (3.35)

∆CL1 =
1

2
(k − k0)[λα cos(kτ) + λβ sin(kτ)] . (3.36)

At k = k0, Eqs. (3.34-3.36) become zero. This is in agreement with the fact that

when CL = 0 (at k = k0) there is no shed vorticity.

3.2.3 Time-averaged propulsion

Since all the forces are time dependent and periodical, it is important to know their

time-averaged values over one undulatory period. In Eq. (3.24-3.27) and Eq. (3.34-

3.36), the propulsive force has only terms of cos2(kτ), sin2(kτ) and cos(kτ) sin(kτ).

The other forces are functions of cos(kτ) and sin(kτ). Since the time average of

cos(kτ) and sin(kτ) are zero, so the time-averaged lift and generalized forces are zero.

However, cos2(kτ) is [1 + cos(2kτ)]/2 and its time average is 1/2. Similarly, the time

average of sin2(kτ) is 1/2, and cos(kτ) sin(kτ) is 0. Let us note the time-averaged

propulsion as CF−no wake and ∆CF , and they are

CF−no wake =
1

2
k(k − k0)β2

0 , (3.37)
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∆CF =
k − k0

2

{
[2Mβ2

0 −Nα1β0 − (M2 +N2)(β2
0 +

α2
1

4
)]k

+(M2 +N2 −M)(β2
0 +

α2
1

4
)k0

}
. (3.38)

For the case of no shed vorticity, the propulsive force is determined by k and β0. When

β0 is not zero, there will be positive time-averaged propulsive force for k greater

than k0. When z = 0.569 and z = 1.3, the Bessel function J0(π/z) in β0 is zero,

so CF−no wake is zero regardless of the value of k. At z = 0.82, where J0(π/z) is

at its extreme, the system achevies the maximum propulsion for a fixed k. The

shed vorticity will affect the time-averaged propulsion by the input of α1, which has

J1(π/z). As k approaches infinity, M = 0.5 and N = 0 (shown in Fig. 3.2), the effect

due to shed vorticity on propulsion is very close to

∆CF =
1

2
(
3

4
β2
0 −

α2
1

16
)k2 . (3.39)

by comparing Eq. 3.39 to Eq. 3.37, we found that at large k, the total propulsive

force can be approximated as

CF−with wake =
1

8
(β2

0 +
α2
1

4
)k2 . (3.40)

3.3 Propulsive Efficiency

We are now in a position to investigate the propulsive efficiency of warping airfoils

at high Reynolds numbers. We begin with calculation of the power required for the

airfoil to make its deformations. This can be found by the dot product of generalized

velocities with generalized forces,

P = −{ḣn}T{Ln} , (3.41)

where positive P implies work done on the airflow and negative P would imply energy

taken out of the free-stream (an energy-extraction device). Therefore, the applied
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power coefficient, CP = P/(2πρbu30), is given by:

CP = {h′n}T [M]{h′′n}+ {h′n}T [C]{h′n − λ0}+ {h′n}T [K]{hn} , (3.42)

where (for simplicity) u0 = b = 1 and the symbol ( )′ implies a derivative with respect

to reduced time τ . Matrices [M], [C], and [K] are defined in the state-space airloads

theory and given in Chapter 1.3.

Since the motion is simple and harmonic, we are only interested in the time-averaged

power over one undulation. Therefore, there are several terms that have zero time

average can be eliminated from Eq. (3.42). Also, there are some terms in that equation

which can be expressed as a time-derivative of a single quantity. For example, due to

the symmetry of matrix [M]

{h′n}T [M]{h′′n} =
1

2
[{h′n}T [M]{h′n}]′ . (3.43)

With this simplification and the definitions of the matrices, the time-averaged power

required for the wing motion, CP , is

CP = (h′0)
2 +

1

2
h′0h

′
1 +

1

2
h′0

∞∑
n=1

nhn −
1

2
h0

∞∑
n=1

nh′n − h′0λ0 +
1

2
h′1λ0 . (3.44)

After application of the expansions for the {hn} and taking the time average, the

final form of the input power coefficient is given by:

CP =
1

2
k(k − k0)β2

0 −
1

2
k(k − k0)[Mβ2

0 −M
α2
1

4
−Nα1β0] . (3.45)

Because the useful propulsive power is u0F , the propulsive power coefficient is iden-

tical to the propulsive force coefficient CF . Thus, we define the time average of

propulsive power coefficient as CF , and

CF =
1

2
k(k − k0)β2

0 −
1

2
(k − k0)

{
[2Mβ2

0 −Nα1β0 − (M2 +N2)(β2
0 +

α2
1

4
)]k

+ (M2 +N2 −M)(β2
0 +

α2
1

4
)k0

}
. (3.46)
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A comparison of Eq. (3.45) with Eq. (3.46) allows us to compute the time-average of

the lost power (i.e., the wasted power) due to the kinetic energy in the wake.

