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Abstract

This paper investigates a different foundation for decision theory in
which successive model refinement is central.

The idea is to modify utility so that it can sometimes be calculated
for an outcome without considering all of the relevant properties that can
be proved of the outcome, and without considering the utilities of its chil-
dren. We build partiaily ordered heuristic utility functions. We treat the
analysis of personal decision trees like heuristic search of game trees (tak-
ing expectations instead of doing minimax). Analysis of decision then
becomes a process of constructing and evaluating defeasible arguments
for decision. This leads to an iteratively improving computation of deci-
sion, ox what Dean and Boddy have dubbed an “anytime algorithm” for
decision.

An axiomatization of this idea is simple in an existing system of de-
feasible reasoning. As a special case of defeasible reasoning, computing
defeat among decision frees is also simple. The axioms for preference that
lead to metric utility can be retained if we take the defeasibility to be a
result of the epistemic problem of individuating objects of value, We say
nothing yet about the specification of actual search strategies for partic
ular forms of heuristic ntility functions, though it is clearly a matter for
further research.
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Two heuristic functions are exhibited: one based on linear additivity
of each factor’s individual contribution, and one based on projecting from
similar outcomes, the wutilities of which have been declared.

1 INTRODUCTION: What’s the Basic Idea?

1.1 Philosophy: What’s Wrong with Classical Theory That’s
Fixed Here?

TOO MANY UTILITIES TO WRITE DOWN.

In the real world, there is no such thing as a final outcome or final description
of an outcome. If you die, how did you leave the world? If you go broke, who
got your money? If you win the ball game, how many relief pitchers will be too
tired to play in tomorrow’s game? The more realistic the model of the domain,
the more factors are taken into account, the more combinations of contingencies
are considered. If we think of partitions on the space of outcomes of the world,
more detail means more relevant distinctions, which means more individuable
outcomes whose utilities must be determined. If we think of decision trees
which branch on outcomes of uncontrolled events and also branch on conditional
action, then more detail means the horizon at which we can attribute value to
an outcome becomes farther away. In the extreme, if indeed there is no such
thing as a final outcome, the search for final outcomes, or quiescent states, never
terminates. If there is no such thing as a final description of an outcome, then
the list of things to try to prove about results of actions is endless {and so are
some of the searches for proofs). The more detailed the model, the more our
faith in the analysis, but we still want to be able to do decision analysis in
reasonable time.

Decision theory remains our only effective tool for trading one desideratum
against another when planning action without omniscience about the world.

But how are we to apply decision theory when computational resources are
dear”? To how much detail and depth in our decision analysis are we prepared
to commit when it is unclear how much time we will have to study our model?

Savage, who invented modern decision theory, had the wrong idea for the
construction of decision models (L. Savage, Foundations of Statistics, Dover,
1950):

In application of the theory, the question will arise as to which [de-
scription of the] world to use . . .. If the person is interested in the
only brown egg in a dozen, should that egg or the whole dozen be
taken as the world? It will be seen . . . that in principle no harm is
done by taking the larger of two worlds as a model of the situation.

Essentially, Savage is suggesting that decision trees be taken to be as tall and as
bushy as can be imagined. Meanwhile, utility valuations for outcomes cannot



be assigned in arbitrary combinations to nodes in the tree. Decision theory re-
quires as a coherence constraint that the utility of a node equal the appropriate
expectation of its children’s utilities. This paralyzes those who want to specify
their utility functions; their assigments of parents’ utilities must wait until they
have considered the children. No value assignment without search.

Example.

I am deciding to drive or fly to Detroit for ITCAI. Properties that con-
tribute to my valuations include { cost-ezceeds-$200, time-exceeds-eight-hours,
increased-engine-wear, passed-thru-gary-indiana, enjoyed-most-of-the-trip }. Of
course, there are more relevant properties, and the longer I think, the more I
can invent, all of which legitimately affect my preference, e.g., { got-to-see-
ann-arbor, met-someone-hot-enroute, had-to-take-ijcai-buses, talked-to-people-
on-buses, saw-inflight-movie, zoomed-pasi-lots-of-ford-probes-and-honda-accords
had-to-get-towed, . . .}.

