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ABSTRACT

In this paper we consider several approximation algorithms for the Steiner tree prob-
lem in an attempt to find one whose worst case performance is better than two times
optimal. We first examine Rayward-Smith’s algorithm to gain insight into why it has
worst case performance no better than two. Based on these ideas we propose several
new algorithms (approximation schemes). We eliminate from further consideration
those which we have been able to show have worst case performance that is still no
better than two. Then we conjecture that one of these schemes not only has improved
worst case performance, but is also the basis for a polynomial scheme. That is, given
an ¢ > 0 we conjecture that this scheme specifies a polynomial time approximation
algorithm with worst case performance within 1 + ¢ times optimal.
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New Approximation Algorithms for the Steiner
Tree Problem

Bernard M., Waxman

1. Steiner Tree problem

In this paper we consider polynomial time approximation algorithms for the Steiner
tree problem in graphs, which was shown to be NP-complete by Karp in 1972 [3].
Formally the Steiner problem in graphs can be stated as follows. Given

¢ a graph G = (V, E),
¢ a cost function C: E — RT,
e and a set of vertices D C V, called the set of terminal nodes,
find a subtree T = (Vr, Er} of G which spans D, such that the cost(T") = ¥, ez, C(€)

1s minimized. Throughout this paper we assume that each graph G(V, E) is connected,
and let

en = V]
«m = |E|
o and k = |D|.

We say that an approximation algorithm for the Steiner tree problem has worst
case performance within B times optimal if the solution produced for any instance
of the Steiner tree problem has cost no more than B times the cost of a minimum
Steiner tree. There are a large number of approximation algorithms [6] for deriving
solutions to the Steiner tree problem in graphs that run in polynomial time, though
none of these algorithm is know o have worst case performance better than twice
optimal. In fact, a number of researchers believe that no polynomial time approxi-
mation algorithm can do better that twice optimal assuming that P # NP. On the
other hand, we do not take this view and discus our search for an algorithm whose
worst case performance is better than two.
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MST(G, D,C) = 2z(k—1)
ecD, |[D=k%

OPT(G, D,C) = kz' = k(z -+ ¢)

Figure 1: MST approaches two times optimal

2. Approximation Algorithms Based on Distance

There are a number of algorithms whose operation is based only on the distance
between each pair of nodes in the terminal set. Of these algorithms MST [2] is perhaps
the most well known. It can easily be seen that no algorithm based only on this infor-
mation can have worst case performance better than two [1]. The simplest example
of an instance that illustrates this point consists of a graph with one nonterminal
node which when included in the Steiner tree yields a tree whose cost is reduced by
nearly a factor of two. (See Figure 1.) In the next section we consider in some detail
an approximation algorithm proposed by Rayward-Smith [4] (Rs), which attempts to
find such nonterminal nodes, but as shown in [5] RS still does not have worst case
performance better than two. We note that for the collection of instances used in [3],
to show that RS can have performance as bad as two, RS makes its choices based only
on the distances between nodes in the terminal set. This leads to the idea that if
there exists an approximation algorithm with better worst case performance it must
take advantage information in addition to the distances between terminal nodes.

3. Rayward-Smith’s Approximation Algorithm

The problem with MST and other similar algorithms is that they only consider the
distances between nodes in the terminal set D and do not consider the value to a
final solution of nodes not in D. Nodes outside of D important to a solution of the
Steiner tree problem are called Steiner points. More formally, given an instance of the
Steiner problem (G, D, C), we say that a node s is a Steiner point of T = (Vg, Er) if
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o s € Vp,
o s¢ D,
e and degr(s) > 3 ( degree in T).

Rs is of particular interest since it makes a systematic attempt to find potential
Steiner points. Even though, RS does not yield improved worst case performance
we will use it as the basis for a new collection of polynomial time approximation
algorithms. Thus, we look at RS in some detail.

The operation of RS is analogous to Kruskal’s algorithm in that at each stage RS
joins two subtrees. RS starts with a collection of singleton trees corresponding to
the set of terminal nodes D. Then at each stage RS joins a pair of trees by a path
between them. This is repeated until only one tree remains. In order to choose a pair
of subtrees and a path joining them Rayward-Smith defines a collection of functions
fe: V. — RT for each stage £, 0 < £ < k — 1. Using this function RS chooses a node
v such that f(v) is minimum and then joins two subtrees closest to v with a shortest
path through v. When it causes no confusion, we will drop the subscript. The nodes
v & D for which f has a minimum value are potential Steiner points.

