Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-89-11

1989-03-01

Dynamic Steiner Tree Problem

Makoto Imase and Bernard M. Waxman

This paper proposes a new problem, which we call the Dynamic Steiner Tree Problem. This is
related to multipoint connection routing in communications networks, where the set of nodes to
be connected changes over time. This problem can be divided into two cases, one in which
rearrangement of existing routes is not allowed and a second in which rearrangement is
allowed. In the first case, we show that there is no algorithm whose worst error ratio is less than
1/2 log n where n is the number of nodes to be connected. In the second case, we present an...
Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Imase, Makoto and Waxman, Bernard M., "Dynamic Steiner Tree Problem" Report Number: WUCS-89-11
(1989). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/724

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F724&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F724&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F724&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F724&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F724&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/724?utm_source=openscholarship.wustl.edu%2Fcse_research%2F724&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/724

Dynamic Steiner Tree Problem

Makoto Imase and Bernard M. Waxman

Complete Abstract:

This paper proposes a new problem, which we call the Dynamic Steiner Tree Problem. This is related to
multipoint connection routing in communications networks, where the set of nodes to be connected
changes over time. This problem can be divided into two cases, one in which rearrangement of existing
routes is not allowed and a second in which rearrangement is allowed. In the first case, we show that
there is no algorithm whose worst error ratio is less than 1/2 log n where n is the number of nodes to be
connected. In the second case, we present an algorithm whose error rate is bounded by a constant and
rearrangement is relatively small.

https://openscholarship.wustl.edu/cse_research/724?utm_source=openscholarship.wustl.edu%2Fcse_research%2F724&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/724?utm_source=openscholarship.wustl.edu%2Fcse_research%2F724&utm_medium=PDF&utm_campaign=PDFCoverPages

DYNAMIC STEINER TREE PROBLEM

Makoto Imase

Bernard M. Waxman

WUCS-89-11

March 1989

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 83130-4899

ABSTRACT

This paper proposes a new problem, which we call the Dynamic Steiner Tree Problem.
This is related to multipoint connection routing in communications networks, where
the set of nodes to be connected changes over time. This problem can be divided into
two cases, one in which rearrangment of existing routes is not allowed and a second in
which rearrangment is allowed. In the first case, we show that there is no algorithm
whose worst error ratio is less than % log n where n is the number of nodes to be con-
nected. In the second case, we present an algorithm whose error ratio is bounded by a
constant and rearrangment is relatively small.

Makoto Imase is with NT'T Software Laboratories. This work described here was per-
formed while on leave at Washington University,

This work supported by Bell Communications Research, Italtel SIT, NEC and
National Science Foundation (DCI-8600947).

Dynamic Steiner Tree Problem

Makoto Imase and Bernard M. Waxman

1. Introduction

With the growth of interest in flexible multipoint communications networks for sup-
porting a wide class of applications, the importance of routing technique for mul-
tipoint connections is being emphasized [1,2]. Routing a multipoint connection is
typically treated as the problem of finding the shortest subtree of the network con-
taining a set of nodes, called a terminal node set. If the terminal node set is known
in advance and does not change, this problem is a classical problem in graph theory,
the Steiner Tree Problem (ST), which has been studied extensively [3,4] including the
implementation of a distributed algorithm [5].

In order to support some services, for example video broadcasts and multi-person
conferences [1], we need facilities for adapting to changes in the terminal node set.
There are relatively few studies dealing with this problem [6] in spite of its practical
importance.

This problem, which we call the Dynamic Steiner Tree Problem (DST), comes in
two flavors, one in which rearrangement of existing routes is not allowed and a second
in which rearrangement is allowed. In the second case, we consider the number of
rearrangements in addition to the cost of a generated tree.

This paper considers algorithms for DST mainly focusing on the worst case error
ratio of the generated trees relative to minimum Steiner trees (Topr). After the
formal definitions of these problems in Section 2, Section 3 shows that in the non-
rearrangeable case there is no algorithm whose worst error ratio is less than %log n,
where n is the cardinality of a terminal node set. Section 4 proposes an algorithm
for the rearrangeable case whose error ratio is bounded by a constant with relatively
little rearrangement.

2. Definition

In DST we are given a graph G = (V, E), a cost function cost: E — Rt and
a sequence of requests B = {r,,71,...,7%,...,Tx}, where each r, is a pair (vg, pr),

v € V, pi € {add, remove}. Bach request is to add a node to, or to remove a node
from, a connection. We let S, =

{vi | (v, add) = r; for some i (0 < i < k), (vi,remove) # r; for any j (i < § < k)},

and refer to Sy as a terminal node set at Step k.

The object is to find a minimum cost tree connecting terminal nodes in Sy, for each &
without knowledge of r; for any § > k. This problem can be divided into two cases. In
the first case, once a particular set of edges has been used in a route, no rearrangement
is allowed as the algorithms proceeds. In the second case, rearrangement is allowed.

Problem 1 (DTS-N) Given an instance (G,cost,R), find a sequence of trees,
{T1,T3,...,Tx}, satisfying the following conditions and minimize some cost func-
tion, for ezample 3 cost(T}):

1. Each T spans Sy,.
2. Ifry is an add request, Ty, includes Ty,_; as a subgraph.

3. If ri, is a remove request, Ty, includes Tj,.

Conditions 2 and 3 imply that edges and nodes are added to a tree only for an add
request and removed only for a remove request.