The departure of this paper from classical theory is that (1) I want to be
able to attribute value to outcomes based on these properties, even though I
admit that goi-to-visit-ann-arbor is only relevant to me because I care about
its possible cases: goi-to-see-janie-in-ann-arbor, or not; and talked-to-people-
on-buses is only relevant to me because the case, falked-to-levesque-on-bus, has
utility to me, and the case, talked-fo-some-other-dog-on-bus, has disutility to
me. Ultimately, of course, the only relevant property is how I feel, and even
properties such as seeing-janie-in-ann-arbor and telking-to-levesque-on-bus may
not directly fix that property. Moreover, (2) I do not want to commit to saying
that my valuation based on the coarse property is equal to the appropriately
weighted average of valuations based on the refined properties, because it might
not be (I don’t know until I do the more refined analysis). And if I presume
that it is, I will have no incentive to deepen the analysis, that is, return to this
node in the decision tree and study its children.

Transforming the initial situation into outcomes are events and conditional
actions such as { change-oil-before-go, change-oil-enroute, car-breaks-down, bad-
heat, find-cheap-flight, busy-interstates, rent-car-in-detrodt, no-time-to-stop-in-
ann-arbor, seek-oul-levesque, seek-oui-honda-accords-to-pass, ac-clutch-rattles-
again, car-stolen-in-detrost, . . .}. For a given sequence of actions applied
to the initial state, gg, and events occurring, we have an outcome state about
which we can do theoremn-proving. For instance,

’

T(increased-engine-wear,
< bad-heat | ~change-oil-enroute | drive |
~change-oil-before-go | 59 > )

should be familiar to adherents to the situation calculus. Note that it is not
obvious what properties do hold in a state, that is, what are all the ramifications



of actions and events. Actions and events change conditional probabilities, too,
so one might show

T( Prob(passed-lots-of-probes-and-accords) = .8,
< seek-out-accords-to-pass | drive | 5o > ),

which is essentially a statement about the children of <seek-oui-cecords-to-pass
| drive | 30> (namely, that the child in which passing is done has probability .8).

Assuming all the probabilities can be calculated or represented, there is the
problem of calculating or representing the utility function. If there are n boolean
properties to distinguish outcomes, there are 3™ utilities to represent (outcomes
are not possible worlds; properties can be reported to hold, reported to fail
to hold, or not be reported). Classical theory just supposes the existence of a
mapping from outcomes to reals; it has nothing to say about its representation
in a language, notation, or shorthand. The only relation an outcome bears to
another outcome, which imputes a relation of their respective utilities, is the
descendant relation. But AI planners describe outcomes, that is, situations,
with sentences in a language of first-order predicates. Two outcomes may differ
only on the truth of one atomic formula, of those formulae whose truth values
are reported. If the difference is unimportant, the utilities of these two outcomes
ought to be close. We should exploit such regularities; we should exploit the
logical infrastructure of descriptions of outcomes of the world.

WHAT KIND OF SHORTHAND?

Assuming that utility is known and needs only to be specified, there may be a
compact representation. The expected utility rule is one impetus of compaction:
given the utilities of leaves and assuming the calculability of probabilities, none
of the interior nodes’ utilities need be given; all can be calculated. From a
descriptive standpoint, there may be agents whose reported preferences do not
satisfy this regularity. On the other hand, for many agents, preferences might
satisfy additional regularities.

We are not necessarily advocating using regularity to trade space for time.
Descriptions of utilities can be pre-processed so that they need not be calculated
on-line. We are concerned with getting automated decision analysis started in
worlds with foo many outcomes, irrespective of how the computation proceeds
after its start.

Described in the next section are two shorthands for compact representation
of utility. There may be others. The adequacy of a shorthand depends on the
utility function being represented; some utility functions will still require long
descriptions in all convenient notations. The usefulness of each shorthand below
is plausible only because each makes use of defeasible rules; rules that admit of
explici$ exceptions.



A DIFFERENT PICTURE OF DECISION ANALYSIS.

As soon as defeasibility is introduced, a new possibility emerges. Utilities for
outcomes can be calculated defeasibly, as provisional values, given the part of
the description and the depth of the tree currently manageable. Since valuation
is defeasible, it may not be the same as the valuation when more information
is taken into account. However, under computational limitation, the defeasible
calculation may serve as a heuristic evaluation of an outcome, perhaps to be
improved with time, but happy to be had at this resource-limited moment.