CW = CP − CF−with wake =
1

2
(k − k0)2(M −M2 −N2)(β2

0 +
α2
1

4
) . (3.47)

This lost power in Eq. (3.47) can alternatively be expressed in terms of the original

flow variables,

CW = (w0 +
1

2
w2 − λ0)λ0

= (ḣ0 +
1

2
ḣ1 +

∞∑
n=1

nhn − λ0)λ0 . (3.48)

The combinator M −M2 + N2 is plotted in Fig. 3.2. Note that it is monotonically

increasing with k and is always positive, reaching a maximum of 0.25 at k = ∞.

One can see from Eq. (3.47) and Fig. 3.2 that the wasted power is always positive

and is proportional both to (k − k0)2 and to the input motion, [β2
0 + α2

1/4]. Thus,

for the case k < k0 which corresponds to negative CF (power required to pull the

airfoil) and negative CP (power extracted from the free-stream to deform the airfoil),

these losses lower the absolute value of the extracted energy. For k > k0 which

corresponds to positive CF (propulsive power on the airfoil), these losses decrease the

useful propulsive power.

From the above development, we can look at the efficiency of the flexible wing either

as a propulsive device (k > k0) or as an energy extraction device (k < k0). For

k > k0, the case of propulsion, the efficiency is defined as the propulsive efficiency—

the power providing propulsion (CF ) divided by the total power put into the system

by the airfoil (CP ). For k < k0, which is the case of energy extraction, the efficiency

is defined as the total power extracted from the flow (CP ) divided by the total power

required to drive the airfoil through the flow (CF ). Note that this is exactly the

reciprocal of the propulsive efficiency. Thus, we may write the general efficiency ε as

ε = CF/CP = 1− CW/CP , (k > k0),

ε = CP/CF = 1− CW/CF , (k < k0). (3.49)
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Thus, the energy lost into the wake CW always subtracts from the efficiency.

3.4 Numerical Results

In this section, we present numerical results for force coefficients. Results are given

both in the time-domain and in terms of the time-averaged coefficients. We use the

parameters of C. elegans swimming in 5wt% PVP aqueous solution as references.

From Table 2.2, the average normalized wavelength of swimming C. elegans in the

least viscous testing fluid (5PVP) is 0.87, the average normalized amplitude is 0.17,

the average frequency is 1.71 Hz, and the normalized moving speed is 0.25 1/s. Also,

the average normalized wavelength of crawling C. elegans is 0.62 [10]. For comparison,

we choose these parameters as references in our calculation, that is, A/b = 0.2,

z = Λ/(2b) = 0.6, 0.9, f = 1.71 Hz, and u0/(2b) = 0.25. For convenience, we

normalized the parameters with the chord length 2b instead of body length L. If the

amplitude is small enough, 2b ≈ L.

Figure 3.3: The time-dependent coefficients of all forces (with and without shed vorticity

effects) for one undulatory period T , at A/b = 0.2 and z = 0.6 and four different reduced

frequencies.
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Figure 3.4: The time-dependent coefficients of all forces (with and without shed vorticity

effects) for one undulatory period T , at A/b = 0.2 and z = 0.9 and four different reduced

frequencies.

Figure 3.3 and 3.4 present results in the time domain for all force coefficients at

four different reduced frequencies, k = 35.8, k = 26.9, k = 21.5, and k = 13.4.

Figure 3.3 are results for z = 0.6 and Fig. 3.4 are results for z = 0.9. Results are

presented both with and without wake effects over one period T of undulation. Three

different loading coefficients are given. CL is the lift coefficient, CL1 is the coefficient

of pitching moment, and CL2 is the coefficient of camber force. Note that each loading

coefficient goes through one oscillation with zero mean, while the propulsive force goes

through two oscillations—with a mean no greater than the amplitude. Two things are

noteworthy from these plots regardless of the z value. First, all loads decrease as k

approaches k0 = π/z. When k = k0, all forces are zero (not shown). Second, the effect

of induced flow has more impact on the propulsive coefficient than other coefficients.

