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Abstract— The genus Phemeranthus (Montiaceae; fameflowers, rockpinks, sunbrights) 

comprises ca. 25 species of succulent, terete-leaved herbaceous perennials, mostly found 

in xeric rock outcrops and sand barrens. Phemeranthus’ center of diversity is in northern 

Mexico and the southwestern United States, but several species occur in glade and flat-

rock ecosystems in the midwestern and southeastern United States. DNA sequences of 

chloroplast and low-copy nuclear regions were used to infer the phylogenetic 

relationships of Phemeranthus species. Phemeranthus (excluding P. aurantiacus) is 

monophyletic and likely sister to the remainder of Montiaceae. The genus contains two 

geographically structured and morphologically distinguishable clades: a southern clade 

centered in Mexico and a northern clade distributed primarily in the United States. 

Dramatic range disjunctions within each clade suggest broad-scale movements early in 

the genus’ diversification, while the current distribution indicates an origin in the 

southwestern United States and northern Mexico followed by northward and eastward 

expansion. Discordance between the chloroplast phylogeny and morphological species 

boundaries and between chloroplast and nuclear gene trees was further explored using 

multi-locus species-tree reconstruction methods. The results indicate that hybridization 

has played an important role in the evolution of this xerophytic genus. Finally, in a 

greenhouse-based experiment, seeds of the widespread species P. parviflorus collected 

from natural populations along a latitudinal gradient were chilled for varying periods 

prior to germination. The differential responses of seed germination to chilling duration 

for the sampled populations suggest the presence of local adaptation or at least of 

adaptive phenotypic plasticity, an important consideration for the use of this species in 

ecological restoration and green-roof projects. 
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CHAPTER I.  BACKGROUND AND CONTEXT  

 

Abstract— The genus Phemeranthus (Montiaceae; fameflowers, rockpinks, sunbrights) 

provides a case study in the diversification and distributional history of narrowly 

restricted species and their more widespread congeners in xeric habitats of North 

America. Fameflower species exhibit wide variation in geographic range size and habitat 

specificity. Some are widespread in North America, while others are endemic to one or a 

few localities. All species are restricted to shallow or sandy soils, often on rock outcrops; 

but some appear to be edaphic specialists, while others occur on a relatively wide range 

of soil types. Previously considered part of the genus Talinum, Phemeranthus species are 

now recognized as a distinct genus belonging to the family Montiaceae, which has been 

segregated from the traditional Portulacaceae. The taxonomic history of the group is 

summarized, and its phylogenetic context within the order Caryophyllales, suborder 

Portulacineae, and family Montiaceae are discussed. The morphology, natural history, 

physiology, and cytology of Phemeranthus species are reviewed, with a particular focus 

on the relatively well-studied species of the midwestern and southeastern United States. 

The biogeographical context of the genus’ diversification is also discussed, emphasizing 

the nature and development of micro-desert habitats in the midwestern and eastern United 

States. Finally, emerging questions and hypotheses are presented to frame the subsequent 

chapters. 
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Introduction: Rarity and Endemism in Evolutionary Biology—Plant species exhibit a 

broad spectrum of geographic distributions. While some are nearly cosmopolitan, others 

are confined to only one or a few localities in a highly specific habitat type. Species with 

restricted geographic distributions are of great interest to evolutionary biology, as they 

may provide insight into the conditions promoting the origin, geographic spread, and 

persistence or extinction of taxa through time (Gaston 2008). 

 Systematic and population genetic research on rare species also carries strong 

conservation implications. The “hollow curve” distribution of species’ range sizes 

indicates that species with relatively restricted geographic distributions account for the 

majority of biodiversity (Brown et al. 1996; Gaston 1996, 1998; Gaston and He 2002). 

As the global human population continues to grow and its impact on natural processes 

and ecosystems continues to increase, these rare and endemic species may be especially 

sensitive to population decline and habitat loss.  

 Furthermore, while a few invasive species may benefit from human activity, 

habitat disruption and global climate change are likely to drive many more species 

toward rarity. Unless species are able to undergo wholesale geographic and habitat shifts 

in response to changing climate and habitat availability, they will be forced either to 

rapidly evolve new tolerances or to go extinct (Iverson and Prasad 1998; Davis and Shaw 

2001; Reusch and Wood 2007; Hoffmann and Sgrò 2011). It is therefore imperative to 

understand the factors that contribute to the origin and maintenance of range restrictions 

and to predict how these may be affected by ongoing climate change (Sexton et al. 2009). 

 Stebbins (1942) proposed that rare species contain little genetic variation either 

because they have not yet developed much or because their genetic diversity has been 
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depleted. However, some narrow endemics possess high genetic diversity. Recent 

reviews have found that while most rare species are less genetically diverse than their 

common relatives, some have equal or even greater diversity (Hamrick and Godt 1989; 

Gitzendanner and Soltis 2000). Stebbins (1980) later argued that rarity results from the 

interaction of genetic architecture, population structure, and localized ecological factors.  

 Species with highly restricted ranges or habitat preferences have originated in a 

variety of phylogenetic and environmental contexts. Historical factors may play a role: 

endemic species occur more frequently in some clades than in others. However, there are 

numerous examples of closely related species that differ in range size and habitat 

specificity (e.g., Coates et al. 2003; Moyle 2006). Therefore, phylogenetic methods are a 

critical component in reconstructing the past and predicting the future of any rare species 

or group of species that includes such taxa. Molecular phylogenetic data provide 

historical insight and help to reconcile competing hypotheses of vicariance and dispersal 

for the origins of species (Schaal et al. 1998). 

 Phylogenetic studies in an explicit geographic context can assess the relative roles 

of history and landscape in the evolution of endemic species. Such analyses can help to 

distinguish between alternative hypotheses concerning the origin and relationships of 

particular species. For example, plant geographers Engler and Willis proposed that 

narrow endemics were either youthful species that had not yet expanded their ranges or 

senescent species that had suffered range contraction (see Kruckeberg and Rabinowitz 

1985). These alternatives would lead to different predictions concerning the phylogenetic 

position of endemics within a broader clade. Understanding the phylogenetic position of 

a given taxon (for example, whether a narrow endemic is closely related to a more 
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widespread congener or whether it represents a highly divergent lineage) is important in 

establishing conservation priorities and planning effective management activities. 

 The genus Phemeranthus Rafinesque (Montiaceae; fameflowers, rockpinks, 

sunbrights) provides a case study in the diversification and distributional history of 

narrowly restricted species and their more widespread congeners in a North Temperate 

arid zone. Phemeranthus comprises approximately 25 species of succulent, herbaceous 

perennials with terete leaves and fleshy roots, most of which grow in patchy, xeric 

habitats such as rock outcrops and sand barrens (Figs. 1.1, 1.2; Table 1.1). Over a century 

ago, Harshberger (1897) claimed that, among American Portulacaceae, “there is no more 

interesting genus from an ecologic standpoint than the genus Talinum”. He referred 

specifically to “that group of the genus with round leaves, as distinguished from those 

species which have leaves more or less flattened” – that is, to the group now recognized 

as Phemeranthus. These species, he noted, were impressively adapted to withstand the 

long periods of drought, high temperatures, and intense sunlight characteristic of their 

bare, rocky habitats.

FIGURE 1.1 (FOLLOWING PAGE ). Photographs of Phemeranthus species. A) P. 
brevifolius, UT; B) P. confertiflorus, AZ; C) P. mengesii, AL; D) P. parvulus, AZ; E) 
P. punae, Jujuy, Argentina (photo courtesy F. Zuloaga); F) P. longipes, NM; G) P. 
calycinus, AR; H) P. sediformis, WA; I) P. thompsonii, UT. 
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TABLE 1.1. Distribution and substrate affinity of Phemeranthus species 

Taxon Approximate Distribution Substrates 
P. brevicaulis Trans-Pecos NM & TX, n. 

Coahuila & Chihuahua, Mexico 
Calcareous 

P. brevifolius Colorado Plateau, AZ, UT, & NM Sandstone 
P. calcaricus Central Basin of TN, n. AL Limestone 
P. calycinus Ozark and Ouachita highlands, AR 

and MO; Great plains, NE and CO 
south to cent. TX 

Sandy prairie & sandstone 
outcrops; various, usually non-
calcareous rock outcroppings 

P. humilis sw. NM, s. AZ, to cent. 
Chihuahua, Mexico 

 

P. longipes n. cent. NM to n. Coahuila & 
Chihuahua, Mexico 

Calcareous 

P. mengesii Southern Appalachia, AL, GA, & 
TN 

Various, non-calcareous rock 
outcroppings 

P. mexicanus San Luis Potosi to Oaxaca, 
Mexico 

 

P. multiflorus Durango, Mexico  
P. napiformis Madrean region, Durango, San 

Luis Potosi, south to Mexico City, 
Mexico 

Shallow soil over surfacing rock 

P. oligospermus n. cent. Mexico  
P. parviflorus Southern Rocky Mts., Colorado 

Plateau, & northern Madrean 
region, UT, AZ, NM, w. cent. 
Chihuahua, & ne. Sonora, Mexico; 
e. Great Plains & Interior 
Highlands, ND south to TX & KS 
east to IL; cent. AL 

Non-calcareous rock 
outcroppings and sandy prairie 

P. parvulus s. AZ & n. Mexico Various 
P. punae Puna region, s. Andes, Bolivia & 

Argentina 
Scree 

P. piedmontanus Piedmont, n. NC & s. VA Mafic and ultramafic outcrops 
P. rugospermus Sandhill prairies in MN, WI, IL, 

IN; NE; KS; OK; e. TX & w. LA 
Eolian sand, sandstone 

P. sediformis Okanagan highlands, n. WA & s. 
BC 

Metamorphic 

P. spinescens Columbia Plateau, e.-cent. WA to 
n. OR 

Basalt 

P. teretifolius Piedmont & Appalachia, PA to 
GA 

Various, usually non-calcareous 
rock outcroppings; shale, 
serpentine 

P. thompsonii Cedar Mt., cent. UT Siliceous conglomerate 
P. validulus s. UT to n. AZ Shallow clay soils; various 
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 Fameflower species exhibit wide variation in geographic range size and habitat 

specificity. Some are widespread in North America, while others are endemic to one or a 

few localities (Table 1.1). For example, P. thompsonii (N.D. Atwood & S.L. Welsh) 

Kiger is known from a single location in east-central Utah; P. brevifolius (Torr.) 

Hershkovitz is widespread throughout a single geographic region, the Colorado Plateau 

(Fig. 1.2B); and P. parviflorus (Nutt.) Kiger ranges from the Texas Gulf Coast to the 

Dakotas and from the Rocky Mountains to the southern Appalachians. All species are 

restricted to shallow or sandy soils, often on rock outcrops; but some appear to be 

edaphic specialists, while others occur on a relatively wide range of soil types (Reinhard 

and Ware 1989; Ware and Pinion 1990). For example, P. calcaricus (S. Ware) Kiger is 

found only on limestone cedar glades in central Tennessee (Fig. 1.2G), while P. 

parviflorus is found on sand dunes, on exposed outcrops of a variety of non-calcareous 

rocks (Fig. 1.2C), and in open shallow-soil grasslands. This variation in distribution, 

range size, and habitat specificity makes the genus an ideal study system for research on 

the patterns and processes involved in the evolution of species’ distributions.  

 This thesis focuses on the phylogenetic relationships and geographical patterns of 

Phemeranthus. The results of these analyses clarify the relationships of several rare and 

threatened taxa that have been rather poorly known and provide insight into their 

biogeographic histories. Additionally, the possibility of clinal adaptation in a widespread, 

selfing member of the genus is examined by testing seed germination responses to 

chilling duration. This research has potential implications for conservation planning and 

for the increasing horticultural use of fameflowers in water-conservative gardening and 

green-roof plantings (e.g., Getter et al. 2009; Dvorak 2010). 



 

  8

 

FIGURE 1.2. Phemeranthus habitats. A) Mountain bald, WA, P. sediformis; B) 
Sandstone, UT, P. brevifolius and P. confertiflorus; C) Granite, TX, P. parviflorus; D) 
Opening in Ponderosa pine, AZ, P. validulus and P. confertiflorus; E) Ozark glade, 
MO, P. calycinus; F) Sand blow, WI, P. rugospermus; G) Limestone cedar glade, TN, 
P. calcaricus; H) Granite flatrock, AL, P. mengesii. 
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Taxonomic History of Phemeranthus— 

 Phemeranthus has a somewhat convoluted taxonomic history. The type species, 

which is native to Appalachia and the Piedmont region of the eastern United States, was 

first validly described by Frederick Pursh in 1814 as Talinum teretifolium Pursh. 

Constantine Rafinesque had published the name Phemeranthus teretifolius in 1808, but 

the name was invalid (nomen nudum) because no type was specified.  

 Other known species of Talinum Adanson had flattened leaves. Believing the new 

terete-leaved species to be sufficiently distinct from Talinum as to merit its own genus, 

Rafinesque validated the generic name Phemeranthus when he published the combination 

P. teretifolius (Pursh) Raf. in 1814. Augustin Pyramus de Candolle described a second 

terete-leaved species in 1828, this one from Mexico (Talinum napiforme DC.), and 

assigned it and T. teretifolium to Talinum sect. Phemeranthus. Rafinesque thought that T. 

napiforme also warranted its own genus; he published the combination Eutmon 

napiforme (DC.) Raf. in 1833. Numerous additional terete-leaved species have been 

described since 1828; notably, J. N. Rose and Paul C. Standley (Rose and Standley 1911) 

and Edward L. Greene (Greene 1912) described multiple species from the southwestern 

United States and northern Mexico. The most recently published taxon is Phemeranthus 

piedmontanus S. Ware (2011).  

 Like much of Rafinesque’s work, the generic names Phemeranthus and Eutmon 

were generally ignored by subsequent workers, who almost universally followed de 

Candolle in treating the terete-leaved species as Talinum sect. Phemeranthus. However, 

in the most recent monograph of the group, von Poellnitz (1934) did not recognize any 

basis for maintaining the sectional divisions in Talinum. He recognized 47 species of 
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Talinum, mostly in the southwestern United States and Mexico. All members of Talinum 

sens. lat., both flat- and terete-leaved, are primarily succulent, herbaceous to suffrutescent 

perennials with fleshy taproots. They possess cymose inflorescences, and each pedicellate 

flower has two sepaloid bracts and usually five petals (tepals). Their unilocular, three-

valved capsules dehisce longitudinally and often circumscissilely at the base. The seeds 

are reniform with coiled embryos and are borne on free-central placentae. However, these 

resemblances between Talinum and Phemeranthus may be symplesiomorphies (i.e., 

characteristics inherited from the common ancestor of Portulacineae) (Applequist and 

Wallace 2001). In fact, species of Talinum sect. Phemeranthus are clearly distinguished 

from those of Talinum sect. Talinum. Careful morphological (Carolin 1987; Hershkovitz 

1993) and molecular (Hershkovitz and Zimmer 1997, 2000; Applequist and Wallace 

2001; Nyffeler and Eggli 2010) studies revealed the need for taxonomic revision, 

demonstrating that Phemeranthus is only distantly related to Talinum. 

Several morphological traits differentiate the two groups. Phemeranthus species 

possess pantocolpate pollen, while Talinum pollen is panporate (Carolin 1987). 

Phemeranthus capsules are held erect or nearly so (rarely pendent) and dehisce 

basipetally. In contrast, Talinum capsules are pendent to horizontal on curved pedicels 

and dehisce acropetally. The Phemeranthus fruit pericarp is undifferentiated; in Talinum, 

the exocarp and endocarp are differentiated and sometimes separate at maturity. 

Phemeranthus seeds are covered by a chartaceous membrane of funicular origin 

(“pellicle”). Talinum seeds are strophiolate but lack an investing pellicle (Carolin 1987; 

Hershkovitz 1993). 
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In addition, the basic difference in leaf morphology extends to the internal 

anatomy of the leaf. In Phemeranthus, the palisade mesophyll extends all the way around 

the leaf (see Ocampo and Columbus 2010, Fig. 5H), and the midvein is not externally 

visible. The leaves are sometimes slightly dorso-ventrally compressed, and young leaves 

that have been appressed in winter buds may be nearly planar adaxially with angular 

edges (D-shaped in cross-section) (pers. obs.). However, there is no defined lateral 

margin. Talinum species possess flattened leaves with palisade mesophyll only on the 

adaxial side (Ocampo and Columbus 2010). Although the margins may be revolute, 

particularly under drought conditions, at least the midvein is prominently visible. 

Molecular phylogenetic data also indicate that the two groups are not closely 

related. Talinum sens. str. is more closely related to Portulaca L. and Cactaceae than to 

Phemeranthus, whose close relatives are western North American genera including 

Calandrinia Kunth, Cistanthe Spach, Claytonia L., Lewisia Pursh, and Montia L. 

(Hershkovitz and Zimmer 1997, 2000; Applequist and Wallace 2001; Applequist et al. 

2006; Nyffeler and Eggli 2010). As a result, Phemeranthus has gained recognition as a 

separate genus. Most terete-leaved Talinum species distributed in the United States have 

been transferred to Phemeranthus (Hershkovitz and Zimmer 1997; Kiger 2001) and are 

treated as such in the Flora of North America (Kiger 2003). Three Mexican species have 

also been transferred previously (Ocampo 2002, 2003), along with a disjunct species 

found in northern Argentina (Nyffeler and Eggli 2010). 

 In addition to the terete-leaved species, Kiger (2001, 2003) placed within 

Phemeranthus the linear-leaved species Talinum aurantiacum Engelm. [including T. 

angustissimum (Engelm.) Wooton & Standl. and T. whitei I.M. Johnst., which he treated 
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as synonyms of T. aurantiacum], although other workers (Applequist, pers. comm.; 

Ferguson, pers. comm.; Ocampo, pers. comm.; Ogburn, pers. comm.) consider these taxa 

to belong to Talinum sens. str. Molecular phylogenetic data are needed to establish 

whether Phemeranthus is monophyletic as treated by Kiger (2001, 2003) or whether the 

inclusion of P. aurantiacus (Engelm.) Kiger renders Phemeranthus polyphyletic. 

Phylogenetic Context— 

 Phemeranthus belongs to the family Montiaceae, part of the traditionally 

recognized Portulacaceae sens. lat. The various families segregated from Portulacaceae, 

together with Cactaceae and other closely allied families, make up the suborder 

Portulacineae (Nyffeler and Eggli 2010), also known as Cactineae (Ocampo and 

Columbus 2010). This group is part of the order Caryophyllales (APG 2009). Below, the 

phylogeny and characteristics of these higher-level groups are summarized to provide a 

context for studies of Phemeranthus. 

 The order Caryophyllales largely corresponds to the long-recognized 

Centrospermae, a cohesive group distinguished by its free-central or basal placentation 

and a suite of embryological traits (Cronquist 1988). The discovery that most members of 

this group possessed betalain rather than anthocyanin pigments led to an expanded 

circumscription, as the betalain-containing Cactaceae and Didiereaceae were added. 

Caryophyllales are also distinguished by a unique type of sieve-tube plastid containing a 

ring of protein filament bundles (Cronquist 1988). Based on these and other 

morphological, ultrastructural, and chemical traits, Dahlgren (1975), Thorne (1976), 

Takhtajan (1980), and Cronquist (1981, 1988) all recognized Caryophyllales as including 
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Phytolaccaceae, Achatocarpaceae, Nyctaginaceae, Aizoaceae, Didiereaceae, Cactaceae, 

Chenopodiaceae, Amaranthaceae, Portulacaceae, Basellaceae, Molluginaceae, and 

Caryophyllaceae. They also recognized a close relationship between Caryophyllales and 

the families Polygonaceae and Plumbaginaceae; Cronquist (1988) assigned the latter 

families to Polygonales and Plumbaginales, respectively, and placed both orders together 

with Caryophyllales in a subclass Caryophyllidae. 

 Subsequently, molecular phylogenetic analyses have clarified the circumscription 

of the order, demonstrating that Polygonaceae and Plumbaginaceae; Droseraceae, 

Nepenthaceae, and Drosophyllaceae (the carnivorous clade); Ancistrocladaceae, 

Dioncophyllaceae, Frankeniaceae, and Tamaricaceae also belong to Caryophyllales sens. 

lat. (The Angiosperm Phylogeny Group 2009). This latter large clade is well supported 

(Soltis et al. 2011) and has sometimes been recognized as a separate order, Polygonales 

(Judd et al. 1999). 

 Many members of Caryophyllales feature unusual ecological and/or physiological 

traits, including carnivory, highly modified growth habits, and tolerance of saline or 

highly arid conditions (Stevens 2001 onwards). Anomalous secondary growth is common 

in the group (Cronquist 1988; Carlquist 2010). C4 and CAM (crassulacean acid 

metabolism) photosynthesis and succulent growth are also widespread in Caryophyllales, 

suggesting adaptation to high temperatures and arid climates (Cronquist 1988). The fact 

that contemporary Caryophyllales often inhabit marginal, xeric habitats suggests that 

ancestral Caryophyllids evolved in similarly warm, arid habitats with mineral soils 

(Ehrendorfer 1976). Cronquist (1988) interpreted the common ancestor of Caryophyllidae 

as an herbaceous plant with separate carpels, superior ovaries, and lacking petals. 



 

  14

 The order has a sparse and relatively short fossil record, dating back only to about 

70–80 million years ago (Cronquist 1988; Wikstrom et al. 2001). Calibrated molecular 

phylogenies using a variety of genes and dating methods have recovered dates ranging 

from 104 to 116 million years ago for stem-group Caryophyllales and from 83 to 102 

million years ago for the crown group (Wikstrom et al. 2001; Anderson et al. 2005; 

Magallón and Castillo 2009). An origin around 104–111 million years ago (Wikstrom et 

al. 2001) would predate the major diversification of insect pollinators, consistent with the 

hypothesis that ancestral Caryophyllids were wind pollinated (Ehrendorfer 1976).  

 Molecular data have produced many successive refinements of the relationships 

within Caryophyllales (Rettig et al. 1992; Downie and Palmer 1994; Downie et al. 1997; 

Cuenoud et al. 2002; Brockington et al. 2009). Using nine plastid genes, two nuclear 

genes, and the plastid inverted repeat, Brockington et al. (2009) studied the higher-level 

phylogeny of Caryophyllales sens. lat. and tested hypotheses related to pollination 

biology and perianth differentiation. They evaluated the classical hypothesis that the 

ancestral caryophyllid flower had an undifferentiated perianth and was wind-pollinated 

because these plants evolved in dry, marginal environments where pollinators were 

scarce. They found little support for wind pollination as the ancestral condition, although 

their analysis did suggest that an undifferentiated perianth was the ancestral condition. 

Subsequently, a differentiated perianth evolved at least nine independent times 

(Brockington et al. 2009). 

 Within core Caryophyllales, Portulacaceae sens. lat. is part of a well-supported 

group along with Basellaceae, Cactaceae, Didiereaceae, and Halophytaceae (Fig. 1.3). 

This group was first recognized by Thorne (Thorne 1968, 1976) and is united by the 
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presence of a floral involucre, succulence, mucilage, and Crassulacean acid metabolism 

(Thorne 1976; Stevens 2001 onwards; Cuenoud et al. 2002) and by certain pollen exine 

characters (Nowicke 1996). The monophyly of this group of families was supported by 

early molecular phylogenetic studies of Caryophyllales (Rettig et al. 1992; Downie and 

Palmer 1994; Downie et al. 1997); its probable sister group is Molluginaceae (Cuenoud et 

al. 2002; Brockington et al. 2009). The group has been informally known as the 

"portulacaceous cohort" (Applequist and Wallace 2001; Cuenoud et al. 2002; 

Brockington et al. 2009) or "portulacaceous alliance" (Hershkovitz 1993; Hershkovitz 

and Zimmer 1997) and formally as the suborder Portulacineae (Takhtajan 1997; Nyffeler 

et al. 2008; Nyffeler and Eggli 2010) or Cactineae (Thorne 2000; Ocampo and Columbus 

2010). Here, I use the name Portulacineae. 

 Members of Portulacineae are found in Mediterranean, desert, alpine, and boreal 

habitats on four of the six continents. The group is poorly represented in Eurasia and in 

Africa north of the equator (Hershkovitz and Zimmer 2000), and its members are 

predominantly distributed in the New World (Applequist et al. 2006). Molecular data 

(e.g., Applequist and Wallace 2001) support the hypothesis that Portulacineae originated 

in South America or southern North America. 

 Portulacineae is especially interesting in that about 90% of its ~2200 species are 

succulent to some degree in leaf, stem, and/or root, including representatives of all three 

major types of succulent life forms: stem succulents, leaf succulents, and caudiciform and 

pachycaul succulents (Nyffeler et al. 2008). This diversity appears to reflect parallel 

evolution of distinct succulent life-forms from similar ancestral conditions. Most 

Portulacineae inhabit warm, arid environments, and possibly all members of the group 
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have at least some ability to recycle respired CO2 under drought conditions via facultative 

CAM-cycling.  

 This large clade represents one of the many origins of a differentiated perianth 

within Caryophyllales. In Portulacineae, preceding bracts have been recruited to form 

perianth parts. This involucre consists of two leafy sepaloid bracts below the petaloid 

perianth parts. The phyllomes or bracts enclose the developing floral meristem, thus 

playing the role of a calyx. The petaloid parts, meanwhile, are derived from bracts (or 

sepals) rather than from stamens. The ancestral condition of the clade is a uniseriate 

pentamerous flower (Brockington et al. 2009). Portulacaceae sens. lat. have diverse 

pollen, varying from tricolpate to pantocolpate, polypantocolpate, pantoporate, or 

polyporate, with echinate to almost glabrous surface ornamentation (Nyananyo and 

Mensah 2004). Basic chromosome numbers range from two to twelve (Nyananyo and 

Mensah 2004). Like most Caryophyllales, portulacaceous plants contain betalains rather 

than anthocyanins in their floral and vegetative tissues (Nyananyo and Mensah 2004). 

 As traditionally circumscribed, Portulacaceae included several more or less 

cosmopolitan genera along with genera endemic to Africa, Madagascar, Oceania, 

Eurasia, North America and South America, suggesting a pre-Tertiary origin 

(Hershkovitz and Zimmer 1997). The family was hypothesized to have originated in 

Gondwanaland (Applequist and Wallace 2001) and to have spread by long-distance 

dispersal following its breakup (Nyananyo and Mensah 2004). Portulacaceae sens. lat. 

was thought to have originated relatively recently, in the late Miocene (UCMB 1994-

2007), in part because the habitats occupied by most contemporary Portulacaceae and 

allied families formed during the Miocene or later. However, the fossil record of the 
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group is almost non-existent. Possible Montia-like pollen has been reported from the 

Cenomanian of Iowa (Ravn 1987), but this interpretation of the fossil is suspect 

(Hershkovitz and Zimmer 2000). Polyrugate Portulacaceae-like pollen has also been 

reported from the upper Miocene and Pliocene of Alaska (Muller 1981). Despite their 

often distinctive pollen and durable cuticles, spines, and glochids, Cactaceae have not left 

a fossil record. Arid-adapted portulacaceous lineages likely originated during the late 

Cretaceous or early Tertiary after the breakup of Gondwana and later spread with the 

widespread aridification in the late Tertiary (Raven and Axelrod 1974). Hershkovitz & 

Zimmer (2000) suggested a late Eocene to Miocene origin for Cactaceae. They attributed 

the present-day distributions of portulacaceous taxa to late Tertiary–early Quaternary 

climate trends that caused the development of arid habitats in temperate regions of 

western North and South America, thus opening new niches and promoting speciation 

(Raven 1963; Raven and Axelrod 1974, 1978; Axelrod 1979, 1983). The many 5000–

15000-km disjunctions within Portulacineae show low ITS divergences, suggesting 

relatively recent long-distance dispersal. Morphological evidence also suggests that 

disjunctions in Talinum, Phemeranthus, other western North American genera, and 

Cactaceae are due to recent long-distance dispersal (Hershkovitz and Zimmer 2000). 

 Portulacineae comprises four major lineages (Fig. 1.3): Basellaceae (small-

flowered vines with fleshy rhizomes or tubers from Africa and Central and South 

America); Didiereaceae (large woody trees or shrubs, some cactus-like, from eastern and 

southern Africa and Madagascar); Montiaceae (herbaceous plants, often rosette-forming, 

with clasping, non-constricted leaf bases, mostly from North and South America and 

Australia); and the large, diverse "ACPT clade", which includes Anacampserotaceae, 
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Cactaceae, Portulaca (Portulacaceae sens. str.), and Talinum (Talinaceae) (Stevens 2001 

onwards; Nyffeler et al. 2008; Nyffeler and Eggli 2010). Although relationships within 

Portulacineae, especially within the ACPT clade, remain somewhat problematic, the 

ACPT clade as a whole is 

consistently well supported 

(Hershkovitz and Zimmer 1997; 

Applequist and Wallace 2001; 

Nyffeler 2007; Brockington et al. 

2009; Nyffeler and Eggli 2010). 

Thus, Portulacaceae sens. lat. is 

paraphyletic with respect to 

Cactaceae, necessitating either the 

lumping of Cactaceae into 

Portulacaceae—an unattractive 

prospect—or the recognition of 

several small segregate families 

(Hershkovitz and Zimmer 2000), 

leaving only Portulaca in 

Portulacaceae sens. str. (APG 

2009; Nyffeler and Eggli 2010). 

 This breakdown of the traditional Portulacaceae and that of Talinum within it 

were hinted at by early morphological cladistic studies of the group. In a 1987 review, 

Roger Carolin performed a cladistic analysis of Portulacaceae at the generic and sectional 

FIGURE 1.3. Schematic cladogram showing 
relationships in Portulacineae. Approximate 
numbers of genera and species are given for each 
family. Tree based on Nyffeler & Eggli (2010), 
Fig. 1; genera and species numbers from Nyffeler 
& Eggli (2010) and Stevens (2001 onwards). 
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level using 40 morphological characters. Accepting the classical view that Cactaceae and 

Aizoaceae were close relatives, he used those families as the outgroup to Portulacaceae + 

[Basellaceae + Didiereaceae]. This rooting resulted in a rather chaotic tree, with most 

tribes and several genera appearing polyphyletic. Talinum sect. Phemeranthus never 

formed a clade with Talinum sect. Talinum. Carolin noted that the investing aril of sect. 

Phemeranthus was an important difference from sect. Talinum, but its homology was 

difficult to interpret, and Talinum needed further study. He did not propose to divide the 

genus, and his analyses recovered sect. Phemeranthus as sister to a large clade including 

portions of various genera that are now assigned to Talinaceae, Montiaceae, 

Portulacaceae, and Anacampserotaceae. The genera now assigned to Montiaceae were 

divided among several clades (Carolin 1987).  

 Subsequently, Hershkovitz (1993) used 46 morphological characters in a cladistic 

analysis focusing on the relationships of Calandrinia. Like Carolin (1987), Hershkovitz 

found support for a fundamental division of Portulacaceae and their relatives between 

predominantly eastern American and African taxa (which were paraphyletic with respect 

to Basellaceae, Cactaceae, and Didiereaceae) vs. western North and South American and 

Australian taxa. He recovered Talinum sect. Phemeranthus in a basal position within the 

former group, although it did not form a clade with Talinum sect. Talinum. Hershkovitz 

(1993) suggested that additional phylogenetic analyses would support segregating "most 

or all of the western American taxa into a distinct family, expanding the existing 

circumscriptions of Cactaceae, Basellaceae, and Didiereaceae to include their 

portulacaceous sister taxa, and retaining Portulacaceae only for their monophyletic 

residue." 
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 In a phylogenetic study directed at understanding the evolutionary relationships 

and antiquity of Cactacaeae, Hershkovitz and Zimmer (1997) regarded Phemeranthus as 

distinct from Talinum and published nomenclatural combinations for the three 

Phemeranthus species in their ITS data set [P. brevifolius (Torr.) Hershkovitz, P. 

confertiflorus (Greene) Hershkovitz, and P. spinescens (Torr.) Hershkovitz]. In contrast 

to the earlier morphological analyses, they recovered Phemeranthus in the western 

American and Australian clade of Portulacaceae, rather than the eastern American and 

African clade. The six Talinum and Talinella Baill. exemplars did not form a clade, but 

their positions lacked support. The three Phemeranthus exemplars formed a strongly 

supported clade that was sister to a group consisting of an Australian Calandrinia, two 

Cistanthe species, and a Montia. The authors referred to this large clade as the PAW 

clade (for Phemeranthus, Australia, Western America) (Hershkovitz and Zimmer 1997, 

2000). It in turn was sister to the ACPT clade, though with poor support. 

