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recorded brain signals.  It is possible that the ability of the user to adjust the neural control 

signals based on feedback will prove to be just as important as a BCI designer’s initial 

decoding of the neural signals.  In fact, the experiments described here demonstrate that 

with virtually no initial decoding and only user adaptation, BCI control is still possible.  

These experiments are not designed to prove that that traditional decoding is unnecessary, 

but rather to argue that understanding both sides, decoding and adaptation, will be key for 

building a better BCI. 

To date, many ECoG studies have depended on using human patients with 

intractable epilepsy.  In neuroscience research, the ability to gain access and conduct 

experiments with human subjects is a valuable tool.  However, these types of studies have 

limitations as clinical considerations must always take precedent over the secondary research 

goals.  Electrode grids are usually placed where the clinicians believe is best for patient care.  

Additionally, once the clinical monitoring goals have been met, the electrodes are removed; 

therefore, long time course studies (greater than one to two weeks) are not possible.  By 

studying ECoG signals in the laboratory setting with non-human primates, experiments are 

conducted in a more controlled environment for much longer periods of time.   

Our experiments were designed with several key features to take advantage of the 

controlled laboratory setting to improve the quality of the data.  First, all three monkeys 

were implanted with the exact same surgical procedures with the goal of placing electrodes at 

the exact same anatomical location over primary motor cortex.  Second, by being able to 

perform months of stable recordings, the experiment could be designed to examine the 
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subject’s adaptation to a predefined decoding scheme.  Finally, the exact same subject could 

be switched between several different decoding schemes over the course of the study. 

Additionally, great care was taken in these experiments to try to provide real, physical 

units as well as measures of signal to noise ratios.  Percentage or fractional changes from 

baseline are often the only measurements included in some published studies.   While these 

results may meet the scientific standard of showing a difference between two experimental 

conditions, they are limited in their ability to drive future hardware and device design.  For 

practical BCI devices to move out of the lab and into the clinical setting, hardware 

manufacturers must know the technical specifications required when designing new devices. 

Another limitation of many currently published ECoG studies for BCI development 

is the fact that they are often mapping or screening studies.  Recordings are made while 

subjects are performing a task and the recordings are then analyzed off-line to try to predict 

some parameter associated with the task such as movement kinematics, language 

components, or sensory input.  Many of these studies do identify useful BCI control 

parameters and a few studies do go on to use the developed decoding schemes in closed-

loop BCI tasks where the subject is provided with direct feedback of how his/her neural 

signals are controlling the task.   

While these screening experiments are effective initial studies to explore potential 

control signals, they are limited by the fact that potential neural signals can only be selected 

based on their correlation to either observable behavioral responses or experimentally 



7 
 

presented cues.  These signals are often graded against one another based solely on their 

ability to predict these cues or responses.  This type of exploration ignores possible 

differences in the adaptability of signals once they are used in a closed-loop system.  For 

instance, while one signal may have a higher correlation to a certain arm kinematic parameter 

during screening, another signal may prove to be easier for a subject to adapt to and 

volitionally control during BCI tasks to improve performance even though it had a lower 

predictive value in open-loop screening sessions.  Additionally, some signals may not be 

correlated to any observed behavior, but through closed-loop feedback and training the 

signal may still be a viable BCI signal.  For less invasive techniques like ECoG and EEG this 

ability to create and enhance novel control signals without direct motor correlates may be 

especially critical to their viability as a BCI modality. 

In many cases, creating BCI decoding schemes from observed screening sessions is 

not a trivial task with a direct mapping.  While single unit based BCIs often use paradigms 

where the subject behaves in a similar task like center out reaching for a screening and brain 

control task, many ECoG BCI paradigms rely on more abstract mappings.  To date, the best 

ECoG signals with the largest signal-to-noise ratio are often those created by gross motor 

movements of different parts of the body and utilize the spatial separation across cortex 

based on the topographic layout of different body regions (the motor homunculus).  A great 

amount of research effort has been directed at examining all of the different behavior 

parameters that can be extracted from ECoG recordings for various experimental tasks.  

These studies provide us with useful insight into the underlying neurophysiology for coding 

and performing various tasks but once again there is no guarantee that these are the best 
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signals for BCI control.  Just as learning to use a steering wheel or joystick allows a user to 

manipulate a car or complex machinery without the user having to make movements similar 

to the end effectors, there is no reason for BCI users to only perform BCI movements or 

tasks that mimic their original behavior.    