In this picture, decision analysis looks like heuristic game playing, with ex-
pected utility used instead of minimax to induce parent values from children.
This view is commonly held among computer scientists, but with no explication
of the nuances.

Game playing has the notion of a final outcome, which we may want to
resist in the case of real-world decision analysis. There is often such a thing as a
complete game tree, whereas decision trees can always be made more extended.
Game playing also uses only one heuristic function, applied to nodes at varying
depths. Here, we have a variety of heuristic functions, each of which applies to
a node at any depth. The more information about a node that is used in the
defeasible calculation of utility, the better the heuristic evaluation of that node.
In chess-playing, it is as if we could do a major piece count, or else a count of all
pieces, or an analysis of board control, or a count of all pieces and an analysis
of board control, and so on.

Defeasible arguments for decision are constructed, and they interfere with
each other, defeat each other, and justify their conclusions, just like any de-
feasible arguments (see J. Pollock, “Defeasible Reasoning,” Cognitive Science
12, 1987, or R. Loui, “Defeat Among Arguments,” Computational Intelligence
3, 1987; the idea is very much like Touretzky’s competition among paths in
inheritance networks, D. Touretzky, The Mathematics of Inheritance Systems,
Pitman, 1986). At a time, there may be an inclination to choose a particular
act, tempered by reason: an argument that says a different act is better. At
a later time, a different argument could be found that justifies the inclination.
Perhaps the new argument defeats the old one. Later still, a third argument
may be found: an argument against the inclination, which interferes with the
existing argument. When there is no reason to say one argument defeats the
other, we fall back on our inclination. In this way, the dialectic for decision yields
an answer at all times: the more time for deliberation, the more the answer is
tutored by reasoning. If more reasoning time increases expected performance,
in whatever way that may be measured, then this strategy is an anytime algo-
rithm in the sense of T. Dean and M. Boddy (“An Analysis of Time-Dependent
Planning,” AAAT 1988).



1.2 Two Heuristic Functions.
DEFEASIBLY LINEAR-ADDITIVE UTILITY,

In decision theory, one regularity on utility functions that is explored is
multi-attribute utility. When attributes can be identified that contribute to util-
ity proportionally, the description of the utility function can be made exponen-
tially more compact. The utility of an n-vector of attribute values < ... Pi...>
is

2 kiw(p); 0<i<n},

where u; is the utility function for the i-th attribute, and k; is the i-th attribute’s
weight.

A similar linear-additive model can be given for utility, where each atomic
formula specifies an attribute for utility. Attribute values, p;, can be —1, 0,
and 1, respectively, for formula falsehood, formula undecidedness, and formula
truth. Alternatively, attributes  p and + ~p can be taken to be two different
attributes, with values 1 and 0. The latter alternative is more likely useful since
it’s unclear that the value of  p will frequently be the negation of the value
of I ~p (of course, they never co-occur). In either construal of properties as
attributes, the multiplicative constants, k;, are all that need to be determined.

It is implausible to suppose utility functions to be perfectly linear-additive
for atomic formulae, that there will be no cancellation or reinforcements of
individual contributions when attributes combine. So the rule can be made de-
feasible.

Example.

What is the utility of an outcome, s, when

T(cost-exceeds-$200 & time-ezceeds-8-hours &
~had-to-get-towed & met-someone-hot-enroute &
zoomed-past-lots-of-probes-and-accords, s)

i.e.,

T( po & p1 & ~p3 & ps & p1o, s ) ?

Let basic contributions to utility be contr(py) = -200; conir{p,) = —150;
contr(~pz} = 10; contr(ps) = 30; conir(pie) = 40. Cost exceeding $200 coupled
with time exceeding eight hours is particularly annoying, so there is a declared
exception to additivity: conir(po & p1)} = —400. Time exceeding eight hours is
ameliorated by meeting someone enroute, so declare contr(py & ps) = —40, not
the apparent sum, —150 4 30.

There are now several arguments for the utility of s, based on the combined
contributions of pg, p1, ~p2, ps, and pyo. It is unclear which is the most specific
argument for the combined contribution of pg & py & ps, since we can sum —400



with 30, or else sum —200 with —40. It is however clear that an argument based
on just the fact that pio holds in s is defeated because it is less specific. And
there would be no defeat of the several arguments that the ufility of s is at least
as small as —240.