In the rearrangeable case, we also minimize the rearrangements to get 7T} from
Tk-1. In other words, we want to find an algorithm minimizing the cost of generated
trees and the modification. Two operations, a primitive path deletion and a primitive
path insertion, which correspond to point-to-point call connection and deletion, are
defined to measure the number of rearrangements. In deleting a subgraph p from T,
if p is a (simple) path and every intermediate node in it is neither a terminal node
nor a Steiner node, the operation is called primitive path deletion. A Steiner node
is a node in T having degree larger than 2. In adding a subgraph p of & to T, if
p is a path and every intermediate node in it is not contained in T', the operation
is called a primitive path insertion. Any modification to T is restricted to primitive
path deletions and insertions. Then the number of rearrangements ay at step k is
defined as follows:

e If 4 is an add request, oy is the number of primitive path deletions necessary
to get T} from T_1.

e If ry is an remove request, oy, is the number of primitive path insertions necessary
to get T} from T}_4.

Problem 2 (DST-R) Given an instance (G, cost, R), find a sequence of trees, {T}}
(k= 1,2,...K) where each T}, spans Sy and minimize some cost function and some
Junction of the {a;}, for ezample T ou,.

3. Non-rearrangeable Case

We first consider the worst case performance in terms of the error ratio for DST-N
restricting our attention to the case where each request is an operation.

We begin by defining graphs Gy, € Z5 and a constant cost function ¢, on the
edges of Gi. Gy = K3, the complete graph with two nodes, where its single edge has
a cost of 1. We name the two nodes vy and vg,1 and refer to them as level 0 nodes.
Graph G, for x > 0 is defined using graph G,.;. For each edge (u,v) in G._; we
introduce a pair of nodes e, § and replace (u,v) with two paths (u, a,v) and (u, 8, v).
We refer to the nodes e and 8 as level « sister nodes. Each edge in G is then assigned
a cost of 27", Note that v, and o, will be connected by (simple) paths of cost 1.
(See Fig. 1.)

Level Level
0 0
2
1 1
2
a 0

Figure 1: Example of Gy,

We say that two nodes u,v € V(G,) are i-adjacent, 0 < 1 < & if the level of both
% and v is no more than 7 and there is a path from u to v which has no intermediate
node from level 7, 7 < ¢. That is the corresponding nodes in graph @; would actually
be adjacent. Note that exactly one of two i-adjacent nodes must be a level ¢ node
and that the distance between i-adjacent nodes is 2.

Lemma 3.1 In graph G;, 1 > 1,

1. each level ¢ node o is adjacent to exzactly two nodes, node v ot level 1 — 1 and
node u at level j, 0 < j <i—1. In addition node o has a sister node B at level
v which is also adjacent to both u and v.

Figure 2: Level { Sister Nodes

1i. each level i — 1 node v is adjacent to exactly four level i nodes, consisting of two
sister pairs.

Thus, in graph G, £ > 1, (i) and (i) hold if the term adjacent is replaced by -
adga‘.cent

Proof This lemma follows by a simple induction on 7 based on the recursive definition
of G;. Figure 2 illustrates the properties described here for two sister pairs ¢, 8 and
o, 8" in graph G;. | |

A sequence of node sets N = {Ny, Ny,..., N} is called a s-sequence for graph
G, if there exists a path p from vo g to o, such that N; is the set of Ievel ¢ nodes
in path p. Note that No = {vop,vo:}, that |[N;| = 21 for 0 < i < % and that
UEEN; = V(p) the set of nodes in path p. We now define a minimal tree sequence
T = {To, T, .. ,T'.} for graph G, with respect to a #-sequence N. To is any tree
that spans the nodes in Np such that no proper subgraph of T also spans N, T,,
0 < ¢ < & must contain tree T:_; as a subgraph and all of the nodes in N; from the
x-sequence N. The requirement that 7} is minimal means that no subgraph of 7% also
satisfies these properties.

In the next lemma we consider a minimal tree sequence {T} constructed by an
algorithm, which generates each T; based only on knowledge of T:_y and N;. We
choose the terminal nodes for each N; based on 1 —1, ¢ > 0 in order to make the cost
of each T} as large as possible. Restricting N to a x-sequence insures that there exists
a minimum Steiner tree for the entire terminal set with cost 1.

Lemma 3.2 Given a graph G, & € 23 . and any algorithm A which consiructs a
mimamal tree sequence, where each tree T; is generated based only on knowledge of

4

A

I;_1 and N;, there exists a k-sequence N such that the minimal tree sequence for N
satisfies the inequality

cost(f’.;) > 1+-;-z' (1)

Joralli, 0 <4 < k.

Proof: We prove this lemma for each 7%, 0 < i < & by induction on 2. Inequality (1)
clearly holds for ¢ = 0 since the distance from Vo0 t0 vp 7 in Gy is 1. If we choose N,
so that it contains the level 1 node not in 7, then cost(Tl) > 1.5. Note that there
is a path of cost 1 in G, that contains all nodes in N, and Ny, so that Ny, N7 is an
initial segment of some s-sequence.

Let us now assume that (1) holds for every 5, 0 < j < ¢ where 1 < ¢ < & and that
Ny, N1,...,Ni_; is an initial segment for some K-sequence. Since Zﬁ'i;__lh 1% a minimal
tree each leaf node must be in one of the N; and there are no cycles in T;_;. Consider
a node v from N;_;. Node v is i-adjacent to exactly four nodes at level ¢ consisting of
two sister pairs by Lemma 3.1 (ii). If Tj_; contains both nodes of a level 4 sister pair
then f}__l has a cycle or a leaf node at a level greater than ¢ — 1. But this contradicts
the minimality of T;_;, hence T;_; can contain at most one of the nodes from each
sister pair adjacent to v.