 Applequist and Wallace (2001) applied sequence data from the chloroplast gene 

ndhF to further elucidate relationships among the major lineages of Portulacaceae, 

Basellaceae, Cactaceae, and Didiereaceae. They found two large clades within this group: 

the ACPT clade and the remainder of Portulacaceae (including the terete-leaved Talinum 

mengesii) plus Basellaceae and Didiereaceae. Thus, their chloroplast sequence data 

reinforced the earlier morphological and molecular evidence that Talinum sens. lat. was 

polyphyletic, with terete-leaved Phemeranthus being unrelated to true Talinum. The 

polyphyly of Talinum may have contributed to the failure of previous infrafamilial 

classifications to correspond to monophyletic groups (Applequist and Wallace 2001). 
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 Subsequently, Applequist and colleagues (Applequist et al. 2006) added the 

enigmatic New Zealand cushion-forming plant Hectorella caespitosa Hook. f. to the 

ndhF dataset, also incorporating matK and rbcL sequences for many taxa. The familial 

placement of Hectorella had been controversial; variously associated with Portulacaceae 

and Caryophyllaceae, it had commonly been accepted as a separate family within 

Caryophyllales, Hectorellaceae. The molecular data showed that not only did Hectorella 

belong within Portulacaceae, but it was nested within the PAW clade. 

 As support for the monophyly of the PAW clade accumulated (Hershkovitz and 

Zimmer 1997, 2000; Applequist and Wallace 2001; Applequist et al. 2006; Nyffeler 

2007), it was recognized at the family level as Montiaceae (APG 2009; Nyffeler and 

Eggli 2010). After the hyper-diverse Cactaceae, Montiaceae is the most diverse clade 

within Portulacineae, with about 200 species in 15 genera (Table 1.2) (Hershkovitz and 

Zimmer 1997; Nyffeler and Eggli 2010). All are low-growing herbaceous plants. The 

species in this group are divided approximately equally between North and South 

America, with concentrations in California and northern Chile (Hershkovitz 2006) and 

members in Australia and New Zealand. Using a rough calibration based on published 

divergence rates for the ribosomal DNA internal transcribed spacer region (ITS), 

Hershkovitz and Zimmer (2000) estimated that this group originated during or later than 

the mid-Miocene. 

 Montiaceae are notable for their pattern of closely related species in temperate 

North and South America (Hershkovitz 1993; Hershkovitz and Zimmer 2000; 

Hershkovitz 2006), a pattern recognized in several plant groups (Raven 1963). 

Phemeranthus is one example, with a single species found in the southern Andes and the 
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remainder north of the Isthmus of Tehuantepec in Mexico. Raven & Axelrod (1978) 

argued that the North American taxa in this group were derived from South American 

ancestors. Hershkovitz and Zimmer (2000) focused on the relationships and 

biogeography of western American Portulacaceae using ITS data. Their analysis strongly 

supported the monophyly of the PAW clade (i.e., Montiaceae) and indicated multiple 

intercontinental disjunctions, with 8–13 dispersal and colonization events across 

distances exceeding 2000 km. However, the choice of outgroup would affect the ancestral 

area inferred for Phemeranthus. If the chosen outgroup were distributed predominantly in 

South America, the optimal ancestral area for Phemeranthus would be South America, 

even though only one species occurs there. Phemeranthus seemed more likely to have 

originated in North America (Hershkovitz and Zimmer 2000).  

 Nuclear ITS data do not provide strong support for relationships among the 

genera of Montiaceae. In a maximum-parsimony analysis, Phemeranthus was sister to all 

other members of Montiaceae; in a maximum-likelihood tree, Phemeranthus was sister to 

a clade consisting of Calyptridium, part of Cistanthe and other segregates of Calandrinia 

(Hershkovitz and Zimmer 2000). Chloroplast ndhF and matK data supported 

Phemeranthus as sister to the remainder of Montiaceae (Applequist and Wallace 2001; 

Nyffeler and Eggli 2010) (Fig. 1.3). The pattern of well-supported major lineages 

separated by relatively long branch lengths but with short internal branch lengths and 

poor internal resolution might reflect rapid origin and diversification of the lineages in 

association with the late Tertiary–early Quaternary geological and climatological events 

that produced the diverse topography and vegetative communities of western North 

America and temperate South America. The low interspecific divergence and conflict 
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between the relationships inferred from nuclear DNA, chloroplast DNA, and morphology 

could also be explained by widespread hybridization (Hershkovitz 2006). 

 

TABLE 1.2. Genera of Montiaceae  

Genus # of spp. Distribution 
Calandrinia Kunth ~14 Western North, Central, and South America 
Calyptridium Torr. & A. Gray ~14 California 
Cistanthe Spach ~20 Western North and South America 
Claytonia L. ~27 North and Central America, Siberia 
Hectorella Hook. f. 1 New Zealand 
Lenzia Phil. 1 Chile 
Lewisia L. ~16 Western North America 
Lewisiopsis Govaerts 1 Western North America 
Lyallia Hook. f. 1 Kerguelen Islands (southern Indian Ocean) 
Montia L. ~12 Western North America, Siberia, 

circumboreal, Colombia, Australia 
Montiopsis Kuntze ~40 Western South America 
Parakeelya Hershk. 
(Australian Calandrinia) 

~40 Australia 

Phemeranthus Raf. ~25 North America and Argentinean Andes 
Philippiamra Kuntze ~8 Western South America 
Schreiteria Carolin 1 Argentinean Andes 
Sources: Nyffeler (2010); Hershkovitz & Zimmer (2000); www.tropicos.org 

 

Morphology, Natural History, and Physiology— 

 All Phemeranthus species are succulent perennials with stout rhizomes, fleshy 

taproots, or tuberous roots (Fig. 1.1). The herbaceous stems are usually short, with 

contracted internodes, so that the leaves are more or less rosette-forming. In most species, 

the aboveground growth dies back each winter, and the plants regenerate in the spring 

from resting buds on a usually underground caudex. In some species, vegetative 

propagules form as thickened winter buds clad in appressed scale leaves that break off 
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from the main stem as the aboveground portion of the plant dies back in the fall 

(Harshberger 1897; Ware 1972). Some Phemeranthus possess perennial, branched, 

woody above-ground stems (e.g., the mat-forming P. spinescens and P. sediformis of the 

inland Northwest and some Mexican species). This herbaceous or slightly woody, 

rosulate growth form is widespread in Montiaceae (Nyffeler et al. 2008). Carolin (1987) 

described the growth habit of Phemeranthus as "suffruticose and passive chamaephytes", 

in which "the perennating buds are held close to the ground on weak, more or less 

decumbent or short branch systems". Some Phemeranthus would be better described as 

"active chamaephytes or protohemicryptophytes", in which "the perennating buds are 

held at or below ground level on prostrate stems or stolons" (Carolin 1987). The tuberous 

roots or rhizomes and the lower, perennial portions of the stems store large amounts of 

starch. The leaves have slightly sunken, ellipsoidal stomatal guard cells and are covered 

with a waxy cuticle (Harshberger 1897). The leaves and young vegetative stems may 

feature unicellular epidermal papillae (Bogle 1969). 

 The cymose inflorescences of Phemeranthus have sometimes been described as 

scorpiod cymes (e.g., Ware 1969b), but this terminology is inaccurate. In fact, they are 

dichasia (or polychasia) that may appear monochasial distally (Harshberger 1897; Carolin 

1987). Other genera of Portulacaceae exhibit regularly monochasial cymes that could 

properly be called scorpioid. The inflorescences often appear terminal, but actually they 

are borne in leaf axils. 

 Phemeranthus pollen is pancolpate with a few broad colpi (ca. 3–4 times as long 

as broad) and usually numerous irregular papillae scattered over the aperture surface 

(Carolin 1987). The pollen of P. teretifolius has 12 more or less circular apertures 
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distributed evenly around the surface of the pollen grain, three of the colpi being larger 

than the rest (Bogle 1969). Phemeranthus seeds are enclosed in a membranous aril that 

develops from the funicle (Bogle 1969), which is loose and wrinkled in some species and 

tightly adherent to the testa in others (Fig. 1.4). This chartaceous aril or pellicle may be 

evanescent, rubbing or flaking away when the seeds are released from the fruit.  
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FIGURE 1.4. Scanning electron micrographs of Phemeranthus seeds. A) P. brevicaulis; 
B) P. calcaricus; C) P. mengesii; D) P. parviflorus; E) P. punae; F) P. rugospermus. 
Note differing scale bars. 
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 Examination of flowers, fruit, and seeds is often necessary to identify 

Phemeranthus species (Kiger 2003). The diagnostic characters of Phemeranthus species, 

such as flower color and size, fruit shape and size, sepal persistence, stamen number, 

style length, and stigma lobes are often difficult or impossible to evaluate in pressed 

specimens. Thus, examination of living materials, especially those grown under common 

conditions in the greenhouse, is necessary to understanding these species (Holzinger 

1900; Ware 1967, 2011).  

 Within Phemeranthus, a group of relatively tall, pink- or white-flowered species 

is broadly distributed in patchy xeric habitats across the Midwestern and Southeastern 

United States. This eastern North American (ENA) group includes P. confertiflorus, P. 

parviflorus, P. calycinus, P. calcaricus, P. mengesii, P. teretifolius, and P. rugospermus. 

ENA Phemeranthus is a morphologically cohesive group distinguished by erect, 

distinctly cauline habit; long leaves; multi-branched inflorescences borne on long, erect 

peduncles; and usually bright pink flowers. Chloroplast and nuclear sequence data 

indicate close relationships among all of the ENA species of Phemeranthus, but show 

very little divergence among species.  

 ENA Phemeranthus are especially characteristic of granite outcrops in central 

Texas (Walters and Wyatt 1982) (Fig. 1.2C), rock outcrop plant communities (glades) in 

the Ozarks (Baskin and Baskin 2000; Ware 2002) (Fig. 1.2E), limestone glades in the 

Central Basin of Tennessee (Harper 1926) and northern Alabama (Baskin et al. 1995) 

(Fig. 1.2G), granite outcrops of southern Appalachia and the Piedmont of Georgia and the 

Carolinas (McVaugh 1943; Murdy 1968; Wyatt 1997) (Fig. 1.2H), and the serpentine 

barrens of Pennsylvania (Baskin and Baskin 1988; Tyndall and Hull 1999). The plants 
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occupy a similar niche in each of these rock outcrop systems: very shallow soil, typically 

at the ecotone between bare rock and dense vegetation at the edges of outcrops and of soil 

pits or depressions on the outcrops. They are typically the only vascular plant actively 

growing, flowering, and setting seed in this zone during the hottest, driest part of the 

summer. ENA Phemeranthus are also found in open barrens or savannas in sandy prairies 

from the upper Midwest south to Texas. 

 Within the ENA group, intriguing intraspecific disjunctions occur among 

populations of P. rugospermus and P. parviflorus. The latter species is distributed almost 

entirely west of the Mississippi River, with populations just across the river in southern 

Illinois, but a disjunct population grows on bluffs above the Coosa River in central 

Alabama. The species may have first entered Alabama at a time when the bare-rock 

habitat on exposed Pottsville sandstone was more widespread and continuous than at 

present, subsequently becoming confined to remote, isolated outcrops as forest 

communities encroached upon the gradually deepening soil (Wolf 1939). The prairie 

fameflower, P. rugospermus (Holz.) Kiger, also shows striking population disjunctions. 

While the main part of this species' range is in the upper Midwest, populations have been 

found in central Nebraska, central Kansas, southern Oklahoma, and east Texas and 

adjacent Louisiana (Holzinger 1899a; Nixon et al. 1980; Cochrane 1993; MacRoberts and 

MacRoberts 1997). Several hypotheses have been proposed to explain this widely 

disconnected distribution. P. rugospermus may have arrived in its present localities via 

post-glacial long-distance dispersal (Cochrane 1993). Its distribution may be a remnant of 

a previously widespread range (Harshberger 1897). Or the P. rugospermus morphology 

may have arisen multiple times via hybridization between its co-distributed relatives. Its 
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morphology is intermediate in several respects between that of the small-flowered 

sunbright, P. parviflorus, and that of the large-flowered fameflower, P. calycinus. These 

two species are broadly sympatric and often syntopic across the range of P. rugospermus.  

 Beginning with Harshberger’s (1897) “Ecological study of the genus Talinum”, 

the ENA group has been relatively well studied. A wealth of morphological, ecological, 

cytological, genetic, and reproductive studies have been performed on the glade and rock 

outcrop species, including allozyme surveys, chromosome counts, and substrate 

specificity experiments (e.g., Harshberger, 1897; Wolf, 1939; Steiner, 1944; Ware, 1967; 

Ware, 1968; Montgomery & Blake, 1969; Ware, 1969; Ware & Quarterman, 1969; 

Murdy et al., 1970; Krebs, 1971; Black & Murdy, 1972; Carter, 1983; Carter & Murdy, 

1985; Murdy & Carter, 1985; Carter & Murdy, 1986; Reinhard & Ware, 1989; Ware & 

Pinion, 1990; Harris & Martin, 1991; Ware, 1991; Murdy & Carter, 2001). The findings 

of these studies are summarized below. 

 Menges’ fameflower (P. mengesii) is typical of ENA Phemeranthus in its natural 

history. It is found most often on sandstone outcrops exposed along streams. The strongly 

sloped outcrops often receive heavy runoff from adjacent woods during winter rains, 

making them susceptible to erosion. This soil erosion is probably a limiting factor in the 

establishment of P. mengesii seedlings (Ware 1969b). A few long, elastic roots anchor 

the perennial tuberous rhizome to the soil. Following winter dormancy, the rhizomes 

resume growth in early April as new green leaves emerge from the scale leaves 

surrounding the winter bud. The new fleshy stems grow quickly, and an extensive 

branching root system arises along with them. In older plants, several large, branched 

stems bearing numerous inflorescences may arise from the winter buds in a single 
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growing season. Flower buds become visible in mature plants as early as three weeks 

after growth resumes, and flowers and fruits are produced throughout the summer, 

typically from mid-May to mid-September or even October. Capsules develop quickly—

the seeds ripen in about 20 days in P. calcaricus, P. teretifolius, and P. mengesii (Ware 

1968)—so plants can produce seed throughout the season. At the end of the season, 

clusters of awl-shaped scale leaves form at the base of the stem or on the upper surface of 

the rhizome, surrounding the winter buds, although plants may continue to flower for 

several weeks after these buds develop. Soon after flowering ceases, the plants die back 

to the rhizome. Non-flowering stems may develop thick corky skins, their apical buds 

become protected by scale leaves and become winter buds, and they become incorporated 

into the perennial rhizome (Ware 1969b). Though plants usually do not flower their first 

year as seedlings in the field, they can do so in the greenhouse (Ware 1968; pers. obs.). 

 The daily periodicity of flowering in Phemeranthus is well known (Harshberger 

1897; Holzinger 1899b; Wolf 1939). The flowers open at a particular time each day, 

which varies among species and populations. Each flower opens for just a few hours on a 

single day, but large individuals may have dozens of flowers open at one time when 

conditions are favorable. In the morning, when the flowers are not open, the plants tend 

to be inconspicuous against their background of rock, lichens, and mosses. However, they 

become quite conspicuous when the flowers open in the afternoon, as their showy pink 

flowers on tall, wiry peduncles rise above the surrounding vegetation (Ware 1969b, 

1969a).  

 Relatively little information is available concerning the pollination ecology of 

Phemeranthus. Harshberger (1897) observed that P. rugospermus (as T. teretifolium) 
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flowers were visited by Calliopsis andreniformis (Hymenoptera), a small, short-tongued 

bee. In the Piedmont of Georgia, the most frequently observed pollinators on P. mengesii 

and P. teretifolius were the small native bees Auglochora and Lasioglossum and the 

larger Bombus and Apis (Carter and Murdy 1986). Sweat bees (Halictidae) are the 

primary pollinators of P. mengesii, P. teretifolius, P. calcaricus, and P. calycinus (Ware 

1968; Krebs 1971; pers. obs.). These small, dark bees visit the flowers in linear sequence, 

often beginning their activity before the flowers have opened for the day (pers. obs.) and 

frequently effecting pollination of the stigmas before the corollas have fully opened 

(Ware, 1968). The bees do not discriminate between P. mengesii and P. teretifolius where 

those species are sympatric, and hybrids are known (Carter and Murdy 1986). These 

species produce a tiny amount of nectar (Krebs, 1971) but are not fragrant; and Halictid 

bees are pollen eaters. In the western United States, P. brevifolius has a strong, pleasantly 

sweet fragrance at anthesis (Ferguson, pers. comm.; pers. obs.), but it is not known 

whether this contributes to pollination. P. sediformis of the inland Northwest and P. 

napiforme of Mexico (and probably all other Phemeranthus species) possess a small 

nectary at the base of the innermost stamens (Vanvinckenroye and Smets 1996), but the 

role of this structure in pollinator attraction has not been studied. 

 ENA Phemeranthus usually grow in very shallow (2–5 cm), sandy or rocky soil, 

with the rhizome often resting on bedrock and its top exposed above the soil surface. 

Nevertheless, the plants withstand severe drought. They can continue flowering for 

several days even after the leaves wilt, and the leaves promptly regain turgidity and 

flowering resumes after rain (Ware 1969b). When uprooted, P. mengesii plants are slow 

to wilt; left unpotted, they may continue to flower for a day or two and can recover fully 
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upon potting even after a week or more without soil or water. Furthermore, given 

sufficiently frequent watering, broken-off branches can produce adventitious roots and 

thus continue to flower (Harshberger 1897; Wolf 1939; Ware 1969b). 

 Glade and rock-outcrop Phemeranthus may be confined to the shallowest soil 

zones because they are poor competitors for light and nutrients but can exploit marginal 

habitats where drought stress excludes their potential competitors (Ware 1969a; Baskin 

and Baskin 1988; Ware 1991). In cedar glades, soil a bit deeper than that occupied by P. 

calcaricus is dominated by annual grasses such as Sporobolus vaginiflorus (Torr.) Wood 

(Quarterman 1950; Ware 1969a). Although Phemeranthus plants are most dense in 

shallower soil where grasses are absent, a few large, vigorous Phemeranthus are typically 

found in deeper soil (pers. obs.), suggesting that the slow-growing seedlings of 

Phemeranthus are unable to compete with faster-growing annual grass seedlings, limiting 

their establishment in deeper soil. In controlled growth experiments, P. mengesii and P. 

calcaricus were inhibited by whole-plant and/or root competition from the grass Poa 

pratensis. Decreased light intensity also inhibited the growth of P. calcaricus. Although 

drought stress reduced the growth of Phemeranthus plants, the grass was much more 

strongly affected by low moisture, giving Phemeranthus a competitive advantage under 

these conditions (Ware 1991). 

 Indeed, Phemeranthus of the southeastern United States are somewhat legend 

among those who know them for their extreme temperature and drought tolerance. For 

example, P. calcaricus is the only indigenous vascular plant that actively grows and 

flowers during the hot, dry summer in the shallow soil bordering bare limestone in cedar 

glades (Ware 1967; Ware and Quarterman 1969). The succulent leaves may wilt during 
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extended drought, but the plants continue to flower and produce seeds. The plants can 

withstand soil-surface temperatures measured at more than 50°C (Wyatt 1997). In 

Mexico, P. humilis and P. napiformis thrive on exposed volcanic rocks at arid, high-

elevation sites (Harshberger 1897). Characteristics that promote drought resilience in 

Phemeranthus species include their succulent stems and leaves, terete leaves, sunken 

stomata, low stomatal number, thick cuticle, profusely branched summer root system, and 

ability to flower even with a water deficit in the leaves (Harshberger 1897; Guptill 1947; 

Ware 1968). Some species also possess long, elastic roots that penetrate deep into the 

rocky substrate and/or swollen, tuberous roots protected by corky scales. 

 Additionally, although Phemeranthus are primarily C3 plants, some species 

apparently utilize a facultative CAM-cycling mode of photosynthesis in which 

atmospheric CO2  is taken up and fixed via the C3 pathway during the day and respiratory 

CO2 is recaptured at night via the CAM pathway to form malic acid (Guralnick and 

Jackson 2001). This CO2 recycling process enables plants to reduce atmospheric CO2 

uptake and transpiration during the day, thus limiting transpirational water losses. 

Conceivably, drought-stressed plants could continue to utilize recycled CO2 from 

accumulated malic acid even while keeping the stomata closed throughout the day 

("CAM-idling"), thus maintaining the activity of photosynthetic enzymes during drought 

and enabling plant growth to rebound quickly when water becomes available. This 

pathway has been reported to occur in at least 15 plant families, especially in succulent 

herbs found in xeric microenvironments (Martin et al. 1988).  

 Researchers have studied this phenomenon in eastern and Midwestern 

Phemeranthus species (Martin et al. 1982; Martin and Zee 1983; Martin et al. 1988; 
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Harris and Martin 1991a; Harris and Martin 1991b; Harris et al. 1993). In one set of 

experiments, Harris and Martin (1991a; 1991b) measured photosynthetic gas exchange 

and malic acid fluctuations in P. teretifolius, P. parviflorus, P. mengesii, P. calycinus, 

and P. calcaricus. They hypothesized that high CAM-cycling activity decreases daytime 

transpiration and increases water-use efficiency under non-drought conditions. The data 

showed similar CAM-cycling patterns in all five species; the plants took up CO2 during 

the day using the typical C3 pathway and accumulated malic acid at night. However, the 

species differed significantly in their rates of gas exchange and average malic acid 

fluctuations. Day-night fluctuations in leaf malic acid content were positively correlated 

with net overnight CO2 exchange for all individuals combined and within three species 

and negatively correlated with net daytime CO2 uptake for all individuals combined and 

within one species (P. parviflorus). Also, the extent of CO2 recycling via malic acid was 

negatively correlated with daytime transpirational water loss (Harris and Martin 1991a; 

Harris and Martin 1991b). The trend of increasing water-use efficiency with increasing 

overnight malic acid fluctuation levels was non-significant. Nevertheless, according to 

Martin et al. (1988), P. calycinus might effect a daily water savings of up to 43% via 

CAM-cycling.  

 Geological substrate is important in determining the distribution and occurrence 

of Phemeranthus species (Harshberger 1897; Reinhard and Ware 1989; Ware and Pinion 

1990). While some Phemeranthus species occur on a range of geologic substrates, other 

species show some degree of substrate specificity. According to Ware and Pinion (1990), 

P. teretifolius, P. mengesii, and P. calcaricus are each characteristic of a major rock 

outcrop system in the southeastern United States. P. teretifolius grows on granite 
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outcrops of the Piedmont from Virginia to Georgia and on serpentinite in Maryland and 

Pennsylvania, and occasionally on sandstone. P. mengesii is found on Pottsville 

sandstone outcrops of northern Alabama and adjacent Georgia and Tennessee, 

occasionally on granite in north-central Georgia, and in the Altamaha Grit region of the 

Coastal Plain of Georgia (Montgomery and Blake 1969). P. calcaricus is endemic to 

limestone cedar glades of the Central Basin of Tennessee and Moulton Valley of northern 

Alabama. Related species are rarely found on calcareous substrates. Germination and 

growth experiments indicate that P. calcaricus can tolerate greater variation in soil pH 

than its relative P. mengesii (Ware 1969b; Krebs 1971). Growth experiments on different 

soil types indicate that all three southeastern species, including P. calcaricus, grow best 

on more acidic substrates, but only P. calcaricus grows uninhibited on calcareous soil 

(Ware 1969b; Reinhard and Ware 1989; Ware and Pinion 1990). In contrast, several 

species in the southwestern United States are found on calcareous substrates. 

 The broad range of substrates occupied by P. teretifolius (granite, serpentinite) is 

apparently due to broad edaphic tolerance rather than to ecotypic adaptation. Plants from 

serpentinite in Maryland grew better on limestone soil than on serpentine soil but 

exhibited abnormal coloration on limestone. They grew better on sandstone and granite 

than on either limestone or serpentinite, defying the common assumption that plants 

found on serpentine soils are physiologically adapted to this soil type. The limited 

competition in the shallow soil of serpentine barrens ensures that the slow-growing P. 

teretifolius can survive and reproduce (Ware and Pinion 1990). 

 Whereas different types of rock outcrop systems in the Southeast are 

geographically separated, outcrops of different rock types occur in close proximity in the 
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Interior Highlands (Ozarks and Ouachitas). Two species are broadly co-distributed in this 

region: P. calycinus and P. parviflorus. The former species was regarded as substrate 

indifferent (Steyermark 1963), having been recorded from limestone, sandstone, granite, 

shale, chert, syenite, and other igneous rocks. The latter species had also been recorded 

on siliceous and igneous rock types, but not on limestone. When seeds and plants from 

multiple populations of these species were grown in soil collected from their native 

outcrops and from outcrops of different geological types, P. parviflorus from sandstone 

outcrops grew well on either shale or sandstone soils but very poorly on soils from 

calcareous outcrops, showing abnormal pigmentation, poor growth, and high mortality. 

All P. calycinus populations also grew well on non-calcareous substrates, including 

sandstone, shale, granite, and syenite, but very poorly on calcareous soils. However, one 

population collected from a limestone outcrop did not display abnormal coloration when 

grown on calcareous soil, as plants from other outcrop types did, suggesting that some 

ecotypic adaptation had occurred to extend the limit of tolerance and permit these plants 

to grow on calcareous substrate. Like P. calcaricus, this P. calycinus population was 

tetraploid (Reinhard and Ware 1989). 

 Different populations of P. calycinus exhibit morphological differences, although 

most of these differences are difficult to detect in herbarium specimens and can be clearly 

observed only in living plants. These differences persist in plants grown from seed under 

controlled conditions in the greenhouse (Reinhard and Ware 1989). For example, plants 

from shale and syenite outcrops in three counties in northwestern Arkansas were smaller 

overall, had proportionally longer stigmas relative to the style, had quickly deciduous 

sepals, and had smaller black seeds than other populations. Plants from the tetraploid 
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population on limestone were consistently larger in both vegetative and reproductive 

parts, and plants from a Missouri population on granite had stamens equal in length to the 

styles. Their stigmas were also dorsiventrally flattened and pink at the base where they 

joined the style. However, there was no clear correlation between the morphological 

differences and the responses of various populations to different types of soil substrate 

(Reinhard and Ware 1989). 

 Fameflower species vary in breeding system and in ploidy level (Kiger, 2001; 

Murdy & Carter 2001). Some species show pronounced herkogamy, which promotes 

outcrossing. Others, particularly the small-flowered P. parviflorus and P. confertiflorus, 

have stigmas equal to the stamens and can self-pollinate when the flowers close in the 

afternoon. Species are occasionally found in sympatry with close relatives, and some 

hybridization is known. Furthermore, allopolyploid and autopolyploid speciation have 

apparently been important in the evolution of ENA Phemeranthus. Tetraploid P. 

teretifolius is derived from hybridization between P. parviflorus and P. mengesii, while 

P. calcaricus is apparently an autotetraploid derivative of P. calycinus (Murdy and 

Carter, 2001). Chromosome numbers, hybridization, and polyploid speciation are further 

discussed below. 

 Phemeranthus species fit a simple polyploid series based on a chromosome 

number of x=12 (Steiner 1944) or x=6 (Black and Murdy 1972). All species and 

populations examined to date are either diploid or tetraploid, although some cortical cells 

in P. parviflorus root tips contain 96 chromosomes, a feature not observed in other 

species studied (Steiner 1944). P. calcaricus (Krebs 1971) and P. teretifolius are 

tetraploid (2n=48) (Fig. 1.5), the latter behaving as an amphidiploid (Murdy 1968; Black 
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and Murdy 1972). P. mengesii is diploid, except for an outlying population in the 

Altamaha Grit region of the Georgia Coastal Plain, which is tetraploid (Montgomery and 

Blake, 1969; Murdy et al., 1970). Chromosome counts are also available for a few other 

species (Table 1.3).  

 

TABLE 1.3. Chromosome numbers of Phemeranthus species 

Species Locality Chromosome No. Reference 
P. brevicaulis Harding County, NM 2n=24 8 
P. calcaricus Central TN, northern AL 2n=48 5, 9 
P. calycinus Various 2n=24, 48 9 
P. confertiflorus Valencia & Harding Counties, NM 2n=48 8 
P. mengesii 29+ populations 2n=24 1, 2, 4 
P. mengesii Altamaha Grit region, GA 2n=48 3, 6 
P. parviflorus Various 2n=24 1, 7 
P. parviflorus Springdale, AR 2n=48 1 
P. teretifolius 32+ populations 2n=48 1, 2, 4, 6 
*References: 1. (Steiner 1944); 2. (Murdy 1968); 3. (Montgomery and Blake 1969); 4. 
(Murdy et al. 1970); 5. (Krebs 1971); 6. (Black and Murdy 1972); 7. (Carter and Murdy 
1985); 8. (Ward and Spellenberg 1986); 9. (Murdy and Carter 2001) 
 
 P. mengesii and P. calcaricus have pistils longer than the stamens and are 

dependent on pollinators to effect fertilization, though they are apparently not self-

incompatible (Ware 1967; Murdy and Carter 2001). Most P. calycinus populations have 

stigmas exceeding the stamens, but plants from one Missouri population on granite had 

stamens equal in length to the styles and were able to self-pollinate to some extent 

FIGURE 1.5. Meiotic chromosome squash of P. 
teretifolius from Wake Co., NC (TMP 272). 
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without a vector (Reinhard and Ware 1989). Manual crosses between P. calcaricus or P. 

mengesii plants from different populations produced seed set comparable to that observed 

in the field (Ware 1967). Similarly, various Missouri and Arkansas P. calycinus 

populations were inter-fertile, despite pronounced differences in vegetative and 

reproductive proportions (Reinhard and Ware 1989). Four P. teretifolius populations 

from different substrates were also fully inter-fertile, although plants from serpentinite in 

Maryland produced fewer seeds per capsule than those from other populations (Ware and 

Pinion 1990). Crosses between P. calcaricus and either P. mengesii or P. calycinus from 

Arkansas resulted in no or very low fruit and seed production (Ware 1967), and crosses 

between P. calcaricus and P. teretifolius yielded vigorous but sterile hybrids (Murdy and 

Carter 2001). Crosses between diploids of different species or between diploid and 

tetraploid P. calycinus also yielded sterile hybrids. However, crosses between P. 

calcaricus and tetraploid P. calycinus later yielded fertile hybrids (Murdy and Carter 

2001). Crosses between P. parviflorus and P. teretifolius and between P. parviflorus and 

Talinum aurantiacum were unsuccessful (Steiner 1944). 

 Several studies have examined polyploid speciation processes in ENA 

Phemeranthus. Wolf (1939) noted that P. teretifolius appeared to be morphologically 

intermediate between Talinum appalachianum (a central Alabama taxon similar to P. 

parviflorus) and P. mengesii and accordingly proposed that the former species occupied 

an intermediate phylogenetic position between the latter two. Based on this observation 

and on Steiner's (Steiner 1944) report that P. teretifolius had twice the chromosome 

number of P. mengesii, Murdy (Murdy 1968) hypothesized that P. teretifolius had 

originated as an amphidiploid, one of whose parents was P. mengesii. Black and Murdy 
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(1972) tested this hypothesis by generating artificial hybrids between P. teretifolius and 

diploid and tetraploid P. mengesii and observing their chromosome-pairing behavior. 

Both triploid and tetraploid hybrids were sterile with abnormal pollen. Triploid hybrids 

exhibited 18–24 meiotic associations per cell, while tetraploid hybrids exhibited 24–30. 

These observations reinforced the idea that P. teretifolius originated as an amphidiploid 

hybrid of P. mengesii and another species; T. appalachianum met all the morphological 

and cytological requirements to be the second parent. Black and Murdy (1972) proposed 

a model to explain this meiotic behavior in which P. mengesii and the other parent of P. 

teretifolius also began as amphidiploids that shared one genome in common; this 

hypothesis has not been further tested. 

 Later, Carter and Murdy (1985) succeeded in generating artificial hybrids 

between P. mengesii and P. parviflorus and compared them to P. teretifolius. Although 

the hybrids were sterile, their floral morphology and time of diurnal anthesis were 

intermediate between the parental species and similar to those of P. teretifolius. When the 

hybrids were polyploidized by colchicine treatment, they were able to generate fertile 

offspring by selfing, sib-crossing or crossing to natural P. teretifolius. Isozyme data 

showed that P. teretifolius populations were genetically uniform and that their alleles 

were a combination of alleles found in the putative parents. The enzyme data ruled out 

the alternative hypothesis that P. calycinus, rather than P. mengesii, was one parent of P. 

teretifolius (Murdy and Carter 1985). Electrophoretic polymorphism was high in P. 

calycinus and P. mengesii, low in P. parviflorus, and none in P. teretifolius. Most of the 

variation was between rather than within populations (Murdy and Carter 1985). The 

genetic uniformity of P. teretifolius suggests a recent origin; it must have migrated north 
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to the serpentine barrens of eastern Pennsylvania since the last glaciation retreated from 

the area around 12 kya (Murdy and Carter 2001). 

 Carter and Murdy (1985) also compared T. appalachianum to several populations 

of P. parviflorus and concluded that the former was synonymous with the latter, 

overlapping in all measured traits and being fully inter-fertile. Isozyme data reinforced 

the conclusion that T. appalachianum was merely a disjunct population of P. parviflorus. 

The average genetic identity between populations of these taxa was higher than that 

between populations of P. calycinus or P. mengesii (Murdy and Carter 1985). The 

Alabama population may represent a remnant of a formerly more extensive distribution 

of P. parviflorus east of the Mississippi (Carter and Murdy 1985). 

