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ABSTRACT

The decentralized flow control problem for an open multiclass BCMP network
is studied. The power based optimization criterion is employed for the derivation of
the optimal flow control for each of the network’s users. It is shown that the optimal
arrival rates correspond to the unique Nash equilibrium point of a noncooperative
game problem. Asynchronous algorithms are presented for the computation of the
Nash equilibriun point of the network. Among them, the nonlinear Gauss-Seidel

algorithm is distinguished for its robustness and speed of convergence.
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1. Introduction

For computer communication networks supporting different classes of packets
with (often) conflicting objectives, a game theoretical approach has been
investigated for achieving efficient resource allocation. Nash, Pareto and Stackelberg
criteria [2] have been studied [7], [9], [11], [12]. In this paper the decentralized flow
control problem of a multiclass model of a computer communications network is
analyzed. Each network user operates with an arrival rate which maximizes its own

objective function, the power criterion.

In the remainder of this section, previous work related to the class of problems

above is reviewed, and the content of the paper is outlined.

Barath-Kummar and Jaffe in [1], [14] first introduced a heuristic algorithm
which was termed “greedy” and was found to possess good convergence properties
in the computation of an efficient flow control of a multiclass queueing system.
Cansever [9] and Douligeris and Mazumdar [11] showed the convergence of the
“greedy” algorithm for specific networks. Specifically, in [9] the convergence of
the “greedy” algorithm to the Nash equilibrium was proven for a simple network

shared by two users. In [11] the existence of a Nash equilibrium point was proven



for the case in which a number of users shared the resources of an exponential
processor. In addition, the “greedy” algorithm was proven to converge to the Nash
equilibrium when the ezponential processor was shared by two classes of packets.

‘The methodology used for the proof was direct algebraic manipulation.

Note that the methodology used in [9] cannot be extended to an arbitrary
network. The proof corresponding to the particular example analyzed in [9] is
rather tedious. Furthermore, the methodology used in the derivation cannot be
used for the proof of the existence and uniqueness of the Nash equilibrium point of
an arbitrary BOMP network [4].

The technical disadvantage of the methodology used in [11] is that even though
the network analyzed is the simplest possible, the proof of the convergence of
the “greedy” algorithm to a Nash equilibrium point cannot be extended to cover
the case in which the exponential processor is shared by more than two users.
Furthermore, in [11] the possibility of the existence of multiple Nash equilibrium
points 1s not considered, and consequently no explicit study of the uniqueness of

the Nash equilibrium point was attempted.

The apparent limitations of the approach followed in [9] and [11] were addressed
both technically and conceptually in [7] using a more systematic formulation of the
problem. The existence and uniqueness of the Nash equilibrium point was proven.
Furthermore, it was pointed out that the “greedy” algorithm was simply the Gauss-

Seidel iterative procedure for the solution of a system of equations.

The set of equations that a Nash equilibrium point satisfies is a set of linear
equations. In [7] a class of asynchronous algorithms was introduced for the
computation of the Nash equilibrium point. In that framework each user updated
its flow control policy asynchronously, that is, a particular user could change its flow
control policy even if it had not obtained an updated version of the policies of the
other users. This paradigm was along the lines of previous work on decentralized
computation [10], [2], [5], [18].

In [8] the existence and uniqueness of the Nash equilibrium point was proven

in the context of decentralized flow control of an arbitrary BCMP network with K



users.

This paper is organized as follows. In Section 2, the statement of the problem is
presented. In Section 3, monotonicity properties that hold in a BOCMP network are
derived. The existence and uniqueness of the Nash equilibrium point for a BCMP
network is proven in Section 4. To make the analysis more transparent, we first
present asynchronous algorithms for the computation of the Nash equilibrium point
for a network consisting of an exponential server with rate . We then apply the
analysis to a general BCMP network. Asynchronous algorithms that converge to
the Nash equilibrium point corresponding to the solution of the decentralized flow
control problem of a BCMP network are given in Sections 5. Finally, in Section
6, the results corresponding to the derivation of the Nash equilibrium point are

applied to specific examples.