This regularity of utility functions is formalized in the next section.
REFERENCE CLASSES FOR UTILITY.

A second compact representation for utility takes some outcomes’ utilities to
be declared, and other cutcomes to be valued by interpolating, or by considering
similarity to exemplar outcomes whose utilities are given. Utilities are declared
for a non-exhaustive set of exemplar outcomes. One possibility is to consider
the utility of an outcome, s, of which

T( Po & », 8),

to be determined by the average utility of exemplars that manifest po and p;:
(let if-declared(e) be true when e is an exemplar, and ud(e) be the declared
utility for e, a partial function on outcomes)

2 { ud(e) : if-declared(e) & T{ po & p1,¢) }
divided by

# { e : if-declared(e) & T(po & p1,e) }.

The more specific the knowledge about s, the smaller the subset of exemplars
used to project the utility of s. The idea is to use only the most similar exem-
plars. If in fact, we know p, to hold in s as well,

T( po & p1 & p2, s),
then
{ e if-declared(e) & T( po & p1 & p2, e ) }

is a subset of

{ e: if-declored(e) & T(po & pr,e) },

and using the average ud(.) among this set provides a more specific argument
for the utility of s. The problem is that the former set may be empty; there
may be no examplar sharing as many properties with s as we know about s. In
this case, reference sets such as

{ e : if-declared(e) & T{ po & p1,e) } , and
{ e : if-declared(e) & T( po & p3,e) }, and
{ e: tf-declared(e) & T{ p & pa, e ) },



of non-comparable specificity, compete to determine the utility of s. The idea
of reference sets here is analogous to Reichenbach’s idea of the reference class
for probability (H. Reichenbach, Theory of Probability, Berkeley, 1949).

Example.
What should be the utility of an outcome, s, when

T(cost-exceeds-§ 200 & time-exceeds-8-hours &
~had-to-gel-towed & met-someone-hot-enroute &
zoomed-past-lots-of-probes-and-accords, 5)

i.e.,
T{po & p1 & ~p2 & p5s & pro, s ) ?

Let the stock of declared utilities be very small,
if-declared = {eg, €1, €2, €1}

T(po & p1 & ~ps & pr, €0 )

T( ~p3 & p10, €1 )

T( Po & ~py & pe & pio, €2 )

T( P1 & ~py & ps & ps & ~pyp, €3 )

ud ={<eo, —600 >, <ey, 40 >, <ez, —100 >, <es, —10 >} .

There are again several arguments for the utility of s, based on the average
of exemplars sharing various combinations of the properties pg, p1, ~ps, etec.
Projecting from {e : T(~p2& p10,€)}, that is, using the average of ud(e;) and
ud(ez), is better than projecting from {e : T(~ps, )}, that is, using the average
of ud(e1), ud{ez), and ud{es). It is unclear which argument is best among the
projections from sets of exemplars satisfying, respectively, po & p1, ~p2 & 10,
Po & p1o, and p1 & ~p2 & ps. But again, the arguments for u(s) being in [—600,
40] are undefeated, and this may be enough for comparison of alternatives.

This heuristic is also formalized in the next section.

The interest here is not in the bounding of utility, though that is an unavoid-
able consequence of arguments that interfere without defeat. When arguments
disagree, we are supposed to direct the search for an argument that resolves
the disagreement. There may be situations in which there is no resolution of
the disagreement; neither proving more properties about s, nor examining its
children resolves the disagreement. These are defects in the knowledge about
utility; it could be that knowledge provided about tradeoffs among desiderata is
very sparse. The more interesting case however, is when plenty is known ahout
utility, but there is not enough time to make use of it all. This forces abstrac-
tion — deliberately ignoring some properties — and forces heuristic evaluation of

utility.



WHAT CLASSICAL THEORY LACKS THAT IS SHARED HERE.

What is common between these two compact representations of utility is that
they allow utility to be calculated for any outcome, no matter how incomplete
the description of that outcome, without requiring coherence with expected
utility. There are two ways of coping with an incomplete description: (a) the
classical way, which is to introduce the probabilities of each case, and (b) to
ignore the part of the description that is missing.