The results that has shed vorticity effect are shown in dash lines. As it is expected,

the induced flow increases the fluctuation of loading coefficients. Interestingly, the

induced flow increases the mean and the amplitude of propulsive coefficient at z = 0.6,

but reduces the mean and the amplitude of propulsive coefficient at z = 0.9.
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Figure 3.5: The time-dependent coefficients of all forces (with and without shed vorticity

effects) for one undulatory period T , at A/b = 0.2 and k = 21.5 and four different wavelength

z. At z = 0.569 and z = 1.3, β0 = 0. At z = 0.82, α1 = 0 and β0 is at its region extrema.

Now we look at these force coefficients at four different wavelengths, z = 0.569, 0.82,

0.9, and 1.3, as shown in Fig. 3.5. The results are shown for k = 21.5 (typical of

swimming C. elegans in 5PVP). Since z changes the critical reduced frequency k0,

it also changes the phasing of the lift loads. At z = 0.569 and z = 1.3, β0 = 0. If

there were no shed vorticity, the propulsive force is zero. With the existence of shed

vorticity, a positive propulsive force is generated by the input of α1. However, the

system will require more power to compensate the impact of induced flow in moving

the wing. As seen in these plots, the amplitudes of all loading forces are significant,

especially for z = 1.3. This implies the instability of the motion. One the other hand,

at z = 0.82, α1 = 0 and β0 is at its regional extrema (J0
′ = −J1). For the case of no

shed vorticity, the motion could obtain the highest propulsive force at fixed k. The

shed vortices will hold the wing back and reduce the propulsive force. Figures 3.3,

3.4 and 3.5 each verifies that our formulas for mean and oscillatory loads are correct.

Figure 3.6 and 3.7 then present the time-averaged propulsive coefficients with and

without wake versus reduced frequency for z = 0.6 and z = 0.9. By plotting versus
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k/(k + 1), we effectively show all reduced frequencies from zero to infinity on the

same plot. The left plot shows the entire range, while the right plot focuses on

the region of positive propulsive force. When divided by k(k + 1), Eq.3.37 becomes

CF−no wake/[k(k + 1)] = a1X + a2(1 − X), where X = k/(k + 1), a1 = β2
0/2 and

a2 = −k0β2
0/2. When k = 0, X = 0, and CF−no wake is a2; as k goes to infinity, X = 1,

and CF−no wake will be a1. Therefore, the plots with no induced flow are straight lines

in this normalized space while curves with induced flow. This is because M(k) and

N(k) vary in a nonlinear fashion as shown in Fig. 3.2. For k > k0, the time-averaged

propulsive coefficient is always positive with or without wake effects. At z = −0.6

(Fig. 3.6), the wing will gain a larger propulsion with the existence of shed vortices;

at z = 0.9 (Fig. 3.6), the shed vorticity reduces the propulsive coefficient. This is a

result of the value of the Bessel functions in β0 and α1 at different z. For k < k0, the

propulsive force become drag, and the shed vorticity become the main contributor to

the drag force as k goes to zero.

Figure 3.6: Normalized time-averaged propulsive coefficient (with and without shed wake)

versus scaled reduced frequency k/(k + 1) at A/b = 0.2 and z = 0.6 (k0/(k0 + 1) ≈ 0.84).

The right plot is an enlarged view of the circle in the left plot.
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Figure 3.7: Normalized time-averaged propulsive coefficient (with and without shed wake)

versus scaled reduced frequency k/(k + 1) at A/b = 0.2 and z = 0.9 (k0/(k0 + 1) ≈ 0.78).

The right plot is an enlarged view of the circle in the left plot.

Figure 3.8 shows the time-averaged propulsive coefficients with and without wake as

functions of k0 (i.e., of π/z ) at given values of k = 23.56 and k = 11.78. Without

wake, one can see the oscillatory effect of k0 due to the Bessel functions in β0 and

α1. When J0(k0) is zero, J1(k0) is very close to its extreme; when J1 is zero, J0 is

at its extreme (J ′0 = −J1). Thus, the peaks in Fig. 3.8 are at the maxima of J0

(J1 = 0 and all β0), and the minima are when J0 = 0 (all α1). Because the regional

peaks of J0 decrease with k0, the the regional peaks of CF decrease with k0 for the

case of no inflow. With inflow, the peaks are smoothed out because λ0 couples the

lift through phase shift. Nonetheless, the propulsive force still diminished with k0.