In the algorithmic definition that follows the implied subscript £, 0 < £ < k—1 of
f indicates the £-th iteration of the do statement.

Derive the function dist: VxV — R,

Initialize 7 = {({v},0)|jv € D};

Vv € V create a list L, of trees T' = (Vr, Er) € 7 in ascending order by dist(v, T);
Here dist(v, T") = min, ey, {dist(v, u)}.

do |T|>1—
Yo €V — flv] i= val(v);
Choose a vertex v that gives a minimum value for f(v);
Tg = L.U[O], T]_ = Lu[l];
Join T and Ty with a shortest path through v to form 77;
T = (T — {Tp, L HU{T"};
Vv € V calculate dist{v, T");
Vv € V update L,

od;

The total running time for RS is O(n®).

Of course the crucial part of this heuristic is the calculation of f. We first define

fe.

0<r<|T|

fo(v) = min {1/r§di5t(v,m} (1)

where T; = L,[i], after £ executions of the do statement. Note that L, is a list
of subtrees currently in 7 listed in nondecreasing order by their distance from v.
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To calculate f(v) we can evaluate the sums beginning with » = 1 continuing until
dist(v, Tr41) 2 1/r 7o dist(v, T;) . Note that to reorder each L, after the set 7 has
been modified we need only remove two trees from the list and insert the new tree in
the appropriate spot. We now give an algorithmic definition for the function val.

function val(node u)
f = g = dist(u, L,[0]) + dist(u, L,[1]); r:=2;
do f > dist(u,Ly,[r]) andr < |T] —

g = g +dist(u, L,[r]);
f= g/r
ri=7r+1
od;
return
end val;

The total running time for val is O(k)

When we talk about the value of » associated with the function f, we are referring to
the value of r in Equation 1. Note that the value of » on exiting function val is one
more than this value.

4. Approximation Algorithms with Improved Worst Case Per
formance?

In this section we present several schemes for creating polynomial time approximation
algorithms for the Steiner problem in an attempt to find ones which have worst case
performance better than two. We first look at two exact algorithms which we employ
as a subroutine. After that we consider several approximation algorithm schemes
which looked promising but turn out to have worst case performance no better than
two. These algorithms are worth considering in order to discover what techniques
will not work and for insight into other promising techniques. Finally we present a
scheme which we conjecture has worst case performance better than two.

4.1. EMST and EXACT

MsT can be used to create an exact algorithm, EMST, if MST is given the Steiner
points of an optimal solution along with the set of terminal nodes. The following
remark is used as the basis for EMST.

Remark 4.1 If k = |D|, then any minimum Steiner tree T for D will contain at
most k — 2 Steiner points.
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This can be shown by using a few simple facts. First, given a graph T(V, E) the
sum of the degree of each node in V is 2m, where, as usual, m = |E|. Thus, if T is
a tree, this sum is 2(n — 1), n = [V]. Second, if T is a minimum Steiner tree, T can
have at most k leaf nodes, i.e., nodes from D. Thus, all other nodes in T will have
degree at least 2. If we let s be the number of Steiner points (degree at least 3) we
get the following inequality

k+3s4+2(n—k—s) < 2(n—1).
Solving for s we get s < k — 2.

We now give an informal description of EMST. Given an instance of the Steiner
problem (G(V, E), D, C), apply MST to sets DU X for all possible X C V — D where
| X| <k —2. Of all trees constructed in this manner those with minimum cost will
be minimum Steiner trees.

Based on EMST we define a function EXACT (algorithm) which we use in the ap-
proximation algorithms below. Given a set of subtrees S generated as partial solutions
to an instance of the Steiner problem, EXACT finds 2 minimum tree connecting the
members of 5. That is EXACT treats the subtrees of S as if they were single nodes. In
the following the function dist has three meanings depending on its parameter types.

1. dist(node u, node v) is just the length of a shortest path.

2. dist(node u, subtree T') is the minimum distance between v and any node in
T as defined for Rs.