 Murdy and Carter (2001) added additional morphological, isozyme, and crossing 

data on P. calcaricus and P. calycinus to their previous work on speciation in P. 

teretifolius, P. mengesii, and P. parviflorus. They found that diploid and tetraploid P. 

calycinus did not differ in floral traits and that P. calcaricus shared the persistent sepals 

and darker purple flower color of P. calycinus. Crosses between P. calcaricus and 

tetraploid P. calycinus yielded fertile hybrids. Enzyme data also supported the hypothesis 

that P. calcaricus is derived from autotetraploid P. calycinus.  

 On granite outcrops in the Piedmont of Georgia, where the ranges of P. 

teretifolius and P. mengesii meet and overlap, P. teretifolius appears to competitively 

replace its parent species (Murdy et al. 1970). The two species can be distinguished by 

petal size and shape, stamen number, relative length of style and stamens, and time of 

diurnal anthesis. P. teretifolius possesses a competitive advantage due to its greater 

dessication tolerance in the seedling stage and to the difference in breeding system. 
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Because its stamens are held at the same level as the stigma, P. teretifolius can set seed 

without pollinators by self-pollinating upon flower closure. The flowers of P. mengesii 

have stigmas held well above the anthers, so they do not set seed without pollinators 

(although they are not self-incompatible). Thus, P. teretifolius can both self and outcross, 

whereas P. mengesii depends mostly on cross-pollination, making P. teretifolius a more 

effective colonizer and making P. mengesii more subject to deleterious fitness effects of 

hybridization. 

 Where P. mengesii and P. teretifolius are found in sympatry, triploid hybrids 

sometimes occur (Murdy et al. 1970). In such populations, the former species (but not the 

latter) exhibits divergence in sexual and asexual reproductive characters, including larger 

flowers, longer styles, and earlier time of diurnal anthesis (Carter 1983; Carter and 

Murdy 1986). These traits might help to reduce interspecific hybridization and thus 

gamete wastage, providing a selective advantage under the threat of hybridization with P. 

teretifolius. For example, earlier flowering would provide an increased opportunity for 

intraspecific pollination in P. mengesii prior to the opening of P. teretifolius flowers. 

Plants in sympatric populations of P. mengesii also form asexual propagules, while those 

in allopatric populations do not. All of these traits had high heritability in experimental 

crosses, and the divergence was not due to ecotypic or clinal variation (Carter 1983; 

Carter and Murdy 1986). 

Geographic Context: Xeric North America— 

 Phemeranthus species are almost exclusively North American in distribution. The 

one exception is P. punae (R.E. Fr.) Eggli & Nyffeler, which is narrowly restricted to the 
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puna region of northern Argentina and southern Bolivia, approximately 5500 km from 

the southern limit of its congeners in Oaxaca and Puebla, Mexico. Another disjunction 

occurs in the inland Northwest: P. spinescens (Torr.) Hershkovitz is found in the 

Columbia Plateau of northern Oregon and central Washington, while P. sediformis 

(Poelln.) Kiger is restricted to the Okanagan region of northern Washington and adjacent 

British Columbia. The nearest congeners are found across the Rocky Mountains in the 

Great Plains of eastern Montana. Phemeranthus exhibits a biogeographic pattern similar 

to that of numerous other taxa of arid western North America. Like other elements of the 

so-called Madro-Tertiary Geoflora (Axelrod 1958), its center of diversity is in the 

Chihuahuan region of northern Mexico and the southwestern United States. Fameflowers 

in this region occur mostly in mid-elevation pinyon-juniper or xeric grassland habitats. 

The biogeography of western North American deserts is more extensively reviewed in 

Chapter II. Here, I focus on Phemeranthus habitats in the midwestern and southeastern 

United States, which can be viewed as micro-deserts for their dry, xeric conditions. 

 The distribution of Phemeranthus in ENA is unique within Montiaceae, most of 

whose genera are distributed primarily in western North America and Australia. Lewisia, 

Cistanthe, and Calandrinia are diverse in the West but absent from the East. Claytonia 

has two widespread species and one narrow endemic in ENA, and Montia has about five 

species in ENA, most occurring at the southern extent of a boreal/arctic distribution. 

Phemeranthus, however, has apparently speciated in the midwestern and southeastern 

United States, giving rise to the seven named species of the ENA group. Major areas of 

ENA Phemeranthus habitat include sand blows or dunes in the Midwest (Cochrane 

1993); Ozark glades in Missouri, Arkansas, and adjacent states; granite flatrocks in the 
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Piedmont from Georgia to Virginia; limestone cedar glades in central Tennessee and 

adjacent Alabama and Kentucky; mid-Appalachian shale barrens in Virginia, West 

Virginia, and Pennsylvania; serpentine barrens in the Piedmont of Pennsylvania and 

Maryland; and sandstone outcrops in northern Alabama (Ware 2002).  

 Glades and flatrocks form where bedrock is exposed at or near the soil surface, 

resulting in moisture stress and limiting tree establishment. Glades may form on a variety 

of substrates, including limestone, dolomite, sandstone, granite, rhyolite, chert, and shale 

(Ware 2002). The glade environment is characterized by intense sunlight throughout the 

year; winter moisture and summer drought; daily temperature extremes; shallow, bare 

soil with low water-holding capacity; and soil chemistry closely linked to the rocky 

substrate (Baskin and Baskin 2000; Ware 2002; Baskin and Baskin 2003). Glade plants 

encounter much greater drought stress during summer and potentially greater cold stress 

during winter than may be experienced by surrounding vegetation. The shallowest soils 

of glades and flatrocks are mostly dominated by bryophytes and small winter annual 

plants (Baskin and Baskin 2000, 2003). Southeastern rock outcrops feature level terrain 

and moderate erosion, resulting in distinct vegetational zonation from bare rock outward 

through increasing soil depth, whereas Ozark glades are often strongly sloping, resulting 

in substantial soil erosion and a mosaic of different soil depths and associated plant 

species in small patches. Ozark glades are maintained by periodic fire, supported by the 

fuel load created by perennial grasses, which suppresses the invasion of woody plants 

(Ware 2002). 

 The relatively xeric habitats occupied by ENA Phemeranthus now exist as islands 

within a matrix of more mesic deciduous forest vegetation, but may have been more 
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widespread during earlier periods. Pollen data from Missouri, Kentucky, and Tennessee 

indicate that warm and dry climates with low groundwater tables also prevailed 

throughout the Ozark Plateau and Interior Low Plateaus from about 30,000 to 24,000 BP, 

and prairie and glade habitats may have been widespread during this interstadial period 

(Delcourt et al. 1986). The ancestors of ENA Phemeranthus may have spread from the 

Southwest into Midwestern prairies and into the Southeast via the Ozarks during this 

period of warming and drying (Walters and Wyatt 1982; Baskin and Baskin 1986). 

Subsequently, cool and wet climates associated with the Late Wisconsonian glaciation 

promoted the development of boreal coniferous forest throughout the region, probably 

eliminating suitable habitats for characteristic glade species north of about 34°N. 

However, suitable habitats probably persisted in the southern portion of the present range. 

Alternatively, small, isolated patches may have supported winter-wet, summer-dry 

microclimates throughout the full-glacial interval, even while the surrounding vegetation 

changed dramatically (Baskin and Baskin 1986). As the climate warmed during the 

Pleistocene-Holocene transition, glade species may have colonized newly available 

habitats to the north from their full-glacial refuges in the south. Glade habitats probably 

reached their maximum extent during the mid-Holocene Hypsithermal (ca. 10,000–4,500 

BP), when temperatures in inland North Temperate regions were 1°–4°C warmer than at 

present (Delcourt et al. 1986). Glade plant populations in the Ozarks and Interior Low 

Plateaus likely had increased gene flow during this period. More recently, increasingly 

mesic conditions have resulted in the encroachment of closed deciduous forest, 

decreasing the connectivity of glade habitats and possibly leading to genetic isolation 

(Delcourt et al. 1986). 
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Emerging Questions— 

 The phylogenetic and geographic context of Phemeranthus raise several intriguing 

questions. If, as previous studies suggest, Phemeranthus is sister to the remainder of 

Montiaceae (Applequist and Wallace 2001; Nyffeler and Eggli 2010), then understanding 

its biogeography and character evolution is an important key to understanding those of 

the family as a whole. Phylogenetic analyses using DNA sequence data from a large 

sample of Phemeranthus species will show whether the genus is monophyletic as 

presently circumscribed and clarify its position within Montiaceae. 

 Given the overall concentration of Montiaceae in western North America and 

western South America, Phemeranthus' center of origin is relevant to the biogeography of 

the family as a whole. Fameflowers seem to exemplify a biogeographic pattern of origin 

and diversification in the arid southwestern United States and northern Mexico, with 

expansion north and east into patchy, isolated xeric habitats within more mesic biomes. 

 The dramatic geographic disjunctions in Phemeranthus raise further questions. The 

phylogenetic positions of the Argentinean P. punae and of the northwestern P. sediformis  

and P. spinescens are particularly interesting. Do these species occupy cladistically basal 

positions, suggesting long-distance dispersal or vicariance early in the diversification of 

the group, or are they deeply nested in the tree, indicating a recent origin? Within P. 

rugospermus and P. parviflorus, do the population disjunctions correspond to divergent 

lineages? 

 Furthermore, Phemeranthus includes several rare and endemic taxa whose 

relationships are not well understood, and species boundaries are unclear in many cases. 



 

  47

Sampling multiple exemplars from across the distribution of widespread species will 

make it possible to evaluate whether named taxa correspond to evolutionary lineages. 

The morphological, cytological, and enzyme evidence for allopolyploid speciation in 

ENA Phemeranthus raises the question of how prevalent this process has been 

throughout the genus. By sequencing multiple chloroplast and nuclear regions and 

reconstructing gene trees and species trees, the role of hybridization in the evolution of 

the genus can be assessed. 

 Due to their unique habitat requirements, fameflowers grow in widely scattered 

patches across wide areas. The extreme microclimates of their habitats seem likely to 

impose strong selection pressure on life-history traits such as the timing of seed 

germination, possibly resulting in clinal variation within widespread species. This 

possibility has implications for conservation planning and horticulture. Researchers and 

designers of water-conservative and green-roof plantings have shown increasing interest 

in Midwestern Phemeranthus species (e.g., Getter et al. 2009; Dvorak 2010), and the 

success of these efforts may be affected by clinal variation in the seed sources used. 

 These emerging questions will be addressed in the following chapters. Chapter II 

utilizes multiple chloroplast loci to infer the phylogeny of Phemeranthus and to assess 

the role of hybridization in its evolution. The phylogeny provides a framework to 

examine the biogeographical history of the genus. Chapter III reports an experiment 

designed to detect latitudinal variation in seed germination requirements. A preliminary 

taxonomic treatment of the genus is given as an appendix. 
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CHAPTER II.  PHYLOGENY AND EVOLUTION OF PHEMERANTHUS IN NORTH AMERICAN 

XERIC HABITATS BASED ON CHLOROPLAST DNA SEQUENCES 

 

Abstract—The center of diversity of Phemeranthus is in northern Mexico and the 

southwestern United States, but several species occur in the glade and flat-rock 

ecosystems of the Midwestern and Southeastern United States, and others are disjunct 

from the remainder of the genus in the inland Northwest or the southern Andes. Here, the 

phylogenetic relationships of Phemeranthus species are inferred from DNA sequences of 

the chloroplast regions ndhF and matK-trnK, and geographic patterns within the genus 

are examined in the context of other North American desert biota. Phemeranthus 

(excluding P. aurantiacus) is monophyletic and is likely sister to the remainder of 

Montiaceae. The genus contains two geographically structured clades: a southern clade 

centered in Mexico and a northern clade distributed primarily in the United States. Plant 

habit and flower color distinguish the northern and southern clades, but seed coat 

morphology does not reliably separate groups within Phemeranthus. A geographically 

disjunct lineage is sister to the remainder of each clade: P. punae of Argentina is sister to 

the Mexican species, while P. spinescens and P. sediformis of the inland Northwest are 

sister to the remaining northern species, suggesting broad-scale movements early in the 

diversification of the genus. The current distribution indicates an origin in the 

southwestern United States and northern Mexico, followed by northward and eastward 

expansion with accompanying speciation. The placement of certain species and 

populations highlights the probable role of hybridization in the evolution of this 

xerophytic genus.
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Introduction: Biogeography of North American Deserts—Species diversification in 

North Temperate arid zones, such as the American Southwest, is of great interest to 

evolutionary biologists, especially as climate-change models predict increasing aridity 

and an expansion of xeric conditions in mid-latitude regions throughout the world (IPCC 

2007; Seager et al. 2007; Fawcett et al. 2011). Landscape heterogeneity and extreme 

climatic conditions are associated with the evolution of many endemic species in arid 

zones (e.g., Moore and Jansen 2006). Harsh environmental conditions may promote 

adaptation to narrowly restricted microhabitats, while landscape heterogeneity may 

enforce isolation of populations in fragmented habitats such as mountain ranges, desert 

springs, and geologic outcroppings. Severe climatic conditions of intense insolation, high 

air and soil temperature, and drought can impose strong natural selection. Dramatic 

seasonal differences in temperature and soil moisture are an additional challenge.  

 The classic pattern of post-glacial migration in eastern North America (ENA) has 

been extensively studied with fossil pollen and molecular phylogeography (e.g., Hewitt 

1996; Comes and Kadereit 1998; Soltis et al. 2006), and many European taxa exhibit 

common genetic patterns due to classical refugial dynamics during the Quaternary (e.g., 

Hewitt 1996; Comes and Kadereit 1998; Hewitt 2004). However, the biogeographic 

patterns of xerophytic Southwestern plants are less well understood. According to 

Axelrod (1958), the desert and semi-desert vegetative communities of southwestern 

North America first began to form during late Tertiary (Miocene) aridification, reaching 

their widest distribution in the early Pliocene and shrinking during wetter and cooler 

intervals in the late Pliocene and throughout the Pleistocene. During pluvial periods, arid-
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adapted vegetation was confined to western and southern refugia (Rebernig et al. 2010b; 

and references therein).  

 The regional deserts of today developed as a result of dramatic aridification 

following the Last Glacial Maximum, covering their maximum area during the 

Hypsithermal interval ca. 9,000–5,000 BP (Riddle and Hafner 2006). This Holocene 

aridification proceeded from west to east, beginning in the Sonoran Desert (van Devender 

and Spaulding 1979; McAuliffe and Van Devender 1998; Holmgren et al. 2007). During 

mid-Pleistocene interglacials, parts of the Southwestern United States went through 

periods of high temperatures and increased aridity lasting centuries to millennia (Fawcett 

et al. 2011). Thus, arid-adapted taxa are expected to show genetic signatures reflecting 

late Miocene to Pliocene vicariance due to mountain building, plateau uplift, and rifting; 

Pleistocene fragmentation and divergence due to cyclical isolation in desert refugia; and 

Holocene range expansion and secondary contact (Riddle and Hafner 2006; Rebernig et 

al. 2010a; Bryson et al. 2011; and references therein). 

Biogeographic studies of arid ecosystems are hampered by the scarcity of fossil 

evidence. The main sources of biogeographic hypotheses have been contemporary 

species' distributions and the geological record. In addition to these indirect data, 

numerous studies have used packrat middens and pollen cores to reconstruct dramatic 

vegetation shifts in the Southwest (e.g., McAuliffe and Van Devender 1998; Metcalfe et 

al. 2000; Thompson and Anderson 2000; Holmgren et al. 2003; Holmgren et al. 2007). 

These records, however, extend back only to the mid-Pleistocene; hypotheses about 

earlier conditions rely on geology and, increasingly, on phylogenetic evidence.  
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 Hypotheses about the biogeography of the arid Southwest have been tested 

against phylogeographic data in numerous animal groups, and certain common patterns 

have emerged. Perhaps the most general pattern is a pronounced east-west split between 

species or intraspecific phylogroups. Often, molecular dating techniques indicate that this 

divergence is associated with Late Miocene to Pliocene Cordilleran uplift. Vicariance 

between eastern (Chihuahuan) and western (Sonoran and Mojave) continental deserts due 

to the uplift of the Sierra Madres and Mexican Plateau has been inferred for rodents (e.g., 

Riddle 1995), insects (e.g., Wilson and Pitts 2010), amphibians (e.g., Jaeger et al. 2005), 

snakes (e.g., Castoe et al. 2007; Fontanella et al. 2008; Bryson et al. 2010; Bryson et al. 

2011), and lizards (e.g., Morafka 1977; Haenel 2007). In many groups, however, east-

west divergence across the Continental Divide dates to the Pleistocene and may be 

associated with climatic oscillations (e.g., Zink and Blackwell 1998; Pook et al. 2000; 

Ashton and de Queiroz 2001; Reeder and Montanucci 2001; Ayoub and Riechert 2004; 

Leaché and McGuire 2006; Leaché and Reeder 2006). In many cases, both intraspecific 

differentiation attributed to Pleistocene refugial dynamics and deeper divergences 

associated with Neogene formation of geographical barriers can be detected 

simultaneously. 

 During the Holocene and likely during some earlier interglacials, climatic 

warming has permitted migration across the Continental Divide, particularly through the 

Cochise Filter Barrier, a narrow region in southern New Mexico and Arizona where the 

Chihuahuan and Sonoran desert biotas come into contact. High species, clade, and 

haplotype diversity in this contact zone is the result of post-Pleistocene expansion from 

separate desert refugia located east and west of the Divide (e.g., Morafka 1977; Jaeger et 
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al. 2005; Castoe et al. 2007). Commonly, eastern phylogroups exhibit more dramatic 

Holocene range expansion compared to western phylogroups, with evidence for 

northward, eastward, and even westward (into the Colorado Plateau and/or Rockies) 

movement from refugia located in the southern Chihuahuan desert and elsewhere east of 

the Continental Divide (e.g., Ayoub and Riechert 2004; Jaeger et al. 2005; Smith and 

Farrell 2005a; Castoe et al. 2007; Haenel 2007; Fontanella et al. 2008).  

 In contrast to highly arid-adapted lowland taxa, the more mesic and cold-tolerant 

biota of southwestern mountain ranges may have expanded their ranges downward and 

southward during glacials and contracted during interglacials. Depending upon taxon-

specific factors such as dispersal ability, these fluctuations could result in differentiation 

among isolated sky islands or in the presence of northern phylogroups unexpectedly far 

to the south (e.g., Masta 2000; Knowles 2001; Smith and Farrell 2005b; Moore and 

Jansen 2006; McCormack et al. 2008; Burbrink et al. 2011). 

 Despite these advances in understanding the phylogeography of southwestern 

fauna, comparable studies in plants have been rare until recently, and general patterns are 

less clear. Several studies have focused on plant taxa that are distributed only west of the 

Continental Divide, in the Mojave, Sonoran, and/or Peninsular deserts (e.g., Nason et al. 

2002; Clark-Tapia and Molina-Freaner 2003; Fehlberg and Ranker 2007, 2009; Garrick 

et al. 2009). These studies have found evidence for Miocene-Pliocene vicariant events 

largely congruent with those inferred for co-distributed animal groups and have also 

reported dramatic northward (and, to a lesser extent, southward) post-Pleistocene range 

expansion. Sosa et al. (2009) studied a xerophytic plant from the opposite side of the 

Continental Divide, the Mexican tulip poppy, which is centered in the Sierra Madre 
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Oriental. They too detected the signatures of historical isolation and post-glacial range 

expansion.  

 Among plants found on both sides of the Continental Divide, some exhibit a 

broad east-west split like that seen in many animal groups, with glacial refugia located 

both west and east of the Continental Divide (e.g., Moreno-Letelier and Piñero 2009; 

Rebernig et al. 2010b; Sanchez-del Pino and Motley 2010). Refugial areas inferred for 

both animals (e.g., Riddle and Hafner 2006; Castoe et al. 2007) and plants include the 

lower Colorado basin (Hunter et al. 2001; Fehlberg and Ranker 2007; Rebernig et al. 

2010b), the central or southern Chihuahuan Desert (Hunter et al. 2001), and the 

Tamaulipan plains (Rebernig et al. 2010a). Post-Pleistocene range expansion from 

separate desert refugia has produced contemporary contact zones and opportunities for 

hybridization (e.g., Rebernig et al. 2010b). At a broader scale, dispersion out of a 

southwestern center of diversity is a general pattern in xeric-adapted plant groups (Moore 

and Jansen 2006; Moore et al. 2006; Douglas and Manos 2007; Marlowe and Hufford 

2007; Evans et al. 2009; Rebernig et al. 2010a; Yang and Berry 2011).  

 As in animals, sky islands have played an important role in the phylogeography of 

southwestern plants. For example, some coniferous taxa that originated in cooler regions 

to the north migrated southward along the Cordillera during glacial epochs and became 

isolated in mountainous regions during warmer periods (Moreno-Letelier and Piñero 

2009; Gugger et al. 2010b; Gugger et al. 2010a). Clearly, a nuanced and thorough 

understanding of the influence of recent and ancient events on Southwestern biota will 

require studies of additional plant groups. 
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Phemeranthus: A Case Study for North American Xerophytic Plants—Xeric habitats in 

North America are not restricted to the desert Southwest. In the glade and flat-rock 

ecosystems of the interior highlands and the southeastern United States, local patches of 

extreme desert-like habitats are surrounded by deeper-soil forest communities 

(Quarterman et al., 1993). The flora and fauna of these glade ecosystems include 

numerous species whose closest relatives occur to the west, including animals (e.g., 

scorpions, tarantulas, lichen grasshoppers, collared lizards, and roadrunners) and plants 

(e.g., prickly pear cacti, evening primroses, and bladderpods). Numerous endemic species 

are found in these open, rocky habitats (Baskin and Baskin 1988, 2000). Phemeranthus 

Raf. (Montiaceae; fameflowers, rockpinks, sunbrights) exemplifies this distributional 

pattern, forming part of the characteristic flora of many glade and rock-outcrop 

ecosystems. Even among glade plants, fameflowers stand out for their extreme 

xerophytic adaptation, actively growing and flowering in the shallowest soils throughout 

the height of summer, seemingly heedless of drought and temperature stress. 

 The genus Phemeranthus comprises about 25 species of succulent, herbaceous 

perennials with terete leaves, most of which grow in patchy xeric habitats such as rock 

outcrops and sand barrens (Figs. 1.1, 1.2). Formerly included in Talinum Adans., 

Phemeranthus has been segregated on the basis of molecular (Hershkovitz and Zimmer 

1997, 2000) and morphological evidence (Carolin 1987; Hershkovitz 1993).   
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 Phemeranthus species are almost exclusively North American in distribution 

(Table 1.1; Fig. 2.1), with a center of diversity in northern Mexico and the southwestern 

United States; one disjunct species is found in northern Argentina. Several species extend 

northward and eastward across the Great Plains and into the interior highlands and the 

southeastern United States. This distributional pattern suggests a biogeographic origin in 

the Southwest followed by northward and eastward movement into arid habitats 

elsewhere. 

 Phemeranthus species vary widely in geographic range size and habitat specificity. 

For example, P. calcaricus (S.Ware) Kiger is restricted to limestone cedar glades in the 

central basin of Tennessee; P. brevifolius (Torr.) Hershk. is widespread in a single 

geographic region, the Colorado Plateau; and P. parviflorus (Nutt.) Kiger ranges from 

Texas to the Dakotas and from Colorado east to Illinois, with a disjunct population in 

central Alabama. Some species appear to be edaphic specialists, while others occur on a 

wide range of soil types (Ware 1967, 1969a, 1969b; Reinhard and Ware 1989; Ware and 

Pinion 1990). This variation in geographic distribution, range size, and habitat specificity 

makes Phemeranthus an ideal study system for research regarding diversification in arid 

habitats and the origins of glade endemics. 
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 The families that constitute the suborder Portulacineae (Cactaceae, Didiereaceae, 

Basellaceae, Halophytaceae, and the various lineages of the traditional Portulacaceae, 

including Montiaceae) provide many opportunities to study the evolution of xeric-

FIGURE 2.1. Distribution map for Phemeranthus, showing the approximate ranges of 
each major clade. Colors correspond to the clades labeled in Fig. 2.2 (below): Clade 
1A, red; Clade 1B, blue; Clade 1C, green; Clade 2, orange. Highlighted areas in the 
United States are based on county-level occurrence data, while those in Mexico and 
Argentina are based on departamento (state)-level occurrence data. 
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adapted plant taxa; most members of the group exhibit some type of succulence (Nyffeler 

et al. 2008). The relationships among these families have been clarified by recent 

analyses of both morphological and molecular data (Fig. 1.3). Notably, Cactaceae is 

derived from within the traditional Portulacaceae, necessitating the division of the latter 

family into several smaller families (Nyffeler and Eggli 2010). Most members of the 

former Portulacaceae found in temperate North and South America, including 

Phemeranthus, are now classified in Montiaceae, the largest family segregated from 

Portulacaceae and the possible sister group to the remainder of Portulacineae. However, 

although major clades within Portulacineae have been identified and are mostly well 

supported, many details of their relationships remain poorly resolved. Furthermore, 

lower-level relationships within Montiaceae have yet to be examined in depth. The 

present study examines an important lineage within Montiaceae that also exemplifies the 

evolution of xeric-adapted plant groups in temperate North America. 

 The goals of this study were to evaluate the monophyly of Phemeranthus as treated 

in the Flora of North America and to assess its relationships with other lineages of 

Montiaceae and Portulacineae; to discern geographic patterns among Phemeranthus 

clades in the context of plant biogeographic patterns in xeric North America; and to 

examine whether certain morphological traits, especially seed testa ornamentation, 

reliably distinguish clades. 

 

Materials and Methods— 

Taxon Sampling and Field Studies—Phemeranthus species were collected throughout the 

southwestern, midwestern, and southeastern United States, with multiple accessions from 
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across the geographic ranges of widely distributed species. For this study, 55 

Phemeranthus accessions representing 15 taxa were collected at 50 sites. Collections 

were documented with digital photographs and voucher specimens (deposited at MO). 

Leaf material was desiccated in silica gel for DNA extraction. When possible, live plants 

and/or seeds were brought back to the greenhouse and grown under controlled conditions 

to provide fresh leaf material for higher quality DNA extracts. Material representing 

species from Argentina, Mexico, and the United States was generously provided by 

colleagues, and additional accessions of five species (seed or live plants) were obtained 

from commercial rock-garden and succulent nurseries. In all, 68 Phemeranthus 

accessions were newly sequenced for this study. 

 Outgroup selection was guided by recent phylogenetic analyses (e.g., Nyffeler and 

Eggli 2010; Ocampo and Columbus 2010) that have clarified relationships within 

suborder Portulacineae (see Fig. 1.3). Nine outgroup samples were collected in the field, 

including three Claytonia L. and one Lewisia Pursh (Montiaceae), two Portulaca L. 

(Portulacaceae), and three accessions of Talinum aurantiacum Engelm. [= Phemeranthus 

aurantiacus (Engelm.) Kiger; Talinaceae]. In addition, DNA was extracted and 

sequences generated from silica-dried tissue of three other Talinum and Talinella Baill. 

species supplied by M. Ogburn of the University of Missouri, St. Louis. In all, five 

additional Montiaceae, two Portulacaceae, and six Talinaceae accessions were newly 

sequenced for this study (see APPENDIX 1 for taxon sampling). 

 Additional sequences were downloaded from GenBank, including the ndhF 

sequences for P. mengesii (W.Wolf) Kiger and T. angustissimum Wooton & Standl. 

generated by Applequist and colleagues (Applequist and Wallace 2001; Applequist et al. 
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2006) and ndhF and matK sequences for 30 other taxa (ten Montiaceae, four Talinaceae, 

four Portulacaceae, three Cactaceae, one Anacampserotaceae, five Didiereaceae, two 

Basellaceae, and one Molluginaceae). An ndhF sequence was available for every 

terminal taxon used in the final dataset, but matK sequences were not available for some 

taxa (see Appendix). Mollugo verticillata L., which is not a member of Portulacineae but 

has been implicated as a possible sister group in previous studies (e.g., Applequist et al. 

2006), was used as a more distant outgroup to root the trees. 

 

DNA Regions and Phylogenetic Analyses—Genomic DNA was extracted from either 

silica-dried or liquid nitrogen-frozen leaves using a modified CTAB protocol. For most 

accessions, either a 1:10 or a 1:100 dilution of genomic DNA extract was used for PCR. 

 To place Phemeranthus within its phylogenetic context in Montiaceae (Nyffeler 

and Eggli 2010), the chloroplast gene ndhF was sequenced. This region has been used in 

previous studies of Portulacinae (Applequist and Wallace 2001; Applequist et al. 2006; 

Nyffeler and Eggli 2010), making sequences available for a broad sampling of outgroup 

taxa. In addition, the chloroplast region matK–trnK was sequenced using primers from 

Johnson and Soltis (1995) and Hilu et al. (2003). These two regions consistently 

amplified in Phemeranthus species and produced high-quality, readily alignable sequence 

data. In the search for better phylogenetic resolution, we surveyed several additional 

chloroplast intergenic spacer regions (e.g., Small et al. 1998; Shaw et al. 2005; Shaw et 

al. 2007).  However, most primer sets either did not amplify reliably in Phemeranthus or 

produced poor sequence data due to the presence of lengthy poly-A/T regions.  

 The primers NYmatK480F (Borsch et al. 2003) and trnK2R (Johnson and Soltis 
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1995) were used to amplify matK, and the primers 1B, 8B, 5C, and 16D of Applequist 

and Wallace (2001) were used to amplify ndhF (Table 2.1). The complete ndhF region 

was typically amplified in two overlapping segments using the primer pairs 1B-8B and 

5C-16D. For some taxa in which PCR or sequencing reactions using these primers were 

unsuccessful, the alternative forward primer ndhF20F (substituted for 1B) and the 

alternative reverse primer ndhF2047R (substituted for 16D) were employed.  

 

TABLE 2.1. Primers used to amplify and sequence chloroplast regions 

Primer Sequence Reference 

NYmatK480F 5'-CATCTGGAAATCTTGSTTC-3' Borsch et al., 2003 

trnK2R 5'-AACTAGTCGGATGGAGTAG-3' Johnson & Soltis, 1995 

1B 5'-CCTTYATTCCRCTTCCAGTTCC-3' Applequist & Wallace, 

2001 

8B 5'-ATAGATTCGACACATATAAAATGCAGTT-3' Applequist & Wallace, 

2001 

5C 5'-CTTCTTCCTCTTTTCGTAGTTATACC-3' Applequist & Wallace, 

2001 

16D 5'-CCTCCTRYATAYTTGATACCTTCTCC-3' Applequist & Wallace, 

2001 

ndhF20F 5'-GTTAATAGGAGTGGGACTTC-3 This study 

ndhF2047R 5'-AACACCAAAACCATTCGGA-3' This study 

 

 

 For both matK and ndhF, PCR amplifications were performed in a total volume of 

10.0 µL containing 1× Taq buffer [Qiagen CoralLoad (Qiagen Inc., Valencia, California) 

or Promega GoTaq Green (Promega Corporation, Fitchburg, Wisconsin)], 1.5–2.5 mM 

MgCl2 (contained in the buffer and/or added separately), 0.2 mM each dNTP, 0.2 µM 
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forward primer, 0.2 µM reverse primer, 0.25 U Taq DNA polymerase (Qiagen or 

Promega GoTaq), and 1.0 µL genomic DNA (usually a 1:10 dilution of the genomic 

DNA extract). For ndhF, the PCR thermal-cycling profile consisted of a 1-min initial 

denaturation at 94ºC; 36 cycles of 1 min at 94ºC, 1 min at 53ºC, and 2 min 10 sec at 

72ºC; and a 10-min final extension at 72ºC. For matK, the PCR thermal-cycling profile 

consisted of a 3-min initial denaturation at 94ºC; 30 cycles of 30 sec at 94ºC, 30 sec at 

53ºC, and 2 min at 72ºC; and a 10-min final extension at 72ºC. 

 Amplified products were purified by treatment with exonuclease I and either 

shrimp alkaline phosphatase or Antarctic phosphatase. Cycle-sequencing reactions used 

the same primers used for amplification and BigDye Terminator v1.1 or v3.1 (Applied 

Biosystems Inc.,  Foster City, California). Amplicons were sequenced in both directions 

on an ABI 3130xl DNA sequencer at Washington University in St. Louis or on an ABI 

3730xl DNA sequencer at the Institute for Genome Sciences & Policy DNA Sequencing 

Facility at Duke University. Sequence chromatograms were examined and contigs 

constructed in Sequencher v4.10.1 (Gene Codes Corporation, Ann Arbor, Michigan). 

Additional outgroup sequences were downloaded from GenBank, and sequences were 

manually aligned using Se-Al v2.0a11 (Rambaut 1996). Single-nucleotide-repeat gaps 

were removed, and informative gaps were coded using simple gap coding (Simmons and 

Ochoterena 2000; Simmons et al. 2001). For combined analyses, the two data sets were 

concatenated using Phyutility (Smith and Dunn 2008). ALTER (Glez-Peña et al. 2010) 

was also used to convert data sets to the formatting requirements of different programs. 