2. The Statement of the Problem

A BCMP network with I exponential servers is shared by K different classes of
packets that are processed according to the FIFO policy. Let u* be the service rate
of the ¢** server, and M be the 1 x I matrix [p? ... pf]. Let R* = [r*] be the
I x I routing matrix of the k** class of packets (1<k<K,1<:i<I, 1<;<1I)
In this notation, class k packets are routed from node 7 to node j with probability
r*7 and enter into the network at node ; with probability »*7. A = [A! ... A\K]
represents the set of arrival rates of the K packet classes. Thus, user k operates with
a state independent Poisson arrival rate A*. With respect to the power criterion,
users operate at a Nash equilibrium point; that is, given the strategies of the other

users, none of them has an incentive to unilaterally change its operating policy [2].

The power-based user optimization criterion requires that each user & maximize
the ratio of the weighted average throughput over the expected time delay:
pk def (B*)P
Erk ’
forall k, k = 1,2,---,K. The parameter 85 (which is assumed to be greater than
or equal to zero)} may be adjusted to achieve different trade offs between average

throughput and expected time delay.



In order to achieve the Nash equilibrium, two classes of asynchronous
distributed flow control algorithms are investigated. In the first class, users attempt
to reach the Nash operating point using a Gauss-Seidel type iterative procedure.
The algorithm requires only one user to change its flow control policy at a time.
After adjusting its policy to maximize its power, the user broadcasts the value of
its new policy to all other users. Using this step-by-step iterative procedure, the

optimal operating point for the network is reached.

The second class of decentralized algorithms investigated is based on a
paradigm borrowed from the field of distributed computation [10]. In this case, each
user recomputes its flow control policy asynchronously. The computation of a new
flow control policy takes place even if the latest changes in the control strategies of
the other users are not available. However, the policies of other users are guaranteed

to be available within a bounded time.

3. Monotonicity Properties of BCMP Networks

Let the 1 x I matrix @F = [§¥ ... §%1] be the solution of the traffic flow
equations for the k** class of packets of the BCMP network defined in the previous
section, t.e.,

®F = A% + (©F A M)R* . (3.1)
Here A* denotes the load vector of the input traffic flows of the k** traffic class
Ak — Ak[rk-l . ?"k‘I]
forallk, k=1,2, --- ,K. If the BOCMP network is stable, then
@k — Ak + @kRk ,

or

@* = A¥I — RH)™

With
af = [akl akl’] def [,rk-l rk-I](I _Rk)"’l ,



we obtain

ghi — o Rik
forally,j=1,2,---,I
Proposition 3.1. The expected time delay ET* of the k™™ class packets of a
BOMP network is a nondecreasing function of A for alll, 1 =1,2,--- K, and «

conves increasing function of A for all 1, 1=1,2,---,K, if and only if a*9a¥ > 0

for some j, 1 =1,2,--.,I.

Proof 1 The throughput of a particular class of packets in a stable multiclass
BCMP network equals its arrival rate. Therefore,

By* = A% | (3.2)

The time delay amounts to

k
Ert = B \F s
and _ ,
Bt - — & .
- K
7 _ZIKI gl e "Elm1 AP
Thus,
k k d ok
EQ* = ) , 3.3
¢ ;#" — Yiey BN (3
and
I k5
Br* = “ (3.4)

. K S
=18 - 21y M

Using equation (3.4), one can easily prove Proposition 3.1.



4, Decentralized Flow Control: Existence and
Uniqueness of the Nash Equilibrium Point

In this section, we prove the existence and uniqueness of a Nash equilibrium
point for a BCMP network which consists of one queue with an exponential server
of rate 4 shared by K users. The existence and uniqueness of a Nash equilibrium

point for arbitrary BCMP networks is derived based upon these results.

The power of user k is given by

Pr BT Ry Z,\) . (4.1)

In this section two approaches are used in order to prove the existence and
uniqueness of the Nash equilibrium point. One of these approaches will be further
used for the proof that a general BCMP network has a unique Nash equilibrium

point as well,

If z{" is the value of the arrival rate A* for which the first derivative of the kth

user’s power is zero, then

k= A . 4.2
Let
k def
= maz Ay o , 4.3

forall k, ¥ =1,2,---,K.

Observe that 2§ > 25 and that the power of the k** user is a convex increasing
function in the interval [0, z§] and a concave function of A* in the interval [z%,

# = Yopun M. Furthermore, p ~ O At + 28) = 111,“1?",;'(” — YA # 0.
Observe also that if 8 > 0, then zF #£ 0.



Let

K
A = {(Al,---,AK) 2> 2 for every b, 1<k < K, and Z)\I < ,u} ,
I=1
which is closed, compact, and convex. Furthermore the qualifications constraints
for the Kuhn-Tucker conditions hold because the space A is specified by a set of
linear equations. Note that the users of the network never operate on the border of
the space A.