3. dist(subtree T}, subtree 7j) is is the minimum distance between any pair of
nodes, one from each tree, i.e.,

dist(7;,T3) = ueﬁ%Tjdist(u,v).

Types (2) and (3) of the function dist can be maintained incremently in any algorithm
which uses EXACT.

We now proceed with an algorithm for EXACT. Let V(S) represent the set of all
nodes in the elements of S. Assume that the function dist and the graph G(V, E)

are global to EXACT, and assume that there exists a bijection M: V(G s) Bwus
where Gw,g is a complete graph with |[W| + |S| nodes.



6 APPROXIMATION ALGORITHMS

Tree function ExacT(foreset )
doWCV-V(S)and |W|<|S]|—2 —
Create the complete graph Gy g;
where each node is identified with a distinct element of W U §
and the dist(u,v), u,v € V(Gw,s) = dist(M(u), M(v)).
Tw,s := minimum spanning tree of Gws
od;
Choose a tree 7" with minimum cost among all Ty g;
Expand " to a subtree T of G;
return T
end EXACT;

The running time for EXACT is O(kn*), which is polynomial if we bound the
maximum value of k. Note that here k = |S|.

Along with EXACT we define a new cost function

cost’'(T,8) = cost(T) — Y cost(t)

ies

which returns the cost of joining the subtrees of § without including the cost of the
edges within each subtree.

4.2. N-TREE Approximation Algorithms

As a first attempt to find polynomial time approximation algorithms which have
worst case performance better than two, we define a collection of N-TREE algorithms.
The basic idea here is to begin with a collection of singleton trees 7° consisting of
the nodes in D. At each stage of the algorithm we find a minimum tree joining each
subset of V subtrees from the collection 7.

Initialize 7 := {({v},0)|v € D};

do [T} >N —
VS C T such that [S|=N — Ts := EXACT(S);
Select Sy, so that cost’'(Ts,,, Sm) = minsc(cost'(Ts, S));
T = Tg ;
T :=(T — $.)U{T"}

od;

if|7] > 1 — T = {Exact(7)} fi

The running time for N-TREE is O(’“";VJO(EXACT)), and for || < N EXACT can
be implemented with O(Nn") running time. Therefore, N-TREE is O(AN¥t1n¥). Of
course if we are clever we can do better, but this enough to show that N-TREE runs in
polynomial time for fixed N. If we set N = 2, we have the 2-TREE algorithm which
is a variation of MST. So, the 3-TREE algorithm is the first algorithm we considered
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in our search for improved worst case performance. As illustrated in Figure 2 the
3-TREE heuristic has worst case performance as bad as two. If each pair of terminal
nodes adjacent with a distinct nonterminal is expanded to include N — 1 terminal
nodes, this example will then indicate that N-TREE has worst case performance as
bad as two for any fixed N > 2.

ei 26/“\‘6 26}'\@ ?K.e

3-TREE solution Minimum Steiner tree
cost = k(l4¢€)—1 cost = gk+1)2g1+3e) e

Figure 2: 3-TREE approaches two times optimal

The problem with the N-TREE algorithm is that a number of very short edges can
result in a situation in which N-TREE is essentially equivalent to MST. In effect, the
N —1 nodes in each cluster act as a single node negating any advantage that N-TREE
has over MST.

A variation N-TREE' is the same as N-TREE excep$ that instead of setting 77 := T,
we let T” be the tree formed by joining two elements of 3,, which are connected by a
shortest path in T, . 3-TREE’ finds an optimal solution for the example in Figure 2,
but still has worst case performance as bad as twice optimal as illustrated in Figure 3.
In this example edges = 1,2,...,k, in the upper part of graph G, have cost 1 + ¢;,
and all edges in the lower part have cost 1+€y;. Here¢; = 2¢;_; for 1 < ¢ < k+1, and
0 < & < 1/2*. This example can be extended to any value of N > 2 by substituting
groups of N terminal nodes for each group of three terminal nodes adjacent with a
distinct nonterminal node.
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Graph G
3-TREF solution Optimum solution
cost = 2(k~1)—1+4 €1 — & cost = k(1 -+ €xq1)