 Maximum-parsimony (MP) phylogeny reconstruction was performed in PAUP* 

version 4.0a114 (Swofford 2003). Heuristic tree searches included 20 replicates using 
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random addition sequence and tree-bisection-reconnection (TBR) branch swapping. A 

maximum of 100,000 trees were saved during each replicate to ease computational 

constraints. Gaps were treated as missing data. To assess branch support, 1,000 bootstrap 

replicates were performed, each consisting of a single random addition sequence with 

TBR branch swapping and the maximum number of trees to be saved set at 5,000. To 

assess the contribution of each cpDNA region, the analysis was repeated for matK alone, 

ndhF alone, and both regions combined; all three datasets were analyzed with and 

without indels. 

 The phylogeny was also inferred under the criterion of maximum likelihood (ML) 

using GARLI (Zwickl 2006). For this analysis, the binary indel data were excluded and 

only the nucleotide sequences were used. Program default parameters were used, and the 

run was automatically terminated after 10,000 generations without significant 

improvement in topology. The program was allowed to estimate the optimum model of 

sequence evolution, and a random starting tree was used. To assess branch support, 1,000 

repetitions of bootstrap resampling were performed. For each bootstrap repetition, the 

termination condition was set at 5,000 generations without significant improvement in 

topology. For comparison, jModelTest v0.1 (Guindon and Gascuel 2003; Posada 2008) 

was also used to determine the model of sequence evolution that best fit the data. The 

program was allowed to optimize the topology rather than being supplied with a fixed 

topology. The jModelTest analysis was run separately on the matK, ndhF, and combined 

datasets. The GARLI analysis was then repeated with the sequence evolution model 

parameters fixed according to the optimum model selected by the corrected Akaike 

information criterion (AICc) in jModelTest. 
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 Finally, MrBayes 3.1 (Carolin 1987; Kiger 2003) was used to perform Bayesian 

inference of phylogeny (BI). MrBayes was also set up to optimize the sequence-evolution 

model parameters. Two parallel MCMC runs of four chains each were run for 10,000,000 

generations, sampling every 1,000 generations. The temperature parameter was set at 

0.08. To improve convergence, a starting tree obtained by neighbor joining was supplied. 

To assess convergence, the standard deviations of splits frequencies were examined and 

the first 2,500 trees were discarded as burn-in, leaving a sample of 7,500 trees in the set, 

from which a majority-rule consensus was computed. 

 

Results—A total of 113 terminal taxa were included in the analyses (APPENDIX 1). Of 

these, 68 Phemeranthus accessions, five additional Montiaceae, two Portulacaceae, and 

six Talinaceae accessions were newly sequenced for this study. Thirty-two ndhF 

sequences and 15 matK sequences were obtained from GenBank. Thus, the final dataset 

contained 162 sequences generated for this study and 47 from GenBank, or 

approximately 78% new data. 

 After gap insertion, the aligned length of the ndhF region was 2,028 base pairs, 

while that of the matK region was 1,251 base pairs. Eight ndhF indels (6–12 bp) and nine 

matK indels (3–22 bp) were coded as binary characters. Of these 3,296 total characters, 

590 were parsimony-informative. See Table 2.2 for additional details about each region. 

The heuristic tree search in PAUP* using the total data set yielded 22 MP trees. The 

differences among these 22 trees were confined to relationships among the three sampled 

Cactaceae and the placement of certain subgroups of Talinaceae. 
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 Excluding the binary indel data from the analysis did not alter the topology nor 

substantially affect branch support values in the MP bootstrap consensus tree. When the 

two regions were analyzed separately, the ndhF data provided substantially more 

resolution and overall branch support than did the matK data, but the combined data set 

yielded more resolution and higher branch supports than the ndhF data alone (Table 2.2). 

Although the matK tree was less resolved, its topology mostly did not conflict with that 

of the ndhF tree, except as noted below. The matK dataset alone provided no support for 

backbone relationships within Portulacineae. 

 The sequence evolution models selected for each region and for the combined 

data set according to the corrected Akaike information criterion (AICc) in jModelTest are 

summarized in Table 2.3. In the ML analyses using GARLI, constraining the sequence-

evolution model parameters according to the results obtained from jModelTest did not 

alter the resulting topology, nor did it noticeably affect the inferred branch lengths in any 

part of the tree, although the likelihood was improved slightly. Furthermore, the 

sequence-evolution models inferred by GARLI were generally similar to those chosen by 

jModelTest, except that GARLI tended to yield larger gamma shape parameter values 

(see Table 2.3). Only the results of the unconstrained GARLI analyses are presented here. 
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TABLE 2.2. Sequence regions and summary of maximum parsimony results. †Number of terminal taxa in the dataset / number 
obtained from GenBank. *Number of clades with MP bootstrap support >50% within Phemeranthus. 

 
region †accessions length variable 

characters 
parsimony 
informative 

# MP 
trees 

MP tree 
length 

CI RI RC *nodes 
resolved 

ndhF 
(w/ indels) 

113 / 32 2,028 bp 
8 indels 

668 
676 

415 
422 

11,938 
12,019 

1,365 
1,381 

0.649 
0.647 

0.860 
0.859 

0.558 
0.556 

24 
24 

matK 
(w/ indels) 

94 / 15 1,251 bp 
9 indels 

298 
306 

166 
168 

12,853 
12,861 

476 
484 

0.754 
0.758 

0.888 
0.888 

0.670 
0.674 

16 
16 

ndhF + matK 
(w/ indels) 

113 / 32 3,279 bp 
17 indels 

966 
982 

581 
590 

22 
22 

1,850 
1,874 

0.673 
0.673 

0.865 
0.864 

0.582 
0.581 

29 
29 

 
 
 

TABLE 2.3. Sequence evolution model and maximum likelihood results for each region. *For each region, the top row shows the 
model selected by jModelTest according to the corrected Akaike information criterion (AICc); the bottom row shows the model 

estimated by GARLI simultaneously with the topology and branch lengths. 
 
region *model -lnL freqA freqC freqG  freqT R[AC] R[AG] R[AT] R[CG] R[CT] p-inv gamma 

shape 
ndhF TVM+I+G 10,937.8 0.287 0.148 0.156 0.409 1.726 1.631 0.434 1.470 1.631 0.325 0.676 
 GTR+I+G 10,933.7 0.292 0.143 0.159 0.405 1.772 1.483 0.433 1.495 1.801 0.331 0.758 
matK GTR+G 4,576.6 0.379 0.167 0.158 0.296 0.670 1.519 0.178 1.109 1.015 n/a 0.387 
 GTR+I+G 4,572.9 0.379 0.166 0.158 0.296 0.682 1.556 0.177 1.128 1.046 0.237 0.779 
both TVM+I+G 15,669.1 0.322 0.154 0.159 0.366 1.290 1.491 0.357 1.328 1.491 0.290 0.624 
 GTR+I+G 15,665.4 0.323 0.153 0.159 0.365 1.306 1.483 0.356 1.336 1.510 0.327 0.783 
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Relationships Within Portulacineae—The ML bootstrap consensus topology is presented 

in Fig. 2.2 with MP, ML, and BI branch support values, and the ML tree with branch 

lengths is shown in Fig. 2.3. In general, this analysis recovered the relationships within 

Portulacineae that other authors have reported (summarized in Fig. 1.3). However, the 

chloroplast regions used here provided only weak or equivocal support for some of these 

relationships, and there were some topological differences along the backbone of the tree 

depending upon the method of tree reconstruction. Specifically, the positions of members 

of Didiereaceae and Basellaceae differed between parsimony and model-based trees. 

Ceraria fruticulosa Pearson & Stephens and Portulacaria afra Jacq. (Didiereaceae) 

formed a clade with 100% support under all methods of tree reconstruction. All 22 MP 

trees placed this clade as sister to all remaining Portulacineae, although the clade 

encompassing all Portulacineae except C. fruticulosa and P. afra received only 58% 

bootstrap support (Fig. 2.4). In turn, a clade encompassing the remaining Didiereaceae 

(Didierea trollii Capuron & Rauh, Decarya madagascariensis Choux, and Calyptrotheca 

somalensis Gilg) plus Basellaceae (Basella alba L. and Ullucus tuberosus Caldas) was 

sister to core Portulacineae in the strict consensus of MP trees, albeit with less than 50% 

bootstrap support. In contrast, maximum likelihood recovered Ceraria + Portulacaria as 

sister (with 76% bootstrap support) to the clade consisting of the remaining Didiereaceae 

plus Basellaceae (see Fig. 2.2). In the ML analysis, this Didiereaceae sens. lat. + 

Basellaceae clade in turn was sister (also with 76% bootstrap support) to the ACPT clade 

(Anacampserotaceae, Cactaceae, Portulacaceae sens. str., Talinaceae). Didiereaceae 

sensu Nyffeler & Eggli was never recovered as monophyletic. 



    

  77

 Analysis of the matK data alone differed from ndhF in the anomalous placement 

of the two sampled Portulaca species within a very weakly supported (MP bootstrap: 52) 

clade with Maihuenia patagonica (Phil.) Britton & Rose and Quiabentia verticillata 

(Vaupel) Vaupel ex Berger (Cactaceae), while the other sampled representative of 

Cactaceae, Pereskia aculeata Mill., appeared alongside this group as part of a large, 

unresolved basal polytomy (not shown). 

 In the analysis of the full data set, all methods of tree reconstruction supported the 

monophyly of the ACPT clade (81 MP, 97 ML, 1.0 BI). Within this clade, Portulacaceae 

sens. str. (represented by six species of Portulaca) and Cactaceae (represented by 

Pereskia aculeata, Quiabentia verticillata, and Maihuenia patagonica) were each 

strongly supported as monophyletic. Talinaceae was recovered as monophyletic by all 

methods of tree reconstruction, but with weak support (57 MP, 72 ML, 0.97 BI). Only 

one representative of Anacampserotaceae (Grahamia bracteata Gill.) was included. 

Relationships among the four families making up the ACPT clade were unresolved.
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FIGURE 2.2. See caption on following page. 
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 Montiaceae were recovered as monophyletic, although support for the clade was 

only moderately strong (82 MP, 94 ML, 1.0 BI). The sister group of Montiaceae was 

equivocal. In the strict consensus of MP trees, Montiaceae were sister to the ACPT clade. 

However, no sister-group relationship for Montiaceae received greater than 50% MP 

bootstrap support. In the ML tree, Montiaceae were sister to the remainder of 

Portulacineae (i.e., the ACPT clade plus the paraphyletic Didiereaceae + Basellaceae 

clade).  

 

FIGURE 2.2. Maximum likelihood bootstrap consensus topology with branch support 
values (MP bootstrap / ML bootstrap / BI posterior probability). *: Bootstrap value of 
100 / posterior probability of 1.0. -: Bootstrap value < 50 or posterior probability < 
0.50. Major clades are labeled with arrows at the nodes. Major subclades within 
Phemeranthus are labeled on the sidebar; colors correspond to those used in Fig. 2.1. 
Talinaceae is also labeled on the sidebar, and Talinum accessions classified as 
Phemeranthus aurantiacus by Kiger (2001, 2003) are underlined. The diversity of 
growth habits in Phemeranthus is shown by line drawings of selected species in each 
clade, drawn from specimens corresponding to the accessions labeled with circled 
letters. The seeds of selected Phemeranthus species are depicted at the lower right. 

FIGURE 2.3. Maximum likelihood phylogenetic tree with branch lengths from the 
GARLI analysis of the full data set. The full tree with outgroups is shown at the upper 
left, with major clades/ families labeled. Phemeranthus, marked by the large black 
diamond at its crown node, is expanded to the right. Major clades discussed in the text 
(1A, 1B, 1C, 2) are marked with arrowed circles. The geographic origin of each 
accession is noted on the sidebar with shading corresponding to the areas marked on 
the inset maps. SW/MX = Mexico and the southwestern United States; MW = the 
midwestern United States; NW = the northwestern United States; and SE = the 
southeastern United States. P. confertiflorus accessions in bold type are discussed in 
the text. 
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FIGURE 2.3. See caption on previous page. 
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Monophyly of Phemeranthus—Excluding Talinum aurantiacum / angustissimum, all 

sampled accessions of Phemeranthus formed a monophyletic group with maximum 

support under all three methods of tree reconstruction (MP, ML, and BI). Including the 

three sampled accessions of Talinum aurantiacum (Texas, New Mexico) and the T. 

angustissimum sequences from GenBank in Phemeranthus would make the genus 

polyphyletic; these accessions formed a strongly supported clade with T. polygaloides 

Gill. ex Arn. (Argentina, Bolivia, Paraguay) and T. caffrum Eckl. & Zeyh. (South Africa, 

Tanzania). This clade, in turn, was part of the relatively weakly supported Talinaceae 

within the ACPT clade, along with other Talinum and Talinella species from the Old and 

New World. Phemeranthus formed a strongly supported monophyletic group with the 

remainder of Montiaceae (82 MP, 94 ML, 1.0 BI), being sister to a strongly supported 

clade (99.9 MP, 100 ML, 1.0 BI) consisting of all other sampled taxa.  

FIGURE 2.4. Condensed 
cladogram showing the 
alternative outgroup 
topology supported by the 
maximum parsimony 
analysis, with Ceraria + 
Portulacaria falling 
outside the Didiereaceae + 
Basellaceae clade. Support 
values are shown as in 
Fig. 2.2. 
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Relationships Within Phemeranthus—Within Phemeranthus, two strongly supported 

clades were found (Fig. 2.2). The pink- to white-flowered, distinctly caulescent species 

primarily found in the United States (and extending into British Columbia, Canada, and 

northern Mexico) formed a clade (Clade 1) with 100% support under MP and BI and 

98% under ML. Its sister group (Clade 2), which had 100% support under MP, ML, and 

BI, consisted of yellow- to white-flowered, ±acaulescent species from Mexico (extending 

into southern Arizona and New Mexico) and Argentina. 

 Within both clades, the deepest divergence was between a disjunct species or 

species pair and the remaining species in the clade. P. sediformis (Poelln.) Kiger of the 

Okanagan region in northern Washington and southern British Columbia and P. 

spinescens (Torr.) Hershk. of the Columbia Plateau in eastern Washington formed a 

strongly supported clade (Clade 1A) that was sister to the remainder of Clade 1 (which 

otherwise occurs only east and south of the Great Basin) in analyses of the full data set, 

although this sister-group relationship received only modest bootstrap support under MP 

and ML. Analysis of ndhF alone placed the NW species as sister to the SW clade (Clade 

1B; see below), but with weak support. Similarly, P. punae (R.E.Fr.) Eggli & Nyffeler of 

the Puna region in the southern Andes was unequivocally supported as sister to the 

remainder of Clade 2 (which otherwise occurs only north of the Isthmus of Tehuantepec 

in Mexico). 

 Clade 1 included three major subclades. Clade 1A, discussed above, is distributed 

in the inland Northwest. The southwestern species P. validulus (Greene) Kiger, P. 

thompsonii (N.D. Atwood & S.L. Welsh) Kiger, P. brevicaulis (S.Watson) Kiger, and P. 
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longipes (Wooton & Standl.) Kiger formed the moderately strongly supported Clade 1B 

(along with three accessions of P. cf. parviflorus that grouped with P. validulus and P. 

thompsonii; see Discussion). The remaining species, which are predominantly distributed 

throughout the Midwestern and Southeastern United States (hereafter Eastern United 

States, ENA) but also extend to the Southwest and northern Mexico, made up Clade 1C 

(Fig. 2.2). This clade encompasses two-thirds of the sampled Phemeranthus accessions. 

 Relationships within Clade 1C generally lacked strong support; branch lengths 

were extremely short, and most species’ haplotypes did not form monophyletic groups 

(Fig. 2.3). However, a few notable patterns were evident. First, except for the three 

accessions that grouped with Clade 1B, all P. parviflorus (from Utah, Arizona, New 

Mexico, Texas, Oklahoma, Arkansas, Kansas, Missouri, Illinois, South Dakota, and 

Alabama) formed a large, moderately well supported (MP: 86, ML: 88, BI: 100) comb 

that also included all P. rugospermus (Holz.) Kiger (Texas, Oklahoma, Kansas, 

Nebraska, and Wisconsin) and P. teretifolius (Pursh) Raf. (Georgia, North Carolina), two 

P. mengesii (Tennessee), and one morphologically unusual accession identified as P. cf. 

calycinus (Engelm.) Kiger from Conway Co., Arkansas. Second, P. calycinus accessions 

(excluding the aforementioned P. cf. calycinus from Conway Co.) formed two groups: 

one group of Missouri and Arkansas plants formed a clade along with P. calcaricus 

(S.Ware) Kiger (Tennessee, Alabama) that was weakly supported as sister to the P. 

parviflorus + P. rugospermus + P. teretifolius clade, while another group of Kansas and 

Missouri P. calycinus accessions formed a weakly supported clade along with three P. 

mengesii (Alabama) individuals and P. piedmontanus Ware (North Carolina). This latter 

group was sister to P. brevifolius, a dwarf species of the Colorado Plateau, in all MP 
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trees; this relationship was also supported by BI but did not receive greater than 50% 

bootstrap support in either MP or ML analyses. The four accessions of P. brevifolius 

formed a strongly supported clade. 

 

Discussion—This phylogenetic analysis of chloroplast DNA sequences clearly supports 

the monophyly of Phemeranthus (excluding P. aurantiacus) and reinforces its separation 

from Talinum and its relationship to other predominantly western North American taxa 

within Portulacineae. Disparities between certain relationships predicted from 

morphology and those recovered from molecular data suggest complex speciation 

processes. The data also resolve two major geographically structured and 

morphologically distinct clades within the genus and strongly suggest that two dramatic 

geographical disjunctions within the group predate the diversification of the extant 

species. The biogeographic history suggested by the phylogeny is similar to those of 

other xeric-adapted taxa centered in the American Southwest and northern Mexico, with 

a pattern of origin in the Southwest followed by northward and eastward movement 

within North America. This study supports previous findings concerning deeper-level 

relationships within Portulacineae (e.g., the ACPT clade), although further work is 

needed to resolve remaining ambiguities. 

 

Taxonomic History and Placement of Phemeranthus— Although ndhF and matK–trnK 

exhibit little variation within portions of Phemeranthus (particularly the ENA group), the 

phylogenetic signal present strongly supports the monophyly of Phemeranthus if P. 

aurantiacus is excluded (Fig. 2.2). The data also reinforce Phemeranthus’ relationship to 
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predominantly western North American genera such as Lewisia, Montia L., and Cistanthe 

Spach, as opposed to African-centered Talinum, in which Phemeranthus was long 

included. Rafinesque erected Phemeranthus in 1814 to accommodate T. teretifolium 

Pursh, the first terete-leaved Talinum species to be described. However, other 

taxonomists did not recognize Phemeranthus at the generic level, even though this group 

is distinguished from Talinum sens. str. by numerous morphological characters, notably 

terete leaves and a funicular aril or pellicle surrounding the seed. Beginning with de 

Candolle, who described the second terete-leaved species, T. napiforme DC, in 1828, the 

terete-leaved members of the genus were recognized as Talinum sect. Phemeranthus. 

 The relationship between sections Talinum and Phemeranthus began to be 

questioned when cladistic analyses of morphological characters by Carolin (1987) and 

Hershkovitz (1993) found that the two sections did not form a clade. Subsequently, 

molecular data have reinforced the conclusion that the two groups are not closely related 

(Hershkovitz and Zimmer 1997, 2000; Applequist and Wallace 2001; Applequist et al. 

2006; Hershkovitz 2006). Talinum (and Talinella, which is nested within Talinum) is now 

placed in its own family, Talinaceae, which is more closely related to Portulaca, 

Anacampseros and its relatives, and Cactaceae (The Angiosperm Phylogeny Group 2009; 

Nyffeler and Eggli 2010). Phemeranthus species have been recovered as sister to the 

remaining genera of Montiaceae, which contains most of the diversity of traditional 

Portulacaceae.  

 Hershkovitz initiated the resurrection of Phemeranthus by publishing 

combinations for the three species sampled in a molecular phylogenetic analysis focusing 

on the relationships of Cactaceae (Hershkovitz and Zimmer 1997). Subsequently, Kiger 
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(2001) transferred the remaining terete-leaved Talinum species distributed in the United 

States in preparation for his treatment in the Flora of North America (Kiger 2003). 

However, Kiger also treated the non-terete-leaved Talinum aurantiacum (including T. 

angustissimum and T. whitei I.M.Johnst.) as P. aurantiacus on the basis of their seeds 

with strong concentric ridges and fruit morphology. This taxonomic decision was 

contradicted by molecular evidence from Applequist and Wallace (2001) and 

Hershkovitz and Zimmer (1997, 2000), and Kiger (2003) noted that it might prove 

untenable. The present study provides definitive evidence that the non-terete-leaved T. 

aurantiacum and similar species should be retained in Talinum. As noted by Kiger, these 

plants lack the terete leaves and seed pellicle that characterize Phemeranthus, and their 

general growth habit also unites them with Talinum rather than Phemeranthus. 

 

Geographic and Morphological Correlates of Major Lineages within Phemeranthus—

Phemeranthus contains two monophyletic subgenera: a southern clade distributed 

primarily in Mexico (Clade 2) and a northern clade distributed primarily in the United 

States (Clade 1) (Fig. 2.2). These clades are geographically distinct (Fig. 2.1, Fig. 2.3), 

overlapping only in a relatively small area of the southwestern United States and northern 

Mexico. The maximum distributional overlap of clades (clades 1B, 1C, and 2) occurs in 

the state of Chihuahua, Mexico, and adjacent Cochise County, Arizona (Fig. 2.1). At 

some sites in this region, species from Clade 2 can be found growing alongside species of 

Clade 1B or 1C.  

 Within each clade, the deepest divergence is between a geographically disjunct 

lineage and the remainder of the group. Within Clade 1, the northwestern disjunct species 
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P. sediformis and P. spinescens (Clade 1A), which are also distinguished by their woody 

growth habit, are moderately supported as sister to the rest of the clade (Fig. 2.2). This 

result suggests a single, early dispersion of a Clade 1 ancestor into the Northwest, 

followed by divergence and speciation in isolation due to geographical and/or climatic 

barriers formed by the northern Rocky Mountains and glacial Cordilleran ice sheets. 

Within Clade 2, the single South American species, P. punae, is sister to the remaining 

species, suggesting ancient long-distance dispersal by a Clade 2 ancestor. 

 Seed coat morphology has been suggested as an important taxonomic character in 

the group. Most members of Clade 2 possess seed coats with strong concentric ridges, 

whereas most members of Clade 1 lack these ridges. However, this character does not 

reliably distinguish the clades. Just as concentric ridges on the seed were misleading in 

the incorrect placement of Talinum aurantiacum within Phemeranthus, this character 

would mislead an attempt to classify groups within the genus. Notably, P. longipes, a 

diminutive species of limestone substrates in trans-Pecos Texas, New Mexico, and 

adjacent Mexico, features strongly ridged seeds like those found in Clade 2 (Fig. 2.2, 

lower right). However, the molecular data indicate that P. longipes belongs to Clade 1B. 

Other members of Clade 1 have non-ridged seeds that variously appear smooth due to a 

thin, tightly fitting pellicle or rough due to a loose, wrinkled pellicle.  

 Nevertheless, morphology provides some obvious characters to distinguish the 

major clades. Members of Clade 1 are distinctly caulescent, have tapering taproots or 

amorphous to spreading rhizomatous rootstocks, and have dark pink to white flowers. 

Members of Clade 2 are basically acaulescent, have tuberous rootstocks, and have yellow 
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to white flowers. Within Clade 1, members of Clade 1A are distinguished by their highly 

branched, spiny, suffrutescent bases. 

 

Species Relationships Within Clades—The southwestern species P. brevicaulis, P. 

validulus, and P. longipes form Clade 1B (Fig. 2.2). The placement of P. longipes in this 

clade is unexpected, albeit well supported. Often mistaken for depauperate individuals of 

P. parviflorus (though it is quite distinctive in floral and seed morphology), the 

diminutive P. longipes lacks the decumbent habit, extensive subterranean caudex, and 

long, tapered, recurved sepals of other Clade 1B species. The relatively narrow range of 

this clade, centered on New Mexico and parts of adjoining states (Fig. 2.1, Fig. 2.3), 

suggests that this lineage evolved in isolation from the lineage that would give rise to the 

widespread Clade 1C.  However, species of Clades 1B and 1C frequently co-occur 

throughout their current area of overlap in Utah, Arizona, New Mexico, and Texas, 

suggesting more recent expansion of one or both groups. The anomalous placement of 

certain P. parviflorus individuals in Clade 1B suggests hybridization/ chloroplast 

introgression, but this hypothesis requires further exploration using nuclear markers. 

 Hybridization and polyploidy have played a role in speciation within Clade 1C, 

the widely distributed but poorly resolved group of species distributed in ENA. All 

sampled accessions of P. teretifolius, an allotetraploid derivative of P. parviflorus and P. 

mengesii (Black and Murdy 1972; Carter and Murdy 1985; Murdy and Carter 1985), 

share a chloroplast haplotype with Missouri, Oklahoma, and Arkansas P. parviflorus. 

This haplotype is also found in P. cf. calycinus from Conway Co., AR, suggesting 

hitherto undocumented hybridization between P. parviflorus and P. calycinus. 
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 The close relationship of P. brevifolius with P. calycinus and P. mengesii is also 

unexpected. A dwarf species with small leaves, short internodes, and nearly sessile 

flowers, P. brevifolius is endemic to the Colorado Plateau. In contrast, P. calycinus and 

P. mengesii are tall, erect plants with relatively long leaves, visible internodes, long 

peduncles, and well-branched inflorescences, and are distributed in ENA. However, P. 

calycinus is highly variable; three or more species may deserve recognition (D.J. 

Ferguson, pers. comm.). Some populations have shorter leaves, stems, internodes, and 

peduncles and a more rhizomatous habit. Some western populations of P. calycinus also 

have a distinctive, sweet floral scent (D. J. Ferguson, pers. comm.), a trait that is 

otherwise known in the genus only from P. brevifolius (pers. obs.), although it has not 

been exhaustively surveyed and may be present in other species. The taxonomic status of 

P. calycinus and its relationships to P. brevifolius, P. mengesii, and other ENA species 

require further study. 

 

Plant Biogeographical Patterns in Xeric North America— The evident correspondence 

between the phylogenetic and geographic structure suggests an "out of the Southwest" 

history for the genus (Fig. 2.3). Mexican and southwestern areas unite deeper-level 

branches, while midwestern and southeastern accessions appear at the tips of the tree, 

with extremely short branch lengths and poorly resolved species relationships. Ancestral 

character state reconstruction of distributional area using Mesquite (Maddison and 

Maddison 2011) (not shown) or MacClade (Maddison and Maddison 2000) (Fig. 2.5) 

supports the southwestern United States and northern Mexico as Phemeranthus' center of 

origin. 
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FIGURE 2.5. Parsimony-based ancestral character state reconstruction of geographic range using MacClade. Only Montiaceae is 
included; other Portulacineae are reduced to a single "outgroup" coded as occurring in every area. ACCTRAN optimization was 
used. 
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 In a phylogenetic study of suborder Portulacineae, Ocampo and Columbus (2010) 

estimated divergence times based on two indirect calibration points (island ages) for 

endemic Hawaiian Portulaca species. Their BEAST chronogram (Drummond and 

Rambaut 2007) and S-DIVA biogeographical reconstruction (Yu et al. 2010) indicated 

that the suborder originated in the Americas ca. 18.8 (6.7–33.7) million years (Myr) ago 

and that Montiaceae originated in North America ca. 13 (3.4–25.4) Myr years ago, 

consistent with the 8–16 Myr estimate of Hershkovitz and Zimmer (2000). Although 

these dates must be interpreted with extreme caution, applying these mean age estimates 

in a BEAST analysis of the data set used here (Fig. 2.6) yields dates of ca. 10.4–12.5 Myr 

for the root node of Phemeranthus, ca. 8.6–10.4 Myr for Clade 1, and ca. 6.2–7.5 Myr for 

Clade 2. These dates fall within the mid- to late Miocene, a period of global cooling and 

drying with expanding grasslands and mountain building in western North America. 

 The character-state distribution suggests that at least one Phemeranthus lineage 

has re-invaded the Southwest from the Midwest or Southeast: four P. parviflorus 

accessions from Arizona, New Mexico, and Utah form a clade with P. parviflorus from 

Alabama and with P. rugospermus accessions from Nebraska, Kansas, Oklahoma, and 

Texas. This clade is nested within the predominantly midwestern Clade 1C. Although 

branch lengths and support are low throughout Clade 1C, chloroplast genotypes within 

this group also appear to have crossed the Mississippi Embayment into the Southeast on 

multiple occasions, with P. calcaricus, P. mengesii, P. parviflorus (Alabama), P. 

piedmontanus, and P. teretifolius accessions scattered across the clade. The current gene 

pools of P. mengesii and P. calycinus may reflect incomplete sorting of ancestral 

polymorphism or may indicate that these species comprise multiple distinct lineages.
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FIGURE 2.6. BEAST chronogram showing relative ages of divergences in 
Phemeranthus and related groups. Phemeranthus is highlighted in gray. Branch 
thicknesses correspond to Bayesian posterior probability values (thicker branch = 
stronger support). Horizontal blue bars on nodes represent 95% credibility intervals 
for node height (= relative age). Mean dates inferred by Ocampo and Columbus 
(2010) for Portulacineae and Montiaceae are indicated at the respective nodes. 
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 An origin and initial diversification of the genus in northern Mexico and allied 

habitats in the American Southwest during the Miocene, followed by a more recent 

spread northward and eastward, is consistent with general patterns observed in other 

North American xeric-adapted plant groups (Moore and Jansen 2006; Moore et al. 2006; 

Douglas and Manos 2007; Marlowe and Hufford 2007; Evans et al. 2009; Rebernig et al. 

2010a; Yang and Berry 2011). For example, Gaillardia Foug. (blanket flowers; 

Asteraceae) originated in the Chihuahuan region, with lineages subsequently spreading 

east through Texas, northwest, and north into the Great Plains (Marlowe and Hufford 

2007). The North American xerophytic clade within Nyctaginaceae, which includes such 

genera as Abronia, Boerhavia, and Mirabilis (Douglas and Manos 2007), and the 

Chamaesyce clade within Euphorbia (Yang and Berry 2011) likely originated in the 

desert regions of western North America and subsequently dispersed elsewhere. At a 

finer scale, the pattern of historical isolation and post-glacial range expansion found for 

the Mexican tulip poppy in the Sierra Madre Oriental, Chihuahuan Desert, and central 

Mexico (Sosa et al. 2009) may provide an instructive comparison to Mexican 

Phemeranthus when additional sampling of Clade 2 can be obtained, particularly from 

the region of the Mexican Transvolcanic Belt. 

 Phemeranthus also exemplifies another general pattern exhibited by many North 

American xeric-adapted plant groups: amphitropical disjunctions between arid zones of 

North and South America (Raven 1963; Wen and Ickert-Bond 2009). Phemeranthus 

punae is one of several such disjunctions within Montiaceae alone (Hershkovitz and 

Zimmer 2000; Hershkovitz 2006). It appears that P. punae is the result of a long-distance 

dispersal event from the Mexican Cordillera to the southern Andes. Likewise, Moore and 
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colleagues (2006) have found evidence for a North American origin of Tiquilia Pers. 

subgenus Tiquilia (Boraginaceae), with a complex history of long-distance dispersal 

events. According to Simpson and colleagues (2006), the current distribution of Pomaria 

Cav. (Fabaceae) can be explained by two long-distance dispersals from southwestern 

North America, one to South America and one to southern Africa. Gaillardia also 

parallels Phemeranthus in having a small group of species in northern Argentina, but 

Marlowe and Hufford (2007) were unable to include the South American taxa in their 

analysis.  

 Some Phemeranthus species, including P. validulus, P. humilis, P. multiflorus and 

P. parvulus, are associated with higher-elevation habitats in coniferous forests and might 

be expected to exhibit sky-island phylogeographic patterns (Moreno-Letelier and Piñero 

2009; Gugger et al. 2010b; Gugger et al. 2010a). Other Phemeranthus species, such as P. 

brevicaulis and P. longipes, are found in lower elevation desert habitats and might have 

distributional histories more like those reported by Rebernig et al. (2010b; 2010a). 

Chloroplast loci are typically too slowly evolving to address such fine-scale 

phylogeographic questions (Schaal et al. 1998); further studies of individual subclades 

within Phemeranthus using population-level sampling and more variable markers would 

help to clarify the Pleistocene and recent history of these groups. 

 

Further Directions— The molecular phylogenetic analysis presented here provides a 

foundation to address a variety of questions regarding the evolution of Phemeranthus. 