From [ROS65] we know that an equilibrium point exzists for every concave K-
person game with concave rewards and a bounded, closed, and convez space A.

Furthermore, Zsza. P* is a diagonally strictly concave function [ROS65] in .A. Thus,

Proposition 4.1:  An M/M/1 queueing system shared by a number of users, each

operating under a power criterion, has @ unigue Nash equilibrium point.

Since the optimal arrival rate of the k%* user is zero if f; = 0, we can assume

for the rest of the section that Gy # 0 for every k. Furthermore the fact that Br #0

implies that zf > 0. A different proof of Proposition 4.1 is given in the sequel

[BOV&8a).

Let H* be the function

def 1
H® = BF (4.4)
forall k, 2 =1,2,..-, K. Then,
k L (4.5)

CORE e = A
for all k, = 1,2,-.-, K. The first derivative of H* with respect to A* is negative
for A¥ < 2F # 0 and positive for A¥ > z¥. Furthermore, the second derivative of HF*
is always positive. Therefore, H* is a conver function for every value of Br, and
—H¥ is a concave function with respect to Ak, for allk, k=1,2,---, K. Observe
that if A* = 0, then H* = oo andif g — S35, Al =0, then H* = co. Therefore,
there always exists a small € > 0 such that the optimal arrival rate of each user A%,
forall k, £k =1,2,---, K, belongs to the set .4, defined by the set

" K
A {(Al,...,AK):/\kZ 2L, for every b, 1 <k < K, and ZAIS#“E} ’

2 i=1



for an appropriate small positive value of . A is a closed, compact, and convex
set. The inequality constraints validate the qualification conditions of the Kuhn-
Tucker necessary conditions for optimality of the nonlinear optimization problem.
Furthermore, Zf..—_z HF is a diagonally strictly convex function in A. Thus, there
exists a unique Nash equilibrium point for every value of the parameters fJy,
1<k < K [ROS85].

We would like to extend the previous analysis to the case of a BOMP network.
In Section 3, we found that the expected time delay of the %** class of packets is

given by the equation

3 a ot
Erf = . 34
’ ; pio— Efil ati ) (4
Thus, for a BCMP network
M kj

B = )y 2 , (4.6)

K i4
=1 W~ 2y A
is a convex function with respect to A¥.

Let z{ be the value of the arrival rate A* which minimizes the function H* (or,
equivalently, which maximizes the power function P *). It can be easily proven that
if B # 0, then zf > 0. In the same way as before, we define the space 4 as the

following:

K
A= {(Al,~-~,AK) A2 ISRSK Y N < -, 15 < I,}
i=1
for appropriate small positive ¢! and €. A is a closed, compact, and convex set.
The constraints fulfill the Kuhn-Tucker qualification constraints, and Ef;l HE 4s

a diagonally strictly convex function in A. Therefore there exists a unigue Nash
equilibrium point [ROS65]. This implies that

Theorem 4.2: A BCMP queueing system shared by K users, each operating

under a power criterion, has a unique Nash equilibrium point.
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5. Asynchronous Algorithms for Decentralized Flow
Control
5.1 A Simple Network with an Exponential Server

In the sequel, the K user BCMP network is assumed to consist of one queue

with an exponential server of rate u. The power of user k is given by
K
PE = (WP — 30N (5.1)
=1

for all k, k = 1,2,.--,K. The Nash operating point is the solution of the set of

equations [7]

(L+B)N + B Y N = B (5.2)
Ik
forall k, k=1,2,---, K. Note that the above system of K linear equations has K
unknowns.
Let 5
def 3
6 & : 5.3
k T (5.3)

foral k, k =1,2,---, K.

Also, zT denotes the vector [A! - AX] and A the K x K matrix [ari], with azr = 1
and ag; = 8 for all I, I # k. b7 denotes the vector [b1 --- bk], where by = &pu.
Thus, the derivation of the Nash equilibrium of this network requires the solution

of the system of linear equations

Az = b . (5.4)

Since the diagonal elements of the matrix A4 are equal to 1, D = diag(4) = I,
the K x K matrix B = [b;] defined by

B=I-D'A=1-4

amounts to
0 -8 ... =&
—by 0 ee. by

—dxg —bg ... O
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Therefore Equation (5.4) has been reduced to the fixed point equation

t = Bz + b . (5.5)

In [10], Chazan and Miranker consider chaotic relaxation methods for solving
linear systems of equations. In the sequel these results are briefly presented and

subsequently applied to the problem above.