For each node v € N;_; we select one node from each sister pair of v, that is not
in T;.1, to place in N,. Note that if there is a path of cost 1 which contains all nodes
from every N;, 0 < j < ¢ then there is a path of cost 1 which also contains the nodes
in N;. The cost of a shortest path from each of the nodes in N: to a node in T;_y will
be 2-° since each is 1-adjacent to a node in N;_; and every leaf node of T._; must be
at a level no greater than ¢ — 1. All the nodes we select for N; are distinct since each
is 1-adjacent to only one node at level + — 1 by Lemma 3.1 (i). Since |N;_,| = 2i-2
we will have selected 2! level i nodes to include in N;, and N; will contain all level
¢ nodes along a path from v to vp 1. Thus, it follows that cost(T;) 2> cost(T5-1) -+ %
and that Ng, Ni,...,N; is an initial segment for some k-sequence. [

Using Lemma 3.2 we derive a lower bound for the best possible worst case error
ratio given any algorithm for DST-N.

Theorem 3.1 Given any algorithm A for DST-N there is an instance of the problem
(G,cost,R) such that for alli, 0 <i < K

cost(T)

sy 2 L+ 5l -) 2)

where {T;,0 < ¢ < K} is the sequence of trees generated by algorithm A and n; = |S;|.
Here Topr s a minimum Steiner tree for S;. Furthermore this bound holds even if
each request is restricted to node addition.

Proof: We consider an instance of the dynamic Steiner problem (G, ¢x, R) where
R = {(u;,add),0 < i < 2%}, all u; are distinct with Ug = Voo and for ¢ > 0 u; €
Nj, 7 = [lgi] for a k-sequence N. At steps ¢, 27 <i < min(27+,2% + 1) for 0 < 7 < &
the solution, generated by any algorithm A, must contain some minimal tree QA"J .
Note that a minimum Steiner tree for nodes in the sequence N has cost 1 by the
definition of a k-sequence. By Lemma 3.2 we can construct a s-sequence so that
cost(7}) > 14 1/2;7. This gives us a lower bound on the worst case performance of
any algorithm without rearrangement and the theorem follows. |

We present a simple dynamic greedy algorithm (DGA) for DST-N which has per-
formance within two times the best possible bound in the case where each request
i1s restricted to node addition. For each add request Daa joins the new node by a
shortest path to a nearest node already in the connection. In the case of a remove
request a terminal node is dropped by simply deleting the portion of the connection
which serves only that terminal node. See Fig. 3 for complete details.

To := ({vo}, ¢); So = {vo}; kb = 1;
do k<K —
if i, is an edd request —
Choose the shortest path py from v to Tr_q;
Ty = Ty U pi;
Sk 1= Sp_1 U {vi} and increment k by one;
| 7 is a remove request —

Sk 1= Spo1 — {urh

T = Tpy;

do V(T}) — Sy contains node w with degree 1 —
Ty =T, — w;

od

od

Figure 3: Dynamic Greedy Algorithm (DGa)

Theorem 8.2 For any instance (G, cost, R), of DST-N let {T,, 0 < k < K} be a
sequence of trees generated by DGA and let ny, = |Si|. Then if each v+ is an add
request

cost(T})
_ 1 3
cost(Topt) — 8(n) (3)
foro<k<K.
Proof: Let vo,vay,- -+, Vays- - -, Ve, be a preodering of the tree T, for the node set

Sk with root vg, that is, we list a node the first time we visit it during a depth-first

6

traversal of T, from vo. First construct a new graph L, which consists of a path from
vy to v;, joining v, and v,,,, for 0 < i < k by an edge with cost dis(Vas Vagyrs Tope)-
In the case of i = , join v,,, and v, with cost dis(vg;, vo; Top:). Then the cost of this
path, cost(Ly), is equal to twice of the cost of Topt, because the depth-first traversal
visits every edge exactly twice.

In Ly, let I,, be the distance from v; to the nearest node whose subscript is less
than , that is,
by, := 1:(123;1 dis(v;, v;; L).
1<

Since dis(vi,v;; @) < dis(vi, vj; Tope) = dis(v;, v5; Ly,) and the node v, is contained in

=13

cost(p;) < I, for 1 <<k
where p; is the path selected by DGA to join v; to tree Ti;_y. If we show that

é I, < l'g(Lz—f—wl—)-cost(Lk) (4)

the proof will be completed because n; = &k + 1 and

k k
cost(Ty) = Zcost(p.;) < le and cost(Ly) = 2cost(Tp).

1=1 i=1
In the remainder of the proof we show that (4) holds for any path Ly.

Given nodes, v; and v;, the path between them in Ly is denoted by L(vi,vy). Let
sum(L(v;, v;)) be the summation of I, where z is an intermediate node in L{v;,v;).
If the subscript of every intermediate node is larger than ¢ and 7, this path is called
reqular. Note that Lj is also denoted by L{vg,v,) and is regular. Let v, be the
intermediate node in L(v;,v;) with the smallest subscript. If L(v;,v;) is regular,
Ly, = min{dis(vy, v;), dis(wv;, v;)}. Furthermore both L(v;,v;) and L(w;,v;) are regular.

Thus, for a regular path L(w;,v;), the summation sum(L(v;,v;)) is calculated by
a recursive function as follows:

min{dis(vy, v;), dis(vy, v;)} + sum(L(v;, v1)) + sum(L{vy, v;))
sum{ L{v;, v;)) = if vy € L{vg,v;)
0 Zf U E L(‘U.;,’Uj)
(5)

where v; is the intermediate node with the smallest subscript.