Further study is needed to examine the possibility of hybridization between populations 

included in Clades 1B and 1C and reticulate evolution elsewhere in the genus. Additional 



    

  95

sampling of Clade 2 is needed to clarify the relationships of species in this group and to 

elucidate the biogeographic history of Phemeranthus. Finally, species boundaries and 

phylogeographic history in Clade 1C merit further study using population-level sampling 

and genotyping markers. 

 The relationships among the families that constitute the suborder Portulacineae 

have been substantially clarified in recent years (Fig. 1.3) (Nyffeler and Eggli 2010; 

Ocampo and Columbus 2010). However, the backbone relationships among the major 

lineages of Portulacineae remain poorly resolved. In this study, parsimony and model-

based methods differed in the sister-group relationship of Montiaceae; all MP trees 

placed Montiaceae as sister to the ACPT clade (albeit without support) (Fig. 2.4), while 

the ML analysis placed Montiaceae as sister to the remainder of Portulacineae. 

Furthermore, the relationships of Didiereaceae and Basellaceae were unclear. For 

included samples of these taxa, the ML analysis recovered the same topology reported by 

Hershkovitz and Zimmer (1997) but conflicted with that found by Applequist and 

Wallace (2001), in which Ceraria + Portulacaria were sister to Alluaudia ascendens 

Drake + Didierea + Calyptrotheca. Didiereaceae sensu Nyffeler and Eggli were never 

recovered as monophyletic (Fig. 2.4). The limited sampling employed here precludes any 

confident conclusions; further studies employing nuclear and/or genomic data are needed 

to clarify the backbone relationships of Portulacineae. 

 As suggested by previous studies and based on the extensive taxon sampling here, 

Phemeranthus is likely sister to the remainder of the clade now recognized as 

Montiaceae. Understanding the complete biogeographic history and intricacies of trait 

evolution within Montiaceae and relative to the ACPT clade will require enhanced 
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sampling of such ecologically diverse and geographically disjunct taxa as Calyptridium 

Nutt. and Lewisiopsis Govaerts (North America); Calandrinia Kunth, Cistanthe, and 

Montia (North and South America); Lenzia Phil., Montiopsis Kuntze, and Philippiamra 

Kuntze (South America); Parakeelya Hershk. (Australia; = Australian Calandrinia); 

Hectorella Hook. f. (New Zealand); and Lyallia Hook. f. (Kerguelen Islands). 
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CHAPTER III.  GERMINATION RESPONSE TO CHILLING DURATION SUGGESTS LOCAL 

ADAPTATION IN PHEMERANTHUS PARVIFLORUS 

 

Abstract—Seed germination requirements have important consequences for the 

successful use of native species in conservation or horticultural plantings; mismatches 

between these requirements and local environmental conditions can result in failure to 

germinate, seedling death, and/or reproductive failure. Phemeranthus parviflorus 

(Montiaceae) is a widespread succulent perennial that occurs in dry, open, rocky or sandy 

habitats from northern Mexico to the Dakotas. The flowering period extends throughout 

the summer, with more or less continuous production of flowers and fruits from late 

spring to early fall. I examined the chilling requirement for seed germination in twelve 

natural populations from across the broad latitudinal range of this species. Field-collected 

seeds were subjected to moist chilling for zero to twelve weeks, and their subsequent 

germination rates were tracked under common conditions in the greenhouse. Populations 

differed strongly in their responses to different chilling durations. Seeds from the 

southernmost populations were capable of germinating without chilling and reached their 

peak germination rates at shorter chilling durations. Seeds from the northernmost 

populations failed to germinate with no or brief chilling and required longer chilling 

periods to achieve maximum germination. In a subsequent experiment using greenhouse-

grown seeds, the results showed a less pronounced pattern, suggesting that maternal 

effects played a role. Seed chilling also affected adult life history; except in the 

southernmost population, chilling was necessary for the plants to flower in their first 

season of growth. 
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Introduction— 

 Species with large geographic ranges encounter a broad range of environmental 

conditions. Temperature and light, water and nutrient availability all have direct 

consequences for growth and reproduction, and all vary predictably with season and 

latitude. If inter-population gene flow is limited, natural selection can cause local 

adaptation, leading to differences among populations in morphology, physiology, 

phenology, and other traits. If individuals from different populations meet and mate, the 

offspring may be poorly adapted to either parental environment, resulting in a loss of 

fitness (Templeton 1997). Even without hybridization, local adaptation is a matter of 

great concern to conservation biologists in planning any kind of translocation and in 

anticipating how populations and species may respond to environmental change. For 

successful translocation of threatened species and for use of native species in restoration, 

reclamation, or landscaping projects, it is important that the individuals used be 

appropriately adapted to the target environment. Therefore, source populations must be 

chosen with care to match the conditions of the target environment as closely as possible, 

and ideally to be in close geographic proximity. 

 The sunbright, Phemeranthus parviflorus (Nutt.) Kiger, and the large-flowered 

fameflower, Phemeranthus calycinus (Engelm.) Kiger, are widespread in the Midwestern 

United States and have recently attracted greater horticultural attention for their potential 

use in green-roof plantings (Getter and Rowe 2008; Getter et al. 2009; Dvorak 2010). As 

highly drought-tolerant, succulent plants with attractive floral displays, these species can 

be a valuable component of green roofs and other water-conservative landscaping 
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designs. These species may also be used in re-vegetation of restored glade habitats. 

However, no attention has yet been paid to the possibility of local adaptation that might 

affect the establishment and sustainability of planted populations of these species, either 

on green roofs or in restored habitats. As a first step, I examined the chilling requirement 

for seed germination in P. parviflorus populations from different latitudes. Seed 

germination is a critical life-history stage; if the requirements for germination are not met 

in the target environment, a re-introduction or horticultural planting is unlikely to 

succeed.  

 

Overview of P. parviflorus, a widespread autogamous species 

 Phemeranthus parviflorus (sunbright) is a widespread succulent perennial 

wildflower that occurs in dry, open, rocky or sandy habitats from northern Mexico to the 

Dakotas (Fig. 3.1). The closely related species P. confertiflorus (Greene) Hershkovitz is 

morphologically similar, and the two species have been treated as a single, variable taxon 

by Kiger (2003). Holzinger (1900) also noted geographically correlated variability among 

specimens assigned to P. parviflorus sens. lat. and suggested that the taxon might actually 

encompass two or three species. While the center of diversity of Phemeranthus is in the 

southwestern United States and northern Mexico, this P. parviflorus species complex is 

among the seven to nine Phemeranthus species distributed in the midwestern and 

southeastern United States. It is the most widespread species in the genus in terms of both 

geographic and ecological space, broadly overlapping the ranges of several other species 

that represent most major clades within Phemeranthus. Populations are often large, but 

they are scattered on isolated habitat patches. 
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 Sunbright is widespread between the Rocky Mountains and the Mississippi River, 

extending just across the river into southern Illinois. Additionally, a widely disjunct 

population is found in central Alabama (Fig. 3.1). The Alabama population is confined to 

an area with a radius of about one mile on gneiss bluffs along the Coosa River. These 

plants were first reported by R.M. Harper in 1937 and were named Talinum 

appalachianum W. Wolf (Wolf 1939). Carter and Murdy (1985) compared T. 

FIGURE 3.1. Approximate geographical range of P. parviflorus sens. lat. (including P. 
confertiflorus, which occupies the southwestern portion of the range). Note the 
outlying population area in central Alabama. Numbered circles indicate the locations 
of populations sampled in this study. 
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appalachianum to Talinum parviflorum Nutt. (=P. parviflorus) and concluded that the 

former was synonymous with the latter, overlapping in all measured traits. Although the 

Alabama plants had slightly larger petals, they overlapped with Arkansas, Texas, and 

Kansas specimens in stamen number, style length, and ovule number, and anthesis 

occurred similarly late in the day. Furthermore, crosses between Alabama plants and 

other P. parviflorus yielded fruit-set and seed-set rates similar to those of intra-population 

controls, and the resulting offspring were fertile and able to self-pollinate, albeit with 

slightly reduced pollen fertility and seeds per capsule. Isozyme data also reinforced the 

conclusion that T. appalachianum was merely a disjunct population of P. parviflorus; the 

average genetic identity between populations of these taxa was higher than that between 

populations of P. calycinus or P. mengesii (W. Wolf) Kiger (Murdy and Carter 1985). 

The Alabama population of P. parviflorus may represent a remnant of a formerly more 

extensive distribution east of the Mississippi. 

 The presence of P. parviflorus in the southeastern United States, far east of its 

current main distribution, is particularly interesting because of its probable role in the 

origin of P. teretifolius (Pursh) Raf., the type species of Phemeranthus. This taxon is an 

allotetraploid distributed throughout the Piedmont region and Appalachian shale and 

serpentine barrens from Georgia north to Pennsylvania. Morphological (Murdy 1968), 

cytological (Black and Murdy 1972), and allozyme data (Murdy and Carter 1985) and 

artificial hybridization experiments (Carter and Murdy 1985) support the hypothesis that 

this species originated from a hybridization event between P. parviflorus and P. mengesii 

in the southeastern United States. Murdy and Carter (1985) scored 23 allozyme loci from 

9 enzyme systems for 384 individuals of 21 populations of P. teretifolius, P. mengesii, P. 
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parviflorus, and P. calycinus. They found that P. teretifolius populations were genetically 

uniform and that their alleles were a combination of alleles found in the putative parents. 

Chloroplast sequence data (Chapter II) suggest that P. parviflorus is the maternal parent 

of P. teretifolius. 

 Furthermore, P. parviflorus may have been involved in additional hybridization 

events of evolutionary significance in the midwestern United States. For example, a 

morphologically atypical P. calycinus population in Arkansas shares its chloroplast 

haplotype with P. parviflorus, as do all sampled populations of the prairie fameflower P. 

rugospermus (Holz.) Kiger, which is morphologically intermediate between and broadly 

co-distributed with P. parviflorus and P. calycinus. Thus, the widespread P. parviflorus 

appears to have played a crucial role in the evolutionary history of the genus in the 

midwestern and southeastern United States. 

 The aerial stems of sunbright plants typically die back to the ground each winter 

and regenerate in the spring from resting buds borne on a usually underground caudex 

with a tuberous taproot. The plants grow rapidly under appropriate conditions, and the 

flowering period extends throughout the summer, with more or less continuous 

production of flowers and fruits from late spring to early fall. Seed production is 

generally high both in the field and in the greenhouse (pers. obs.). When raised under 

greenhouse conditions, plants of this species usually reach reproductive maturity in their 

first season of growth from seed; however, they may not consistently do so in their 

natural environments. 

 Like all Phemeranthus species, P. parviflorus has ephemeral flowers, which last 

for only a single afternoon. Sunbright flowers typically open late in the afternoon or even 
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in the early evening and remain open for only one to three hours (pers. obs.) Although 

some Phemeranthus species show pronounced herkogamy, which promotes outcrossing, 

the small-flowered P. parviflorus has stigmas equal to the five stamens, enabling the 

flowers to self-pollinate upon closing in the evening. In some cases, the flowers may self-

pollinate before opening or without ever opening completely. In the greenhouse, nearly 

100% of flowers set fruit without the benefit of pollinators (pers. obs.). Consistent with 

these observations of autogamy, Murdy and Carter (1985) found low polymorphism in P. 

parviflorus in their isozyme survey. 

 Although it can be found on a variety of geological substrates, P. parviflorus is 

absent from calcareous soils, occurring on siliceous rocks in the Interior Highlands region 

(Ozark and Ouachita mountains) and on siliceous and igneous outcrops and in sandy 

prairie soils elsewhere. Reinhard and Ware (1989) examined the substrate adaptation of 

Phemeranthus species from the Interior Highlands region. They grew seeds and plants 

from multiple populations of P. calycinus and P. parviflorus in soil collected from their 

native outcrops and from outcrops of different geological types under controlled 

conditions. Sunbright accessions from sandstone outcrops grew well on either shale or 

sandstone soils but poorly on soils from calcareous outcrops, showing abnormal 

pigmentation, poor growth, and high mortality. Similarly, mortality of P. parviflorus 

seedlings was high on limestone soils but low on sandstone. In contrast, P. calycinus 

occasionally occurs on calcareous outcrops, and accessions from limestone outperformed 

those from other substrates when grown on calcareous soils under controlled conditions 

(Reinhard and Ware 1989). These results indicate some degree of substrate specificity 

and the possibility of local edaphic adaptation in sunbright and its relatives. 
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Clinal variation and phenotypic plasticity 

 Temporal environmental variation (e.g., seasonal patterns of temperature and 

precipitation) and the predictability of environmental change are important determinants 

of population dynamics and community structure (Angert et al. 2010). Natural selection 

can lead to differential local adaptation along environmental clines. Phenological 

variation along latitudinal clines has been observed in many species and communities 

(e.g., McMillan 1957, 1965, 1967, 1973). Individual plants can respond to environmental 

variation and change through adaptive phenotypic plasticity, which can be viewed as 

“habitat-selecting behavior” (Donohue 2003). By responding differently to varying 

environmental cues, plants can modify the environment they experience, a process known 

as niche construction (Donohue 2005; Donohue et al. 2005a, 2005d). Thus, the same 

genotype may be able to achieve similar fitness in different geographical locations and 

under differing seasonal conditions. However, mismatches between the environmental 

cues to which plants respond and actual environmental conditions can lead to 

reproductive failure. Such mismatches may increase with climate change. 

 

Seed germination, a critical life-history stage 

 Seed germination and seedling establishment are important filters in community 

assembly, contributing to the association between environmental conditions and species’ 

functional traits by determining which genotypes can persist (Ackerly 2003). Because the 

timing of germination determines the environmental conditions that a plant will 

encounter as it begins its growth and establishment, this phenological trait is likely to be 

under strong natural selection (Donohue et al. 2005c; Bentsink et al. 2010). Germination 
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timing also affects adult life-history traits and natural selection thereon (Donohue 2002; 

Donohue et al. 2005d). Various seed-dormancy mechanisms have evolved to help assure 

appropriate matching between environmental conditions during growth and species’ 

functional traits. 

 Seed germination requirements vary among natural populations of many plant 

species (e.g., Schmitt et al. 1992; Donohue et al. 2005c; Veatch-Blohm and Koutavas 

2011). This variation is best known in Arabidopsis thaliana, whose ecotypes differ in 

cold-stratification and other requirements for germination. In a field experiment with 

Arabidopsis ecotypes, Donohue and colleagues found that natural selection on 

germination timing is highly efficient in determining the persistence or failure of different 

genotypes at some locations (Donohue et al. 2005d; Donohue et al. 2005b). However, the 

efficiency of this selection varies with geography and with other life-history traits. Some 

environments might favor a “bet-hedging” strategy with variable germination 

requirements so as to promote germination at different times, while other environments 

might not. The rate at which germination timing and other phenological cuing can evolve 

in natural populations may affect the rate of range expansion (Donohue et al. 2005c) and 

thus species’ ability to respond to climate change. 

 

Genes associated with regulation of germination 

 The genetic basis of seed dormancy has been studied most extensively in 

Arabidopsis, where several interacting additive genetic and molecular pathways are 

apparently involved in controlling seed dormancy (Bentsink et al. 2010). Phytochromes 

mediate the responses of germination to multiple seasonal cues, including cold 
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stratification, both during seed maturation and after dispersal (Donohue et al. 2007; 

Donohue et al. 2008; Heschel et al. 2008). A major flowering-time gene, FLC (Flowering 

Locus C), also regulates seed germination in Arabidopsis (Chiang et al. 2009). This gene 

regulates flowering responses to seasonal environmental factors and also natural variation 

in temperature-dependent germination. The resulting pleiotropy between seed 

germination and flowering time may be important in adaptive evolution. Additional genes 

in the flowering pathway, the abscissic acid catabolic pathway, and the giberrellin 

biosynthesis pathway are also involved, and the effect is largely maternally controlled 

(Chiang et al. 2009). 

 

Seed germination requirements in Phemeranthus 

 Seed germination requirements have been studied in P. mengesii, P. teretifolius, 

and P. calcaricus (S. Ware) Kiger, three species that are closely related to P. parviflorus 

(Ware and Quarterman 1969; Ware and Pinion 1990). The germination requirements of 

these species appear to be selectively advantageous in their native glade and rock-outcrop 

habitats. In laboratory experiments, freshly harvested seeds failed to germinate under any 

tested conditions, suggesting that the seeds possess physiological dormancy. In P. 

calcaricus, moist cold treatment, light, and alternating temperatures were required for 

effective germination, and after-ripening (dry storage) increased germination rates but did 

not affect the need for moist cold treatment. Seeds of P. mengesii also required cold 

treatment and light for germination but were not affected by alternating vs. constant 

temperatures during the germination period (Ware and Quarterman 1969). Phemeranthus 

calcaricus required a shorter duration of cold treatment than P. mengesii, but for both 
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species, just six weeks of moist cold treatment resulted in 90% or higher germination 

rates (Ware and Quarterman 1969; Ware and Pinion 1990). Six weeks of chilling were 

also sufficient for three populations of P. teretifolius from Georgia and Virginia, but eight 

weeks of cold treatment were necessary to achieve a similarly high germination rate in a 

northern Maryland population of P. teretifolius (Ware and Pinion 1990). All species 

germinated poorly in the dark; however, the requirement for light was less critical if the 

seeds had been aged in P. mengesii. A brief exposure to light did not trigger germination, 

but an eight-hour photoperiod was sufficient; thus, photoperiod does not control 

germination in the field (day length is never less than eight hours at the latitudes where 

these species are found) (Ware and Quarterman 1969). 

 In these Phemeranthus species, it takes about 20 days for seeds to mature 

following flower opening (Ware and Quarterman 1969). The plants flower from May to 

September, so they produce seeds continuously throughout the summer. The seeds then 

germinate the following spring, from late March to early May. Germination during the 

summer would likely result in seedling death due to desiccation, while seedlings 

germinating in the fall would be challenged by competition from abundant winter 

annuals, and Phemeranthus is a poor competitor (Ware and Quarterman 1969; Ware 

1991). Growing Phemeranthus is also damaged by cold temperatures. Thus, spring is the 

best time for their germination, after the winter annuals have completed their life cycles 

and before temperatures become too hot and water too scarce for seedling establishment. 

The requirement for moist cold treatment ensures that seeds do not germinate in the fall 

and may limit the southward extent of the species, although winter conditions were 

sufficient to promote germination at a location 300 miles south of the southernmost 
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populations of P. calcaricus (Ware 1968; Ware and Quarterman 1969). If only six to 

eight weeks of chilling are needed, then the requirement will generally be met well before 

spring arrives, and seed dormancy must subsequently be enforced by continuing cold. 

 

Materials and Methods 

Seed sources 

 Seed germination requirements and phenological traits were examined in twelve 

populations from across the broad latitudinal range of this species, including the outlying 

Alabama population formerly known as Talinum appalachianum. The southernmost 

population was located in the Edwards Plateau region of Texas, while the northernmost 

was in southeastern South Dakota (Table 1). Seeds were collected from natural 

populations during multiple field trips in 2005–2009. The primary purpose of these 

collections was to obtain plant tissue for DNA extraction; seeds were gathered so that 

plants could be raised in the greenhouse for morphological observation and to provide 

fresh tissue for DNA extraction as necessary. Thus, the number of maternal plants varied 

among populations and was not recorded. The seed germination experiment was designed 

later to use the existing resource of the seed collections. In a second experiment, seeds 

collected from plants grown in the greenhouse under common conditions were used.  

 



    

  117

TABLE 3.1. Localities of Phemeranthus parviflorus populations used as seed sources  

Pop. 
# 

Locality Latitude Longitude Year* Day* Winter 
length† 

1 Llano Co., TX 30.5 -98.8 2007 138 127 d 
2 Coosa Co., AL 32.8 -86.4 2006 191 134 d 
3 Johnston Co., OK 34.3 -96.4 2009 164 144 d 
4 Cleveland Co., OK 35.2 -97.3 2009 162 159 d 
5 Delaware Co., OK 36.2 -94.7 2009 161 157 d 
6 Chautauqua Co., KS 37.0 -96.0 2008 204 169 d 
7 Chautauqua Co., KS 37.2 -96.1 2008 204 169 d 
8 Washington Co., MO 37.9 -91.0 2005 230 195 d 
9 Reno Co., KS 37.9 -98.2 2008 203 171 d 
10 St. Clair Co., MO 38.1 -93.7 2008 198 183 d 
11 Ellsworth Co., KS 38.7 -98.0 2008 202 188 d 
12 Minnehaha Co., SD 43.8 -96.7 2009 267 217 d 
* Year and Day indicate the ordinal date when the seed was collected in the field. 
†Winter length is the number of days between the average first date of frost in the fall 
and the average last date of frost in the spring. 
 
 

Chilling treatments & greenhouse germination 

 In the first experiment, using field-collected seeds, seeds from each population 

were subjected to seven durations of moist chilling: zero, two, four, six, eight, ten, and 

twelve weeks. In the second experiment, using greenhouse-grown seeds, the ten-week 

treatment was eliminated and a sixteen-week treatment was added. For each chilling 

treatment, a 36-cell planting tray was prepared. The cells were filled with a mixture of 

three parts Turface®, one part sand, and one part standard commercial potting soil, which 

was covered with a 1/8-inch layer of fine-grained seedling mix potting soil. The trays 

were then thoroughly wetted and allowed to drain before the seeds were scattered on the 

surface of the planting medium. Each tray was divided into three 12-cell sections, and 

each population was randomly assigned to one cell within each section (three cells per 

tray). Cell assignment was fully randomized across each section and tray. Due to the 
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limited number of field-collected seeds available, 10 seeds were planted in each cell for a 

total of 30 seeds per population per treatment in the first experiment. In the second 

experiment, 50 greenhouse-grown seeds were planted in each cell for a total of 150 seeds 

per population per treatment. 

 Prepared trays were placed in a cold room at 4ºC for chilling. In the first 

experiment, all trays were prepared at the same time, and each tray was sequentially 

brought into the greenhouse for germination after its designated chilling time had 

elapsed. In the second experiment, trays were prepared and placed in the cold room on a 

staggered timetable so that they were all brought into the greenhouse for germination at 

the same time. 

 In the greenhouse, all seeds encountered controlled conditions of 65% relative 

humidity, a 10/14-hour day/night schedule with alternating day and night temperatures of 

25ºC and 18.3ºC, and 750 µmol light during the day. The trays were kept covered with 

clear plastic and the soil was kept moist by daily misting for two weeks, when 

germination was mostly complete. After two weeks, the covers were removed, and the 

soil was allowed to dry between watering as the plants grew. The trays were rotated daily 

to minimize any differences in conditions across positions on the greenhouse bench. The 

number of seedlings in each cell was recorded daily, and the plants were maintained for 

several months to observe their reproductive phenology. In the second experiment, 

seedlings in each cell were thinned to 10 after four weeks to reduce crowding.  
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Statistical analyses 

 Two response variables were considered: the probability of germination and the 

number of days to germination (from the time the trays were brought into the 

greenhouse). From the daily seedling counts, the final germination percentages and 

average days to germination were determined for each population in each treatment. 

Overall values were also calculated for each population across all treatments and for each 

treatment across populations. 

 Natural cubic spline functions were used to evaluate the response of seed 

germination to chilling duration. This method is an effective way to deal with data that 

show substantial non-linearities. First, the results for germination probability at a given 

latitude were compared between the first and second experiments. Because the two 

experiments appeared to differ (see Results), they were analyzed separately. 

 Each experiment was analyzed in terms of seed germination probability using a 

natural cubic spline with three degrees of freedom. The curves for each population were 

compared and p-values calculated to evaluate how the effect of chilling duration on 

germination probability changes with latitude. The same procedure was followed to 

evaluate the effect of chilling duration on the number of days to germination.  

 

Results 

 In the first experiment, 1,105 seeds germinated out of a total of 2,520, for an 

overall germination percentage of 43.8%. The average number of days to germination 

was 7.94. In the second experiment, 7,878 seeds germinated out of a total of 12,600, for 



    

  120

an overall germination percentage of 62.5%. The average number of days to germination 

was 6.68. Tables 3.2 and 3.3 show the germination percentages and average number of 

days to germination for each population across all treatments and for each treatment 

across all populations, respectively, in each experiment. Tables 3.4 and 3.5 show the 

germination percentages and average number of days to germination for each population 

in each treatment in the first and second experiments, respectively. 

 The germination percentage curves for most populations were significantly 

different between the first and second experiments (Table 3.6). Only for the three 

southernmost populations was the difference between experiments non-significant 

(populations 2 and 3) or marginally significant (population 1). However, the curves for 

days to germination did not differ between experiments (Table 3.6). 

 In the first experiment, the curves relating germination probability to chilling time 

clearly differed among populations from different latitudes (Fig. 3.2). Pairwise p-values 

comparing the curves for each population (Table 3.7, top) indicate significant differences 

among most populations. However, some populations have statistically indistinguishable 

curves. For example, the p-value comparing population 2 (Coosa Co., AL) to population 

3 (Johnston Co., OK) is 0.194, suggesting that the two populations have the same curve. 

Populations 6, 7, and 11 might also exhibit a common response. Visual inspection shows 

that the corresponding germination probability curves for the second experiment (Fig. 

3.3) are quite different from those of the first experiment. Here, populations 3 and 12 

have similar curves (p-value = 0.48) (Table 3.7, bottom). 



    

  121

TABLE 3.2. Germination percentages and average number of days to germination 
for each population across all treatments 

 
 Experiment 1 Experiment 2 

Pop. 
No. / %Germ. 

(n=210) Days to Germ. 
No. / %Germ. 

(n=1050) Days to Germ. 

1 174 / 82.9% 5.9 793 / 75.5% 5.9 
2 141 / 67.1% 6.2 737 / 70.2% 6.0 
3 147 / 70.0% 9.2 661 / 63.0% 6.7 
4 110 / 52.4% 8.4 679 / 64.7% 6.5 
5 131 / 62.4% 7.3 759 / 72.3% 8.2 
6 72 / 34.3% 8.8 538 / 51.2% 7.0 
7 72 / 34.3% 9.4 576 / 54.9% 7.2 
8 47 / 22.4% 11.8 709 / 67.5% 6.8 
9 38 / 18.1% 8.1 394 / 37.5% 7.1 
10 101 / 48.1% 8.4 604 / 57.5% 6.8 
11 72 / 34.3% 8.5 782 / 74.5% 6.0 
12 0 / 0.0% N/A 646 / 61.5% 6.6 

 

 

 

TABLE 3.3. Germination percentages and average number of days to germination 
for each treatment across all populations 

 
 Experiment 1 Experiment 2 

Chilling 
Treatment 

%Germ. 
(n=360) 

Days to 
Germ. 

%Germ. 
(n=1800) 

Days to 
Germ. 

0 weeks 26 / 7.2% 10.2 150 / 8.3% 14.3 
2 weeks 99 / 27.5% 6.4 598 / 33.2% 9.3 
4 weeks 129 / 35.8% 7.8 1178 / 65.4% 7.1 
6 weeks 168 / 46.7% 10.5 1464 / 81.3% 5.7 
8 weeks 208 / 57.8% 6.8 1448 / 80.4% 5.8 
10 weeks 254 / 70.6% 6.7 N/A N/A 
12 weeks 221 / 61.4% 9.0 1516 / 84.2% 6.1 
16 weeks N/A N/A 1524 / 84.7% 6.9 
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TABLE 3.4. Germination percentages and average number of days to germination 
for each population in each treatment in the first experiment 

 
Chilling 

Treatment 0 weeks 2 weeks 4 weeks 6 weeks 8 weeks 
10 

weeks 
12 

weeks 

Pop. 
number germinated (out of 30) / germination percentage 

average days to germination 

1 
12 / 40.0 29 / 96.7 25 / 83.3 26 / 86.7 26 / 86.7 29 / 96.7 27 / 90.0 

7.7 4.7 5.2 11.2 5.2 3.5 5.4 

2 
4 / 13.3 16 / 53.3 22 / 73.3 22 / 73.3 25 / 83.3 27 / 90.0 25 / 83.3 

13.8 6.9 6.3 8.8 5.1 5.2 4.5 

3 
0 / 0.0 16 / 53.3 24 / 80.0 25 / 83.3 29 / 96.7 27 / 90.0 26 / 86.7 
N/A 9.4 9.0 9.9 7.7 7.2 12.3 

4 
0 / 0.0 5 / 16.7 16 / 53.3 18 / 60.0 22 / 73.3 27 / 90.0 22 / 73.3 
N/A 7.6 7.9 10.7 6.3 7.9 9.6 

5 10 / 33.3 26 / 86.7 20 / 66.7 22 / 73.3 21 / 70.0 17 / 56.7 15 / 50.0 
11.7 5.8 8.4 8.0 6.0 5.4 8.9 

6 0 / 0.0 1 / 3.3 2 / 6.7 12 / 40.0 13 / 43.3 24 / 80.0 20 / 66.7 
N/A 5.0 7.0 9.2 6.5 8.1 11.3 

7 0 / 0.0 0 / 0.0 3 / 10.0 10 / 33.3 14 / 46.7 25 / 83.3 20 / 66.7 
N/A N/A 17.7 16.3 7.3 4.5 12.2 

8 0 / 0.0 1 / 3.3 8 / 26.7 10 / 33.3 10 / 33.3 9 / 30.0 9 / 30.0 
N/A 6.0 12.1 13.9 10.2 8.2 15.3 

9 0 / 0.0 0 / 0.0 0 / 0.0 0 / 0.0 2 / 6.7 18 / 60.0 18 / 60.0 
N/A N/A N/A N/A 16.5 8.1 7.2 

10 0 / 0.0 5 / 16.7 3 / 10.0 16 / 53.3 26 / 86.7 26 / 86.7 25 / 83.3 
N/A 7.6 7.0 10.7 8.1 8.7 7.2 

11 0 / 0.0 0 / 0.0 6 / 20.0 7 / 23.3 20 / 66.7 25 / 83.3 14 / 46.7 
N/A N/A 8.2 11.1 6.8 8.0 10.7 

12 0 / 0.0 0 / 0.0 0 / 0.0 0 / 0.0 0 / 0.0 0 / 0.0 0 / 0.0 
N/A N/A N/A N/A N/A N/A N/A 
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TABLE 3.5. Germination percentages and average number of days to germination 
for each population in each treatment in the second experiment 

 
Chilling 

Treatment 0 weeks 2 weeks 4 weeks 6 weeks 8 weeks 
12 

weeks 
16 

weeks 

Pop. 
number germinated (out of 150) / germination percentage 

average days to germination 

1 
37 / 24.7 113 / 75.3 131 / 87.3 128 / 85.3 130 / 86.7 126 / 84.0 128 / 85.3 

8.9 6.5 5.8 4.8 5.5 5.3 6.5 

2 
20 / 13.3 94 / 62.7 125 / 83.3 130 / 86.7 110 / 73.3 127 / 84.7 131 / 87.3 

15.1 10.0 5.1 4.2 4.3 5.3 6.3 

3 
1 / 0.7 55 / 36.7 97 / 64.7 119 / 79.3 124 / 82.7 140 / 93.3 125 / 83.3 
14.0 11.7 8.0 5.7 5.8 5.4 6.7 

4 
0 / 0.0 18 / 12.0 131 / 87.3 141 / 94.0 143 / 95.3 124 / 82.7 122 / 81.3 
N/A 7.1 6.7 6.3 6.6 6.5 6.2 

5 72 / 48.0 101 / 67.3 108 / 72.0 114 / 76.0 108 / 72.0 133 / 88.7 123 / 82.0 
16.2 10.6 7.9 6.8 6.0 6.9 6.4 

6 0 / 0.0 13 / 8.7 71 / 47.3 107 / 71.3 109 / 72.7 114 / 76.0 124 / 82.7 
N/A 10.8 8.5 6.2 5.7 6.9 7.8 

7 0 / 0.0 21 / 14.0 74 / 49.3 111 / 74.0 117 / 78.0 134 / 89.3 119 / 79.3 
N/A 9.5 9.7 5.8 6.7 6.9 7.1 

8 0 / 0.0 47 / 31.3 131 / 87.3 143 / 95.3 138 / 92.0 126 / 84.0 124 / 82.7 
N/A 9.8 6.2 5.5 5.5 5.4 10.5 

9 0 / 0.0 0 / 0.0 7 / 4.7 71 / 47.3 66 / 44.0 112 / 74.7 138 / 92.0 
N/A N/A 11.4 7.8 8.0 6.4 6.6 

10 0 / 0.0 8 / 5.3 71 / 47.3 136 / 90.7 135 / 90.0 129 / 86.0 125 / 83.3 
N/A 9.3 9.0 6.9 5.8 6.2 6.7 

11 11 / 7.3 79 / 52.7 139 / 92.7 148 / 98.7 148 / 98.7 118 / 78.7 139 / 92.7 
17.1 8.5 6.1 4.7 4.7 5.8 6.3 

12 9 / 6.0 49 / 32.7 93 / 62.0 116 / 77.3 120 / 80.0 133 / 88.7 126 / 84.0 
17.1 10.5 7.6 5.4 5.7 6.0 5.9 

 
 
 
 

TABLE 3.6. p-values comparing the germination percentage (%Germ.) and number 
of days to germination (Days to Germ.) curves for each population between the first 

and second experiments 
 

Pop. %Germ. Days to Germ.  Pop. %Germ. Days to Germ. 
1 0.042 1.000  7 0.000 1.000 
2 0.335 1.000  8 0.000 1.000 
3 0.072 1.000  9 0.000 1.000 
4 0.000 1.000  10 0.000 1.000 
5 0.000 1.000  11 0.000 1.000 
6 0.000 1.000  12 0.000 no data 
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FIGURE 3.2. Natural cubic spline curves for germination probability versus chilling 
duration in the first experiment. Populations are designated by their latitude and 
longitude above each plot and are arranged from south to north from top left to bottom 
right. 
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FIGURE 3.3. Natural cubic spline curves for germination probability versus chilling 
duration in the second experiment. Populations are designated by their latitude and 
longitude above each plot and are arranged from south to north from top left to bottom 
right. 
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TABLE 3.7. p-values comparing the germination percentage curves in each 
population for the first experiment (above the diagonal) and the second experiment 

(below the diagonal). 
 