As a more pragmatic issue, more non-human primate studies are likely needed to 

further advance ECoG BCI development.  These studies can evaluate long-term stability as 

well as provide a more controlled environment with multiple subjects all implanted with the 

same surgical procedure and location and experiments performed under identical conditions.  

The language limitations with monkeys, however, make it unfeasible to instruct them to 

translate motor imagery into brain control commands.  Experimenters are thus left with only 

two mechanisms for training monkeys for BCI control.  First, a training task that very closely 

matches the BCI task and provides suitable brain signals for decoding can be used that 

makes the transition from normal behavior to BCI straightforward and natural.   Second, the 

subject can be operantly conditioned to improve performance once brain control is initiated.  

While the first is perhaps ideal, it is also limiting.  The work presented here will highlight the 

fact that the second mechanism is quite feasible and in fact BCI control can be achieved with 

only this mechanism in complete absence of neural recordings during a training task.
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2 Background 

Neurological diseases that impair basic motor function, such as ALS, spinal cord 

injuries, and stroke have a dramatic impact on patients’ lives. These motor deficits severely 

limit patients’ abilities to perform everyday tasks and place a large burden on their families 

and society. Non-invasive assistive devices that use the translation of head, mouth, or eye 

movements to create a desired output allow many patients to restore some function and 

independence. However, patients are often still limited in the tasks they are able to perform 

and often these devices are slow to use and require long periods of training. Additionally, 

assistive devices typically require some residual motor function that the patients with the 

most severe motor disabilities may not have. Thus, an ideal solution for restoring function 

would be to link the normal functioning cortical brain activity directly with an output system. 

This establishment of a direct brain-computer interface would allow these individuals to 

circumvent damaged neurological connections to use their brain activity to directly 

accomplish tasks they were previously unable to complete successfully.  

Currently, approximately 1.9% of the U.S. population, or about 5.6 million people, 

reported some form of paralysis (Figure 2.1) (Christopher & Dana Reeve Foundation, 2009).  

Initially, BCIs for lost motor function would most likely target the most severely paralyzed 

patients with spinal cord injuries, amyotrophic later sclerosis (Lou Gehrig’s disease), and 

brainstem strokes.  However, more successful and less-invasive motor BCIs could eventually 

allow for an increased candidate population for those with less severe forms of paralysis.  

Additionally, while the traditional concept of a BCI is one designed for a user with intact, 
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normally functioning cerebral cortex, recent post-stroke rehabilitation studies have suggested 

that motor imagery (Zimmermann-Schlatter et al., 2008) and EEG-based BCIs to foster and 

provide feedback to enhance motor imagery (Ang et al., 2010) can lead to increased recovery 

from diseases that affect cortical function. 

Figure 2.1.  Paralysis Statistics.  

Paralysis prevalence statistics from a recent study published by the Christopher & Dana Reeve 
foundation.  The data was collected by an extensive household survey and represents an increase in 
prevalence compared to previous estimates based on hospital-reported clinical data. 
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2.1 Motor Cortex  

The primary motor cortex (area M1, Brodmann area 4) is a strip of cerebral cortex 

that runs just anterior to the central sulcus and makes up the posterior portion of the frontal 

lobe.  Its connection to motor movements was first identified by Penfield (1937) by 

observing that electrical stimulation of this area elicited motor movements during surgery of 

patients with focal epilepsy.  Interestingly, in 1949, Penfield and Jasper (1949) also examined 

the beta rhythm (18-30 Hz) over motor cortex and reported that it showed a reduction with 

voluntary motor movements.  Brindley and Craggs (1972) further identified that specific 

activation occurred with different motor movements could be identified from the cortical 

surface recordings of a baboon and suggested its usefulness for motor BCIs.  These 

electrophysiology findings also co-localized with the observed cytoarchitecture of large Betz 

cells that project directly from the area to the motor tracts of the spinal cord and helped 

identify primary motor cortex as one of the key cortical areas of motor output (Betz, 1874).  

In the 1980s, previously developed techniques for examining single neuron activity 

led to greater exploration of the underlying neural code observable in primary motor cortex.  