Particularly, at z = 0.569 and z = 1.3 the propulsive force of no wake effect is zero

and the wake alone contributes to the propulsion. At the case of no shed vorticity,

the optimum propulsion is at z = 0.82 (k0 = 3.83). Interestingly, C. elegans has

an average normalized wavelength of 0.62 for crawling (no propulsive force needed),

while it uses an average normalized wavelength of 0.88 for swimming (more propulsive

force required). Though, the shed vorticity may increase or reduce the the propulsive

force, it always consumes part of the total power for the motion.
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Figure 3.8: The time-averaged propulsive coefficient (with and without shed wake) versus

critical reduced frequency k0 = π/z at A/b = 0.2. The left plot is at k = 21.36, and the

right one is at k = 13.35. The peaks of time averaged propulsion only depend on k0 (or z).

Figure 3.9 shows the the power required for wing motion, the propulsive power, and

the lost power due to wake versus the quantity k/(k + 1) for A/b = 0.2 and z = 0.9.

(Each power is normalized by k(k+ 1) to facilitate the comparison.) One can see the

lost power due to wake is always positive. For k < k0, the power extracted from the

free-stream (the absolute value of CF ) is diminished by wake losses; and, for k > k0,

the power required for propulsion CP is reduced by wake losses. As k goes infinity,

the shed vorticity will consume up to 50% of the total power input.

We also look at how the change of wavelength will affect the powers for fixed k. As

shown in Fig. 3.10, A/b = 0.2 and k = 13.35. First, z has to be large enough that

k0 = π/z will be smaller than k to obtain a positive propulsion. Second, as z becomes

large, that is, k0 approaching to zero, the system requires more power input and less

percentage of total power will be used for propulsion. At a special care of z = ∞
(k0 = 0), only half of the total power input will be used for propulsion while the other

half will be consumed by the wake. Third, for k0 < k, the curve can be divided into

two sections of different slopes. For large z (small k0), the slope of powers verse k0 is

much steeper. The transition between the two sections is around k0 = 3 (z ≈ 1).
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Figure 3.9: Time-averaged power coefficients normalized to k(k + 1) versus k/(k + 1), at

A/b = 0.2 and z = 0.9 (or k0 = 3.49). CP is the power required for wing motion, CF is

propulsive power with wake effects, and CW is the lost power due to wake. The plot on the

right is an enlarged view of the circle in the left plot.

Figure 3.10: The time-averaged power coefficients verse critical reduced frequency k0, for

A/b = 0.2, k = 13.36. CP is the power required for wing motion, CF is propulsive power

with wake effects, and CW is the lost power due to wake.
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Figure 3.11 shows the efficiency of a flexible wing (including wake effects) as either

a propulsive device or an energy extraction device, based on Eq. (3.49). In the left-

hand panel of the figure, the critical frequency is taken as k0 = 3.83. For the case of

a propulsive device, k > k0, it is useful to plot power versus the normalized quantity

(k−k0)/(k+k0) as is done. The propulsive efficiency decreases from 1.0 to 0.5 as the

reduced frequency increases beyond k0 and approaches infinity. This implies that, at

the beginning of the sinusoidal motion from rest (small u0), the propulsive efficiency

will be 0.5, but the propulsive efficiency will increase as u0 becomes larger (and k

becomes smaller). The right-hand panel of Fig. 3.11 plots the efficiency ε versus k0

for a fixed value of k = 11.78. The part of the curve with k0 < k is the case of

propulsion. As in the right-hand panel, it varies from 0.5 to 1.0. The part of the

curve with k0 > k is for an energy extraction device, and the efficiency continuously

drops as k0 is increased.

Figure 3.11: The propulsive efficiency ε verse (k − k0)/(k + k0) (left) and k0 (right).The

left plot only shows when k > k0, that is (k − k0)/(k + k0) > 0 for A/b = 0.2 and z = 0.9.

The right plot shows the results for k = 11.78.

To obtain a high propulsive efficiency, the system has to operate at a small wavelength

z (large k0), but this also results in small propulsive power as shown in Fig. 3.10.