Let L(v;,v;) be a regular path whose end nodes are v; and v; and let m be the
number of intermediate nodes. The following inequality will be shown by induction
on m,
lg(m + 1)

sum(L{v;, v5)) < 3

dis(v;, v5) (6)

which implies (4).

l.m=20
From the second case of Eq. 5, it is clear that (6) is valid.

2.m>0
Assume for any regular path with m' intermediate nodes (m’ < m), (6) holds.
Let v; be the intermediate node whose subscript is less than that of any other
intermediate node and let x, 2, and @, be dis(v;, v;), dis(vi,v;) and dis(v;, v;),
respectively, then z = 2; + z5. From Eq. 5,

sum(L(v;, v;)) = min{zq, 25} + sum(L(v;, v1)) + sum(ZL(v;, v;)) (7)
As we can assume z; < z, without loss of generality,
sum(L(vi, v;)) = @3 + sum(L(v;, v;)) + sum(L(wv, v;)). (8)

Let my and my be the number of intermediate nodes in L{v;,v;) and L{vi,v4),
respectively, then my + ms; = m —~ 1, which implies m; < m and ms < m. By
the inductive hypothesis and Eq. (8)

1 1 1 1
2y 4 g(m;+)m1 + g(m;+)m2
lglrma +1)_, lgm = m)
2 2
Let g{mi,z1) be the right side of this inequality, where 0 < m; < m and 0 <
21 < z/2, then

sum(L(v;,v;)) <
= 1+ (:1: — .'1’:1).

sum(L(v;,v;)) < max{g(my,0), g(my,z/2)}

because g is a linear function of z;.

9(m1,0) = Zlgm—m) < Zlgm < Zlg(m+1) (9)

o(me,z/2) = 2(2+1g(ms +1) +Ig(m — m,)) (10)

= Zlg2y/(m1 + 1)(m —ma) < Tig(m + 1) (11)

Thus, sum(L(v;,;)) is not larger than xlg(m + 1)/2. u

We now consider the general case of DST-N where we allow both the addition and
removal of nodes. In this case the situation is even worse. In the next theorem we
show that any algorithm for DST-N has worst case performance that is unbounded as
a function of the number of terminal nodes in the solution tree.

Theorem 3.3 Let A be any algorithm for DST-N, and let {Ti, 0 < i < K} be a
sequence of trees generated by A for an instance (G, cost, B) of DST-N. Given any
M, £ € Z* there eaists an instance (G, cost, R) of DST-N, and an integer 5 € Z+ such
that
cost(T;)
cost(Tpps) —
for j <4 <7+ £ independent of the number of terminal nodes at step 1.

M (12)

8

Proof: Let graph G contain cycle Cpryp with M 42 additional nodes, let each edge in
Chry2 have cost 1, and let every node in the cycle be connected to a distinct node not
in the cycle by an edge of cost e. Let the set R cousist of an initial sequence of M + 2
add requests, one for each node in Cpsys. Let the next M steps remove each node of
degree 2 in Tpryq to create T}, where j = 2M +1. Thus, the cost of T; is M + 1 while
an optimal solution has a cost of 1. For the remaining steps we alternately add and
remove one of the nodes connected to a leaf node of T;. We assume that the value of
¢ 1s sufficiently small so that (12) holds. |

If we relax our definition of DST-N so that the solution at each step need not be a
tree, Theorem 3.3 no longer holds. However, 1+ L[lg(n; — 1)] is still is a lower worst
case bound on the error ratio even with this modification.

4. Rearrangeable Case

For a given graph G = (V, E) and a cost function cost, we can define a complete
graph G’ = (V', E') with cost’ where V = V', E = {(u,v)|u,v € V} and cost'(u,v) =
dis(u,v; G). The optimum Steiner tree for @' is the same as that for &, and vice
versa. Further cost function cost’ satisfies the triangle inequality, that is, cost’(u,v) <
cost'(u, w) + cost’(w,v) for any u,v,w € V. In this section in order to simplify the
explanations we assume the input network @ and cost is a complete network satisfying
the triangle inequality. We call this graph a distance graph. The results obtained
remain valid even without this assumption.

4.1. Fdge-Bounded Tree

If we do not consider the number of rearrangements, problem DST-R is treated as ST
for each instance (G, cost,S;), which is an NP-hard problem. As a starting point,
we apply the Minimum Spanning Tree Approximation Algorithm(MsTa) for ST [7].
MSTA is one of the most well known heuristics for the Steiner Tree Problem, because,
in spite of its simplicity, it has the best worst case behavior among all the known
heuristics; the minimum spanning tree Thysr produced by MSTA has a cost that is
never more than twice optimal. Thssr is the minimum spanning tree for the subgraph
induced by S;.

However if we apply MSTA to DST-R, the number of rearrangements would be
very large. For example, in the case of the graph shown in Fig 4, the number of
rearrangements for each Step k is k, which implies we may have to change every
edge.

While MSTA generates Thser as a solution, the algorithm proposed is based on a 6
edge-bounded tree defined below.

cost(vs,vj) =1~ (¢ — 1)e
where ¢ > 7.
R = (vg,add), (v, add),
ey (vEe, add),

Figure 4: Example for Maximum Number of Rearrangements

Definition 1 Let u and v be nodes in T'. If u and v satisfy the following condition,
they are called a § edge-bounded pair,

For all e € p(u,v;T), cost(e)<§-cost(u,v), (13)

where p(u,v; T') is the set of edges on the path between u and v in T

Further if every pair of nodes in T is § edge-bounded, T 1is called a & edge-bounded
iree.