The work by Georgopoulos (1982) and others highlighted the correlation between the 

activity of individual neurons in the arm area of motor cortex and the direction of 

movement that was observed.  Further work has highlighted numerous different movement 

variables that are coded for by neurons in motor cortex (Georgopoulos et al., 1986; 

Schwartz, 1994; Moran and Schwartz, 1999a; 1999b; Schwartz and Moran, 1999; Reina et al., 

2001; Wang et al., 2007).  There is still debate about what motor parameters make up the 
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core variables coded for by motor cortex as evidence for both extrinsic (movement 

kinematics) and intrinsic (muscle activations) coordinate encoding are often observed (Kakei 

et al., 1999). 

In addition to the observable correlation of neurons to voluntary motor movements, 

as early as the 1970s, it has also been shown that monkeys can be operantly conditioned to 

modulate individual neurons in motor cortex (Fetz & Baker, 1973).  Additionally, studies 

using both field potential recordings like EEG (Pfurtscheller & Neuper, 1997) and ECoG 

(Leuthardt et al., 2004) as well as imaging techniques such as fMRI (Porro et al., 1996) 

showed that motor imagery tasks where no overt muscle activation actually occurred showed 

similar cortical activity (albeit sometimes with diminished amplitude) to actual motor 

movements.  Thus, cortical activity from motor areas represented more than just the 

resulting motor movements but also information about a subject’s voluntary cortical state 

when performing imagery tasks or directing brain control of an external device.  

It was the combination of these scientific findings that formed the vision of a 

potential brain-computer interface that could restore or augment motor function by 

translating direct cortical signals from the brain into motor intentions for control of some 

type of external actuator.  By taking recorded signals from the identified motor cortical areas, 

the signals could be decoded using the underlying knowledge of motor neurophysiology to 

recreate motor movements.  Furthermore, since many motor areas showed activity even 

without actual movements, BCIs that used only motor imagery should also be feasible.  

Finally, since the cerebral cortex is well-known for its plasticity, it was likely that users would 
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improve their BCI performance with practice and learning even if initial movement decoding 

was far from perfect. 

2.2 BCIs for Motor Control  

Several different electrophysiology recording modalities have been proposed and 

studied as the potential output control signal for a brain-computer interface. All of these 

methods record extracellular microvolt-level potentials from a single neuron or collection of 

neurons. However, these different recording modalities require trade-offs between 

invasiveness and robustness of signal. At the one extreme, electroencephalography (EEG) 

based BCIs rely on signals from electrodes placed non-invasively on the scalp. While one 

and two-dimensional control has been demonstrated with EEG in humans (Kübler et al., 

2005; Wolpaw & McFarland, 2004) the accuracy rates in these tasks remain lower than other 

methods of BCI and require longer training periods to achieve a given level of control.  

At the other extreme, single neuron based BCIs rely on fine tip intracortical 

electrodes. By placing ~20 µm electrode tips into the brain parenchyma, the action potentials 

of individual neurons can be recorded. These signals have been used successfully in a 

number of BCI set-ups in non-human primates.  First, these systems were used for control 

of a cursor on a computer screen with multiple degrees of freedom ( Wessberg et al., 2000; 

Serruya et al., 2002;  Taylor et al., 2002).  Additionally, single unit BCIs have also been 

designed and implemented for control of external devices through a robotic arm (Carmena 

et al., 2003; Velliste et al., 2008) .  In addition to studies in non-human primates, human trials 
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have also been performed where single-unit activity was used for BCI control in patients 

with motor disabilities (Kennedy and Bakay, 1998; Kim et al., 2008).  However, these types 

of recordings require complicated, highly invasive surgeries. This type of procedure has the 

risk of neurological and vascular damage as well as possible CNS infection (Bjornsson et al., 

2006).  Additionally, the quality of these recordings tends to decay over time as electrodes 

become encapsulated by the immunologically reactive tissue (Williams et al., 2007). 

2.3 ECoG for BCI applications 

Electrocorticography has shown growing promise in the field as an intermediate 

solution between the two extremes of recording single unit activity and EEG.  Although the 

signals are not as direct of representation of the underlying neural code that can be observed 

at the single neuron level, the surgical procedure to implant ECoG electrodes is less invasive 

with a lower chance of cortical tissue damage or infection.  Compared to EEG, ECoG 

provides better spatial and spectral resolution albeit at the trade-off of being an invasive 

technique as compared to the non-invasive EEG electrodes on the scalp.   