In the example above, if utility were not represented for an outcome with
exactly the description given, namely, T( po & p1 & ps & ~pio, s ) , then
classical theory would force us to consider those children in the decision tree
that in fact have represented utility valuations, and the probabilities of those
children. One such child might be s°, where

T(po & p1 & pa & py & ~ps & ps & ~p1o, 8’ ),
with probability calculable:
Prob( ps & ~ps & ps given po & p1 & p3 & ~p1o),

and with u(s’) represented, say b u(s') = 133 .

In my proposal we can just ignore ps, ps, and ps until there is time to
come back and do justice to these factors in the analysis. We will use expected
utility calculations when we can do them. Not all valuations are expectations
of ultimate good feeling; some are heuristic evaluations based on heuristically
valuable properties.

2 JUSTIFICATION: How Can Such a Strat-
egy Be Justified?

2.1 Defeasible Reasons for Utilities.

Both of these heuristics have simple axiomatizations in an existing system of
defeasible reasoning.

We suppose there is a metalangnage in which >— is a 2-relation on
sentences, the relation of one sentence being a reason for another. [Pz 1is the
Quine quotation of Px. Vz is the object-language universal quantifer; (z) is the
metalanguage universal quantifier.

Reasons can be grouped into arguments, and arguments can be contrary,
they can disagree, interfere, and defeat each other, and they can sometimes
justify their conclusions. Several systems have roughly this form (cf. H. Geffner,
“On the Logic of Defaults,” AAAI 1988; D. Nute, “Defeasible Reasoning,” in
J. Fetzer, ed., Aspects of Al Kluwer, 1988). I will presume my own (op.cit.,



Loui); in particular, I presume that an argument can defeat another because of
superior evidence.

Let sent(f) be the sentential form of a function, f: that is, if f={<ab>
1< ¢,d >} then sent(f) = “f(a) = b & f(c) = d".

Heuristic 1.

LL. (2)@)(P)(@).
leontr(P) = & & contr(Q) =41 >— Tcontr(P & Q) = z + 41

1.2, (P)(e)(s).

if ¢ C conir then IT(P, s) & sent(e)] >— lu(s) = contr(P)
1.3. (P)(E)(s)(k).

I'T(P, s} & T(Prob(E) = k, s)) >—

ru(s) = u(<# [s>)(k) + u(<~E |s >)(1 - kN

Heuristic 2.

2.1. FVYP.
ucale(P) = 3~ { ud(e) : if-declared(e) & T(P,e )}/
# { e: if-declared(e) & T( P,e)}.

2.2 (P)(c)(s).

if ¢ C ucalc then I'T(P, 5) & sent(c)] >— (u(s) = ucale(P)
2.3, (P)(E)(s)(H).

I'T(P, s) & T(Prob(EB) = k, s)| >—

(u(s) = u(< B |s >)(k) + u(<~E |s >)(1 - k)1

In each case, the first axiom presents the structure of the shorthand for
utility. The second axiom says that the more properties taken into account, the
better. The third axiom says that expected utility calculations transmit value
from children to parents.

Since disjunctive reasoning is not easy in these non-monotonic systems, lower
bound arguments are constructed using

1.4. (P)(c)(s)(=)-
if ¢ C conir then
I'T(P, 5) & sent(c) & contr(P) > 21 >— Tu(s) > 2l

and the obvious analogue 2.4; similarly for upper bounds.

1.3 and 2.3 are not entirely satisfactory. They say that an argument that
considers children of a node is no less specific than an argument that treats
that node as a leaf. This is true even if some property p, which holds in the

10



parent, and was used in its evaluation, was not taken into account in evaluating
the children. The difficulty is that p holding in the parent does not entail P
holding in children, because of ramifications of actions and events. Just as it
is the burden of the control strategy to try to prove important properties first,
or in pairs when properties are well-known tradeoffs, it should be the control
strategy that attempts to inherit properties from parents to children.

Example.

Suppose heuristic 1. One argument for the utility of s, when T(p: & p2,
s), is based on contr(p;) = 12. Another argument is based on contr(p;) = 12;
contr(pz) = 5; defeasibly, contr{p; & p2) = 17. “T(py & p3, s) & contr(p,) =
12 & contr(ps) = 5 & conir(py & ps2) = 17" is a reason for “u(s) = 17”. The
argument based on this reason is more specific than the best argument for “u(s)
=127,

2.2 Metric Utility.

What does it mean to say that u(s) = 17, defeasibly? If metric utility is to make
sense, we must either provide axioms of “defeasible preference” that guarantee
representation in the reals, or else provide a translation of the current view into
the existing theory of preference.