Thus, z ≈ 0.87, which is the average wavelength of swimming C. elegans, seems a

very reasonable wavelength that the system does not need too much power to operate

and has a relatively high efficiency.
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3.5 Summary

The propulsive force, lift and generalized forces of sinusoidal locomotion are presented

as dimensionless coefficients (normalized by 2πρbu20).

The coefficient of propulsion CF−with wake = CF−no wake
−∆CF , and

CF−no wake = (k − k0)kβ0
[
β0 cos2(kτ) +

α1

2
cos(kτ) sin(kτ)

]
, (3.50)

∆CF = (k − k0)
{

[(2λαβ0 − λ2α)k − (λ2α − λαβ0)k0] cos2(kτ)

+[(2λββ0 − 2λαλβ)k − (λββ0 −
1

2
λαα1 + 2λαλβ)k0] cos(kτ) sin(kτ)

+[−λ2βk + (
1

2
λβα1 + λ2β)k0] sin2(kτ)

}
. (3.51)

The coefficient of lift CL−with wake
= CL−no wake

−∆CL, and

CL−no wake = −(k − k0)
[
β0 cos(kτ) +

α1

2k0
(k − k0) sin(kτ)

]
, (3.52)

∆CL = −(k − k0)[λα cos(kτ) + λβ sin(kτ)] . (3.53)

The coefficient of pitching moment CL1−with wake = CL1−no wake −∆CL1, and

CL1−no wake =
(k − k0)

2k0

[
(
α1

k0
− β0)k − α1

]
cos(kτ) ,

∆CL1 =
1

2
(k − k0)[λα cos(kτ) + λβ sin(kτ)] .

The coefficient of bending moment CL2−with wake = CL2−no wake −∆CL2, and

CL2−no wake = 2
(k − k0)2

k20
(
α1

k0
+ β0) sin(kτ) . (3.54)

∆CL2 = 0 . (3.55)
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Where, k = ωb/u0 the reduced frequency, τ = u0t/b the reduced time, k0 = π/z,

β0 = (A/b)J0(k0), α1 = (2A/b)J1(k0), λα = Mβ0−Nα1/2, and λβ = −Mα1/2−Nβ0.
M and N are approximated as the following functions of X = k/(k + 1),

M(X) = 0.5−0.5(1−X)4−0.1X(1−X)2−0.152X(1−X)3+0.47X(1−X)4 , (3.56)

N(X) = −X ln(X)(1−X)3 + 0.0905X(1−X) + 0.609X(1−X)2− 0.686X(1−X)3 .

(3.57)

The time-averaged lift and generalized forces are zero. The time-averaged coefficient

of propulsion CF−with wake = CF−no wake −∆CF is

CF−no wake =
1

2
k(k − k0)β2

0 , (3.58)

∆CF =
k − k0

2

{
[2Mβ2

0 −Nα1β0 − (M2 +N2)(β2
0 +

α2
1

4
)]k

+(M2 +N2 −M)(β2
0 +

α2
1

4
)k0

}
. (3.59)

The time-averaged coefficient of propulsive power is

CF =
1

2
k(k − k0)β2

0 −
1

2
(k − k0)

{
[2Mβ2

0 −Nα1β0 − (M2 +N2)(β2
0 +

α2
1

4
)]k

+ (M2 +N2 −M)(β2
0 +

α2
1

4
)k0

}
. (3.60)

The time-averaged coefficient power required for the wing to performing the sinusoidal

motion is

CP =
1

2
k(k − k0)β2

0 −
1

2
k(k − k0)(Mβ2

0 −M
α2
1

4
−Nα1β0) . (3.61)

The time-averaged coefficient of power lost in wake is

CW = CP − CF−with wake =
1

2
(k − k0)2(M −M2 −N2)(β2

0 +
α2
1

4
) . (3.62)
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Chapter 4

Discussion

While the resistive force theory is derived for a steady propulsion when the propulsive

force is zero, our results can explain how a sinusoidal locomotion starts from the

initially still state. When a wing starts to wrap at a certain frequency f , the reduced

frequency k = ωb/u0 is very high because the moving speed u0 is very small, which

gives the wing a high propulsion. As the wing accelerates, u0 becomes larger and k

becomes smaller (for fixed frequencies f), which produces less propulsive force. If the

system requires additional propulsive force, the wing need to increase the undulatory

frequency f . This is common in nature when birds have to flap more to begin flight.

