Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-89-08

1989-06-01

User's Manual for CCRC: (Common Lisp Version) Computing
Reference Classes Statistical Reasoning Shell v. 2.5

R. P. Loui

CCRC implements a subset of Kyburg's rules for statistical inference. The system states from
1961 and is briefly described in "The Reference Class," (H. Kyburg Philosophy of Science 50,
1982). Consult the paper "Computing Reference Classes" (R. Loui, in Kanal, L. and Lemmer, J.,
Uncertainty in Al, v.1, North-Holland 1987) for a precis of the ideas underlying this program. This
document is only the skeleton of a manual. It is designed to get the novice on the program as
quickly as possible, and to provide some guidance for advanced questions. This piece of
software is the extended version of... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Cf Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Loui, R. P, "User's Manual for CCRC: (Common Lisp Version) Computing Reference Classes Statistical
Reasoning Shell v. 2.5" Report Number: WUCS-89-08 (1989). All Computer Science and Engineering
Research.

https://openscholarship.wustl.edu/cse_research/721

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F721&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F721&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F721&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F721&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F721&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F721&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F721&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/721?utm_source=openscholarship.wustl.edu%2Fcse_research%2F721&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/721

User's Manual for CCRC: (Common Lisp Version) Computing Reference Classes
Statistical Reasoning Shell v. 2.5

R. P. Loui

Complete Abstract:

CCRC implements a subset of Kyburg's rules for statistical inference. The system states from 1961 and is
briefly described in "The Reference Class," (H. Kyburg Philosophy of Science 50, 1982). Consult the paper
"Computing Reference Classes" (R. Loui, in Kanal, L. and Lemmer, J., Uncertainty in Al, v.1, North-Holland
1987) for a precis of the ideas underlying this program. This document is only the skeleton of a manual. It
is designed to get the novice on the program as quickly as possible, and to provide some guidance for
advanced questions. This piece of software is the extended version of a prototype principally intended to
assist Al research on reasoning with uncertainty. This program is a small prototype extended so that it
can be patched into larger experimental systems.

https://openscholarship.wustl.edu/cse_research/721?utm_source=openscholarship.wustl.edu%2Fcse_research%2F721&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/721?utm_source=openscholarship.wustl.edu%2Fcse_research%2F721&utm_medium=PDF&utm_campaign=PDFCoverPages

USER’S MANUAL FOR CCRC:
(COMMON LISP VERSION)
COMPUTING REFERENCE CLASSES,
STATISTICAL REASONING SHELL v. 2.5

R. P. Loui

WUCS-89-08

June 1989

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 83130-4889

ABSTRACT

CCORC implements a subset of Kyburg’s rules for statistical inference. The system dates
from 1961 and is briefly described in " The Reference Class,” (H. Kyburg, Philosophy of Science 50,
1982). Consult the paper "Computing Reference Classes" (R. Loui, in Kanal, L. and Lemmer, J.,
Uncertainty in Al v. 1, North-Holland 1987) for a precis of the ideas underlying this program.

This document ts only the skeleton of a manual. It is designed to get the novice on the
program as quickly as possible, and to provide some guidance for advanced questions.

This piece of software is the extended version of a prototype principally intended to assist
Al research on reasoning with uncertainty.

This program is o small prototype extended so that it can be patched into larger experi-
mentel systems.

User’s Manual for CCRC: (Common) Computing Reference Classes
Statistical Reasoning Shell
Software version 2.6, 11/21/88

R. Loui
Manual wersion 2,1

1. First Glances.
1.0. Getting Started.

To get started, enter kcl and load either "prob.l" {interpreted) or
"prob" (compiled).