Various components of ECoG signals have been shown to be well correlated to 

various parameters when subjects perform various motor tasks.  Event-related potential 

(ERP) changes of the raw waveform in the time-domain of the ECoG signal have been used 

to identify the onset and timing of various motor actions on individual trials (Levine et al., 

1999).  Additionally, it has been demonstrated that event-related power changes recorded 

using ECoG can be used for mapping somatotopic areas of sensorimotor cortex associated 
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with visually cued movements of different body parts.   A Fourier transform or Fourier-like 

algorithm is performed over time windows during both a given task as well as at rest.  Using 

this analysis to estimate the power at different frequencies of the signal for the given epochs 

of data, it is possible to identify different frequency components that increase or decrease in 

power during the task compared to rest.  Historically, two bands that have been specifically 

identified were the alpha (8-13 Hz) and beta (15-25 Hz) bands which tended to show a 

decrease in power with the onset of motor movement or imagery (Crone, Miglioretti, 

Gordon, Sieracki, et al., 1998).  Additionally, regions of the gamma band (30-100 Hz) have 

been identified that show an increase in power during movement (Crone, Miglioretti, 

Gordon, & Lesser, 1998). 

These characteristic spectral features have been used for real time, closed-loop BCI 

experiments with motor imagery tasks as the training paradigm (Leuthardt et al., 2004).  By 

first having patients perform various real and imagined motor movements, recorded ECoG 

signals were analyzed to identify power spectrum features well correlated to the motor 

behavior.  These features could then be assigned to control the cursor kinematics during a 

brain control task and the subject could be instructed on the necessary motor movement or 

imagery necessary to complete the task (i.e. “Imagine opening and closing your hand to 

move the cursor to the right”).  Successful BCI control with ECoG recordings has been 

demonstrated with these types of experimental paradigms in several instances (Blakely et al., 

2009; Felton et al., 2007; Schalk et al., 2008). 
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2.4 Improving ECoG BCI  

ECoG recordings in non-human primates have only recently been conducted.  Acute 

ECoG recordings have proved successful for open-loop mapping of sensorimotor cortex 

during reaching movements (Heldman, 2007).  Although these recordings showed limited 

directional tuning for specific targets, the signals were well correlated to gross motor 

movements.  Additionally, a series of successful closed-loop BCI tasks were completed using 

these acute ECoG recordings.  In these experiments, microwire electrodes were acutely 

placed each day above the dura over the arm area of primary motor cortex.  Recordings 

from two electrodes separated by about 1 cm were used to control a two-dimensional cursor 

to complete center-out and circle drawing tasks. Over the course of several weeks, monkeys 

were able to successfully complete approximately 40 center-out movements in 6 minutes or 

approximately 30 circle drawings in 7 minutes.  This control was achieved by using the 

amplitude the high gamma frequency range of the signal between 65-100 Hz. 

To achieve two-dimensional control, one electrode was used as the control for the 

horizontal velocity of the cursor and a separate electrode was used for the vertical velocity of 

the cursor.  The circle drawing task provides a way to analyze how well a subject is able to 

independently control these two degrees of freedom.  In order to draw a perfect circle using 

standard x and y Cartesian coordinates for control, it is necessary for the velocity control 

signals to be 90 degrees out of phase from each other such that the cursor can be directed to 

move in all directions over the course of each individual trial.  At the beginning of the 

experiment the two recording sites tended to be correlated so that both were higher or both 
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lower power at the same time.  In order for the monkey to improve his performance in the 

circle drawing task, it is necessary for the animal to gain independent control over the two 

signals being used for control.  For a perfectly drawn circle, the overall correlation between 

the two signals will be zero.   

This decorrelation could theoretically be done either indiscriminately across all 

frequencies or only within the frequency band being used for control.  To examine what 

actually occurred during the experiment, the power spectrum was calculated for the two 

recorded signals in 300 ms non-overlapping time bins.  The correlation between the powers 

at each given frequency for the two different channels was then calculated for all points in 

time.  Figure 2.2 shows the resulting correlations for the five days of recordings and shows 

that the correlation between the recording sites dropped between 65-100 Hz.  This data 

shows that through biofeedback, motor cortex is quite adaptable to learning and improving 

brain-computer interface control.   
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Figure 2.2.  Power Spectrum Correlation

The correlation of the power spectrum of the x and y control electrodes during a circle drawing task.  
The signals become more decorrelated over the 5 days of control.  The decorrelation is most dramatic 
within the band used for control but also occurs across most frequencies. 