A tree generated by MSTA is a § edge-bounded tree with § = 1. Thus, the § edge-
bounded tree can be viewed as a generalization of Thsgr.

To explain our algorithm, another definition needs to be introduced.

Definition 2 For anode setV, if tree T. = (V,, E.) satisfies the following conditions,
T is called “an eztension tree of V7.

s VO V.

© For any node v in 'V, — V, the degree, in T,, of v is larger than 2.

10

Lemma 4.1 If T=(V,E) is a § edge-bounded tree then
COSt(T) S - COSt(TMST) < 28 - COSt(TOPT) (14:)

where Tyrsy is the tree generated by MSTA and Topr is the optimal Steiner tree for
V.

Proof: In (14) the right inequality is valid from [7]. Since T and Tyser are trees
and their node sets are the same, the cardinality of E is equal to the cardinality of
the edge set of Threr, which is denoted by Fyssr. Let us assume that there exists a
one to one mapping function f from Epsr to E such that if f(e') = e then edge e
is contained in p(u,v;T') where u and v are the two endpoints of e’ in Threr. Then
from the definition of a & edge-bounded tree, cost(f(e')) < 6 - cost(e’). Thus,

w(T) =) cost(e)= . cost(f(eNE 3. 6-cost(e)=6- w(Tamsr) (15)
ecE e'CEysr e'CHasT
We complete this proof by showing the existence of f.

For an edge ¢’ = (u,v) € Ensr, let ['(e’) be the set of edges on the path between «
and v in T, that is, p(u,v; T). From P.Hall’s Theorem [9, p.45 Th.5.1.1], there exists
a one-to-one mapping function f if and only if

[T(S)] > |S| for any subset S C Epsr. (16)
where I'(S) = U.esT(€).

Let S be an arbitrary subset of Eprsr. Consider the graphs Go = (V(S},S) and
Gy = (V(T(S)),I'(S)) where V(S) is the set of nodes incident with an edge in S. Let
op and oy be the number of connected components of @ and Gy, respectively. As Gy
and Gy are forests, the number of edges, || and |T(S)|, are related to the number of
nodes and the number of connected components as follows:

15| =[V($) —a and [L(S)| = [V(D(S))] - en.

It is clear that V(S) C V(T'(S)) and ag > y from the definitions of Gy, Gy and I'(e).
Thus
[S] = V()] — a0 < [V(T(S))| — a0 < |[V(T(S))| — ex = [T(S)] .

Therefore, (16) is valid. |

Lemma 4.2 IfT, = (V,, E,) is a § edge-bounded extension tree tree for V,
cost(T,) < 26 - cost(Tasr) < 46 - cost(Topr) (17)

where Tpst is the tree generated by MSTA and Topr is the optimal Steiner tree for
V.

Proof: Let Tyst be (V, Ensy). Let us assume that there exists a mapping function
g from Ejpssr to power set 2% such that

11

Condition 1 If e, € g((w,v)), e, is contained in p(u,v;T.).
Condition 2 For all e € Epg7, [g(e)| < 2.
Condition 3 For all e, € E., there is some e € E such that e, € g(e).

If e. € g(e), cost(e.) < & - cost(e) from Condition 1 and the definition of a § edge-
bounded tree. Let cost(g(e)) be T, ¢y cost(e.), then from Condition 2

cost(g(e)) < 26 - cosi(e).

Further B, C U.ep,,s.9(e) from Condition 3. Therefore

w(T,) = Z cost(e.) < E cost{g(e)) < Z 26 - cost(e) = 26 - w(TrrsT)

e.EE. ecExysy e€Eysr

In the remainder of the proof we show the existence of a mapping function ¢ by
induction on |V|, the number of nodes in Tyg7.
1. ([V|=2)

TarsT has only one edge, which is denoted by e. It is clear that 7, = Thssr. Let
g(e) = {e}, then it satisfies Condition 1, 2 and 3.
2. (V| =n+1)

By the mductave hypothesis for any tree TMST = (V, EMST) with n» nodes and any
extension tree 7 for V", there exists a mapping function ¢’ satisfying the conditions.

Let Tayrst = (V, EMST) be a tree with n + 1 nodes and T, = (1, E.) be an extension
tree for V.

Since Thrsr is a tree, there is a node with degree 1, which is denoted by v, Let w
be the node adjacent to v. Consider

TJ;,IST = (V',EJIWST) where V' =V — {v} and E;\.:IST = F — {(v,w)}.

Thrst has n nodes. We will construct an extension tree for V' , T, = (V.| E.), from

T. and define a mapping function g by modifying ¢': Eyrep — 9P¢. There are three
cases to consider, depending on the degree of v in T,

Case 1 (degree(v; T.) > 2)

Every node in V, — V has degree larger than 2 in 7, and the degree of v is also
la,rger than 2. Thus, every node in V, — V' has degree larger than 2, which implies T,
is an extension gra.ph of TMST From the inductive hypothesis, there exists a mapping
g EM g7 — 2P, Now define the function ¢ : Exrgr — 25« as follows:

o ={ 9 feZ

This function satisfies Condition 1, 2 and 3.
Case 2 (degree(v;T.) = 2)

12

Let z and y be the nodes adjacent to v in 7' and it can be assumed that the path
from v to w goes through z. (It is possible that = = w.) Let