1.1. Parts Inventory.

size filename
arith.lisp*
globals.lisp¥*
kbstuff.lisp*
kyburg.lisp#*
printing.lisp*
prob.l*
probkerns.lisp*
relstats.lisp*
sets.lisp*
struct.lisp*
xp.lisp*

[
BWW-JwkRHMNRWwNG

ja

1.2. Sketch.

CCRC implements a subset of Kyburg’s rules for statistical inference.
The system dates from 1961 and is briefly descriked in "The Reference Class,™
(H. Kyburg, Philosophy of Science 50, 1982). Consult the paper "“Computing
Reference Classes™ (R. Loui, in Kanal, L. and Lemmer, J., Uncertainty in AIL,
v. 1, North-Holland 1987} for a precis of the ideas underlying this program.

This document is only the skeleton of a manual. It is designed to get
the novice on the program as quickly as possible, and to provide some guidance
for advanced questions.

Jul 5 10:57 1988 manual Page 2

1.3, History.

This piece of software is the extended version of a prototype
principally intended to assist AL research on reasoning with uncertainty.
Version 1, originally called IND begun in 1984 in Franz, was based on
backward-chaining and proved unwieldy even for small problems. Version 2.1,
begun a year later, was completed overnight and did no deductive inference.
To it was added a forward chainer and counting, 2.2, and it was used in the
UNIXEX testbed for network usage prediction. 2.3 was the conversion to
Allegro Common on the MacIntosh which internalized the counting and
consolidated the interface. 2.4 was a revision in Kyoto Common that altered
data structures and added functionality. 2.5 (planned) adds more restrictions
on combinatorics.

Thus, this program is a small prototype extended so that it can be
patched into larger experimental systems.

1.4. TUse.

According to "Evidential Reasoning Compared in a Network Usage
Prediction Testbed" (R. Louli, Uncertainty Workshop IV, 1988) Kyburg’s system
is competitive among uncertainty methods that must do evidence combination,
Its major virtues are intuitive explanations of why a probability is the value
calculated (because we can always peoint to a reference class), and its ability
to combine a variety of sources, some of which might be sampling, some of
which might be subjective.

Use this system for uncertain reasoning with few but varied
statistical sources. It is not as good as other methods at crunching large
data quickly. Query time should be on the order of a few seconds to a few
minutes. It is a good method when we have to make the best of the few data
that we have.

1.5. Example.

The system is designed to take a knowledge base such as

(setg KBASE ' (
{% (home win) (.4 .5))
{(MEM wg home)
1)

which says that wg (wednesday’s game) is a member of the class home, and the
frequency of wins among home games is the intexrval [.4, .5], then take a
query such as

(prok 'wg ‘win)
and compute the value (.4 .5) for the probability.
1.6. Extended Examples.
The succession of examples that follows is fairly self-explanatory. I
will annotate only briefly. In a later section, I discuss two more complex
examples in more detail. The present section is designed just to give an idea

of the inputs and outputs in the program’s most basic mode.
The first example shows the most basic query, which is almost the

Jul 5 10:57 1989 manual Page 3

same as above. "no dis" says that there was no disagreement between the
candidate and the challenger.

(new-kbase)

(setg KBASE ‘ {
{($ (home win } (.3 .8)}
(MEM wg home)}
})

{print KBASE)

{print (P :x ‘wg :Z ‘win})

< new candidate % HOME (.30 .80}
no dis > % HOME (.30 .80)

((0.3 0.8}))

The next example is shows reasoning from two non-conflicting
statistical sources. (I ...} is the operator for intersecting sets.
"add" has to do with combinations of statistical sources, which result in
sets formed with the "XP" operator.

(new-kbase)

(setg KBASE ' (
{3 {(home win) (.3 .8}}
(% (night win)} (.4 .6})
{MEM wg (I home night})}

1)
{print KBASE})
(print (P :x "wg :2 'win))

& {0 1)HOME NIGHT
add; (.22 .86)

&{0 1)HOME NIGHT
add; (.22 .86)

< new candidate % NIGHT (.40 .60}
no dis > % (XP (I NIGHT} (I HOME)})} (.22 .86)
no dis > % (XP (I NIGHT) (I HOME}) (.22 .86)

ne dis > % HOME (.30 .80)
no dis > % NIGHT (.40 .60}

({0.4 0.6000000C00000001))

This example shows reasoning when there are two conflicting
sources.