 

Recent studies have also demonstrated the long-term stability and robustness of 

ECoG recordings in monkeys over primary motor cortex.  (Chao et al., 2010)  These results 

showed that the predictive value of hand position from ECoG signals did not significantly 

decay over a period of five months.  Additionally, the recordings were stable as cross-day 

predictions (generate coefficients one-day, validate on a different day) did not differ 

significantly from the accuracies using same-day coefficient prediction.  This long-term 
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stability is a key advantage that ECoG-based BCIs offer compared to BCIs based on single-

unit activity.   

2.5 Neurophysiology of Field Potentials  

Several recent studies have found that field potentials are tightly coupled with the 

underlying neural population.  These studies tend to show that the power at the higher LFP 

frequencies: 60-150 Hz (Ray et al., 2008), 40-90 Hz (Rasch et al., 2008) provide the best 

estimates of underlying spike activity.  Some recent studies have also argued that many of 

these high frequency changes are really the result of total broadband power changes which 

are the best predictor of underlying spike activity (Heldman et al., 2006; Schwartz et al., 

2006; Manning et al., 2009; Miller et al., 2009).  Studies examining the high gamma signals of 

ECoG recordings 60-200 Hz (Crone, Sinai et al. 2006) show that these signals as compared 

to lower frequencies are more specific in their timing and localization and are better aligned 

with our putative understanding of observable cortical activation.  The similarity of high 

gamma amplitude changes to both electrical cortical stimulation mapping and fMRI imaging 

has lead to investigation of using high gamma ECoG activity for functional mapping using 

the amplitude between 70-100 Hz (Brunner et al. 2009).  For a review, see Jerbi et al. (2009).   

In addition to comparisons to underlying firing rate, LFP power changes have also 

been shown to display many of the same tuning properties that can be observed with single 

units.  Studies of LFP recordings in motor cortex found that the frequency bands of 60-200 

Hz (Heldman et al., 2004; Heldman et al., 2006) and  ≤4 Hz and 63-200 Hz (Rickert et al., 
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2005) had the most predictive power for direction of reaching and that the higher frequency 

changes were more narrow in time and concentrated around only movement onset.  

Additionally, a study by Liu and Newsome ( 2006) in area MT found that the LFP signal 

from 40-150 Hz was correlated to the direction and speed tuning to visual stimuli found in 

the multi-unit activity recorded from the same sites.  These studies were careful to point out 

that the high gamma LFP amplitude does not appear directly correlated to the recorded 

spiking activity on a trial by trial basis but rather only shows similar tuning properties.  

Additionally, (Pesaran et al., 2002) noted that gamma band LFPs in lateral intraparietal 

cortex (LIP) reflect the area’s columnar organization (Blatt et al., 1990); however, motor 

cortex does not have as neatly ordered columns.  These previous experiments seem to point 

towards the high frequency component of the LFP being highly related to the observable 

task-related spiking activity of nearby neurons even if it is not a direct surrogate of 

instantaneous firing rate of simultaneously recorded multi-unit activity.  Conversely, the low 

frequency field potential recordings seem to be much more spatially broad and spread across 

time suggesting that these signals are a more global process less related to event related 

spiking activity. 

  



21 
 

3 Experimental Methods 

In the following experiments, three male, 6-10 kg monkeys (one Macaca mulatta - J 

and two Macaca fascicularis – M, N) were chronically implanted with epidural ECoG recording 

grids.  Prior to implantation, each monkey was trained to perform a radial choice task.  This 

task was learned through operant conditioning with liquid reward while sitting in a primate 

chair.  The animal sat in front of a standard 17” LCD monitor (Dell Inc.) approximately 20 

inches in front of the monkey and controlled the cursor on the screen using a joystick 

(APEM 9000 Series Joystick, APEM Components Inc.) before switching to brain control 

following implantation.    