T.=(V.,E,) where V,=V.—{v} and E.,=E.~{(z,v),(v¥)}+ {(z,1)}.
Note that this modification does not change the degree of any node in V, — {v}. The

degree of every node in V, — V" is not less than 3 because V. — V' C V, — V. Thus,

T is an extension graph of Tyzer, and there exists a function g : Eyror — 2%, Now
define the function g as follows:

g'(e) %f e # (v,w) and (z,y) & ¢'(e)
o(e)={ {(v,0)} it e~ (u)w)
g(e) ==} +{(v,v)} if (z,9) € ¢'(e)

If e = (v, w), Condition 1 is satisfied, since the path between v and w goes through z.
If path p(u,v;T,) contains edge (z,y), p(,v; T.) contains (z,v) and (v,y). Thus, if
(z,y) € ¢'(e) Condition 1 holds for g(e). Clearly Condition 1 holds when g(e) = g'(e).
It is also clear that g satisfies Conditions 2 and 3.

Case 3 (degree(v;T,) = 1)

Let z be the nodes adjacent to v in T,. We divide this case into the following two
subcases:

Case 8.1 (z € V' or degree(z; T,) > 4if = ¢ V'). We define 7" and ¢’ as follows:
T, =(V.,E,) where V. =V, - {v} and E.=E.—{(v,2)}.
_ldle) ifes(v,w)
0 ={ {2200

Case 3.2 (z ¢ V' and degree(z;T.) = 3) Let v, z be the two adjacent nodes to z
except v and assume the path between v and w goes through y. We define T, and ¢
as follows:

T.=(V.,E,) whete V, =V.~{v,a} and E, = E,—{(v,2),(2,9),(z,2)}+{(z,2)}.

g'(e) if e # (v,w) or (y,2) & g'(e)
g(e) = § {(v,2),(=,9)} if e = (v,w)
gle)—{(,2)} +{(=,2)} if(z,9) € g'(e)

We can verify that g satisfies Condition 1, 2 and 3 in a manner similar to that
used for Case 2. o

13

4.2. Algorithm

This section proposes an algorithm (EBA(S)) generating a sequence {T%} such that
Tk is a 6 edge-bounded extension tree tree for Sk.

Figure 5 presents the details of EBA(S). For an add request (vk, add), EBA(S) joins
vy t0 Th_3 by the shortest edge and investigates whether every pair v and w in Th
is ¢ edge-bounded. If not, replace the maximum cost edge in p(vi, w; Ty—;) by edge
(vk,w). For a remove request (vk, remove), if the degree of vy, is larger than 2, Ty is the
same as Tp_;. Otherwise vy, is deleted from T and if T}, — vy, is disconnected then the
two components are joined by an edge (u,v) such that the cost of the maximum edge
in p(zo, zy; Ty — vi + (u,v)) is minimized, where z, and z, are the nodes adjacent
to vg in T.;. Further if the resulting graph has a non-terminal node with degree 2
or 1, repeat this step.

It is clear that the generated trees are extension trees for Sr. We begin with the
following property to show they are § edge-bounded trees.

Lemma 4.3 For any o (> 1) and § (> 1), if a pair of nodes ug and u; is a edge-
bounded in some intermediate tree T generated by EBA(S) then it is also o edge-
bounded in any intermediate tree generated after T'.

Proof: Let T, be an intermediate tree. The elementary modifications to T, in
algorithm EBA(S) are divided into the following four cases:

1. add a new node v and join v to T, by a minimum cost edge e, between them.

2. remove the maximum cost edge e; = (zo,z;) in p(vo,v1;T,) and join the two
components by edge e, = (o, v1), where cost(ez) > Scost(e,).

3. remove node w with degree 1 and the edge incident with w.

4. remove node w with degree 2 and the two incident edges, (2o, w) and (z1,w), and
join the two components by the edge e, = (o, v;) that minimizes g(vg,v1), where
function g(vo,v1) is the cost of the maximum edge in p(zg, z1; T — w + (vo, v1)).

Let T} be the tree resulting from the application of one of the above operations to
Te. In order to prove the lemma, we show the following property holds for all four
cases,

Property If up and u, are a o edge-bounded pair in 7, then they are a o edge-
bounded pair in 7}.

Case 1: The path between ug and u; in T is the same as the path in T, because
there is no deletion for edges. Thus 1y and uy are a o edge-bounded pair in T} by the
assumption of the property.

Case 2: If p(ug,u1;T,) does not contain the deleted edge eg,
P(uo, u1; Ta) = p(ug, u1; T3) and the property is valid.

14

EBA(6)
{ To:=({vo},¢), So:={v} and k = 1;
dok< K-
if v is an add request —
Ty, := add(vg, Tp—1) and Sy i= Sp_; U {o};
| 7+ is a remove request —
Sk := Sg—1 — {vg} and T} := remove(Ty..q, Se);
fi
ki=k+1;
od}

add(v,T)
{ Let W be a set of edges between v and 7.
Select the minimum cost edge (v, w;) from W
T:=T+(v,w) and W:=W — (v,w,);
do W # ¢ —
Select the minimum cost edge (v, w;) from W and W := W — (v, w;)
Find a maximum cost edge, e, in (v, w;; T);
if cosi(e) > & - cost(v,w;) —» T:=T —e+ (v,w;); fi
od return(T)}

remove(T, S)
{ W :=V(T)— S where V(T) is the node set of T:
do W contains a node of degree 2 or 1 —
Let w € W be a node of degree 2 or 1;
if degree(w) =1 — T:=T —w and W := W — {w};
| degree(w) =2 —
Let zo and z; be the nodes adjacent to w;
Let Cp and Cy be the connected components of T' — w:
Select two nodes v, € Cy and v, € € which minimizes G(vay vp),
where g(u,v) = maz{cost(e)|e € p(zo, z1; T — w + (v, v))};
T:=T—w+ (vg,v) and W := W — {w};
i
od return(T)}