The computations are done in steps called iterations. These iterations are
indexed by ¢t = 0,1,2,--- where ¢ can be viewed as a discrete time variable for the

system. At time £+ 1, a set U(t+ 1) of coordinates of the vector z(t + 1) is updated

as follows:

K
ze(t+1) = Y bumi(t—7(t, k1) + b, if keU®) , (5.6)
=1

ee(t+1) = zx(t), ifk & U@) ,
where {7(-,,-)} are delay terms. The initial vector is ©(0) with zx(2) = z(0) for
all£ < 0. Let I' denote a choice for {U(2),7(¢,%,1), t > 0, 1 < k,I < K}. Then 2(0)
and I' completely define the evolution of z(t), ¢ > 0 (the sample path of (), ¢ > 0)
given by Equation (5.6).

Let T'y, and T'y correspond to the case in which the (random) delays are
bounded by d (i.e., 7(¢,k,1) < d) and each component zx, & = 1,---, K, of the
vector z is updated during the iterative procedure either at least every s steps or

infinitely often respectively. Then the following holds:

Theorem 5.1: The sequence of iterates z(t), t = 0,1,2,--- converges for all
choices of T, or T'g iff p(|B]) < 1.

Proof : For a proof and extensions, see [10].

Lemma 5.2: Ifé >0 foralll, 1 <1< K, the dominant nonnegative eigenvalue

of the associated nonnegative matriz |B|

0 & ... &
S 0 ... &
|B| = ) . .

ég bx ... O
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is bounded by

Zak - max51<p(|B|)<Z6k — miné

k=1 k=1
and
25 _ z-—l z — minl‘sl (IBI) 25 r—-l z - Inaxl&l!2 (5 7)

. , (5.

im=1 E ~ min; §; Zr—-l 6; — maxé
with equality on either side of the previous two inequalities implying equality
throughout.
Proof: Let A be the K x K nonnegative matrix [@;;], with row sums, 1,73, -+, 7.

If p(A) were the maximum eiguenvalue of matrix A, then ([15])
1 & 1 &
miin{r—i ; agri} < p(A) < mza.x{-; lz; airy

Recall that p(4) = p(AT). The inequalities (5.7) follow by applying the above
inequality to the matrices |B| and |B|T. The bounds given by the second inequality
are better than the bounds given by the first one.

Proposition 5.3 : For an M/M/1 queueing system with a power-based user
eriterion, the chaotic relazation algorithm converges for all choices of Iy and T'y
if the upper bound of p(|B|) (given in Equation (5.7) ) is smaller than one, and
does not converge if the lower bound of p([B|) (given in Equation (5.7) ) is greater
or equal to one.

Proof:  Proposition 5.3, is a direct conclusion of Theorem 5.1 and Lemma 5.2.

5.2 The General BCMP Network

As proven in Proposition 4.2, every BCMP network has a unique Nash

equilibrium point. This particular point corresponds to arrival rates which are
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the unique solution of the following set of nonlinear equations involving the first
derivatives of the power expression:
ap*k

=0

— , (5.8)

forallk, k=1,-.., K.

The nonlinear Gauss-Seidel method is known to have very good convergence
properties [16], [5] and can be used for the computation of the Nash equilibrium
point. With this algorithm, the users optimize their arrival rates one user at a
time. Furthermore, user’s k& optimal arrival rate is the solution of the %—%— =0,
with respect to AF. The nonlinear Gauss-Seidel algorithm is appealing because of
the simplicity of its implementation, its robustness and its excellent convergence
rabe, properties we observed in numerous examples. A comparison fo the nonlinear
Gauss-Seidel method with a number of different methods for the computation of

the Nash equilibrium point is presented in Section 6.

6. Applications

In Section 5 we described the Gauss-Seidel iterative procedure for the

computation of the Nash equilibrium point of a BOCMP network. Let

4f 0Pt  apk T

PA) =50 5%]
and -
ef d P

IA) = [gmgd

forall £,[,1<k <K, 1<I<K.