3.1 EECoG Recordings 

Once the monkey had been trained to complete the tasks using the joystick, the 

monkey was implanted epidurally with a custom built ECoG grid through a 22 mm hole 

made in the skull at a standard location that approximately aligns with the proximal arm area 

of primary motor cortex (area M1).   The electrodes were 300 µm diameter platinum-iridium 

(90-10 Pt-Ir) wires arranged in a 28 electrode hexagonal pattern with 3 mm interelectrode 

distance.  The electrodes were connected to standard Omnetics connectors (18 Position 

Nano-Miniature Connector, Omnetics Connector Corp.) on a printed circuit board.  A 

protective chamber and cap made of titanium and stainless steel was cemented around and 

above the hole containing the electrodes and connectors for protection when the animal was  
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in its home cage.  The whole ensemble was cemented in poly-methyl methacrylate (PMMA, 

i.e. dental cement).  A drawing of the custom built ECoG grid is shown in Figure 3.1.   

Each recording day, the animal’s head was restrained, the protective cap was 

removed and the electrodes connected to a low-impedance head stage and digitized with the 

equivalent of 17.5-bit analog to digital resolution (digitization with oversampled 16-bit 

Sigma-Delta A/D conversion).  Before digitization, the total amplification of the analog 

signal was 50x and was band limited between 3-500 Hz.  The signal was sampled and 

processed at 6 kHz using a multi-channel neurophysiology recording system (Tucker-Davis 

Technologies) before being down sampled to 2 kHz for storage and later analysis.  The raw 

        
Figure 3.1.  ECoG electrode design.
300 µm Pt/Ir wires with 3 mm interelectrode distance were used for 28 signal channels and 6 
selectable reference channels.  The electrodes were embedded in PMMA.  PMMA was also used to 
embed the entire chamber when placed on the skull.  Connections were made with two 16 channel 
Omnetics connectors on a printed circuit board.  The stainless steel outside chamber served as the 
ground.  (Drawings courtesy of JJ Wheeler) 
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signal for any given electrode channel was processed by the digital signal processors to 

generate an amplitude estimate for the signal between 75-105 Hz.  These control signals 

were then sent to a host computer responsible for controlling and displaying the task for the 

subject.  The task scene was updated and displayed based on the incoming control signals.  

Figure 3.2 gives a schematic of the closed-loop recording system. 

Following the experiments, monkey N was sacrificed and electrodes were localized 

to their anatomical locations.  The acrylic headcap was removed principally intact by drilling  

Figure 3.2.  Experimental Set-up. 
Flow diagram of closed-loop signal processing from recorded ECoG signals to display the cursor on 
the video monitor.  (Drawing courtesy of JJ Wheeler) 
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out the connecting skull screws.  Photographs of the headcap containing the ECoG grid as 

well as the exposed skull and brain surface were taken.  Colocalization was completed by 

merging the two photographic images based on the observable landmarks of screw locations 

and chamber outline.  The electrode locations overlaid on the exposed cortex is shown in 

Figure 3.3.  The approximate electrode locations are shown for each monkey but are 

overlaid over the photographs obtained from only monkey N. 

3.2 Radial Choice Task 

In these experiments a radial choice task was implemented (Figure 3.4).  The subject 

interacts with the task by controlling the velocity of a spherical cursor.  A large circular ring 

serves as the target for the task.   At the start of each trial, the cursor is returned to the 

center of the ring automatically.  One hundred milliseconds after the cursor has been moved 

to the center of the screen, an arc of the ring is highlighted to signify the desired target.  The 

subject must then move the cursor towards the portion of the ring that is highlighted.  Once 

the cursor has moved through the correct target, the monkey is rewarded with a liquid 

reward.  For a one-dimensional two target task, each target is a 180° arc.  Therefore, for this 

task, completely random control of the cursor would result in the correct target being 

chosen 50% of the time.  For a two-dimensional task, the number of targets can be increased 

with each target being a smaller portion of the circle.  For example, a four target task has 90° 

target arcs with a chance level of 25%. 
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A B