The latter is easiest. Let “u(s) = 17, defeasibly” mean that s is identified,
defeasibly, with an object of value of utility 17. Objects of value continue to be
totally ordered, and satisfy the axiom of independence. However, outcomes are
no longer objects of value. We produce defeasible arguments that a particular
outcome is a particular object of value, but we could be wrong. There could be
a better argument that the outcome that results from applying a; in 5, <a:
| ssub0>, should be identified with a different object of value. One argument
says that the outcome is the object of value, “py, ceteris paribus”, and the other
argument says the very same outcome is a different object of value, “p; & ps,
ceteris paribus”. Since conir is defeasible, we need to make a few more distinc-
tions among objects of value. The object of value, “{p1, p2}, ceteris paribus” is
different from the object of value “{p; & py}, ceteris paribus”. The former was
built using contr(p;) and contr(py), the latter was built using contr(p; & p,).

Like many alleged deviations of preference that can be mapped into clas-
sical preference, this mapping produces unintuitive objects of value (¢f. the
distinction between objects of value alive and alive-for-sure in R. Jeffrey, “Risk
and Human Rationality,” Boston Philosophy of Science Series, 1986). But it
guarantees that real-valued utility is meaningful. u(“{p1, p2} ceteris paribus”)
means that the unit-valued outcome is preferred as much as a lottery for [ “{p1,
P2}, ceteris paribus” at probability 1/17, and the zero-valued outcome otherwise
]. Whether s is the object of value “{py, p2}, ceteris paribus” is an epistemic
matter. In fact, heuristic 1 can be made to look very much like presuming ~p
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whenever p has not been proved, that is, taking outcomes to be their default
objects of value — clearly a claim about epistemics.

Some decision theorists entertain the possibility that utilities can change
over time because preferences change, probabilities are conditioned on more
introspection, or a different model is deemed appropriate. The present view
aims to say what is the structure of such changes. What is the structure in
terms of how the agent’s regard for s changes with more computation?

3 COMPUTATION: What Has to be Done to
Make it Run?

3.1 Simpler than Defeasible Reasoning.

Although general defeasible reasoning is used to axiomatize the heuristics, ac-
tual computation with these heuristics is far simpler than general defeasible
reasoning. In general, it is not easy to determine whether an argument defeats
another argument. Here, if sentences such as py & p; & p; are forward-chained,
the check for specificity is just a sublist check (at least in the propositional
case). Consider the relevant parts of contr, or ucale, and order them according
to specificity, (e.g., {<p1, 12>, <pz, 5>} is less specific than {<p; & p3, 17> 7.
The interesting, mutually interfering but undefeated arguments correspond to
the maximal elements in the order.

Any time a set of mutually interfering but undefeated arguments disagree
over the value of u(s), there will be analogous arguments each of which says
that u(s) falls within the min and max of the disagreeing values. All of these
new arguments will be undefeated in the set of all arpuments so far mentioned.
So having found the undefeated arguments, bounds are readily constructed.
Act a; is preferred to act ap just in case lower-bound{u(<a; |s >)) > upper-
bound(u(<az |s>)}).

Finally, suppose one argument corresponds to a decision tree with a certain
amount of theorem-proving done at the leaves, and another argument corre-
sponds to a different decision tree with different theorem proving at the leaves.
Then the first argument is better than the second whenever the first is everyh-
were at least as deep as the second, and the theorems proved at corresponding
nodes are at least as plentiful, and somewhere the first tree goes deeper or
somewhere the first tree uses more of the theorems proved,

3.2 Control Strategy and Heuristic.

Choice of control strategy is important. In the discussion above, it does not
matter how arguments are constructed and in what order properties of a state
are attempted to be proved. Nevertheless, we intuit that “performance” can be
improved by choosing the right control strategy.
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So far, I have justified the preference of more specific decision arguments
by appealing to our preference of more specific arguments in general. Die-hard
decision theorists might write an expression for the expected value of basing
judgement on more properties or more extensive trees. They might c¢laim that
there are cases in which specificity is misleading, taking the heuristic value
farther from some “true” value. Just as game-iree search can have pathologies
with depth, we can have pathologies with both depth and theorem-proving.