Pop. 1 2 3 4 5 6 7 8 9 10 11 12 
1 1 0 0 0 0 0 0 0 0 0 0 0 

2 0.004 1 0.194 0.001 0 0 0 0 0 0 0 0 

3 0 0 1 0 0 0 0 0 0 0 0 0 

4 0 0 0 1 0 0 0 0 0 0.025 0 0 

5 0 0 0 0 1 0 0 0 0 0 0 0 

6 0 0 0 0 0 1 0.98 0 0 0.003 0.505 0 

7 0 0 0 0 0 0.037 1 0 0 0.002 0.437 0 

8 0 0 0 0 0 0 0 1 0 0 0 0 

9 0 0 0 0 0 0 0 0 1 0 0 0 

10 0 0 0 0 0 0 0 0 0 1 0.003 0 

11 0 0 0 0 0 0 0 0 0 0 1 0 

12 0 0 0.485 0 0 0 0 0 0 0 0 1 
 

 For the number of days to germination, the p-values comparing the curves for 

each population in the first and second experiment indicate no difference between the two 

experiments (Table 3.6). Figures 3.4 and 3.5 show the response curves for days to 

germination in the first and second experiments, respectively. Most of these curves are 

flat or nearly so, suggesting that chilling duration does not have much effect on days to 

germination. For both experiments, the pairwise p-values comparing the curves across 

populations are all 1.0 (not shown), suggesting that latitude does not affect days to 

germination.   
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FIGURE 3.4. Natural cubic spline curves for days to germination versus chilling 
duration in the first experiment. Populations are designated by their latitude and 
longitude above each plot and are arranged from south to north from top left to bottom 
right. 
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FIGURE 3.5. Natural cubic spline curves for days to germination versus chilling 
duration in the second experiment. Populations are designated by their latitude and 
longitude above each plot and are arranged from south to north from top left to bottom 
right. 
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Discussion 

 In the first experiment, using field-collected seeds, all populations germinated 

best with at least some chilling. However, the effect of chilling duration on germination 

probability varied strongly with latitude. Seeds from the southernmost populations (1, 2, 

and 5) were capable of germinating with no chilling and reached their peak germination 

rates at shorter durations of chilling (4–6 weeks). Seeds from the northernmost 

populations failed to germinate with no or brief chilling and required longer chilling 

periods (8–12 weeks) to achieve high germination rates. The duration of the experiment 

was apparently insufficient to break dormancy in the northernmost population. 

Separately, large numbers of seedlings appeared in the pots alongside adult plants from 

the northernmost population that had been potted up with some of their own soil and 

chilled for several months. 

 In the second experiment, using greenhouse-grown seeds, most populations again 

required at least some chilling to germinate. Populations 1, 2, and 5 were capable of 

germinating with no chilling. However, populations from all latitudes, even the 

northernmost, reached their peak germination rates (80-90% for most populations) at four 

to six weeks of chilling. Only in population 9 did germination continue to increase 

substantially with increasing chilling duration. 

 Chilling time had no apparent effect on days to germination for any latitude in 

either experiment. Thus, moist chilling helps to break seed dormancy but does not affect 

the speed of germination, and whatever differences existed between the first and second 

experiments also affected whether seeds germinated but not how long it took. 
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 Cold stratification of the seeds appeared to affect the adult life history of the 

plants, and this effect varied with latitude. Seeds from the southernmost population could 

germinate without chilling, and the resulting plants flowered abundantly in their first 

season of growth. Seeds from populations 2 and 5 could also germinate without chilling, 

but the resulting plants remained vegetative and did not flower before entering dormancy 

a few months later. All of these plants did flower after they had been placed in the cold 

room for four months, then returned to the greenhouse for a second season of growth. 

 The latitudinal pattern in the response of seed germination to chilling duration 

suggests the presence of local adaptation in P. parviflorus. The average length of winter 

generally increases with increasing latitude (Table 3.1). For the northernmost 

populations, seed dormancy may be critical to fitness because any seed that germinated 

prematurely would likely be killed by frost. For the southernmost population, where the 

growing season is long and winters are relatively mild, seed dormancy may be less 

critical because seeds that germinate in the fall may be able to establish themselves and 

survive the winter. 

 However, several confounding variables are present in the first experiment, 

making its interpretation more complex. First, the seeds were collected over several years 

(2005–2009); some populations were represented by much older seed than others (Table 

3.1). If seed viability declines with extended storage, then populations that were collected 

earlier would show lower overall germination and possibly different response curves. 

Indeed, the population collected in 2005, population 8, had the lowest germination 

percentage at 10 and 12 weeks and the lowest peak germination percentage (other than 

population 12, which did not germinate at all in the first experiment) (Table 3.4). 
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Nevertheless, population 1, which was collected in 2007, had the highest germination rate 

at 10 and 12 weeks and overall; and population 2, which was collected in 2006, was also 

among the highest germinating populations. 

 The ordinal date (i.e., time of year) when the seeds were collected may be even 

more important as a confounding variable. Seasonal environmental variation during seed 

formation could influence their dormancy requirements through maternal effects, which 

may vary over a long reproductive period. Because P. parviflorus can produce seed over 

several months, such effects are likely to differ in seeds collected early in the growing 

season versus seeds collected late in the growing season. Unfortunately, by coincidence, 

the southernmost populations were collected relatively early in the year, while the 

northernmost were collected relatively late in the year (Table 3.1). By the time the seeds 

were collected from population 12, in South Dakota, the mature plants in the population 

had already begun to enter dormancy. Thus, the possible effect of ordinal date of 

collection is anti-conservative with respect to the hypothesis that the required duration of 

chilling increases with latitude due to local adaptation. The southernmost population 

happened to be collected early in the season, when dormancy might not be essential 

because seeds germinating immediately might still have time to establish themselves that 

summer and survive to reproduce. The northernmost happened to be collected very late in 

the season, when any seeds that germinated immediately would definitely not survive, so 

the seeds must be kept from germinating until the next spring. Therefore, if maternal 

effects were present, they would enhance the latitudinal pattern or possibly even generate 

a false pattern.  
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 The purpose of the second experiment was to minimize maternal effects present in 

field-collected seeds by using seeds grown under common, controlled conditions. The 

fact that the germination probability curves in this experiment differed strongly from 

those in the first experiment and that the latitudinal pattern mostly disappeared suggest 

that the observed effects were, indeed, due to maternal effects linked to seasonal 

environmental conditions during seed germination. Though field-collected seeds from 

population 12 did not germinate at all, greenhouse-grown seeds germinated at high rates 

after 8–16 weeks of chilling, and a few even germinated without chilling (Table 3.5). 

 Maternal effects have been defined as “the causal influence of the maternal 

genotype or phenotype on the offspring phenotype” (Wolf and Wade 2009). Significant 

maternal effects on seed germination have been reported for several plant species, 

including members of Primulaceae, Boraginaceae, Asteraceae, Lamiaceae, and 

Plantaginaceae  (Schmitt et al. 1992; Bischoff and Müller-Schärer 2010; Kagaya et al. 

2010). Ecotypic variation in germination timing is largely maternally controlled in 

Arabidopsis thaliana (Munir et al. 2001; Boyd et al. 2007). Maternal effects on 

germination can have major consequences for life-history traits, generation time and 

population growth rates, natural selection on germination, the expression of genetic 

variation for germination traits, and the very genes involved in regulating germination 

(Donohue 2009). Maternal environmental effects can be an important part of population 

differentiation and may be adaptive; in restoration or re-vegetation plantings, they may 

strongly affect seedling recruitment and the success of population establishment at the 

target site (Bischoff and Müller-Schärer 2010). 
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 Although suggestive, the results of this study are preliminary and not conclusive. 

They raise several intriguing questions for further study. The nature and role of maternal 

effects on seed germination in P. parviflorus are particularly interesting. To better 

understand these effects, seeds could be collected from each population at designated 

times across the growing season. The response of seed germination to chilling duration 

could then be compared among seeds produced at different points in the growing season 

and seeds raised under common greenhouse conditions. Common-garden growth 

experiments at northern, middle, and southern latitudes (or in growth chambers 

programmed to mimic corresponding environmental conditions) would also be instructive 

in evaluating the adaptive role of maternal effects. For example, would plants from Texas 

produce seeds with a long chilling requirement in the late-season South Dakota 

environment, or do they lack the ability to enforce such dormancy? 

 Further studies should add populations to fill the latitudinal gaps between the 

southernmost and northernmost extremes and the remaining populations. Genetic surveys 

using highly variable markers, such as AFLPs or microsatellites, would help to determine 

whether population differentiation in seed germination requirements is linked to 

population genetic differentiation. Populations linked by gene flow would be expected to 

show similar response patterns. Genetic variation in genes linked to seed germination 

timing, such as the phytochrome gene family, may be linked to the observed latitudinal 

variation. 

 As a highly selfing species, P. parviflorus exhibits little genetic variation within 

populations. Its co-distributed congener P. calycinus is mostly outcrossing, while P. 

rugospermus is intermediate. Both of these species also have wide latitudinal ranges, 
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especially P. rugospermus, which has disjunct populations ranging from east Texas to 

central Wisconsin. Do P. calycinus and P. rugospermus exhibit patterns of local 

adaptation and/or maternal effects in seed germination response to chilling duration 

similar to those seen in P. parviflorus? How does the variation in breeding system affect 

the distribution of within- and between-population variation in these traits? 

 Many other phenological traits in addition to seed germination can exhibit local 

adaptation to latitudinal variation in environmental conditions and environmentally 

induced maternal effects. Further studies could examine such life-history traits as the 

timing of flowering and fruiting, the duration of the growth period, and the onset of 

vegetative growth following winter dormancy. Tolerance of extreme cold and heat and 

light requirements for germination and flowering would also be of interest. 

 Finally, as observed by Ware and Quarterman (1969), the duration of cold 

treatment required for seed germination is far shorter than the length of winter, even at 

the southernmost site. Llano County, Texas, the location of population 1 in the present 

study, experiences only 127 days between the average first and last frost dates. Yet, just 

twelve weeks (84 days) of chilling was more than enough to promote maximum 

germination in all but the northernmost population. How is dormancy enforced after the 

chilling requirement is met? Presumably, light and temperature are involved, but specific 

requirements may vary among populations and may have adaptive significance.  
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APPENDIX 1. VOUCHER INFORMATION  

Localities, collection vouchers (with herbarium abbreviations), and sequences obtained (ndhF, matK, PepC, PhyB1, PhyB2, PhyC) for 

plant materials used in this study. Voucher information for sequences downloaded from GenBank and for certain other DNA and 

tissue samples can be found in the following references: (1) Applequist & Wallace, 2001 (ndhF); (2) Applequist et al., 2006 (ndhF–

Hectorella); (3) Cuenoud et al., 2002 (matK); (4) Nyffeler, 2002 (matK); (5) Nyffeler, 2007 (ndhF, matK); and (6) Ogburn and 

Edwards, 2009 (tissue samples). Following Phemeranthus, genera and species within genera are arranged alphabetically. Missing 

sequences are denoted by —. For nuclear markers, numbers represent clones sequenced / putative alleles detected. D = direct sequence 

(not cloned); n.d. = not detected; cult. SRPN = live plants in cultivation obtained from Siskiyou Rare Plants Nursery, Talent, OR; cult. 

MG = live plants in cultivation grown from seed obtained from Mesa Garden, Belen, NM. 

 

Family Genus species Locality or source Voucher ndhF matK PepC PhyB1 PhyB2 PhyC 

Montiaceae Phemeranthus brevicaulis 
USA: New 
Mexico: 
Bernalillo Co. 

Chilili (originally D.J. 
Ferguson s.n.; cult. 
MG, grown at 
Washington Univ.) 

T.M. Price 
s.n. (MO) D D 5 / 1 2 / 2? n.d. D 

   
USA: New 
Mexico: Sierra 
Co. 

Quartzite Ridge SW 
of Lake Valley 

T.M. Price 
250 (MO) D D 2 / 1 3 / 1 n.d. D 

   
USA: New 
Mexico: 
Torrance Co. 

1.5 mi. NW of jct. 
US-54 and NM-42 at 
Corona 

T.M. Price 
319 (MO) D D 1 / 1 7 / 2? 1 / 1 8 / 2 

   
USA: Texas: El 
Paso Co. 

Franklin Mts. State 
Park, ridge along 
Smugglers' Pass trail 

T.M. Price 
315 (MO) D D 2 / 2? — — D 
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below Mammoth's 
Trunk 

  brevifolius 
USA: Arizona: 
Navajo Co. 

5 mi. N of Woodruff, 
6.5 mi. SE of 
Holbrook, along Old 
Woodruff road 

T.M. Price 
253 (MO) D D D 2 / 2? n.d. 5 / 2 

   
USA: Utah: 
Garfield Co. 

Grand Staircase-
Escalante National 
Monument, S of Burr 
Trail and W of Deer 
Creek, SE of Boulder 

T.M. Price 
293 (MO) D D D 3 / 2? n.d. 12 / 2 

   
USA: Utah: 
San Juan Co. 

E side of S end Comb 
Reef ca. 6.5 mi. WSW 
of Bluff along US-163 

T.M. Price 
297 (MO) D 

 
D 
 

8 / 2 6 / 2? n.d. 7 / 2 

   
USA: cult. 
SRPN 

Cultivated plant 
obtained from 
Siskiyou Rare Plants 
Nursery, Talent, OR 

T.M. Price 
s.n. (MO) D D 4 / 1 7 / 1 n.d. D 

  calcaricus 
USA: 
Tennessee: 
Davidson Co. 

Couchville Cedar 
Glade Natural Area 

T.M. Price 
228 (MO) D D 8 / 2 1 / 1 n.d. 12 / 2 

   
USA: 
Alabama: 
Franklin Co. 

Roadside E of Waco 
and W of CR-83 on 
AL-724 

T.M. Price 
239 (MO) D D 

11 / 
2 

6 / 2? 1 / 1 4 / 2 

  calycinus 
USA: Missouri: 
Dade Co. 

Bona Glade Natural 
Area 

T.M. Price 
269 (MO) D D 9 / 2 2 / 2? 1 / 1 — 

   
USA: Missouri: 
Montgomery 
Co. 

Danville Conservation 
Area 

T.M. Price 
220 (MO) D D 7 / 2 1 / 1 n.d. — 

   
USA: Missouri: 
St. Clair Co. 

Dave Rock Natural 
Area 

T.M. Price 
256 (MO) D D 8 / 2 — — 3 / 2 

   
USA: Missouri: 
Washington 
Co. 

Hughes Mountain 
Natural Area 

T.M. Price 
202 (MO) D D 8 / 2 4 / 2? 2 / 1 7 / 2 

   
USA: 
Arkansas: Izard 
Co. 

Along Hwy. 9 near 
Brandenburg 

T.M. Price 
285 (MO) ? ? D 1 / 1 1 / 1 4 / 2 

   
USA: 
Arkansas: Izard 
Co. 

Bluffs above White 
River, S side Calico 
Rock 

T.M. Price 
286 (MO) D D D — — D 

   
USA: Kansas: 
Lincoln Co. 

Wilson Lake State 
Park 

T.M. Price 
259 (MO) D D D 3 / 1 n.d. 4 / 2 

   
USA: Kansas: 
Ellsworth Co. 

Kanapolis State Park, 
Buffalo Tracks trail to 

T.M. Price 
260 (MO)  D D D 3 / 1 n.d. D 
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Horsethief Canyon 

  cf. calycinus 
USA: 
Arkansas: 
Conway Co. 

Petit Jean State Park, 
Turtle Rocks 

T.M. Price 
282 (MO) D D 6 / 2 4 / 2? n.d. D 

  confertiflorus 
USA: Arizona: 
Cochise Co. 

Coronado National 
Forest, just above the 
Reef waterfall 

T.M. Price 
248 (MO) D D 7 / 2 2 / 1 1 / 1 7 / 2 

   
USA: Arizona: 
Gila Co. 

Tonto National Forest, 
E side Parker Creek 
Chasm 

T.M. Price 
247 (MO) ? ? 

11 / 
2 

3 / 2 n.d. 8 / 2 

   
USA: Arizona: 
Yavapai Co. 

Kaibab National 
Forest, jct. Round 
Mtn. Bike Loop (FR-
138) with FR-105 

T.M. Price 
254 (MO) D D 8 / 2 — — 10 / 2 

   
USA: Utah: 
Wayne Co. 

Dixie National Forest, 
S of Grover on UT-12 
btw. mile marker 115 
and 114 

T.M. Price 
292 (MO) D D 8 / 3? 3 / 2? 3 / 2 2 / 2 

   
USA: Utah: 
Garfield Co. 

N side of Panguitch 
Lake E of Ipson Creek 

T.M. Price 
301 (MO) D D 

12 / 
2 

2 / 2 n.d. 5 / 2 

   
USA: New 
Mexico: 
Guadalupe Co. 

Santa Rosa Lake State 
Park, Rocky Point 
campground 

T.M. Price 
320 (MO) D D 8 / 2 6 / 2 n.d. 10 / 2 

   
USA: Texas: El 
Paso Co. 

Franklin Mountains 
State Park, trail to 
North Franklin Peak 
from Mundy's Gap 

T.M. Price 
317 (MO) D D D 5 / 2? 1 / 1 — 

  cf. confertiflorus 
USA: Arizona: 
Mohave Co. 

Arizona Strip District, 
above Hack Reservoir 
on road 109 

T.M. Price 
302 (MO) D D 3 / 1 1 / 1 n.d. 8 / 2 

   
USA: New 
Mexico: Grant 
Co. 

Gila National Forest, 
Cherry Creek area N 
of Pinos Altos 

T.M. Price 
251 (MO) D D 8 / 1 3 / 1 1 / 1 8 / 2? 

  humilis 
Mexico: 
Queretaro: 
mpio. Amealco 

km 7 de la carretera 
Amealco-San 
Ildefonso 

Ocampo 
1475 (RSA) D D 5 / 1 2 / 1 2 / 1 4 / 2 

   
USA: New 
Mexico: Grant 
Co. 

Gila National Forest, 
Cherry Creek area N 
of Pinos Altos 

T.M. Price 
252 (MO) D D D 3 / 2? 4 / 2? 5 / 1 

  longipes 
USA: Texas: El 
Paso Co. 

Franklin Mountains 
State Park, ridge on 
Smugglers' Pass Trail 
to Mammoth Peak 

T.M. Price 
314 (MO) D D D 1 / 1 n.d. — 

   USA: New Power Dam Janes- T.M. Price D D D 5 / 3? n.d. 6 / 1? 
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Mexico: 
Guadalupe Co. 

Wallace Memorial 
Park, 0.1 mi. S of 
Santa Rosa city limit 
on NM-19 

321 (MO) 

  mengesii 
USA: 
Tennessee: 
Marion Co. 

Foster Falls TVA 
recreation site, 
between Foster Falls 
and Fiery Gizzard 
Overlooks 

T.M. Price 
230 (MO) D D D 5 / 4? n.d. — 

   (1) 
DNA sample ex W. 
Applequist 

(1) AF194861 D — 3 / 1 n.d. D 

   
USA: 
Alabama: 
Blount Co. 

jct. Chandler Road 
and Graves Creek, 
south of Blountsville 

T.M. Price 
232 (MO) D D D 7 / 1 1 / 1 D 

   
USA: 
Alabama: 
Winston Co. 

Bankhead National 
Forest, along CR-63 
near Houston 

T.M. Price 
238 (MO) D D D 8 / 1 n.d. D 

   
USA: 
Alabama: 
Randolph Co. 

along AL-77 ca. 3 mi. 
W of Wadley 

T.M. Price 
235 (MO) D D D 5 / 1 n.d. D 

  multiflorus 

Mexico: 
Queretaro: 
mpio. El 
Marques 

ca. 3.5 km de La 
Laborcilla sobre el 
camino a Rancho La 
Yerbabuena 

Ocampo & 
Morales 
1484 (RSA) 

D D 4 / 1 2 / 1 3 / 1 4 / 1 

   

Mexico: 
Chihuahua: 
mpio. 
Basaseachic 

Cascada de 
Basaseachi area on 
main trail leading to 
top of falls 

D.O. Burge 
1254 
(DUKE) 

D D 6 / 1 5 / 1 1 / 1 4 / 1 

  napiformis  
leaf sample ex M. 
Ogburn 

M. Ogburn 
266 (MO) D D 5 / 1 3 / 2? 4 / 2? 5 / 2? 

  parviflorus 
USA: Illinois: 
Johnson Co. 

Shawnee National 
Forest, Trigg Tower 

T.M. Price 
266 (MO) D D D 6 / 2? n.d. D 

   
USA: Missouri: 
St. Clair Co. 

Dave Rock Natural 
Area 

T.M. Price 
255 (MO) D D 7 / 1 8 / 1 n.d. 11 / 1 

   
USA: Missouri: 
Washington 
Co. 

Mark Twain National 
Forest, Potosi Ranger 
District, Little Lost 
Creek 

T.M. Price 
217 (MO) D D 7 / 1 7 / 1 n.d. 7 / 1 

   
USA: 
Oklahoma: 
Cleveland Co. 

S side Alameda Rd. W 
of 84th Ave. NE 

T.M. Price 
277 (MO) ? ? D 2 / 1 n.d. 4 / 1 

   
USA: 
Oklahoma: 
Delaware Co. 

Flint Ridge RV Park, 
SE bank Flint Creek, 
NE side US-59 

T.M. Price 
275 (MO) ? ? 8 / 1 11 / 2 n.d. 3 / 1 
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USA: 
Oklahoma: 
Noble Co. 

E side Lake Perry, 2 
mi. S of US-77 along 
N-3180 

T.M. Price 
278  (MO) D D D 4 / 1 n.d. D 

   
USA: 
Oklahoma: 
Johnston Co. 

ca. 3.6 mi. N of 
Coleman on Hwy. 48 

T.M. Price 
280 (MO) D D 8 / 1 7 / 1 n.d. 8 / 1 

   
USA: 
Arkansas: 
Conway Co. 

Petit Jean State Park, 
CCC Overlook on Red 
Bluffs Drive 

T.M. Price 
283 (MO) D D D 7 / 1 n.d. D 

   
USA: 
Alabama: 
Coosa Co. 

Bluffs above river SE 
of Mitchell Dam and 
N of AL-22 

T.M. Price 
234 (MO) D D D 7 / 1 n.d. 1 / 1 

   
USA: South 
Dakota: 
Minnehaha Co. 

Dells of the Sioux 
Recreation Area, ca. 
0.5 mi. S of Dell 
Rapids 

T.M. Price 
264 (MO) D D 5 / 1 6 / 2? 1 / 1 2 / 1 

   
USA: South 
Dakota: 
Minnehaha Co. 

Palisades State Park, 
bluffs along Split 
Rock Creek 

T.M. Price 
333 (MO) ? ? 5 / 1 6 / 1 n.d. 4 / 1 

   
USA: Kansas: 
Chautauqua 
Co. 

5.4 air miles NE of 
Sedan at head of deep 
ravine 

T.M. Price 
267 (MO) ? ? 8 / 1 6 / 1 n.d. 1 / 1 

   
USA: Kansas: 
Chautauqua 
Co. 

Ca. 2.5 mi. SW of 
Niotaze, SW corner 
jct. Dalton Rd. and 
Road 29 

T.M. Price 
266 (MO) ? ? 8 / 1 5 / 1 n.d. 2 / 1 

   
USA: Kansas: 
Ellsworth Co. 

Kanapolis State Park, 
Buffalo Tracks trail to 
Horsethief Canyon 

T.M. Price 
261 (MO) ? ? 8 / 1 7 / 1 n.d. 5 / 1 

   
USA: Kansas: 
Reno Co. 

Arlington Cemetery, 
NE edge of Arlington 
along KS-61 

T.M. Price 
264 (MO) D D D 5 / 1 n.d. 8 / 1 

   
USA: Texas: 
Lee Co. 

Lake Somerville State 
Park, Nails Creek Div. 

T.M. Price 
304 (MO) ? ? D 6 / 1 n.d. D 

   
USA: Texas: 
Llano Co. 

Enchanted Rock State 
Natural Area 

T.M. Price 
243 (MO) D D 7 / 1 4 / 1 n.d. 6 / 1 

   
USA: Texas: 
Newton Co. 

Toledo Village, along 
Hwy. R255 

T.M. Price 
325 (MO) D D D 6 / 1 n.d. D 

  parvulus 
USA: Arizona: 
Cochise Co. 

Coronado National 
Forest, Huachuca 
Mtns., above Ramsey 
Canyon via Brown 
Canyon Trail 

T.M. Price 
249 (MO) D D 4 / 1 3 / 1 8 / 3? 7 / 2  

   cult. MG 
grown at Duke Univ. 
from seed obtained 

T.M. Price 
s.n. (MO) D D 4 / 1 2 / 2? 4 / 2? 6 / 1 
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from Mesa Garden, 
Belen, NM 

  piedmontanus 
USA: North 
Carolina: 
Granville Co. 

Butner Glade 
A. Weakley 
2010 (NCU) D D 8 / 2 — — 6 / 2 

  punae 
Argentina: 
Jujuy 

Yavi 
Múlgura 
4236 (MO) D D 8 / 2 — — 8 / 2 

  rugospermus 
USA: 
Nebraska: 
Buffalo Co. 

S side NE-2, 1.1 mi. 
W of Hall Co. line 

T.M. Price 
258 (MO) D D 4 / 1 3 / 1 4 / 2? 8 / 1 

   
USA: Kansas: 
Harvey Co. 

Sand Hills Nature 
Preserve, Harvey 
County West Park 

T.M. Price 
262 (MO) D D 8 / 2 — — — 

   
USA: Kansas: 
Reno Co. 

Sand Hills State Park, 
along Dune Trail 

T.M. Price 
263 (MO) ? ? 4 / 1 5 / 1 3 / 1 6 / 2? 

   
USA: 
Oklahoma: 
Atoka Co. 

Boehler Seeps & 
Sandhills Preserve 
(TNC) 

T.M. Price 
279 (MO) D D 4 / 1 1 / 1 3 / 1 — 

   
USA: Texas: 
Limestone Co. 

NW of Personville 
and SE of Mexia 
along Hwy. 39 

T.M. Price 
327 (MO) D D 4 / 1 3 / 2? 6 / 2? D 

   
USA: 
Wisconsin: 
Grant Co. 

Blue River Sand 
Barrens State Natural 
Area 

T.M. Price 
240 (MO) D D 4 / 1 1 / 1 6 / 2 2 / 2 

   
USA: 
Wisconsin: 
Sauk Co. 

Spring Green Preserve 
State Natural Area 

T.M. Price 
241 (MO) D D D 1 / 1 1 / 1 D 

  cf. rugospermus 
USA: Texas: 
Leon Co. 

SE corner of jct. FR-
1469 and FR-1146, 
6.1 mi. W of Newby 

T.M. Price 
328 (MO) D D D - 2 — — D 

  sediformis 
USA: 
Washington: 
Ferry Co. 

Colville National 
Forest, Republic 
Ranger District, along 
Rattlesnake Road 
FSR-5320 

T.M. Price 
271 (MO) D D D 6 / 3? n.d. 8 / 2 

   
USA: cult. 
SRPN 

Cultivated plant 
obtained from 
Siskiyou Rare Plants 
Nursery, Talent, OR 

T.M. Price 
s.n. (MO) D D 2 / 1 10 / 1 n.d. D 

  spinescens 
USA: 
Washington: 
Lincoln Co. 

3.5 road mi. SSE of 
Swanson Lake 
Wildlife Area 
entrance along Seven 
Springs Dairy Rd. 

T.M. Price 
270 (MO) D D 7 / 4? 5 / 3? n.d. 7 / 3? 
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USA: 
Washington: 
Lincoln Co. 

3.5 road mi. SSE of 
Swanson Lake 
Wildlife Area 
entrance along Seven 
Springs Dairy Rd. 

T.M. Price 
270B (MO) ? ? 8 / 3 5 / 2? 2 / 1 7 / 2 

   cult. SRPN 

Cultivated plant 
obtained from 
Siskiyou Rare Plants 
Nursery, Talent, OR 

T.M. Price 
s.n. (MO) D D 

13 / 
1 

5 / 2? n.d. D 

  teretifolius 
USA: Georgia: 
Johnson Co. 

Rock Springs Rd. 
(CR-140) 3 mi. E of 
Wrightsville 

M. Ogburn 4 
(MO) D D 

12 / 
4 

1 / 1 n.d. 9 / 2 

   
USA: North 
Carolina: Wake 
Co. 

E side Little River on 
SW side Zebulon Rd. 
(NC-96) 

T.M. Price 
272 (MO) D D 

12 / 
2 

2 / 2 1 / 1 8 / 2 

   
USA: North 
Carolina: 
Granville Co. 

Butner Glade 
A. Weakley 
2010 (NCU) D D 

13 / 
4 

3 / 3? 3 / 2 6 / 3 

  thompsonii 
USA: Utah: 
Emery Co. 

Cedar Mountain 
T.M. Price 
288 (MO) D D 5 / 2 4 / 3? n.d. 4 / 2 

  validulus 
USA: Arizona: 
Coconino Co. 

Kaibab National 
Forest, Williams 
Ranger District, S of 
jct. FR-105 and 354 

T.M. Price 
303 (MO) D D 1 / 1 4 / 2 n.d. 6 / 2 

 Calandrinia ciliata   (1) AF194835 —     
  compressa   (1) AF194836 —     
 Calyptridium umbellatum   (1) AF194840 —     
 Cistanthe grandiflora   (1, 3) AF194842 AY042568     

  guadalupensis cult. MG 

grown at Duke Univ. 
from seed obtained 
from Mesa Garden, 
Belen, NM 

T.M. Price 
s.n. (MO) D D  3 / 3 1 / 1 8 / 2 

  mucronulata   (1) AF194843 —     

 Claytonia perfoliata 
USA: 
California: 
Santa Clara Co. 

Stanford University 
Arboretum 

T.M. Price 
336 (MO) D —  #2 / 1 #n.d.  

  virginica 
USA: Missouri: 
St. Louis City 

Forest Park 
T.M. Price 
223 (MO) D D     

  virginica 
USA: North 
Carolina: 
Durham Co. 

Duke Forest 
T.M. Price 
337 (MO) D D  #5 / 4 #n.d.  

 Hectorella caespitosa   (2) DQ093963 DQ267197     
 Lewisia pygmaea USA: Utah: along ridge between T.M. Price D —  #3 / 2 #n.d. 3 / 2 
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Salt Lake Co. AF Twin Peaks 300 (MO) 
 Montia diffusa   (1) AF194848 —     
  parvifolia   (1) AF194851 —     
 Montiopsis cumingii   (1) AF194850 —     
  umbellata   (1) AF194837 —     

Talinaceae Talinum aurantiacum 
USA: Texas: 
Val Verde Co. 

5 mi. N of Juno at jct. 
TX-163 and ranch 
road 189 

T.M. Price 
307 (MO) D D     

   
USA: Texas: El 
Paso Co. 

Franklin Mountains 
State Park, trail to 
North Franklin Peak 
from Mundy's Gap 

T.M. Price 
318 (MO) D D     

   
USA: New 
Mexico: 
Guadalupe Co. 