Figure 5: Edge Bounded Algorithm (EBA($))

15

If p(uo, us; Ta) contains ey, p(ug, us; T) is a subset of p(ug, u1; Tp) U p(vo, v1; Tp) U
{e.} (see Fig6).
Suffices to show that for every edge e in p(uo, uy; T,) U (v, vy; To) U {ea},
cost(e) < a - cost(ug,u1). (18)

If e € pluo,uy; T5), (18) holds since the pair ug and u, is « edge-bounded in T%,.
Note that this implies cost(ey) < « - cost(ug, u1). If e € p(vg,v1; T,), (18) holds since
eq is the maximum cost edge in p(vo,v1;7T,). Finally, (18) holds for edge e, since
6 - cost(es) < cost(eg).

Co Cy

14
d zq

deleted ecigeT\
|\
|
|
|
|
|

T

\

\ ——— : Edge
Uy

Ta. - CO U 01 U (mo,m1)

|
|
|
|
v l added edge

e U1 Tb = Oo U G]_ U (’Uo, 'Ul)

Figure 6: Elementary Modification 2

Case 8: The property is valid because p(uo, u1; T3) = p(uo, u1; Ta).

Case {: Let the deleted two edges be (z9,w) and (w, ;). The two components
of T'— w are denoted by Cy and C;. If nodes uy and u; are contained in the same
component, the property is valid because p(ug, u1;T}) = p(uo, uy; Ty).

When ug and vy are contained in the different components, we can assume uo, o
and vo are contained in Cp and uy, =, and v; are contained in € without loss of

generality(see Fig 7).

From the choice of (vo,v;), the following inequality holds:
maz{cost(e)|e € p(zq,21; T3)} <

maz{cost(e)le € p(zo, uo; Co) U {{vg, v1)} U plug,z1;C1)} (19)
As ug and u; are a « edge-bounded pair in T}, the right side of Inequality 19 is not
larger than e cost(up,u;). Thus

cost(e) < e« cost(uo,uy) for any e € p(wo, 13 Th) U p(uo, To; Co) U p(z1,u1; Cy).

16

|
|
l |
| |
i
T, =CuC,
% l a dej ed@ U{(:co,'LU),(w, 1)
@ Ty =CoUCU(2,2)

Figure 7: Elementary Modification 3

On the other hand,
p(uf}: U1; Tb) g P(mo: T, Tb) U P(uo, To; OU) U P(ml, U1, 01)

Consequently, any edge in p(ug,u1; T) is not larger than « - cost{ug, u1). |

This lemma is useful for estimating the number of rearrangements in addition
to showing the following theorems. In the following theorems and lemmas, where
not stated explicity, we assume that an instance of DST-R is given with B =

{?"g, Ti1ye. ,'J"K}.

Theorem 4.1 Any tree T, generated by EBA(S), is a § edge-bounded extention tree
for Sy. This implies the following inequalities:

cost(Ty) < 26 - cost(Tasr) < 46 - cost(Topr), (20)
for0<Ek<K.

Proof: It is clear that T} is an extension tree for Si. It will be shown that Ty is &
edge-bounded by induction on k. T} is clearly a & edge-bounded tree. We assume Ty_,
is 6 edge-bounded. From Lemma 4.3, every pair of nodes in T}_; is § edge-bounded
in T%. The remaining pair to be considered is v, and w € T},_; when r = (g, add).
EBA({) examines each pair and if it not § edge-bounded then modifies the tree so
that it becomes 1 edge-bounded. This modification maintains the § edge-bounded
property for other pairs as Lemma 4.3 shows. Thus T} is a § edge-bounded tree and
the theorem follows from Lemma 4.2 B

17

Theorem 4.2 If every request ry, is an add operation, every generated tree T}, salisfies

cost(T;) < 6 - cost(Tpgsr) < 26 - cost(Topr). (21)

Proof: If every request is an add request, the set of nodes of T is the same as Si.
T% is 6 edge-bounded. Thus the theorem is valid from Lemma 4.1. | |

4.3. Total Number of Changes

In this section we estimate the total number of rearrangements for EBA(S) in case of
6 = 2. Note that if an edge (u,v) is contained in 7%, then the pair v and v is a 1
edge-bounded pair in any T} (5 > ¢) from Lemma 4.3. We begin by finding other 1
edge-bounded pairs.

If r; is an add request, let L; be the set of endpoints for the edges added at Step
2. The cardinality of L; is one more than the number of edges added since v; is one
of the endpoints for each edge. Therefore the number of rearrangements at Step 1,
oy, is |L;] — 2 because the number of edges deleted is one less than the number of the
edges added. If r; is a remove request, let L; = .

Lemma 4.4 Bvery pair of nodes in L; is 1 edge-bounded in T; (1 < j < K).

Proof: Let Lp = {vi,wy,ws,...,ws}. Since T, contains edge (vg,w;) for any
w; € Ly, a pair of vy and w; is 1 edge-bounded which implies it is 1 edge-bounded
in any T5(j > k) from Lemma 4.3. We consider a pair of w; and w;. Without loss of
generality we can assume that

cost(w;, vi) < cost(w;, vy). (22)

Consider the substep at which (w;,v:) is added to the tree and let T, and T} be
the intermediate trees just before and after this substep. Thus
Tb — Ta. - (3:0:31) + ('lUj,‘Uk)
where (zo,2;) is the edge deleted at this substep. Note that 7, and T, contain an
edge (w;, vg).