If the viscous force is negligible (at high Reynolds numbers), then when u0/(2b)

eventually reaches the wave speed fz, that is when k = k0 = π/z, the propulsive force

becomes zero which enables the system to keep moving at the speed of u0/(2b) = fz.

For viscous flows (small Reynolds numbers), the moving speed can not reach to the

wave speed because the propulsion from the potential flow is used to compensate for

the drag due to viscosity.

On the other hand, the cost of a high reduced frequency is the increase of the fluctu-

ation of all forces. At certain moments, there will be negative propulsive force, which

means the object might temporarily go backwards even though the time-averaged

propulsion is positive. We observed that swimming C. elegans slipped twice in the

moving direction over one undulatory period as shown in Fig. 4.1. Moreover, for

k > k0, the lift, pitching moment and bending moment are fluctuating with time.

The whole object will therefore move up and down, tilt to left and right, and bear

certain bending moment over one undulation period. This can explain the y-axis
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direction deviation of C. elegans we observed in Chapter 2 when it is in less viscous

fluids.

Figure 4.1: Both the state-space airloads theory and the experiments show back slips of

sinusoidal locomotion over one period under certain condition. Blue arrows point out the

negative propulsive force and slips.

The effects of shed vorticity are very important. First, the shed vortices can increase

or reduce the time-averaged propulsive force for k > k0. This depends on the phasing

of the inflow due to the shed wake. By adjusting the wavelength of the sinusoidal

motion, the wing can move around the shed vortices, and these vortices only apply

normal force on the wing surface which promote the propulsion. Similarly, at certain

wavelengths, the wing can undulate in a way in which there is only longitudinal

force on the wing, which become drag. Second, however, the shed vorticity smoothes

the effect of wavelength on the propulsive force at a fixed k. Without shed vorticity

effects, from z = 0.569 to 1.3, the time-averaged propulsion will go through 3 extrema

(shown in Fig. 3.8). This might cause great instability even if the wing slightly

changes the wavelength during the movement. In reality, the transition of time-

averaged propulsion respect to the wavelength should be as smooth as expected with

the existence of shed vortices. Last, though the shed wake might contribute to the

propulsive force, it always detracts power from the total power input to the system,

giving a propulsive efficiency between 0.5 to 1.0. The ideal case of 1.0 propulsive

efficiency is at k = k0 when there is no shed vorticity. Both high reduced frequency

k and large wavelength z will lead to a small efficiency with the limit of 0.5.
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Chapter 5

Conclusions

In this work, we quantitatively studied the locomotory gaits of swimming C. elegans in

Newtonian and non-Newtonian fluids. Numerical analysis of the videos of swimming

C. elegnas shows that its locomotion can be predicted by a sinusoidal function with

certain degrees of slippage. The statistic results of its locomotory gaits show that

fluid viscosity will reduce the undulatory frequency but not the velocity, while fluid

elasticity will reduce the velocity but not the frequency. However, the wavelength

of swimming C. elegans remains the same and is greater than the wavelength for

crawling. According the the resistive force theory, we found the ratio of resistive

coefficients Cn/Cl gets smaller for more elastic fluids.

For the cases of high Reynoalds numbers, we applied the state-space airloads theory to

the sinusoidal locomotion of a thin flexible wing in two dimensions. We have derived

the closed forms of propulsive force, lift, pitching moment and bending moment as

functions of time. We also gave the equations of the time-average propulsive force,

the power required to perform the sinusoidal motion, the power used for propulsion,

and the power lost due to wake. Our result shows that at a reduced frequency k

higher than k0 = π/z, a flexible wing can obtain a positive time-averaged propulsion

by performing sinusoidal motion. As k reduces to k0, the system approaches an ideal

steady state with efficiency of 1.0. Wavelength of the sinusoidal motion plays an

important role. It can greatly affect the time-averaged propulsion if there is no shed

vorticity, that at z = 0.569 and z = 1.3 there is no propulsive force; at z = 0.82, the

system can gain the optimal propulsion. It also affects the total power required to

perform the sinusoidal motion and the propulsive efficiency. The average wavelength

of swimming C. elegans z ≈ 0.9 seems a very reasonable that the system does not
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require too much power input and can move at a relatively high propulsive efficiency.