(new-kbase)

(setg KBASE ' {
(% (home win)} (.3 .8))
(% { night win } (.4 .9))
(MEM wg (I home night))

)
(print KBASE)

(print (P :x ‘wg :2 ‘win))

Jul 5 10:57 1989 manual Page 4

&{(0 1)YHOME NIGHT
add; (.22 .97)

&(0 1)HOME NIGHT
add: (.22 .87)

< new candidate % HOME (.30 .80)

no dis > % (XP (I NIGHT) (I HOME}) (.22 .987)
no dis > % (XP (I NIGHT) (I HOME}) (.22 .97)
no dis > % HOME (.30 .80Q)

failed > % NIGHT (.40 .90)

< new candidate % NIGHT (.40 .90)

no dis > % (XP (I NIGHT} (I HOME)} (.22 .97)
no dis > % (XP (I NIGHT} (I HOME))} (.22 .97)
failed > % HOME (.30 .80)

< new candidate % (XP (I NIGHT) (I HOME)) (.22 .97}
no dis > % (¥P (I NIGHT) (I HOME)) (.22 .97)

no dis > % (XP (I NIGHT) (I HCME)) (.22 .87)

no dis > % HOME (.30 .80)

no dis > % NIGHT (.40 .90)

((0.2222222222222222 0.9729729729729729))

This example introduces statistical sources that are summaries of
sampling from classes. ‘"interval" indicates that samples were converted
to intervals at the (default) acceptance level, T"pass" indicates that a
combinaticon of sources was contemplated, but considered redundant.

(new—kbase)
{setq KBASE ' (
(s% (home win) (10 7})
{e% (night win) (6 4))
{(s% { (I home night) win } (2 1))
(MEM wg (I home night)}
))
{print KBASE)
(print (P :x 'wg :Z2 'win))

interval (10 7} at 0.9 is (.45 .87)
interval (6 4) at 0.9 is (.36 .88)
interval (2 1} at 0.9 is (.13 .87)

& (0 1)HOME NIGHT
add; (.32 .98)

& (0 2)BOME (I HOME NIGHT}
pass;

&{(1l 2)NIGHT (I HOME NIGHT)
pass;

&{0 1 2)HOME NIGHT (I HOME NIGHT)
pass;

Jul 5 10:57 1989 manual Page 5

< new candidate % HOME (.45 .87)

no dis > % (XP (I NIGHT) (I HOME)}} (.32 .98)
no dis > % HOME (.45 .87)

no dis > % NIGHT (.36 .88)

no dis > % (I HOME NIGHT) (.13 .87)

((0.4539573930541266 0.8675294821361947))

The next example introduces the idea of recorded data, which may
be aggregated into sampling information. Each REC statement is a datum, with
some known properties. ‘'counting" says what properties are being matched with
each REC statement, and thereafter follows line-by-line a report of which
properties matched. "reflect™ has to do with a disagreement that may be
ignored because of a subset relation. The query is processed twice, the
second time to show the lack of distinction between "home" and "(home}" in
version 2.6 of this program.

(new-kbase}
(setgq KBASE ' {
{REC (recnum r001} (home £} (win t))
(REC (recnum r002) (win t)}
(REC (recnum x003) (home t} (night t} (win £))
(REC (recnum x004) (night t) {(win t))
(REC {recnum r005) (home t) (night t} (win £))
(REC {recnum r006) {win t})
(REC (recnum r007) (night t} {win £))
(MEM wg (I home night})
})
(print KBASE)
{print (P :x ‘wg :2 ‘win :count})
(print (P :x ‘wg :Z 7 (win)} :count})

--->counting (({(I HOME NIGHT) WIN))
((NIGHT NIL))

((NIL (WIN)))

(((I NIGHT HOME) NIL))

((NIGHT (WIN)))

(((I NIGHT HOME) NIL))

((NIL (WIN}))