Since a pair of w; and w; is § edge-bounded in T, and (zo,21) is an edge in
p(wy, wy; To), cost(wo,z1) < Scost(w;, w;). Since (wo,xy) is replaced with (w;, ve),
cost(xo, 21) > Scost(w;, vy). Thus cost(wj, v) < cost(w;, w;).

From Inequality 22, cost(w;,vi) < cost(w;,vi) < cost(w;, w;). Therefore, the pair of
nodes w; and w; is 1 edge-bounded in T, and in any T; (7 2 k). [|

Lemma 4.5 If§ > 2,
|IL;N Ll <1 foralliandj, 0<i<j<K. (23)

18

Proof: We assume |L; N L;| > 2 and derive a contradiction. Let w; and w, be nodes
in L; N L; and assume j > 5. Note that edges (vj,wy) and (v;,w,) are added at Step
), where r; = (v}, add). Without loss of generality we can assume

cost(v;, wy) < cost(vy, wy) (24)
From the triangle inequality,

cost{wy, wp) < cost(wy,v;) + cost(v;,w;) < 2cost(v;, w,).

Consider the substep at which (v;,w;) is added to an intermediate tree and let T,
be the intermediate tree just before this substep. It is clear that

(5, w2; Ta) = {(vj, w1)} U p(ws, ws; Tw) (25)
Since wy, ws € L;, a pair w; and w, is 1 edge-bounded by Lemma 4.4. Thus
cost(e) < cost(wy, ws) < 2cost(v;, ws) for any e € p{wy,wo; Ty) (26)

From (24), (25) and (26), pair v; and w, is 2 edge-bounded, which contradicts that
(vj,w2) is added at this substep. n

Let K, be the number of add requests in R, and K, be the number of remove
requests. We can derive the following theorem by using Lemma 4.4.

Theorem 4.3 For any instance (G, cost, R), if § = 2 then the total number of rear-
rangements in EBA () is bounded by the following inequality:

K
S < %Ka(\/tLKa 314K, 27)

=0

Proof: Let R, and R, be the sets of add and remove requests in R, respectively.
Consider Step ¢ for which the request, r;, is a remove request. The number of rear-
rangements o is not larger than the number of deleted nodes at this step. A deleted
node is not contained in S, which implies there is a request to remove it from a
connection. Thus the total number of rearrangements for R,, 3, g, o, is not larger
than the number of remove requests, K.(= |R,|).

Consider the bipartite graph G, = (V4,V5; E) where V; = R,, V3 = Ur;er, i and
E = {(r;,vs)|lv2 € Li,vp € Va,r; € Vi}. If there are multiple requests to add the
same node, we considers them as different nodes. It is clear that |V;| = |V3| = K.
From Lemma 4.5, this graph does not contain a complete bipartite graph K, o (that
1s, a cycle with 4 edges) as a subgraph. The following inequality is shown in [8, p.74
Th.10]:

1
z(n,n,2,2) < -2-n(1 + v4n — 3)

19

where 2(n,7,2,2) is the maximum number of edges in a bipartite graph whose two
node sets both have n nodes and that does not include K, 5. Since the number of
edges in Gy is equal to 3 L; and o; is equal to |L;| — 2,

D < %Ka(déf{a —-3-1). (28)
EHT

We do not know if the K+/K growth permitted by Theorem 4.3 can actually be
achieved. We conjecture that the total number of rearrangements is not larger than

K(= K, + K3).

One of the interesting questions which still remains regarding DST is whether there
exist algorithms for which both the worst case error ratio and the maximum number
of rearrangements at each step are bounded by a pair of constants.

Other areas of interest include issues such as average case performance of algo-
rithms for DST, distributed implementation of algorithms for DST, and the application
of these algorithms to multipoint communication networks.

References
[1] J. S. Turner, “The Challenge of Multipoint Communication,” Traffic Eng. for
ISDN Design and Planning, pp.263-279 (1988).

[2] J. 8. Turner, “New Directions in Communications,” IEEE Com. Magazine, vol.24,
no.10, pp.8-15 (1986).

[3] P. Winter, “Steiner Problem in Networks: A Survey,” Networks, vol.17, pp.129-
167 (1987).

[4] K. Bharath-Kumar and J.M.Jaffe, “Routing to Multiple Destinations in Com-
puter Networks,” IEEE Trans. Com., vol.COM-31, no.3, pp.343-351 (1983).

[5] J. M. Jaffe, “Distributed Multi-Destination Routing: The Constrains of Local
Information,” SIAM J. Comput., vol.14, no.4, pp.875-888 (1985).

[6] B. M. Waxman, “Routing of Multipoint Connections,” IEEE J. Select. Areas
Comm. vol.6, no.9, pp.1617-1622 (1988).

[7] L. Kou, G. Markowsky and L. Berman, “A Fast Algorithm on Steiner Trees,”
Acta Inform., vol.3, no.6, pp.141-145 (1977).

[8] B. Bollobds, “Graph Theory”, Springer-Verlag, New York (1979).

[9] P. Hall, “On Representatives of Subsets”, J. London Math. Soc., no.10, pp.26-30
(1935).

20

	Dynamic Steiner Tree Problem
	Recommended Citation
	Dynamic Steiner Tree Problem

	tmp.1459809062.pdf.AF5V8