According to our results, the lowest propulsive efficiency of the sinusoidal propulsion

(k > k0) is 0.5, which still can be considered efficient.
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Appendix A

Proofs of Certain Identities

Involving Bessel Functions

Here we are going to show the derivations of following identities,

∞∑
n=1

nαn = −k0β0 , (A.1)

∞∑
n=1

nβn =
1

2
k0α1 , (A.2)

∞∑
n=1

n(α2
n − β2

n) = −k0α1β0 , (A.3)

∞∑
n=1

nαnβn = 0 , (A.4)

where k0 = π/z.

The values of αn and βn are

α0 = 0 , β0 =
A

b
J0(k0) ,

αn = −2A

b
sin(

nπ

2
)Jn(k0) , βn =

2A

b
cos(

nπ

2
)Jn(k0) , (n > 1) . (A.5)
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Definition of Bessel functions of the first kind with integer argument n [4] is

Jn(x) =
∞∑
m=0

−1m

m!(m+ n)!
(
x

2
)2m+n . (A.6)

One of the identities of Bessel functions of the first kindwe will use is

Jn(x) =
x

2n
[Jn−1(x) + Jn+1(x)] . (A.7)

Therefore,

∞∑
n=1

nαn = −2A

b

∞∑
n=1

n sin(
nπ

2
)Jn(k0)

= −2A

b

∞∑
n=1

n sin(
nπ

2
)
k0
2n

[Jn−1(k0) + Jn+1(k0)]

= −A
b
k0

[
∞∑
n=1

sin(
nπ

2
)Jn−1(k0) +

∞∑
n=1

sin(
nπ

2
)Jn+1(k0)

]

= −A
b
k0

{
∞∑
n=0

sin

[
(n+ 1)π

2

]
Jn(k0) +

∞∑
n=2

sin

[
(n− 1)π

2

]
Jn(k0)

}

= −A
b
k0

[
∞∑
n=0

cos(
nπ

2
)Jn(k0)−

∞∑
n=2

cos(
nπ

2
)Jn(k0)

]
= −A

b
k0J0(k0)

= −k0β0 . (A.8)
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Similarly,

∞∑
n=1

nβn =
2A

b

∞∑
n=1

n cos(
nπ

2
)Jn(k0)

=
2A

b

∞∑
n=1

n cos(
nπ

2
)
k0
2n

[Jn−1(k0) + Jn+1(k0)]

=
A

b
k0

[
∞∑
n=1

cos(
nπ

2
)Jn−1(k0) +

∞∑
n=1

cos(
nπ

2
)Jn+1(k0)

]

=
A

b
k0

{
∞∑
n=0

cos

[
(n+ 1)π

2

]
Jn(k0) +

∞∑
n=2

cos

[
(n− 1)π

2

]
Jn(k0)

}

=
A

b
k0

[
−
∞∑
n=0

sin(
nπ

2
)Jn(k0) +

∞∑
n=2

sin(
nπ

2
)Jn(k0)

]
= −A

b
k0J1(k0)

=
k0
2
α1 . (A.9)
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∞∑
n=1

n(α2
n − β2

n) = (
2A

b
)2
∞∑
n=1

n
[
sin2(

nπ

2
)− cos2(

nπ

2
)
]
J2
n(k0)

= (
2A

b
)2
∞∑
n=1

n[− cos(nπ)]J2
n(k0)

= −(
2A

b
)2
∞∑
n=1

(−1)nnJ2
n(k0)

= −(
2A

b
)2
∞∑
n=1

(−1)nn
k0
2n

[Jn−1(k0) + Jn+1(k0)] Jn(k0)

= −(
2A

b
)2
k0
2

[
∞∑
n=1

(−1)nJn−1(k0)Jn(k0) +
∞∑
n=1

(−1)nJn(k0)Jn+1(k0)

]

= −(
2A

b
)2
k0
2

[
∞∑
n=0

(−1)n+1Jn(k0)Jn+1(k0) +
∞∑
n=1

(−1)nJn(k0)Jn+1(k0)

]

= −(
2A

b
)2
k0
2

[
−
∞∑
n=0

(−1)nJn(k0)Jn+1(k0) +
∞∑
n=1

(−1)nJn(k0)Jn+1(k0)

]
= (

2A

b
)2
k0
2
J0(k0)J1(k0)

= −k0α1β0 (A.10)

∞∑
n=1

nαnβn = −(
2A

b
)2
∞∑
n=1

n sin(
nπ

2
) cos(

nπ

2
)J2
n(k0)

= −(
2A

b
)2
∞∑
n=1

n
sin(nπ)

2
J2
n(k0)

= 0 . (A.11)
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