The Nash equilibrium point might be computed by deriving the least-square
solution of the equation P(A) = 0, or equivalently, by deriving the unique global
minimizer A* of the function %(P(A)T)(P(A)). It is known [16] that A* is the
unique global minimizer of 1(P(A)T)(P(A)) if and only if P(A*) = 0.
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A good optimization technique for the derivation of the least-square solution of
a set of nonlinear equations is the modified Gauss-Newton iteration procedure which

calls for the following iteration:
Anpr = An = wn(J(A))T(I(AL)) + 7Y I(AL)TP(A,) (6.1)

In the previous expression the inverse matrix always exists provided only that ¢ > 0.

The parameter w,, may be chosen [16] to ensure that

LP(A )P ) < HP(AITIP(A,)

In [16] this method is further explained. Unfortunately the modified Gauss-Newton
iterative procedure is inefficient for large networks. Furthermore the algorithm could
converge to a local minimum. We applied the modified Gauss-Newton iterative
procedure to a number of examples. We noticed that it converges to global minimum

only in the case that the power coefficients f; = f; = -+ = 1.

In this section the previous results are applied to specific examples. In Fig.
6.1 a two stages switch is modeled as a multiclass BCMP network. u!, u?, u? are
the processors of the first stage and pu*, u® u® are the processors of the second
stage. u' = --- = u® = 2 packets/sec and, 8! = B2 = B3 = 1.0. The switch is
shared by three classes of packets, each operating with a state independent arrival
rate. Each packet, upon completion of its service in a processor of the first stage is
routed to a processor of the second stage with probabilistic routing which is given
in the Fig. 6.1.

The optimal decentralized flow control of the switch, i.e., the Nash equilibrium

point is obtained below using different algorithms.

In 6.2 the Nash equilibrium point is computed using the Gauss-Seidel

procedure.

In 6.3 the Nash equilibrium point is computed using the Newton procedure
[16].

In 6.4 the Nash equilibrium point is computed using the Gauss-Newton iterative
procedure described above. Observe that the Gauss-Seidel algorithm converges in

the least number of iterations to the unique Nash equilibrium point.
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4
?\ul u ;-L
> 0.7 ::5
12 l"l’ 0.2 I‘L
3 6
‘ S ~ st | |1 —Ou\

FIGURE 6.1. A two stages switch shared by three classes of customers.
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The Gauss-Seidel Iterative Procedure

}\2

1
32
')\3

packets/sec
0.5 —I:
0 I I I
0] 20 40 60

Number of Iterations

FIGURE 6.2. The computation of the Nash equilibrium point using the
Gauss-Seidel procedure for 1 = g% = £° = 1.0.



The Newton Iterative Procedure
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)\2
1
Al
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‘\;‘11“" vh“ - 3
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0 | | I
0 20 40 §]4]
Number of Iterations
FIGURE 6.3. The computation of the Nash equilibrium point using the

Newton procedure for 8 = p? = £° = 1.0.
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The Gauss-Newton Iterative Procedure

>\2
1
)\1
As
packets/sec
0.5 —
0 | i I
0 20 40 60

Number of Iterations

FIGURE 6.4. The computation of the Nash equilibrium point using the
Gauss-Newton procedure for 1 = g% = f° = 1.0.
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The Gauss-Seidel Iterative Procedure

1.5 — X
}\2
packets/sec
0.5 At
0 1 | 1
0 20 40 60

Number of Iterations

FIGURE 6.5. The computation of the Nash equilibrium point using the
Gauss-Seidel procedure, for f1 = 1.0, 5% = 2.0, and 5% = 3.0.
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In Fig. 6.5 we compute the Nash equilibrium point of the switch presented in
Fig. 6.2 for 8 = 1.0, 5% = 2.0, and 83 = 3.0.

7. Conclusions

The decentralized resource allocation problem was studied from the users
point of view, in a multiclass BCMP environment. Such a problem can be
seen as a noncooperative game problem. The power-based user optimization
criterion was employed in the derivation of the optimal flow control for each
network user. The existence of a unique Nash equilibrium point was proven.
Synchronous and asynchronous algorithms were presented for the computation of
the Nash equilibrium point of the network. Among them, the nonlinear Gauss-
Seidel algorithm was distinguished for its robustness and speed of convergence.

These results are of prime importance in any resource sharing environment.
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