((HOME (WIN)))
interval (4 1) a
interval (2 0) a

t
t
interval (7 4) at
interval (3 1) at

9 is (.06 .63)
9 is (0.0 .55)
.9 1is (.30 .81)
9 is (.08 .73)

&{0 1)NIGHT (I NIGHT HOME)
pass;

& (0 2)NIGHT NIL

Jul 5 10:57 1989 manual Page 6

pass;

&(1 2) (I NIGHT HOME) NIL
pass;

& {0 3)NIGHT HOME
add; (.01 .82)

&(1 3) (I NIGHT HOME) HOME

pass;
& {2 3)NIL HOME
pass;
&{(0 1 2)NIGHT (I NIGHT HOME) NIL
pass;
&(0 1 3)NIGHT (I NIGHT HOME)} HOME
pass;
& (0 2 3)NIGHT NIL HOME
pass;
&(1 2 3) (I NIGHT HOME) NIIL HOME
pass;
< new candidate % NIGHT (.06 .63)

no dis > % (¥XP (I HOME) (I NIGHT)) (.01 .82}
no dis > % NIGHT (.06 .63)
failed > % (I NIGHT HOME) {0.0 .55)

< new candidate $ {(XP (I BOME) (I NIGHT)) (.01 .82)
no dis > % (¥p (I HOME) (I NIGHT)) (.01 .82)

no dis > % NIGHT (.06 .63)

failed > % (I NIGHT HOME) (0.0 .55)

< new candidate % (I NIGHT HOME) (0.0 .55)

reflect > % (¥XP (I HOME) (I NIGHT)) (.01 .82)

reflect > % NIGHT (.06 .63}

no dis > % (I NIGHT HOME) (0.0 .55)

reflect > % NIL (.30 .81}

reflect > % HOME (.08 .73)

({0.0 0.5497713746075072))

~-—->counting ({{(I HOME NIGHT) (WIN)})
((NIGHT NIL})

({NIL ((WIN})))

{((I NIGHY HOME) NIL))

((NIGHT ((WIN))))

Jul 5 10:57 1989 manual Page 7

(({I NIGET HOME) NIL})
((NIL ((WIN}}}))

((HOME ((WIN})))

interval (4 1) at 0.9 is (.06 .63}
interval (2 0) at 0.9 is (0.0 .55}
interval (7 4) at 0.9 is (.30 .81)
interval (3 1)} at 0.9 is (.08 .73)

&(0 1)NIGHT (I NIGHT HOME)

pass;

&{0 2)NIGHT NIL
pass;

&(1l 2) (I NIGHT HOME) NIL
pass;

& {0 3)NIGHT HOME
add: (.01 .82)

&(1 3) (I NIGHT HOME) HOME

pass;

&(2 3)NIL HOME
pass;

&{0 1 2)NIGHT (I NIGHT HOME) NIL
pass;

&(0 1 3)NIGHT (I NIGHT HOME) HOME
pass;

&{(0 2 3)NIGHT NIL HOME
pass;

&(1 2 3) (I NIGHT HOME) NIIL HOME
pass:
< new candidate % NIGHT (.06 .63)

no dis > % (XP (I HOME) (I NIGET)} (.01 .82)
no dis > % NIGHT (.06 .63)
failed > % (I NIGHT HOME) (0.0 .55)

< new candidate % (XP (I HOME)} (I NIGHT)) (.01 .82)
no dis > % (XP (I HOME) (I NIGHT)) (.01 .82)

no dis > % NIGHT (.06 .63)

failed > % (I NIGHT HOME) (0.0 .55)

< new candidate % (I NIGHT HOME) {(0.¢ .55)
reflect > % (XP (I HOME) (I NIGHT)} (.01 .82)
reflect > % NIGHT (.06 .63)

no dis > % (I NIGHT HCME) (0.0 .55)

reflect > % NIL (.30 .81)

reflect > % HOME (.08 .73)

Jul 5 10:57 1989 manual Page 8

((0.0 0.5497713746075072))