C 

Figure 3.3. Electrode Placement.
ECoG electrode placement and control channels projected on the cortical surface of monkey N, post-
mortem.  The control electrodes are labeled for monkeys:  a) M, b) J, and c) N.  Monkey M and J are 
approximations based on projecting the grid and control electrodes on to monkey N’s brain if the 
recording chamber was in the exact same location. The central sulcus (CS) and superior precental 
dimple (SPD) are labeled.  The primary motor cortex (M1) is a strip that runs dorsal-ventral (up-down 
in the middle 3rd of the image) immediately rostral to the central sulcus until approximately the 
superior precentral dimple.  Caudal to the central sulcus is primary sensory cortex (S1) (left portion of 
images a and c).  On the rostral side of the precentral dimple is the dorsal premotor cortex (PMd) 
(right portion of images a and c).  The closed-loop BCI experiments were run twice for each monkey, 
once controlling the horizontal (x) velocity and once controlling the vertical (y) velocity of the cursor.  
Control was always push-pull with two electrodes (+ and -) controlling the cursor in opposite 
directions. 

 



26 
 

Figure 3.4.  Radial Choice Task. 
The one-dimensional, two-target radial choice task.  a) At the start of the trial, the cursor is moved to 
the center and one of two targets appears.  b)  The monkey then has five seconds to select the correct 
target.  c)  Once a target is selected or the maximum movement time has been reached, the trial is 
over, a one second inter-trial interval occurs, and the monkey is rewarded if the correct target was 
chosen.   

 

3.3 Closed-loop Tasks 

Once the monkeys were trained and implanted, all of the actual experiments were 

closed-loop brain-computer interface tasks where the recorded brain signals were directly 

used to control the cursor displayed to the monkey.  Each monkey attempted to move a 

cursor in one-dimension with recorded brain signals to complete the task which had the 

same visual appearance as the joystick task.  A pair of recording electrodes was assigned to 

control either the horizontal or vertical velocity of the cursor in a push-pull control scheme.  
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Electrodes for were arbitrarily chosen with the only constraint being that the quality of their 

signal and total RMS amplitude was within the normal range of the rest of the channels on 

the grid.   

For the one dimensional task, a pair of electrodes were assigned to control the cursor 

in a push-pull decoding scheme.  The amplitude estimate of the signal between 75-105 Hz 

was mapped to control the velocity of the cursor.   For one electrode, if the amplitude is 

greater than the mean value; the cursor moves in the positive direction (right or up).   

Conversely, if its amplitude is less than the mean value it moves in the opposite direction.   

The second electrode used for control also controls the velocity but in the opposite 

direction.  Thus, if its amplitude is greater than the mean, the cursor moves in the negative 

direction (left or down) while a smaller amplitude moved the cursor in the positive direction.  

 In order to successfully complete a trial, modulation of the amplitude between 75-

105 Hz could occur on either electrode.  For either target, the subject needed to either 

increase the amplitude on one electrode or decrease the amplitude on the other electrode to 

move towards the correct target.  It is the differential between these two electrodes’ control 

signal that determined the actual velocity of the cursor and whether the correct target was 

selected.  Using a push-pull scheme provides three main potential benefits to these 

experiments.  First, it provides an added level of noise reduction as any transient increase of 

external noise will likely affect the recordings on both electrodes similarly and not cause the 

cursor to dramatically move in one direction or the other.  Additionally, a push-pull control 

system allows us to explore the spatial separation that is necessary to get differential cortical 
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activity that can be used for control (i.e. independent modulation).  Electrodes that are too 

close and have similar recorded signals will not allow for movement of the cursor in one 

direction or the other.  Finally, it is possible that increasing and decreasing amplitude are 

processes that do not have similar time courses or range of modulation.  By using a push-

pull scheme, the cursor can be moved in either direction by an increase on one of the 

channels or a decrease on the other.  All of these issues associated with push-pull control 

will be further explored in the analysis and discussion. 

3.4 Control Signals 

Our closed-loop BCI experiments relied on the translation of the recorded signal 

from two ECoG electrodes to a control signal that controlled the movement of a cursor 

displayed to the monkey.  The sampled signals were digitally processed using our digital 

signal processing hardware and host computer to display the BCI task scene.  The equations 

of this translation are as follows: 

(ݐ)ܾ =  ଻݂ହିଵ଴ହு௭[ܽ(ݐ)]           (3.1) 
(ݐ)ܿ = ழ݂ଷு௭(|ܾ(ݐ)|)                (3.2) 
(ݐ)݀ = ୡ(୲)ିୡ(୲)തതതതതටభ౤ ∑[ୡ(୲)ିୡ(୲)തതതതത]మ               (3.3) 