Power Dam Janes-
Wallace Memorial 
Park, 0.1 mi. S of 
Santa Rosa city limit 
on NM-19 

T.M. Price 
322 (MO) D D     

  angustissimum  
DNA sample ex W. 
Applequist 

(1) AF194866 D     

  polygaloides   (5) DQ855867 DQ855845     
  caffrum   (1, 3) AF194859 AY042662     
  fruticosum   (5) DQ855865 DQ855844     
  portulacifolium   (5) DQ855869 DQ855847     
  paniculatum   (1) AF194830 —     

  
paniculatum (as T. 
patens) 

  (1) AF194864 —     

 Talinella pachypoda  
leaf sample ex M. 
Ogburn 

(6) D D     

Portulacaceae Portulaca bicolor   (5) DQ855870 DQ855848     
  grandiflora   (1) AF194853 —     
  molokiniensis   (1) AF194854 —     
  mundula   (1) AF194855 —     

  oleracea 
USA: Missouri: 
St. Louis City 

Washington Univ. 
Danforth Campus 

T.M. Price 
224 (MO) D D     

  pilosa 
USA: Texas: 
Val Verde Co. 

along Hwy. 163 ca. 
31.5 mi. S of Ozona 

T.M. Price 
306 D D     

Cactaceae Maihuenia patagonica   (4) AY015281 —     
 Pereskia aculeata   (1, 2) AF194852 AY042626     
 Quiabentia verticillata   (1, 2) AF194858 AY042641     
Anacampserotaceae Grahamia bracteata   (1, 4) AF194846 AY015273     
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Didiereaceae Calyptrotheca somalensis   (1, 3) AF194839 AY042563     
 Ceraria fruticulosa   (1) AF194841 —     
 Decarya madagascariensis   (1, 3) AF194844 AY042574     
 Portulacaria afra   (1, 3) AF194857 AY042637     
Basellaceae Basella alba   (1, 3) AF194834 AY042553     
 Ullucus tuberosus   (1) AF194865 —     
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APPENDIX 2. PRELIMINARY TAXONOMIC TREATMENT  

 

Abstract—The genus Phemeranthus Raf. (Montiaceae) is summarized, and a 

preliminary taxonomic treatment of infrageneric taxa and species is presented. 

Phemeranthus has traditionally been included in the genus Talinum Adans. as Talinum 

sect. Phemeranthus, but morphological and molecular evidence indicate that the two 

groups are not closely related. Herein, two sections are recognized within Phemeranthus: 

sect. Phemeranthus and sect. Eutmon. Synonymies and brief descriptions are provided for 

each species, with notes on putative undescribed species. An identification key is also 

included. New nomenclatural combinations and species names included herein are not to 

be considered as published but may be included in a later formal revision. 

 

Taxonomic Overview of Phemeranthus—The genus Phemeranthus Raf. has recently 

been resurrected to accommodate the terete- to subterete-leaved species of Talinum 

Adans. (Portulacaceae sens. lat.) (Hershkovitz and Zimmer 1997; Kiger 2001; Ocampo 

2002, 2003). Phemeranthus species, which are primarily found in temperate North 

America, differ in numerous morphological features from the flat-leaved Talinum sens. 

str., which are primarily from semi-arid subtropical and tropical regions of North and 

South America and southern Africa. Morphological and molecular data clearly show that 

Phemeranthus is not closely related to Talinum sens. str. (Carolin 1987; Hershkovitz 

1993; Hershkovitz and Zimmer 1997, 2000; Applequist and Wallace 2001; Nyffeler and 

Eggli 2010). Most terete-leaved Talinum species distributed in the United States and 

Mexico, as well as a disjunct species from northern Argentina, have now been transferred 



    

149 

to Phemeranthus (Hershkovitz and Zimmer 1997; Kiger 2001; Ocampo 2002, 2003; 

Nyffeler and Eggli 2010; Price and Ferguson In Press). 

 The traditional Portulacaceae is paraphyletic with respect to Cactaceae and 

possibly Didiereaceae, Basellaceae, and Halophytaceae. To address this paraphyly, 

multiple well-supported clades within Portulacaceae sens. lat. and allied families (i.e., 

suborder Portulacineae) have now been recognized at the family level (APG III 2009; 

Nyffeler and Eggli 2010; Ocampo and Columbus 2010). Phylogenetic analyses using 

nuclear (ITS) and chloroplast (ndhF, matK) DNA sequence data have shown that 

Talinum sens. str. is more closely related to Portulaca and Cactaceae than to 

Phemeranthus, which falls within a clade of predominantly western North American taxa 

(Hershkovitz and Zimmer 1997, 2000; Applequist and Wallace 2001; Applequist et al. 

2006) that has been elevated to family level as Montiaceae (APG III 2009; Nyffeler and 

Eggli 2010). Talinum, Talinella Baill., and the monotypic taxon Amphipetalum 

Bacigalupo constitute the small family Talinaceae (Nyffeler and Eggli 2010), and 

Portulacaceae sens. str. now comprises only the single genus Portulaca L. (APG III 2009; 

Nyffeler and Eggli 2010). 

 The type species of Phemeranthus was first validly described by Frederick Pursh 

in 1814 as Talinum teretifolium Pursh. Constantine Rafinesque had published the name 

Phemeranthus teretifolius in 1808, but the name was invalid (nomen nudum) because no 

type was specified. Believing the new species to be sufficiently distinct from Talinum as 

to merit its own genus, Rafinesque validated the generic name Phemeranthus when he 

published the combination P. teretifolius (Pursh) Raf. in 1814. In 1828, Augustin 

Pyramus de Candolle described Talinum napiforme DC., establishing Talinum sect. 
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Phemeranthus to accommodate it and T. teretifolium. Believing that T. napiforme also 

warranted its own generic ranking, Rafinesque published the combination Eutmon 

napiforme (DC.) Raf. in 1833. Like much of Rafinesque’s work, the generic names 

Phemeranthus and Eutmon were generally ignored by subsequent workers. Although 

most authors followed De Candolle in treating the terete-leaves species as Talinum sect. 

Phemeranthus, von Poellnitz (1934) did not recognize any basis for maintaining this 

sectional division in his monograph, the most recent for Talinum. Numerous additional 

terete-leaved species have been described since 1828; the most recent is Phemeranthus 

piedmontanus Ware, published in 2011. 

 

Characteristics of Phemeranthus and Talinum— 

Overall, Phemeranthus is characterized by terete to subterete leaves; a slender, 

wiry, scape-like peduncle (reduced in some species); and pantocolpate pollen. Each of 

these traits may be found in other Portulacaceous genera, but they are rarely combined in 

one genus. Phemeranthus also possesses a trait that is unique among Portulacineae, a 

funicular aril or pellicle (a thin, chartaceous membrane) covering the seed.  

The flowers open at a particular time of day (which varies among species and 

populations but is usually in the afternoon) and remain open for only one or a few hours 

on a single day. These ephemeral flowers are probably the basis of the name 

Phemeranthus and of some species’ vernacular names, such as “fameflower”. The Greek 

“phimi” (φηµη) + “anthos” (ανθος) literally means “fameflower”. Rafinesque may have 

meant to combine “anthos” with the Greek “ephimeros” (εφηµερος), which is equivalent 

to the English “ephemeral”. “Fameflower” is often mistakenly transformed into 
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“flameflower” in horticultural literature. Other vernacular names for Phemeranthus 

species include “rockpink”, “rockrose”, “sandpink”, and “sunbright”. 

Phemeranthus and Talinum share several traits that can be considered typical of 

Portulacineae in general. They are primarily succulent, herbaceous perennials (sometimes 

suffrutescent, becoming woody with age) with fleshy, tuberous taproots. Their 

inflorescences are cymose, and each flower is subtended by a pedicel, usually with a pair 

of reduced bracts at the base. The flowers have two foliaceous or scarious sepals (actually 

sepaloid bracts), which may be deciduous or persistent in fruit, and usually five petals 

(tepals). The number of stamens ranges from equal to the petals up to 60 or more. The 

slender style is topped by three short, spreading to capitate stigmas. The fruits are 

unilocular, three-valved capsules that dehisce longitudinally and often circumscissilely at 

the base. The seeds are reniform with coiled embryos and borne on free-central placentae. 

Despite these shared traits, Talinum and Phemeranthus are highly distinct. In 

Phemeranthus, the palisade mesophyll extends all the way around the leaf (see Ocampo 

and Columbus 2010, Fig. 5H), and the midvein is not externally visible. The leaves are 

sometimes slightly dorso-ventrally compressed, and young leaves that have been 

appressed in winter buds may be nearly planar adaxially with angular edges (D-shaped in 

cross-section). However, there is no defined lateral margin. Talinum species possess 

flattened leaves with palisade mesophyll only on the adaxial side. Although the margins 

may be revolute, particularly under drought conditions, at least the midvein is 

prominently visible. 

Phemeranthus capsules are usually held erect or nearly so (rarely pendent) and 

dehisce basipetally. The valves persist briefly after dehiscence in some species and 
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disintegrate upon maturity in others. The endocarp and exocarp are not differentiated. 

The seeds are enclosed by a chartaceous membrane of funicular origin (“pellicle”). 

Talinum capsules are pendent to horizontal on curved pedicels and dehisce acropetally. 

The exocarp and endocarp are differentiated and sometimes separate at maturity. The 

seeds are strophiolate but lack an investing pellicle. 

 Phemeranthus species are found primarily in North America, with a center of 

diversity in the southwestern United States and northern Mexico. East of the Rocky 

Mountains, the range of the genus extends across the Great Plains to the Mississippi 

River and north to the Dakotas. Across the Mississippi Embayment, Phemeranthus 

species are found in the Central Basin of Tennessee; in the Piedmont of Alabama, 

Georgia, and the Carolinas; and in Appalachian shale and serpentine barrens north to 

Pennsylvania. Two species are located in the inland Northwest, on the Columbia Plateau 

and in the Okanagan region extending into British Columbia, Canada. The genus’ range 

in Mexico extends south to the Isthmus of Tehuantepec. One species is disjunct in the 

southern Andes, in the Puna region of northern Argentina and southern Bolivia. 

 Fameflowers typically grow on shallow substrates over exposed rock on flatrocks, 

glades, ledges, hilltops, and cliffs. These habitats are characterized by full sun, mineral-

based soils with little organic matter, and reduced competition from surrounding 

vegetation. The genus is unknown from coastal regions, except for sandy hills along part 

of the Texas Gulf Coast around Galveston Island. The plants are active during warm 

weather, usually dying back to a shallowly subterranean tuber, rhizome, or caudex during 

the winter and resuming growth after spring rains (in the midwestern and southeastern 
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United States) or after summer rains (in desert climates). They are highly drought-

resistant and may remain dormant in particularly dry years.  

 Although they are among the most charismatic summer-flowering plants of their 

patchy, xeric rock-outcrop and sand-barren habitats, Phemeranthus species have long 

been taxonomically confusing and commonly misidentified in herbaria. This difficulty is 

due in part to the poor preservation of many herbarium specimens; the succulent leaves 

and stems, ephemeral flowers, and stout, tuberous roots or rhizomes tend to dry poorly, 

and few sheets preserve the necessary combination of vegetative, floral, fruit, and seed 

characters for confident identification. Leaves in pressed herbarium specimens often 

appear to have translucent lateral margins, and some species have been mistakenly 

described as having flat, marginate leaves. Indeed, Greene (1912) published the name 

Talinum marginatum (= Phemeranthus parvulus; see below) based upon such an error.  

 Several fameflower species are quite attractive and have long been grown by 

succulent-plant fanciers and rock gardeners. Today, some Phemeranthus species are 

increasingly popular in native-species-based, water-conservative gardening and green-

roof plantings (e.g., Getter et al. 2009; Dvorak 2010). Therefore, it is critical to resolve 

the confusion surrounding the taxonomy of and species identification within this genus. 

 

Infrageneric Classification of Phemeranthus— 

 Phemeranthus can be divided into two well-defined sections (Clades 1 and 2 in 

CHAPTER II), sect. Phemeranthus and sect. Eutmon. These sections are morphologically 

and geographically distinct. Members of sect. Phemeranthus are found predominantly in 

the United States, extending into northern Chihuahua, Coahuila, and Sonora, Mexico, and 



    

154 

southern British Columbia, Canada. The plants are distinctly caulescent, usually with 

visible internodes. They may have long, tapering, tuberous taproots; narrowly napiform 

or branching tuberous rootstocks; thickened, branching rhizomes, or amorphous, often 

shallowly subterranean, perennial caudices. The flowers range from white through pink 

to magenta. In most species, the fruit valves persist for some time after dehiscence. The 

seed testa is nearly smooth in most species, with a pattern of low convexities, although 

the pellicle may be wrinkled.  

 Members of sect. Eutmon are found predominantly in northern and central 

Mexico, extending into Arizona and New Mexico, U.S.A., and with a disjunct species in 

northern Argentina. The plants appear acaulescent, with the leaves forming a basal 

rosette. The rootstock is always tuberous, sometimes napiform, but often globose. The 

flowers are typically yellow, though some species have white flowers. The fruits 

normally disintegrate at maturity. The seed testa exhibits a series of raised concentric 

ridges, although these may be obscured by the pellicle. 

 

Synonymy and Descriptions of Infrageneric Taxa and Species— 

 

Phemeranthus Raf. TYPE: Phemeranthus teretifolius (Pursh) Raf., Specchio delle 

Scienze 1: 86, 1814. 

Phemeranthus Raf., nom. nud., Medical Repository 5: 350, 1808. 

Litanum Nieuwl. TYPE: Litanum parviflorum (Nutt.) Nieuwl., American Midland 

Naturalist 4: 90, 1915. 
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Talinum sect. Phemeranthus (Raf.) DC., Prodromus Systematis Naturalis Regni 

Vegetabilis 3: 357, 1828. 

Eutmon Raf. TYPE: Eutmon napiforme (DC.) Raf., Atlantic Journal 177, 1833. 

 

Phemeranthus sect. Phemeranthus, stat. nov. 

Perennial stems generally short and subterranean (aboveground and suffrutescent 

in P. spinescens and P. sediformis), borne atop a thickened rootstock. Annual stems erect 

or prostrate, usually with visible internodes (compressed internodes concealed by leaves 

in P. brevifolius and P. sediformis). Leaves terete (or somewhat dorso-ventrally 

flattened), generally crowded on lower stems, spreading to ascending, glabrous and often 

glaucous. Inflorescences cymose, appearing terminal or axillary, generally with wiry, 

scape-like peduncles (subsessile in P. brevifolius); many-flowered dichasia or single- to 

few-flowered reduced cymes, erect or sprawling and usually well exceeding the height or 

spread of the leafy stems. Stamens 5 (4–8) to 60+. Distributed from northern Mexico to 

southern British Columbia and from the Rocky Mountains to the Carolina Piedmont. 

 

Phemeranthus brevicaulis (S. Watson) Kiger, Novon 11(3): 319, 2001. 

Talinum brevicaule S. Watson, Proceedings of the American Academy of Arts 

and Sciences 21(2): 446, 1886. TYPE: Mexico, Chihuahua, Santa Eulalia 

Mountains, 20 May 1885, C. G. Pringle 26 (holotype, GH not seen; 

isotype, US). 
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Talinum pulchellum Wooton & Standl., Contributions from the United States 

National Herbarium 16(4): 121, 1913. TYPE: U.S.A., New Mexico, 

Queen, 2 Aug 1909, E. O. Wooton s.n. (holotype, US). 

Talinum eximium A. Nelson, American Journal of Botany 18(6): 431, 1931. 

TYPE: U.S.A., New Mexico, Carlsbad Caverns, G. Convis 56 (holotype, 

RM). 

Talinum youngiae C. H. Mull., Torreya 33(6): 148–149, 1933 [as “Youngae”]. 

TYPE: U.S.A., Texas, Cat Tail Cañon, Chisos Mtns., 6 July 1932, C. K. 

Muller 8571 (holotype, NY ex TEX; isotype, F not seen). 

SHOWY FAMEFLOWER 

Plants spreading to ascending; stems stout, branched, sometimes woody. Roots 

often highly branched, fusiform, fleshy, woody. Leaves 10–30 mm long, upturned, acute; 

lower leaves often awl-shaped. Inflorescences 1- to several-flowered, cymose, on short 

(5–15 mm) peduncles. Sepals broadly lanceolate, acuminate, often reflexed at tips, 

persistent in fruit, exceeding the capsules. Petals large, showy (10–16 mm), light pink to 

magenta. Stamens ca. 20, usually shorter than style. Stigma subcapitate. Capsules 

football-shaped, 5–7 mm long. Seeds smooth, ca. 1 mm wide. 2n = 24 (Ward and 

Spellenberg 1986). Chihuahuan desert, grassland, and open woodland, ca. 1500-3000 m, 

on limestone and igneous substrates; New Mexico, trans-Pecos Texas, northern Coahuila 

and Chihuahua. 
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Phemeranthus brevifolius (Torr.) Hershkovitz , Taxon 46(2): 222, 1997 

Talinum brevifolium Torr., in Sitgreaves, Report of an Expedition down to the 

Zuni and Colorado Rivers 156, 1853. TYPE: U.S.A., Arizona, Camp No. 

6 on the Little Colorado [River], 29 Sep 1851, S.W. Woodhouse s.n. 

(Holotype, NY). 

Talinum brachypodum S. Watson, Proceedings of the American Academy of Arts 

and Sciences 20: 355, 1885. TYPE: U.S.A., New Mexico, Laguna Pueblo, 

July 1884, Mr. & Mrs. J.G. Lemmon s.n. (Holotype, ?)  

Claytonia brevifolia (Torr.) Kuntze, Revisio Generum Plantarum 1: 57, 1891. 

CANYONLANDS FAMEFLOWER, PYGMY FAMEFLOWER 

Plants spreading, often mat-forming; stems branched, sometimes woody. Roots 

elongate, often highly branched, woody. Leaves subterete, usually somewhat flattened, 

blunt, crowded along stems, upturned and concealing internodes, usually glaucous and 

reflective. Inflorescences 1- or occasionally 2–3-flowered, appearing subsessile. Sepals 

orbicular to ovate, deciduous. Petals obovate, 8–12 mm, rose pink to magenta, sometimes 

smaller and creamy white. Stamens ca. 20–25, usually much shorter than style. Stigma 3-

lobed, the lobes spreading. Capsules globose to ellipsoid, 3–4 mm long. Seeds smooth, 

usually appearing gray, ca. 1 mm wide. Colorado Plateau, ca. 1500-2200 m, in shallow 

deposits of fine sand overlying sandstone slopes and ledges; southeastern Utah, 

northeastern Arizona, and northwestern New Mexico.  

 Plants from calcareous substrates in central New Mexico are larger in vegetative 

and floral proportions and have been described as T. brachypodum S. Watson. With 

further study, this entity may merit specific recognition, which would necessitate 
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publication of the combination Phemeranthus brachypodus. A population from shallow 

clay soil over conglomerate rock north of Reserve, Catron Co., New Mexico is reported 

to have exceptionally long, slender rhizomes and shiny black seeds and may also deserve 

recognition as a new species (D. J. Ferguson, pers. comm.). 

 

Phemeranthus calcaricus (S. Ware) Kiger, Novon 11(3): 320, 2001. 

Talinum calcaricum S. Ware, Rhodora 69(780): 466–474, 1967. TYPE: U.S.A., 

Tennessee, Davidson Co., Mountain View School, 21 Aug 1966, S. Ware 

215 (Holotype, US; isotypes, C not seen, SMS, UT not seen, VDB). 

LIMESTONE FAMEFLOWER 

 Plants tall (to 25 cm), erect; stems stout, sparingly branched, arising from 

amorphous, tuberous rhizomes at soil surface. Vegetative propagules produced on lower 

stems in fall. Leaves terete, to 5 cm long. Inflorescences many-flowered, dichasial or 

polychasial, sometimes appearing monochasial distally, on erect, wiry, straw-colored, 

scape-like peduncles. Sepals ovate, persistent in fruit. Petals about 1/2 as wide as long, 8–

10 mm, purplish pink. Stamens 25–45, ca. 3/4 length of style. Stigma 3-lobed, the lobes 

nearly erect. Capsules ovoid, 4–6 mm long. Seeds smooth, appearing gray, ca. 1.2 mm 

wide. 2n = 48. Central Basin of Tennessee, ca. 100-400 m, shallow soil on limestone 

cedar glades; central Tennessee, northern Alabama, extreme southern Kentucky. 

 This species is similar to P. calycinus from eastern Missouri, and molecular and 

cytological evidence indicates that it is derived from that species by autotetraploidy 

(Murdy and Carter 2001). 
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Phemeranthus calycinus (Engelm.) Kiger, Novon 11(3): 320, 2001. 

Talinum calycinum Engelm., in F.A. Wislizenus, Memoir of a Tour to Northern 

Mexico: connected with Col. Doniphan's Expedition in 1846 and 1847: 

88, 1848. TYPE: U.S.A., [Kansas or Oklahoma], in sandy soil on the 

Cimarron [River], June 1846, F.A. Wislizenus s.n. (holotype, MO). 

Claytonia calycina (Engelm.) Kuntze, Revisio Generum Plantarum 1: 57, 1891. 

LARGE-FLOWERED FAMEFLOWER, OZARK FAMEFLOWER, ROCKPINK 

 Plants usually tall (to 40 cm), erect; stems stout, sparingly or densely branched, 

arising from amorphous, shallowly subterranean tuberous rhizomes; horizontally 

branching rhizomes near the soil surface; or deeply buried fusiform tuberous taproots. 

Leaves terete, to 7 cm long. Inflorescences many-flowered, dichasial or polychasial, 

sometimes appearing monochasial distally, on erect, wiry, straw-colored, scape-like 

peduncles. Sepals ovate to sub-triangular, persistent in fruit. Petals 10-15 mm long, bright 

pink to dark magenta. Stamens 25–45, from about 1/2 to nearly equal the length of the 

style. Stigma 3-lobed, the lobes variously spreading or subcapitate. Capsules ovoid to 

globose, 4–7 mm long. Seeds smooth, appearing gray or black, ca. 1 mm wide. 2n = 24, 

48. Great Plains and Interior Highlands, ca. 100-1200 m, sandhills or shallow soil on 

usually non-calcareous rock outcrops and glades; Colorado south to Texas and east to the 

Mississippi River (with isolated occurrences in western Illinois). 

 Most populations are diploid, while some are tetraploid. Autotetraploidy in 

eastern P. calycinus probably gave rise to P. calcaricus (Murdy and Carter 2001), and 

certain populations in northern Arkansas closely resemble the latter species (Kiger 2003). 
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Populations on limestone and dolomite substrates in southwestern Missouri and eastern 

Kansas may have a similar origin (Reinhard and Ware 1989). 

 As presently recognized, this species is highly variable and taxonomically 

confusing. Plants from sandhill areas of the Great Plains in Colorado, New Mexico, 

Texas, Oklahoma, Kansas, and Nebraska possess thick, elongated, fusiform tuberous 

taproots and lack shallow rhizomes or caudices. They tend to have longer leaves, taller 

and thicker peduncles, and (often dramatically) larger flowers, which may be fragrant (D. 

J. Ferguson, pers. comm.). The sepals appear thickened and scarious in fruit. These plants 

correspond to the type specimen and could be considered P. calycinus sens. str.  

 Plants from the Ozark and Boston Mountains in northern Arkansas, southern 

Missouri, eastern Kansas, and northeastern Oklahoma are distinguished by highly 

branched stems borne on amorphous, shallowly subterranean rhizomes or caudices; 

secondary roots arising directly from the rhizome, without a tuberous taproot except in 

immature plants; and smaller, dark magenta flowers. Cultivated P. calycinus, which are 

popular with native-plant gardeners and are attracting attention as green-roof 

components, belong to this group. As a putative segregate species, these plants have been 

informally called Phemeranthus ozarkensis, but no name has yet been published. 

 Plants from the Ouachita Mountains of west-central Arkansas and adjacent 

Oklahoma resemble P. mengesii in having subcapitate to short-lobed (rather than 

distinctly 3-lobed) stigmas and sepals that tend to be deciduous. These plants are often 

shorter in stature than other P. calycinus but may form dense clumps with many annual 

stems arising from the thick, glossy, horizontal, branching rhizomes that lie at the soil 

surface. These populations may also merit recognition as a new species. 
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Phemeranthus confertiflorus (Greene) Hershkovitz, Taxon 46(2): 222, 1997. 

Talinum confertiflorum Greene, Bulletin of the Torrey Botanical Club 8(11): 121, 

1881. TYPE: U.S.A., New Mexico, Pinos Altos Mountains, 13 Sep 1880, 

E.L. Greene s.n.; lectotype (first-step), Wooton & Standley, Contr. U.S. 

Natl. Herb. 19: 233, 1915; (second-step), Holmgren, Brittonia 62: 266, 

2010 (lectotype, NDG not seen; isolectotype, NY). 

Talinum gracile J. N. Rose & Standl., nom. illeg. hom. [non Colla, 1833], 

Contributions from the United States National Herbarium 13(8): 285, 

1911. TYPE: Mexico, Chihuahua, “thin soil of granitic ledges; La Bufa 

Mt. above Cusihuiriachic”, 31 Aug 1887, C.G. Pringle 1197 (holotype, 

US; isotypes, MO, NY). 

Talinum rosei P. Wilson, North American Flora 21(4): 287, 1932. nom. nov. for 

Talinum gracile J. N. Rose & Standl. 

Talinum gooddingii P. Wilson, North American Flora 21(4): 287, 1932 [as 

“Gooddingii”]. TYPE: USA, Arizona, Greenlee Co., Boyle’s, San 

Francisco River, 5 Aug 1912, L.N. Goodding 1282 (holotype, NY) 

 Talinum fallax Poelln., Berichte der Deutschen Botanischen Gesellschaft 51(2): 

113, 1933. SYNTYPES: USA, New Mexico, Sierra Co., Rab’s [Robs] 

Canyon, s. end of Black Range, 6500 ft., 20 Aug 1904, O.B. Metcalfe 

1238 (NY); USA, Arkansas, H.K. Beyrich s.n. (not seen) 

ROCKY MOUNTAIN FAMEFLOWER, SUNBRIGHT 
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 Plants 5–25 cm tall, rarely taller, erect; stems short, slender, sparingly branched, 

arising from an elongated, fleshy taproot. Leaves usually tightly clustered, sometimes 

flattened adaxially, 1–5 cm long. Inflorescences many-flowered, congested, on erect, 

wiry, straw-colored, scape-like peduncles; pedicels stout, usually green. Sepals broadly 

ovate, acute to acuminate-cornate, usually dark purplish apically and slightly reflexed, 

often persistent in fruit. Petals 3.5–7 mm long, white to pale pink. Stamens (4–)5(–10), 

equal the length of the style. Stigma capitate or minutely 3-lobed. Capsules ovoid to 

oblong, often obtusely triquetrous, usually persisting for a short time after dehiscence, 3–

5 mm long. Seeds smooth, appearing dark gray, ca. 0.7–1 mm wide. 2n = 48 (Ward and 

Spellenberg 1986). Western Great Plains and southwestern grasslands to mountain 

woodlands, ca. 1500-2700 m, shallow, sandy or rocky soils over usually non-calcareous 

rock; southwestern South Dakota, eastern Wyoming, Colorado, central and southern 

Utah, Arizona, New Mexico, trans-Pecos Texas, to central Chihuahua and northeastern 

Sonora, Mexico. 

 This species has generally been treated as a synonym of P. parviflorus (Nutt.) 

Kiger, to which it is closely related. It is distinguished by its more congested 

inflorescences; pointed, often purple-tipped and reflexed sepals; grayish seeds; and 

ploidy level [although tetraploid P. parviflorus has been reported from Arkansas (Steiner 

1944)]. P. confertiflorus often grows sympatrically with P. brevicaulis, P. brevifolius, P. 

calycinus, and P. validulus and has been observed to hybridize with P. validulus in 

northern Arizona and central Utah. It also grows sympatrically with species of sect. 

Eutmon in southern Arizona and New Mexico and northern Mexico. 
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 Plants of northern Mexico identified as Talinum gracile or Talinum rosei are 

distinguished by their massively thickened, highly branched, tangled, woody roots and 

strongly reflexed, dark-striped sepals. Recognition as a separate species would necessitate 

publication of the combination Phemeranthus rosei. 

 

Phemeranthus longipes (Wooton & Standl.) Kiger, Novon 11(3): 320, 2001. 

Talinum longipes Wooton & Standl., Contributions from the United States 

National Herbarium 16(4): 120–121, 1913. TYPE: U.S.A., New Mexico, 

Tortugas Mountain, 27 Aug 1894, E.O. Wooton s.n. (holotype, US) 

TORTUGAS FAMEFLOWER 

 Plants 5–15 cm tall, erect; stems gracile, sparingly branched, grayish, often 

clothed with stiff, spiny persistent leaf bases; arising from an elongate, fusiform, woody, 

sometimes branching taproot. Leaves 1–2.5 cm long, glaucous. Inflorescences several-

flowered, cymose, on erect, scape-like peduncles. Sepals broadly orbicular, often pinkish 

in color, deciduous. Petals pale pink, obovate, 4–5 mm long. Stamens 5 or 10, equal the 

length of the style, the filaments bright pink, contrasting with the lighter petals. Stigma 3-

lobed. Capsules subglobose, 2.5–4 mm long, often persisting after dehiscence. Seeds 

appearing gray with pellicle intact, with strongly raised concentric ridges on the testa, ca. 

1 mm wide. Chihuahuan Desert region, rocky limestone soils on slopes and ridges, ca. 

1600-2000 m; north-central New Mexico and trans-Pecos Texas south to northern 

Coahuila, Chihuahua, and Tamaulipas, Mexico. 
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 P. longipes specimens are often misidentified as depauperate individuals of P. 

parviflorus or P. confertiflorus. However, living plants are easily distinguishable in 

flower or fruit by their sepal and petal shape, stamen color, fruit shape, and ridged seeds. 

 

Phemeranthus mengesii (W. Wolf) Kiger , Novon 11(3): 320, 2001. 

Talinum mengesii W. Wolf, American Midland Naturalist 6(8): 153–155, 1920 

[as “Mengesii”]. TYPE: U.S.A., Alabama, Cullman Co., cliff banks, Little 

River, no date, W. Wolf 1668 (holotype, SB transferred to AUA not seen). 

MENGES’  FAMEFLOWER OR ROCKPINK 

 Plants tall (to 40 cm), erect to spreading; stems stout, fleshy, branching above 

with usually multiple branches from a single point, arising from amorphous, fleshy to 

woody rhizomes near the soil surface. Leaves to 8 cm long. Inflorescences open, many-

flowered dichasia or polychasia, often appearing monochasial distally late in the season, 

on wiry, straw-colored, scape-like peduncles. Leaf clusters sometimes present at nodes of 

inflorescence; vegetative propagules produced within the inflorescence in some 

populations (Carter and Murdy 1986). Sepals ovate, 3–4 mm, deciduous in fruit. Petals 

9–15 mm long, about 1/2 as wide as long, rose pink. Stamens (35–)45-60(–90), spreading 

to erect. Stigma subcapitate, somewhat exceeding the stamens. Capsules subglobose, 3–4 

mm long, disintegrating at maturity. Seeds black, ca. 0.8 mm wide. 2n = 24 (rarely 48). 

Southern Appalachia and Piedmont, sandstone and igneous outcrops, glades, ledges, and 

flatrocks; ca. 100–1000 m; northern and central Alabama and adjacent Tennessee, 

Georgia, and Kentucky. 
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This species sometimes grows in sympatry with P. teretifolius, an allotetraploid 

species derived from hybridization between P. mengesii and P. parviflorus (Black and 

Murdy 1972; Carter and Murdy 1985; Murdy and Carter 1985, 2001). Where the two 

species are found together, the predominantly outcrossing P. mengesii exhibits 

reproductive character displacement (Murdy et al. 1970; Carter and Murdy 1986). 

 

Phemeranthus parviflorus (Nutt.) Kiger , Novon 11(3): 320, 2001. 

Talinum parviflorum Nutt., in J. Torrey and A. Gray, A Flora of North America 

1(2): 197, 1838. TYPE: U.S.A., Arkansas, on rocks, no date, T. Nuttall s.n. 

(possible isotypes or syntypes, K, image seen). 

Claytonia nuttalliana Kuntze, Revisio Generum Plantarum 1: 57, 1891. nom. nov. 

meant to replace T. parviflorum Nutt. [as “T. parvifolium Nutt.”, sic] under 

Claytonia. The nom. nov. was meant to avoid homonymy with Claytonia 

parvifolia Moçiño, although Claytonia parviflora would actually have 

been a homonym of Claytonia parviflora Douglas ex Hook., 1832. 

Litanum parviflorum (Nutt.) Nieuwl., American Midland Naturalist 4: 90, 1915. 

Talinum appalachianum W. Wolf, American Midland Naturalist 22(2): 319–320, 

1939. 

SUNBRIGHT, SMALL -FLOWERED FAMEFLOWER, PRAIRIE FAMEFLOWER 

 Plants 5-20 cm tall, rarely taller, erect; stems slender, simple or branching, arising 

from an elongate, fusiform, fleshy taproot. Leaves 2–7 cm long. Inflorescences many-

flowered dichasia or polychasia on wiry, straw-colored, scape-like peduncles; pedicels 

generally slender and straw-colored. Sepals ovate, blunt to acute, usually early deciduous. 
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Petals 4–7 mm long, light to dark pink. Stamens (4–)5(–12), equal the length of the style. 