1.7. Data Structure Sketch.

The data structures can be very simple and are only converted into
mere efficient structures when the first query is made. So the simplest
applications can be run with concern only for KBASE, a list of statements.
Forward chaining inference can be added with IBASE, a list of forward chaining
rules. There are three good ways to add to KBASE. They are (acc-k),
(faster—acc-k}, and (fastest-acc-k). There is one good way to add to IBASE.
It is {acc-i). KBASE will eventually be copied and split into pieces, called
MEMBASE, IFFBASE, ACCBASE, %BASE, and RECBASE., It is ({kbase-sub) that does
this dirty work, and it does so automatically whenever, say, an IFF statement
is sought and IFFBASE has not yet been constructed. Since this is automatic,
only KBASE need be stored and restored. However, it is insufficient to (setg
KBASE nil); instead, one should use (clear—-kbase-only), which sets all the
lists to nil.

IBASE will eventually be copied and split intoe two pieces, called
FINDBASE and UNIFYBASE, FINDBASE stoxes all the FIND rules in a recursive
hash table. UNIFYBASE is just a list that contains AND rules and UNIFY rules
and should be kept short for efficiency. (relevant-rules) is the best way to
access something in FINDBASE,

1.8. Kyburg Sketch,

Kyburg’s procedure starts with frequency data in the form of
intervals, for example,

{(% { (weekend) (logged-on Jjackson))} (.2 .4}).
Sampling data must be converted into frequencies. This is done by
approximating narrowest binomial confidence intervals at some level of

confidence. Some of these intervals can be combined on purely
set~theoretic grounds, For example,

(% ((in-use castor}) (logged-on jackson)) (.3 .5) }.
can be combined with the interval above to give

(% {((¥P (weekend} (in-use castor)} {logged-on jackson})
(g(.2, .3) g(.4, .5) })

where (XP a b) is

{<x, y> : a holds of x; b holds of y; and (logged-on jackson} holds
of x iff it holds of y }

(in the % statement, the target property, (logged-on jackson) should
really be a cross product (X (logged-on jackson) (logged—-on jackson)),
but we just ignore this}.

and

Jul 5 10:57 1989 manual Page 9

g(x, y) =xy/(1 - x -y + 2xy).

These constructions are discussed in the references given above (particularly
Loui, 1987).

Of these structures that contain sets and asscociated intervals, one
must give the probability. The one that does is called the reference
structure, which contains the reference class and the probability
interval. According to Kyburg, there is a subset of all these structures
that is most interesting, A structure belongs to this subset if it
"reflects™ all cthers with which it "disagrees.®™ A structure reflects
anothexr 1f its class is more specific. Two structures disagree when their
intervals do not nest and are not equal. Among the strucutres that belong
to this subset of all the structures, the reference structure is the one
with the narrowest interval {one can prove that all the intervals of all
the structures in this subset do nest).

If there are ¢ properties given, there may be 2”¢ = n relevant
frequency statements, and there may be as many s = 2”n XP constructions,
though the number of XP constructions worth considering decreases quickly on
average, as the number of relevant frequency statements grows, for fixed c.
Kyburg’s requirement is computed in C(s”72), though there should be a data
structure allowing C(s log s), which keeps track of both the
interval-narrowness order and the class-specificity order.

1.9, Complex Examples.

The following knowledge base is interpreted to mean that wg
{(wednesday’s game} 1s played at home and at night, in the rain, and on
natural turf. Of 13 night games whose outcome was observed, 8 have been
wins. Of 3 home night games, 2 have been wins. Of 2 home night games in
the rain, 1 has been a win. The general frequency of wins on natural turf is
the interval (.4, .8].

Note that the terms wg, home, night, etc., belong to the usexr’s
language. Sometimes it is convenient to use (home} or {(pitcher gooden) to
refere to classes; sometimes it is better to use home or pitecher-gooden.
These are choices to be made by the application designer.