(ݐ)ሶݔ =  ݃ ∙ [݀ା(ݐ)  (3.4)   [(ݐ)ି݀ −
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The control signal that was used to control the velocity of the cursor was an 

amplitude estimate of the signal between 75-105 Hz.  This estimate was computed using a 

band-pass, rectify, low-pass filter algorithm.   Starting with Eq. (3.1), the raw signal (a(t)) 

was first band pass filtered.  Each given control channel was passed through a series of two 

16th order digital Butterworth filters, a 75 Hz high-pass filter and a 105 Hz low-pass filter, to 

give the resulting band passed signal (b(t)).  Next, the 75-105 Hz signal (b(t)) was full wave 

rectified by taking the absolute value of the filtered signal.  This rectified signal was then 

low-passed at 3 Hz (1st order Butterworth) to generate an amplitude estimate (c(t)).   

There was some variation in the overall amplitude and amount of modulation that 

occurred for various channels on a recording array.  To minimize the effect of these 

differences in signal amplitude, each channels amplitude estimate was normalized as shown 

in Eq. (3.3).  The first step in the normalization process was the subtraction of a running 

average.  This running average was computed on the DSP with a time constant of 100 

seconds.  It should be noted that this running average was computed using the continuous 

stream of signals and included the signal recorded during previous trials.  Thus, this mean 

value is not the mean observed only during rest nor inter trial intervals, but rather also 

included the modulated signal from previous trials.  A 100 second time constant was chosen 

since for a maximum movement trial of five seconds plus one second inter-trial interval at 

least 16 trials should contribute significantly to the running average.  This minimizes the 

possible effect of an uneven sampling of previous trials where the desired target was 

significantly biased towards one target.  An alternative approach would be to choose a mean 

value for the day based on an initial calibration or data from the previous day.  Our approach 
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has the benefit of creating a continuous BCI that can run autonomously and does not 

require any initial calibration or data analysis.  Additionally, our system can potentially adapt 

to possible electrical noise and signal quality changes throughout the course of the day.  

In addition to subtracting the mean, each channel’s control signal was also 

normalized by the observed variance of the signal.  This variance was calculated by taking 

the root mean square (RMS) of the amplitude of the signal minus its running average.  Once 

again, this variance estimate was smoothed with a time constant of 100 seconds.  The final 

control signal was then generated by subtracting the mean and dividing by the RMS. 

In Eq. (3.3), ܿ(ݐ) represents the amplitude estimate between 75-105 Hz.   ܿ(ݐ)തതതതത represents the 100 second running average of x and the denominator represents the 

RMS of [ܿ(ݐ) – ܿ(ݐ)തതതതത] for the last 100 seconds.  The generated control signal d(t) from the 

two control channels (positive channel, d+(t)  and negative channel d-(t) )  were then 

combined in a push-pull manner to control the horizontal (ݔሶ ) or vertical (ݕሶ ) velocity of the 

cursor.  The gain term, g, in Eq. (3.4) controls the speed the cursor moves for any given 

amplitude change in the control signal. 

Figure 3.5 shows a step by step example of the raw wave being processed to generate 

an amplitude estimate.   The channel in this example was assigned to move the cursor to the 

left when there was an increase in amplitude and to the right when there was a decrease.  In 

this example, the trial in panel A represents when a left target was presented at time zero to 

the monkey.  After observing the desired target, the subject increased the amplitude between 
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75-105 Hz.  This amplitude increase relative to the running average caused the cursor to 

move to the left to select the correct target.  Likewise, in panel B, when a right target 

appeared, the monkey decreased the amplitude to correctly move to the right. 

The mean control signal across five days of recordings for two different monkeys is 

shown in Figure 3.6.  For monkey M, the positive channel (Figure 3.6a) control signal 

showed little variation between left and right trials.  In contrast, the negative channel (Figure 

3.6b) shows a large increase in amplitude for left trials as this amplitude was used by the 

monkey to move the cursor to the left or right and select the proper target.  A second pair of 

plots shows the positive and negative control channels for monkey N.  In this case, the 

positive channel (Figure 3.6c) shows an increase for trials with right targets while the 

negative channel (Figure 3.6d) shows an amplitude increase for left targets.   

 

 

  