Stigma capitate or 3-lobed, the lobes triangular. Capsules ellipsoid or ovoid to oblong, 

disintegrating promptly at maturity, 3–5 mm long. Seeds smooth, appearing dark brown 

to black, ca. 0.6–0.9 mm wide. 2n = 24 [rarely 48 (Steiner 1944)]. Eastern Great Plains 

and Interior Highlands west of the Mississippi, and southern Appalachia in central 

Alabama, ca. 0–1500 m; sandy barrens or rocky soils over non-calcareous rock in dry 

grasslands, rock outcrops, glades, and ledges; central Texas north to southeastern North 

Dakota west to the Mississippi River, with populations also in southern Illinois and in a 

small area of Central Alabama.  

 Across its wide range, P. parviflorus often grows sympatrically with P. calycinus 

sens. lat. and in close proximity to P. rugospermus and P. mengesii. It is one of the 

diploid parents of the allotetraploid P. teretifolius, along with P. mengesii (Black and 

Murdy 1972; Carter and Murdy 1985; Murdy and Carter 1985, 2001), and it likely has 

also hybridized with P. calycinus in some areas. 

 

Phemeranthus piedmontanus S. Ware, Journal of the Botanical Research Institute of 

Texas 5(1): 1-7, 2011. TYPE: U.S.A., Virginia, Franklin Co., Bald Knob, 

Rocky Mount, 1 Aug 2007, C. Ludwig 5051 (holotype, UNC). 

PIEDMONT FAMEFLOWER 

 Plants tall, erect; stems usually several, stout, fleshy, branching above, arising 

from rhizomes near the soil surface; mature rhizomes usually multi-branched from a 

central point, each branch giving rise to one or two stems in spring. Vegetative 

propagules apparently not produced. Leaves to 4 cm long. Inflorescences many-flowered, 
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cymose, on wiry, scape-like peduncles. Sepals deciduous in fruit. Petals 6–10 mm long, 

more than 1/2 as wide as long, purplish pink. Stamens 20–35(–42), 2/3 to 3/4 length of 

style, mostly erect. Pollen orange. Stigma subcapitate. Capsules ovoid to obovoid, 3–5 

mm long. Seeds smooth, black, ca. 0.6 mm wide. Piedmont of southern Virginia and 

northern North Carolina, shallow soil on mafic and ultramafic rock outcrops or glades. 

 P. piedmontanus and P. teretifolius co-occur at one site in North Carolina. 

 

Phemeranthus rugospermus (Holz.) Kiger, Novon 11(3): 320, 2001. 

Talinum rugospermum Holz., Asa Gray Bulletin 7(6): 117, 1899. TYPE: U.S.A., 

Wisconsin, Trempealeau Prairie, July 1888, J.M. Holzinger s.n. (holotype, 

WINO transferred to MIN not seen); TOPOTYPES: U.S.A., Wisconsin, 

Trempealeau Prairie, July 1897, Aug 1899, J.M. Holzinger s.n. (MO) 

ROUGH-SEEDED FAMEFLOWER, SAND-PRAIRIE FAMEFLOWER, SANDPINK 

Plants tall (up to 30 cm), mostly erect; stems stout, fleshy, simple or branching, 

arising from long, fleshy, tapering taproots. Leaves to 6 cm long. Inflorescences many-

flowered, cymose, on stout, wiry, scape-like peduncles. Sepals broad, ovate and usually 

tapering apically, deciduous or sometimes persistent in fruit. Petals 6–8 mm long, often 

acute or mucronulate, pale to bright pink, usually mottled light pink. Stamens 12–28, 

equal to length of style. Stigma strongly 3-lobed, the lobes linear and widely spreading. 

Capsules globose, 4–5 mm long. Seed testa smooth but seeds appearing bluish-gray and 

corrugate-rugulose due to wrinkled pellicle, ca. 1.2 mm wide. Usually found on aeolian 

sand barrens or sandy pockets derived from sandstone outcrops, but also on thin soils 

over igneous and metamorphic outcrops at the northern limits of its range (Cochrane 
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1993); Driftless Area of Wisconsin, Minnesota, Illinois, and northern Indiana; sandy 

prairies in central Nebraska, central Kansas, south-central Oklahoma, eastern Texas, and 

western Louisiana. 

This species has a wide but patchy distribution, with its largest area of 

concentration in the Upper Midwest. It has apparently been extirpated at numerous 

former localities in Indiana and Illinois but was only recently discovered in Oklahoma 

and may also be present in Missouri and/or Arkansas. Older specimens in herbaria are 

often identified as P. teretifolius or P. parviflorus, but the former species can be ruled out 

by distribution alone, and P. rugospermus is easily distinguished from P. parviflorus if 

seeds or well-preserved flowers are present. 

 

Phemeranthus sediformis (Poelln.) Kiger, Novon 11(3): 320, 2001. 

Talinum sediforme Poelln., Berichte der Deutschen Botanischen Gesellschaft 

51(2): 113–114, 1933. TYPE: Canada, British Columbia, Seme-ke-mele 

[Similkameen] River, 49ºN, 15 July 1851, J. Jeffrey 177 (Holotype, B?; 

isotype, K image seen). 

Talinum okanoganense English, Proceedings of the Biological Society of 

Washington 47(35): 191–192, 1934. TYPE: U.S.A., Washington, 

Okanogan Co., Fir Mountain, 28 May 1933, C.S. English 1733 (Holotype, 

?) 

Talinum wayae Eastw., Leaflets of Western Botany 1(12): 139, 1934 [as 

“Wayae”]. TYPE: Canada, British Columbia, Mount Baldy near 

Kamloops, Mrs. A. E. Way s.n. (Holotype, CAS not seen). 
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OKANAGAN FAMEFLOWER 

Plants low, caespitose, mat-forming; stems spreading, highly branched, 

suffrutescent, bearing persistent, dense, bristlelike remnants of old leaves, arising from 

elongate, branching, woody roots. Leaves grayish-green, subterete, blunt apically, usually 

less than 1 cm long, attenuate at the base, crowded along stems and concealing the 

internodes. Inflorescences multi-flowered, cymose, on slender, sprawling, scape-like 

peduncles. Sepals ovate, early deciduous, 2-4 mm long. Petals 6–8 mm long, creamy 

white, sometimes light pink. Stamens 15, yellow, shorter than the style. Stigma 

subcapitate. Capsules globose, often trigonous, 3–4 mm long. Seeds smooth, ca. 1 mm 

wide. Barren, rocky slopes and ledges, 1000–2000 m; Okanagan region of north-central 

Washington and southern British Columbia, Canada. 

P. sediformis is a highly attractive plant and is well established in the commercial 

rock-garden trade. A cultivar known as “Zoe”, of unknown origin, may be a hybrid of P. 

sediformis × P. spinescens. It differs from typical P. sediformis in having darker purplish-

pink flowers, longer and more erect peduncles, and longer and darker green leaves that 

are more pointed apically. 

 

Phemeranthus spinescens (Torr.) Hershkovitz , Taxon 46(2): 222, 1997.  

Talinum spinescens Torr., in C. Wilkes et al., United States Exploring Expedition 

17(2): 250, 1874. T. L. : Oregon & Washington. 

Claytonia spinescens (Torr.) Kuntze, Revisio Generum Plantarum 1: 57, 1891. 

COLUMBIA FAMEFLOWER, SPINY FAMEFLOWER 
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Plants succulent, long-lived subshrubs; stems highly branched, suffrutescent, 

bearing persistent, spinelike remnants of old leaves, arising from elongate, branching, 

woody roots. Leaves dark green or often red when stressed, acute apically, up to 2.5 cm 

long, attenuate at the base. Inflorescences many-flowered, cymose, on tall (to 20 cm), 

stout, erect, scape-like peduncles. Sepals ovate, deciduous or persistent in fruit, ca. 3 mm 

long. Petals 8–10 mm long, pale pink to magenta. Stamens 20–30, ca. 1/2 to 2/3 length of 

the style. Stigma subcapitate. Capsules ovoid to globose, ca. 5 mm long. Seeds smooth, 

ca. 1.2 mm wide. Columbia Plateau; fine, shallow soils on basaltic cliffs, ledges, and rock 

pans, ca. 700–1100 m; east-central Washington and adjacent northern Oregon. 

 

Phemeranthus teretifolius (Pursh) Raf., Specchio delle Scienze 1: 86, 1814. 

Talinum teretifolium Pursh, Flora Americae Septentrionalis 2: 365, 1814. TYPE: 

USA, Delaware and Virginia, on sunny rocks, July, ? s.n. (Holotype?) 

Phemeranthus teretifolius Raf., nom. nud., Medical Repository 5: 350, 1808. 

Talinum trichotomum Desf., Tableau de l'École de Botanique 166, 1804. 

Talinum ciliatum Lindley, nom. illeg., Edwards's Botanical Register 29: pl. 1, 

1843. 

Claytonia teretifolia Kuntze, Revisio Generum Plantarum 1: 57, 1891. 

FAMEFLOWER, ROCKPINK, FLOWER-OF-AN-HOUR 

Plants tall (up to 50 cm), erect; stems stout, fleshy, simple or branching, arising 

from amorphous, tuberous rhizomes at the soil surface. Vegetative propagules produced 

on lower stems in fall. Leaves to 6 cm long. Inflorescences many-flowered, cymose, on 

stout, wiry, scape-like peduncles. Sepals elliptic to ovate, early deciduous, 3–4 mm long. 
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Petals 5–7 mm long, about 1/2 as wide as long, magenta. Stamens 12–20, as long as style, 

erect. Stigma 3-lobed, the lobes often indistinct. Capsules subglobose, 4–5 mm long. 

Seeds smooth, black, ca. 0.8 mm wide. 2n = 48. Piedmont and Appalachians; thin soil 

overlying sandstone, granitic, shale, and serpentine outcrops, ca. 200–1000 m; eastern 

Alabama, Tennessee, and Kentucky; Georgia, North and South Carolina, Virginia, West 

Virginia, Maryland, Pennsylvania (also reported from Connecticut and Delaware).  

This species overlaps with P. mengesii in Georgia and eastern Alabama, and the 

two species occasionally occur together. P. teretifolius is an allotetraploid hybrid species 

derived from P. mengesii and P. parviflorus, both of which it has apparently displaced in 

southern Appalachia (Murdy et al. 1970; Black and Murdy 1972; Carter and Murdy 1985; 

Murdy and Carter 1985, 2001). 

 

Phemeranthus validulus (Greene) Kiger, Novon 11(3): 321, 2001. 

Talinum validulum Greene, Leaflets of Botanical Observation and Criticism 

2(12): 270, 1912. TYPE: U.S.A., Arizona, Tusayan Forest Reservation, 11 

Aug [type], 11 July [protologue] 1912, R.R. Hill s.n. (Lectotype, US). 

Talinum thompsonii N.D. Atwood & S.L. Welsh, Great Basin Naturalist 45(3): 

485–487, 1985. TYPE: U.S.A., Utah, Emery Co., Cedar Mountain, 19 July 

1981, N.D. Atwood & R. Thompson 8056 (Holotype, BRY; Isotypes, NY, 

RSA not seen, US). 

Phemeranthus thompsonii (N.D. Atwood & S.L. Welsh) Kiger, Novon 11(3): 321, 

2001. 

TUSAYAN FAMEFLOWER, CEDAR MOUNTAIN FAMEFLOWER 
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 Plants spreading to ascending; stems stout, branching, sometimes decumbent 

basally, arising from elongate, branched, woody tuberous roots. Leaves 10–40 mm long, 

upturned, acute; lower leaves often awl-shaped. Inflorescences multi-flowered, cymose, 

on wiry, scape-like peduncles (these sometimes reduced), slightly to substantially 

exceeding the leaves. Sepals broadly lanceolate, acuminate, often reflexed at tips, 

persistent in fruit, exceeding the capsules. Petals 7–9 mm long, white to light pink, 

usually paler abaxially. Stamens (6–)10–15(–20), shorter than style. Stigma subcapitate 

or 3-lobed. Capsules football-shaped, trigonous, 5–7 mm long. Seeds smooth, 1–1.2 mm 

wide. Thin, rocky clay soil derived from chert, basalt, cinders, or conglomerate in 

coniferous woodland openings and xeric shrub communities, ca. 1800-2500 m; central 

Utah (Cedar Mountain) and northern Arizona.  

 This species is similar to P. brevicaulis, differing in its smaller, lighter-colored 

flowers, fewer stamens, and allopatric (more northern and western) distribution. It often 

grows sympatrically with P. confertiflorus, and the two species are known to hybridize.  

 

Phemeranthus sect. Eutmon (Raf.) D.J. Ferguson, stat. nov. BASIONYM: Eutmon 

Raf., Atlantic Journal 177, 1833. TYPE: Phemeranthus napiformis (DC.) G. 

Ocampo, Acta Botanica Mexicana 59: 79, 2002. 

 Perennial stems mostly highly reduced, subterranean; plants appearing 

acaulescent (stems well developed and plants caulescent in P. mexicanus and P. 

oligospermus). Taproots tuberous, broadly napiform to globose, sometimes branching 

below. Leaves terete, clustered in basal rosettes (clustered at stem apices in P. mexicanus 

and P. oligospermus). Inflorescences cymose, borne on wiry, scape-like peduncles, erect 
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or sprawling, sometimes well exceeding the leaves, sometimes borne among the leaves. 

Flowers white to yellow; sepals deciduous; petals 5; stamens 5–10. Capsules often 

trigonous, usually disintegrating at maturity. Seed testa with raised concentric ridges. 

Distributed from southern Arizona and New Mexico south to Oaxaca and Puebla, 

Mexico. 

Phemeranthus humilis (Greene) Kiger, Novon 11(3): 320, 2001. 

Talinum humile Greene, Botanical Gazette 6(3): 183, 1881. TYPE: U.S.A., New 

Mexico, Grant Co., Pinos Altos Mountains, 11 Aug 1880, E.L. Greene 217 

(Holotype, NDG? not seen; isotypes, MO, GH image seen, K image seen). 

Talinum greenmanii Harshb., Bulletin of the Torrey Botanical Club 24(4): 183–

184, 1897 [as “Greenmanii”]. TYPE: Mexico, Mexico (state), Sierra de 

Ajusco, 31 Aug 1896, C.G. Pringle 6472 (Holotype, ?; Isotypes, MO, US, 

NY). 

PINOS ALTOS FAMEFLOWER 

 Plants succulent, subacaulescent; stems subterranean, short, erect, usually 

unbranched, arising from turbinate to globose, fleshy tuberous roots. Leaves yellowish 

green, thick, up to 8 cm long. Inflorescences few- to several-flowered, cymose, borne 

among the leaves and not exceeding them in height. Sepals ovate, deciduous, ca. 3 mm 

long. Petals ca. 4 mm long, yellow. Stamens 5–8. Stigma subcapitate. Capsules ellipsoid 

to globose, sometimes trigonous, 4–6 mm long. Seeds with strong concentric ridges, ca. 1 

mm wide. Thin, rocky soil in open mid-elevation habitats, ca. 1600-1800 m; 

southwestern New Mexico and south-central Arizona south to central Chihuahua, 

Mexico. 
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 According to D. J. Ferguson (pers. comm.), Talinum greenmanii is distinguished 

by occasionally having lobed leaf bases, fewer-flowered inflorescences, a smooth seed 

pellicle that partly obscures the ridged testa, and a napiform (vs. globose) taproot. It also 

occurs at higher elevation, in gravel scree on steep pine-forested slopes. Few specimens 

are available however. Recognition of this entity as a separate species would necessitate 

publication of the combination Phemeranthus greenmanii.  

 

Phemeranthus mexicanus (Hemsl.) G. Ocampo, Acta Botánica Mexicana 59: 77, 2002. 

Talinum  mexicanum Hemsl., Diagnoses plantarum novarum vel minus 

cognitarum Mexicanarum et Centrali-Americanarum 2: 23, 1879. TYPE: 

Mexico, “in regione San Luis Potosí”, 1800-2400 m, 1878, C. C. Perry & 

E. Palmer 69 (Holotype, K image seen; Isotype, MO) 

Claytonia mexicana (Hemsl.) Kuntze, Revisio Generum Plantarum 1: 57, 1891.  

MEXICAN FAMEFLOWER 

 Plants caulescent, 4–10 cm tall; stems slender, erect, branched, mostly 2–5 cm 

long, smooth grayish to brown and exfoliating slightly with age, clothed with stiff, 

needle-like remnants of old leaves. Proximal portion of roots elongated, slender, 2.5–7 

cm long, simple or branched; distal portion of roots tuberous, globose or fusiform, 

clothed with thin, brown scales. Leaves clustered at the apex of each stem, 3–13 mm 

long, acute, glaucous. Inflorescences several from each stem, erect, cymose, few- to 

several-flowered, borne on slender peduncles up to 25 mm long. Sepals elliptic to 

orbicular, obtuse, 1.8–2.5 mm long, deciduous; petals obtuse, 2.5–4 mm long, about 1/2 

as wide as long, yellow to orange-yellow. Stamens 5. Stigma capitate. Capsule globose to 
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ovoid, 3–3.5 mm long, dehiscing basipetally with valve tips recurving slightly, persisting 

for some time if not disturbed. Seeds with concentric raised ridges, appearing rather 

smooth, the translucent pellicle not conforming to the ridges of the testa, ca. 0.6 mm 

wide. Shallow, rocky soils in grassland openings surrounded by oak woodland on rhyolite 

slopes, ca. 2300 m, San Luis Potosí and Queretaro, Mexico. 

 

Phemeranthus multiflorus (J. N. Rose & Standl.) G. Ocampo, Acta Botánica Mexicana 

59: 79. 2002. 

Talinum multiflorum J. N. Rose & Standl., Contributions from the United States National 

Herbarium 13(8): 285, 1911. TYPE: Mexico, Durango, Otinapa, 23 July–5 Aug 1906, E. 

Palmer 434 (Holotype, US; isotype, NY). 

MANY-FLOWERED FAMEFLOWER 

 Plants succulent, subacaulescent; stems subterranean, short, arising from fleshy, 

fusiform to globose tuberous roots. Leaves slender, usually under 3 cm long. 

Inflorescences many-flowered, congested cymes on scape-like peduncles, spreading 

beyond the leaves. Sepals deciduous, often with reddish coloration, ca. 2.5 mm long. 

Petals 5–6 mm long, yellow. Stamens 5. Stigma subcapitate. Capsules ellipsoid, strongly 

trigonous, ca. 4 mm long, with purplish coloration along the sutures. Seeds strongly 

ridged, the pellicle conforming to the testa. Sierras of Mexico; shallow, rocky soils 

overlying bedrock; Durango and Chihuahua, Mexico. 

 This species most closely resembles P. punae of Argentina. However, it is poorly 

known, and pressed specimens are often difficult to distinguish from P. parvulus. The 

relationships of these species require further study. 
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Phemeranthus napiformis (DC.) G. Ocampo, Acta Botánica Mexicana 59: 79, 2002. 

Talinum napiforme DC., Prodromus Systematis Naturalis Regni Vegetabilis 3: 

357, 1828. LECTOTYPE: sheet 6331.0468 of the Sessé & Mociño 

expedition, Mexico, 1787-1803 [designated by R. McVaugh, 2000. 

Botanical results of the Sessé & Mociño expedition (1787-1803). VII. A 

guide to relevant scientific names of plants. Hunt Institute for Botanical 

Documentation. Pittsburgh, p. 446 of 626]. 

Eutmon napiforme (DC.) Raf., Atlantic Journal 177, 1833. 

Claytonia napiformis (DC.) Kuntze, Revisio Generum Plantarum 1: 57, 1891. 

Claytonia tuberosa Sessé & Moc. ex DC., nom. nud., Prodromus Systematis 

Naturalis Regni Vegetabilis 3: 357, 1828. 

Talinum palmeri J. N. Rose & Standl., Contributions from the United States 

National Herbarium 13(8): 284, 1911. TYPE: Mexico, Durango, Otinapa, 

25 Jul–5 Aug 1906, E. Palmer 436 (Holotype, US; Isotype, MO, NY). 

NAPIFORM FAMEFLOWER  

 Plants succulent, subacaulescent, 8–15 cm or up to 40 cm tall; stems subterranean, 

short, erect, one or several arising from each rootstock; tuberous root stout, napiform, 

with smooth, reddish bark exfoliating in thin sheets. Leaves 4–9 cm long, stout, 

ascending. Inflorescences many-flowered, cymose, on tall, straw-colored, scape-like 

peduncles. Sepals broadly ovate to orbicular, obtuse to acute, ca. 3–4 mm long. Petals 

white, 7–10 mm long. Stamens 5. Capsule oblong, slightly triquetrous, ca. 5 mm long. 

Seeds gray, with raised concentric ridges. Madrean region; thin soil over surfacing 
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bedrock in relatively level grasslands or open woodlands; Distrito Federal, Durango, 

Guanajuato, Jalisco, Queretaro, Mexico (state), San Luis Potosi, and Zacatecas, Mexico. 

  As described by Rose & Standley, T. palmeri differs from P. napiformis in 

having larger leaves, taller peduncles, and greater floral dimensions. However, Ocampo 

(Ocampo 2002) reports that P. napiformis tends to develop taller peduncles in the 

northern part of its range and that P. napiformis plants maintained in cultivation grow 

larger than those in the field, approaching the size of T. palmeri specimens. The 

description of T. palmeri was based on greenhouse-maintained plants. Thus, T. palmeri is 

considered synonymous with P. napiformis. However, D. J. Ferguson (pers. comm.) has 

cultivated typical P. napiformis alongside plants from the T. palmeri type locality, and 

reports that the overall difference in size is maintained under these conditions. Ferguson 

also observes that the larger white flowers of T. palmeri are nocturnal, a unique trait in 

the genus, while those of P. napiformis open in the afternoon. If T. palmeri is indeed a 

separate species, it would require publication of the combination Phemeranthus palmeri. 

 

Phemeranthus oligospermus (Brandegee) G. Ocampo, Acta Botánica Mexicana 63: 56, 

2003. 

Talinum oligospermum Brandegee, Zoë 5(11): 245, 1908. TYPE: Mexico, Puebla, 

Cerro de la Yerba, July 1907, C.A. Purpus 2513 (Holotype, UC image 

seen; Isotypes, MO, NY, US). 

PUEBLA FAMEFLOWER 

 Plants caulescent; stems numerous, slender, highly branched, whitish, clothed 

with persistent dried leaf bases, arising from subglobose fleshy tuberous roots. Leaves 
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short, usually less than 1 cm. Inflorescences several, multi-flowered, cymose, on 

spreading, scape-like peduncles. Sepals oblong to ovate, purplish, ca. 2.5 mm. Petals 4–5 

mm long, yellow. Stamens 5. Stigma subcapitate. Capsules obtusely triquetrous, purplish, 

ca. 3 mm long. Seeds with raised concentric ridges. Tehuacán-Cuicatlán Valley, 

locally abundant in oak forest and thorn scrub vegetation, 2000–2600 m; endemic to 

Oaxaca and Puebla, Mexico. 

  

Phemeranthus parvulus (J. N. Rose & Standl.) D.J. Ferguson & T.M. Price, Novon 

[in press], 2012. 

Talinum parvulum J. N. Rose & Standl., Contributions from the United States 

National Herbarium 13(8): 283, 1911. TYPE: Mexico, Durango, Otinapa, 

July 25–Aug 5, 1906, E. Palmer 451 (holotype, US; isotypes, GH not 

seen, K image seen, NY).  

Talinum marginatum Greene, Leaflets of Botanical Observation and Criticism 

2(12): 270–271, 1912. TYPE: Mexico, Nayarit, Sierra Madre near Santa 

Teresa, Tepic, 12 Aug 1897, J.N. Rose 2221 (holotype, US). 

Phemeranthus marginatus (Greene) Kiger, Novon 11(3): 320, 2001. 

BOTTLE-LEAF FAMEFLOWER 

 Plants diminutive, succulent, subacaulescent; stems subterranean, short, erect, 

unbranched, arising from fleshy tuberous roots. Leaves strongly narrowed at or below 

mid-length, appearing petiolate, the apex rounded, 1–5 cm long. Inflorescences few- to 

several-flowered, cymose, on scape-like peduncles; at least the lowest flowers borne 

among the leaves but mature inflorescences exceeding the leaves. Sepals broadly 
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lanceolate to ovate, deciduous, 2–3 mm long. Petals 3–5 mm long, yellow. Stamens 5. 

Stigma subcapitate. Capsules ellipsoid, sometimes trigonous, ca. 3 mm long. Seeds with 

raised concentric ridges, ca. 1 mm wide. Madrean region; thin, rocky soil on slopes and 

ridges, ca. 1900-2200 m; southeastern Arizona and Chihuahua, Durango, Hidalgo, 

Jalisco, Nayarit, Sonora, and Zacatecas, Mexico. 

 

Phemeranthus punae (R.E. Fr.) Eggli & Nyffeler , Taxon 59(1): 240, 2010. 

Calandrinia punae R.E. Fr., Nova Acta Regiae Societatis Scientiarum 

Upsaliensis, ser. 4, 1(1): 149, 1905. TYPE: Argentina, Jujuy, Santa 

Catalina, date?, ? # (Holotype ?not seen). 

Talinum punae (R.E. Fr.) Carolin, Parodiana 3(2): 331, 1985. 

PUNA FAMEFLOWER 

 Plants succulent, subacaulescent; stems subterranean, short, arising from fleshy, 

fusiform to globose tuberous roots. Leaves usually under 3 cm long. Inflorescences 

many-flowered, congested cymes on scape-like peduncles, sprawling beyond the leaves. 

Sepals deciduous, often with reddish coloration, ca. 3 mm long. Petals 3–4 mm long, 

yellow. Stamens 5. Stigma subcapitate. Capsules ellipsoid, trigonous, ca. 3-4 mm long. 

Seeds appearing smooth, testa ridges only slightly raised and obscured by pellicle. Puna 

region of southern Andes; shallow, gravelly soils and soil pockets overlying rock or in 

cracks of rocks along ridgetops or benches at high elevation (ca. 3500 m); northern 

Argentina (Catamarca, Jujuy, La Rioja, Salta, Tucuman) and southern Bolivia (Potosi and 

Tarija).  
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Key to Sections and Currently Recognized Species— 

 

1a. Leaves not terete (though may be narrowly linear and/or revolute); seeds without 

investing pellicle—     Talinum (not included here) 

1b. Leaves terete; seeds enclosed by membranous pellicle (may be partly rubbed away)— 

        Phemeranthus  (2) 

 

2a. Taproot fusiform to napiform, not globose, or absent and plants rhizomatous or with 

an amorphous subterranean caudex; plants strongly caulescent; flowers pink to 

magenta or white—      sect. Phemeranthus  (3) 

2b. Taproot tuberous, napiform to globose, at least distally; plants usually appearing 

acaulescent; flowers yellow to orange or white— sect. Eutmon  (16) 

 

3a. Stems erect; leaves mostly over 2.5 cm long, not concealing internodes; 

inflorescences mostly over 5 cm long, usually appearing terminal, erect, many-

flowered, with the lowest flowers usually above the leaves—  (4) 

3b. Stems prostrate to procumbent; leaves mostly under 2.5 cm long, crowded along 

stem, concealing the internodes, upturned; inflorescences mostly under 5 cm long, 

usually appearing axillary, mostly spreading laterally, one- to several-flowered, 

with at least the lowest flowers usually among the leaves—   (13) 

 



    

181 

4a. Plants suffrutescent, with well-branched perennial, woody stems clothed in spiny, 

lignified leaf bases; Columbia Plateau—  Phemeranthus spinescens 

4b. Plants usually dying back to ground level, sometimes with semi-woody perennial 

caudices or lower stems clothed in persistent leaf bases, but not developing into 

subshrubs; east of the Rocky Mountains and in the Southwest—  (5) 

 

5a. Flowers mostly under 12 mm across; stamens 5–10—    (6) 

5b. Flowers mostly over 12 mm across; stamens (12)15–60 or more—  (8) 

 

6a. Petals blunt, white to pale pink; filaments bright pink; seeds with strongly raised 

concentric ridges—     Phemeranthus longipes 

6b. Petals generally acute, white to dark pink; filaments yellow; seeds smooth— (7) 

 

7a. Petals white (rarely) to magenta; sepals early deciduous, obtuse; fruit globose to ovate 

or elliptical, nearly as wide as long; Great Plains, Ozarks, central Alabama—  

       Phemeranthus parviflorus 

7b. Petals white to pale pink; sepals usually persistent, acute, sometimes acuminate-

cornate and reflexed, often with dark purplish pigment apically; fruit usually 

pointed apically, narrower than long; desert and semi-desert southwestern states— 

       Phemeranthus confertiflorus 
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8a. Flowers (10–)15(–20) mm across; stamens usually less than 30—  (9) 

8b. Flowers over 15 mm (up to 30 mm) across; stamens usually more than 30—  (11) 

 

9a. Stamens 20–35(–42), 2/3–3/4 as long as style; stigma subcapitate; pollen orange or 

golden—                Phemeranthus piedmontanus 

9b. Stamens 12–20(–25), equal to or slightly exceeding length of style; stigma 3-lobed; 

pollen yellow—        (10) 

 

10a. Petals light to medium pink; stigma lobes spreading, nearly as long as style; seeds 

large, with gray, wrinkled pellicle—   Phemeranthus rugospermus 

10b. Petals magenta; stigma lobes short, not spreading; seeds small, appearing black and 

smooth, even with pellicle intact—   Phemeranthus teretifolius 

 

11a. Sepals early deciduous; stamens (30–)45–60+; stigma subcapitate; southern 

Appalachia, Alabama and Georgia Piedmont— Phemeranthus mengesii 

 11b. Sepals persistent in fruit; stamens 25–45; stigma subcapitate to short-lobed; Central 

Tennessee Basin, Interior Highlands, and Great Plains—   (12)  
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12a. Flowers mostly under 20 mm across, stigma lobes short, nearly erect; limestone in 

Central Tennessee Basin and adjacent states— Phemeranthus calcaricus 

12b. Flowers usually over 20 mm across; stigma lobes short, spreading or subcapitate; 

Great Plains and Interior Highlands—  Phemeranthus calycinus 

 

13a. Leaves usually under 15 mm, slightly dorso-ventrally compressed, apically rounded, 

blunt to apiculate, tightly crowded and concealing the internodes; inflorescence 

one- to few-flowered; sepals blunt; petals about as wide as long; capsules 

globose—         (14)  

13b. Leaves usually over 15 mm, apically pointed; inflorescence few- to several-

flowered; sepals acute, sometimes reflexed, exceeding fruit, persistent; petals 

narrower than long; capsules football-shaped—    (15) 

 

14a. Plants mat-forming, with highly branched, spiny, suffrutescent above-ground stems; 

inflorescences pedunculate, multi-flowered; stamens 2/3–3/4 length of style; 

Washington and British Columbia—   Phemeranthus sediformis 

14b. Plants spreading by rhizome-like underground stems; inflorescences single-flowered 

(rarely 2–3-flowered), subsessile; pistil up to twice as long as stamens; Colorado 

Plateau in Utah, Arizona, and New Mexico— Phemeranthus brevifolius 
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15a. Flowers mostly under 18 mm across; petals white to pale pink; stamens 10–15; east-

central Utah and northern Arizona—   Phemeranthus validulus 

15b. Flowers mostly over 18 mm across; petals magenta (rarely lighter pink); stamens 

(15–)20–30(–45); New Mexico and western Texas, Chihuahua, and Coahuila— 

       Phemeranthus brevicaulis 

 

16a. Plants caulescent, with slender, branching perennial stems clothed with persistent 

dried leaf bases—        (17) 

16b. Perennial stems short, subterranean; plants appearing acaulescent—  (18) 

 

17a. Root with a long, slender proximal portion and tuberous distal portion; sepals 

orbicular; petals ca. 3 mm long; capsule globose to ovoid, light green; San Luis 

Potosí and adjacent Guanajuato, Mexico—  Phemeranthus mexicanus  

17b. Root subglobose; sepals oblong to ovate, purplish; petals 4–5 mm long; capsule 

obtusely triquetrous, purplish; Tehuacán-Cuicatlán Valley, Oaxaca and Puebla, 

Mexico—        Phemeranthus oligospermus 

 

18a. Leaves appearing petiolate, strongly narrowed proximally; inflorescences few-

flowered, somewhat exceeding leaves; capsules under 5 mm long—  

       Phemeranthus parvulus 

18b. Leaves not appearing petiolate—      (19) 
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19a. Flowers white; rootstock stout, napiform, with smooth, reddish bark exfoliating in 

thin sheets—      Phemeranthus napiformis 

19b. Flowers yellow; tuberous root fusiform to globose—    (20) 

 

20a. Leaves usually over 3 cm long; flowers usually over 9 mm across; inflorescences 

few-flowered, not or only slightly exceeding leaves; capsules over 5 mm long—  

       Phemeranthus humilis 

20b. Leaves usually under 3 cm long; flowers usually under 9 mm across; inflorescences 

many-flowered, sprawling, exceeding leaves; capsules under 5 mm long— (21) 

 

21a. Seeds appearing smooth, testa ridges only slightly raised, obscured by pellicle; Puna 

region of northern Argentina and southern Bolivia—Phemeranthus punae 

21b. Seeds strongly ridged, pellicle conforming to testa; Sierras of Mexico—  

       Phemeranthus multiflorus 
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