{new—kbase}
{setg KBASE ’ {
(s% ({(night win) (13 8})
(s% ((I home night) win} (3 2))
(s% ((I home night rain) win} (2 1})
(2 (n—turf win) (.4 .8})
{MEM wg (I home night)}
{MEM wg (I rain n-turf})
))
(P :x "wg :2 'win :no-trace)

The query directs us to compute the probability of the sentence
(MEM wg win)
given this knowledge. The walue returned is

((0.4028042236307067 0.7914687696131544})

Jul 5 10:57 1989 manual Page 10

Here is a more involved example that demonstrates much of the
functionality. The understanding of this knowledge base and this
computation is one of the goals of this document.

The (mapc ‘acc-i ...) part specifies gsome rules for IBASE, the
forward chaining production-like deductive reasoner, The first rule, for
instance, says that whenever (home) is found, (n-turf) is added. The
(defun ...) statement at the end defines the truth conditions for a predicate
that the user wants introduced into the language; it specifies when win-p
holds of a recorded game, when it fails to hold, and when there is
insufficient information recorded about the game to determine its truth
value.

In the KBASE are two new kinds of statements. The {(nc%>s ...)
statement says that this is statistical information that should not be coered
into a hypothetical sample when counting recorded games to update statistical
information. And if there is conflict with the results of counting recorded
games,and creating a sample from this class, then this statistical statement
should dominate. The second kind of hitherto unfamiliar statement is the
(ACC-AT ...) statement. These simply say that the contained statement should be
accepted at acceptance levels equal to or less than the specified value.

(new-kbase)
{mapc "ace=~i ' {
({(find (home})
(add {(n-turf)))}
((and (find (home)) (find (night})) (add (home-night})))
)

(mapc "acc-k 7 {

{(s% ((home} (win)})} (3 2})
(%3 { (I (home) (night)} (win)) (.4 .6))
{nc%>s (nil (win)) (.1 1})

(MEM tg (I (home) ({pitcher gooden)))
{MEM wg (home}))
(REC (recnum r001) (pitcher gooden) (home t) (win t))
{(REC {(recnum r002) (win t))
(REC (recnum x003) (home t)} (night &} (win £))
(ACC-AT .8 (MEM tg (night}))
(ACC~-AT .7 (IFF (MEM wg (win)} (MEM wg (win-p gooden))))
)}
(defun win-p (p r)
(cond
{({and (equal ' (win t) (assoc ‘win (cdr r}))
(equal p (assoc ’pitcher (cdr r}))))
({and (assoc ‘win {(cdr r)) (assoc ’'pitcher (cdr r)))
ff)
(t nil)
3

Consider the queries

(P :def 'tg ' {win) :count :bind)
which asks for the probability that tg, tuesday’s game, is in the set
denoted by (win), asks that the probability be based on statistical

information informed by counting any available records, and asks that the
probability value be bound as a result; and

Jul 5 10:57 1989 manual Page 1l

(P :def 'wg ' (win) :graph :iter :count)

which asks for the probability that wg, wednesday’s game, is in the set
denoted by {(win), asks that the records be counted, asks that the calculation
be done iteratively over a list of acceptance levels (and uses the default
list, since a list is not supplied here)}, and graphs each resulting
probability interval.

They produce the following output, where the default value of TRACE
was t. The output for the first query shows the result of counting REC
statements in KBASE to update samples. For each record, it indicates the
relevant properties that hold in the record that are common to the target
individual. Also indicated is whether the target property held, reflected
here when (win} or NIL appears. Next the output shows the conversion of
samples into intervals at the default acceptance level, which had been set to
.9. Then it shows the attempt to add for our consideration four combinatiocons
of statistical sources, all of which it chose not to add. It next shows how
each candidate statistical source fared against other statistical socurces, and
finally shows the bound value which is the probability interval. The output
for the second query graphs the probability intervals for various values of
acceptance level.