One problem is how we are to make sense of pathology when there is no
conception of final state. We cannot guarantee good control until we know
what is good and bad control.

Another problem is a problem shared by all defeasible reasoning. We should
attempt to construct arguments based on what undefeated arguments we have
and what interrelations they bear. If there is a single undefeated argument,
we should try to produce a counter-argument. If there are mutually interfering
undefeated arguments, we should try to resolve the disagreement. So far, no
one has described control of such dialectic.

Still another problem is how to use knowledge of tradeoffs among desiderata
to avoid proving properties that will not help to discriminate between leading
choices of action (cf. M. Wellman, “Formulation of Tradeoffs in Planning under
Uncertainty,” MIT Ph.D. Thesis, 1988).

4 ADDITIONAL BRIEF COMMENTS.

When planning turns to uncertain worlds with known risks, what is the signif-
icance of search? No sequence of acts can be ignored; most sequences result
in a state that has some chance of jumping into a goal state, with fortuitous
outcomes of events. If utility is not 0-1, every state satisfies desiderata to some
degree. Decision theory says that all paths to all states should be contemplated,
and the path leading to the best states with the highest probabilities is normally
preferred. In fact, paths are misnomers, because each sequence of actions can
be compiled into a single compound, conditional act, and any sequence of events
can be turned into a single event. When planning under known risks, all trees
have height 2.

This work attempts to save AT planning from trivial subsumption under de-
cision theory. Compound action is an idealization because there are tco many
irrelevant actions and it requires search to determine relevant action. Mapping
outcomes to utilities is an idealization because determining ramifications of ac-
tions requires theorem-proving. Utility is an idealization because it presumes
that some descriptions of outcomes will never be refined, that is, their children
never analyzed, or else that their children once analyzed will yield values that
cohere with their parent’s original value. One can think of incoherence due to
refined analysis in terms of probability shifts over time, but that masks a com-
putation whose strucutre deserves explication. Classical decision theory simply
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ignores computation.

In this formalism, AI planning is like constructing arguments for action
with a depth-first control strategy for forming decision trees. A reason for
executing this plan is that it achieves certain desirable properties under default
assumptions of which events occur. An analysis of the tree that contains this
path and some of its alternatives would produce a better argument, whether for
or against adopting the original plan.

There are two senses in which Herb Simon’s idea of satisficing (The Sciences
of the Artificial, MIT Press, 1969.) can be interpreted in the current proposal.
First, we do not adopt a plan because it is optimal, but because it is the best
according to the reasons we have constructed. Second, it could be that a reason
for doing an act, aj, is that a; achieves our aspiration level, with no reference
to alternative acts. Acting under routine risks may also provide reasons for
action: that @; is no worse than my usual gamble, is reason for doing ay. Jon
Doyle (personal communication) has suggested yet another kind of reason: that
I cannot resolve the choice between a; and ay, is reason for doing a;. Although
I have studied quantitative defeasible reasons for choosing actions in this paper,
the appeal of embedding decision analysis in defeasible reasoning is clearly more
general.

It is also straightforward to extend the discussion to include considerations
of specificity among defeasible arguments for probability calculations {cf. B.
Grosof, “Non-monotonicity in Probabilistic Reasoning,” in Uncertainty in Al v.
11, J. Lemmer, ed., North-Holland, 1987; H. Kyburg, Probability and the Logic
of Rational Belief, Wesleyan, 1961; J. Pollock, “A Theory of Direct Inference,”
Theory and Decision 15, 1983). So defeasible reasons for acts’ expected utilities
are based on defeasible reasons for probabilities, defeasible reasons for utilities,
and defeasibly defoliated decision trees.

The Bayesian decision theorist’s picture of the world is not perfect. Ex-
pressive language is not cheap. The process of constructing successively better
decision models is not a shrouded mystery, but a process with structure. Taking
decision theory to be a part of defeasible reasoning places it on more satisfying
foundations and ought finally to bring together the AT work on planning and
decision theory’s venerable concept of expected utility.
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