Figure 3: 3-TRER’ approaches two times optimal

One other variation of N-TREE we call N-TREE" is similar to N-TREE’ except that
we maintain a list L of paths from each tree T, selected by N-TREE" which connect
distinct subtrees of 7. At each stage of N-TREE” we check the cost of the minimum
path in L. If one of these paths has a cost that is less than cost(Ts, )/(V — 1) we
join the two subtrees connected by that path otherwise we make the same choice as
is made by N-TREE'. Of course, we maintain the list by deleting any path that does
not join two distinct subtrees in 7. For N > 3 we know of no example to show that
the worst case performance of N-TREE” is not bounded by a value less than two. We
believe that N-TREE" warrants further investigation as a possible candidate for an
approximation algorithm with worst case performance better than two.

4.3. RS-N

In this section we define another collection of approximation algorithms, this time
based on RS. The basic idea is to restrict the value of r in RS so that each decision to
join a pair of subtrees is based on a collection of ai least N > 2 subtrees. Informally,
at each stage we evaluate the normalized cost for joining each subset of size N along
with the RS function for » > N. Among all of these choose the minimum value and
join two subtrees from 7 based on this choice. Next contract the resulting subtree
to a single node. When 7 consists of a single tree T, expand T to create a Steiner
tree. We believe that RS-N has significant potential of having worst case performance
better than two.
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Rs-N makes use of two functions to determine which two subtrees to join at each
stage of the algorithm. The function f¥W is very similar to that used by RS except
that we require r > N. We define f™ as follows

M) = mi ~ ai :
F(v) N { 1/» g dist(v, T3) } (2)
where each T; = L,[i]. Refer to the definition of RS for details. The second function
h:S — Rt where S C 7 gives the cost of the tree returned by the algorithm

EXACT.
cost'(EXACT(S), S) (3)
N-1

hS) =

We are now ready to define RS-N for N > 2.

Create a collection of single node trees 7° consisting of the nodes in D;
Initialize dist and L,, Vv € V exactly as is done in RS;

do |[T|> N —
Choose a vertex v € V — V(7') that gives a minimum value for fiM(v);
hrin 1= 00 Spin = ¥

do SC7 and |S|=N —
if h(S) < Pppin. —
banin = R(S);  Smin = S

od;
if by < f[N]('U) —
Set Thin = EXACT(Simn);
Select trees T, T1 € Smin Which are closest in Tiyp;
Join Ty and T by the path in Ti;, to form 7
[ f[N](U) < hmin —
To := L,[0}; Th = L,[1];
Join Ty and T with a shortest path through v to form 77
fi;
T = (T — {To, L })V{T'}
Yo € V calculate dist(v, T);
Vv € V update L,;
VT € T calculate dist(T, T")
od;
if|7] > 1 - T := {exact(7)};

Rs-N has running time O(AV*+n¥ + n?), which is polynomial for fixed N. Note
that Rs-2 is equivalent to RS even though RS-2 is not as efficient as RS. At this
point we are not concerned with finding an efficient implementation but only with
finding a polynomial time approximation algorithm which has improved worst case
performance.
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We note that MST and RS are guaranteed to give an optimal solution when & = 2
but not for any larger values. On the other hand, RS-N, N-TREE and its variants are
guaranteed to give optimum performance for values of £ up to and including N. Of
course this does not gives tell us anything about the worst case performance, as the
results for N-TREE have demonstrated.

5. If P # NP is Two the Best Bound?

Several researchers including ourselves have tried to prove the no polynomial time
approximation algorithm for the Steiner tree problem in graphs can have worst case
performance better than twice optimal if P # NP. At this time, as far as we know,
no one has been able to prove such a result. In fact we suspect that there are
approximation algorithms which have worst case performance better than two. We
believe that RS-N has worst case performance better than two for N > 2. We present
the following conjecture.

Conjecture 5.1 For any instance of the Steiner tree problem (G,D,C), the ap-
prozimation algorithm RS-N produces a solution that is within ﬁg—f times optimal for

N > 2. Further more, FIEI 15 a tight bound.

This conjecture is clearly true for N = 2. In addition we have not found any
counter example to the comjecture for N = 3 and have found a class of problem
instances for which the performance of RS-3 approaches 3/2. Of course this is a long
way from proving the conjecture or even proving that any algorithm has worst case
performance better than twice optimal.
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