...user command is... (P DEF 'TG * {WIN) COUNT BIND}
—-——>counting (((I (N-TURF) (HOME) (PITCHER GOCDEN}} (WIN)))
{({I (N-TURF) (HOME)) NIL))

{((NIL ((WIN)}))

{({(I (N-TURF) (PITCHER GOODEN) (HOME))} ({{(WIN))})

interval (1 1) at 0.9 is (.29 1.0)

interval (5 3} at 0.9 is (.28 .85)

&(0 1) (I (N-TURF) (PITCHER GOCDEN) (HOME}) NIL

pass;
&(0 2) (I (N-TURF) (PITCHER GOODEN) (HOME)) (I (N-TURF} (HOME)})
pass;
&(1 2)NIL (I (N-TURF) (HOME})
pass;
&§(0 1 2) (X (N-TURF) (PITCHER GOODEN) (HOME)) NIL (I (N-TURE)
(HOME))
pass:;
< new candidate % (I (N-TURF) (PITCHER GOODEN) {(HOME}) (.29 1.0)
no dis > % (I (N-TURF) (PITCHER GOODEN) (HOME)) (.29 1.0)

no dis > % NIL (.10 1}
reflect > % (I (N-TURF) (HOME}) (.28 .8%5)

((0.2905129316293615 1.0})

>
..user command is...(P DEF 'WG " (WIN) GRAPH ITER COQOUNT)
0 .1 .2 .3 .4 .5 .0 i .8 .9 1.G

Jul

.99
.95
.90
.85
.80
.75
.70
.65
.60
.55

5 10:57 1989 manual Page 12

.17
.24
.28
.32
.35

.24
.26
.28
.31

.92)
.88)
.85)
.83)
.80)
.79)
.76)
.74)
.72)
.69)

Jul 5 10:57 1%8% manual Page 13

2, Syntax of Language.

2.0. B8ets.

Sets are the basic building blocks. Note that the set of home
games can be denoted by

home

or by
(home}

In software version 2.6, if both forms are used, they denote the same set
(this is a change from 2.5). The latter form is more useful when predicates
are used or when there is an indicator function to determine membership. For

example,
{(pitcher gooden)

denotes the set of games in which gooden was the pitcher.
Intersections are denoted by I-prefixes

(I a b)
(I home night)
{I (home) (night)} (pitcher gooden})

and certain subsets of cross products are used temporarily by the system,
indicated by XP-prefixes,

(XP a b}
which denotes the set

{<x, y> : (AND (MEM x a) {MEM x b)
(IFF (MEM x Z) (MEM y Z}))}

where Z is the current target property of a query.
(NOT a) is the recommended form of complement, but no inference is

currently performed involving this prefix.

2.1. Statements in IBASE.

The idea has been to provide enough expressiveness for necessary
forward chaining, but not so much that the system spends more time doing
deductive inference than statistical inference. A more general unifier
and forxward chainer could be plugged in (see the functions associated with
struct.lisp: (defun expand (pred-list} and struct.lisp: (defun match-bind
(pred-list rule-car a-pred) }.

Note that statements should be accepted into IBASE (using acc-i)
before statements are accepted into KBASE (using acc-k) sc that the proper
forward chaining can be done at acc-k time.

Note that properties added by forward chaining are themselves queued
for forward-chaining. Let’s hope the chaining always terminates.

Jul 5 10:57 1989 manual Page 14

T rules.

ex. (T (ADD (always—true}})}
says that (always-true) is added to all lists of
properties.

syntax. (T (ADD [propl}) [... other ADD exprs ...])

FIND rules.

@x. ((FIND (home)) (ADD (grass})) (ADD {deep-outfield}))}

says that whenever (home) appears, add the properties
{grass} and (deep-outfield}.

So (home} becomes

{I (home} (grass) {(deep-outfield)) and

(I (home) (night)) becomes

(I (home) (night}) (grass) {(deep-outfield)).

syntax. { (FIND [propl}) (ADD [prop2]) [... other ADD exprs ...])
ref. struct.lisp: dif-find-rule (rule)
effect of acc-i. also puts the rule in FINDBASE hashtable.

VAE-UNIFY rules.

ex. { (VAR-UNIFY (pitcher 7?x}) (VAR-BIND (with ?x)))

says to add {(with ?x)} whenever (pitcher ?x) is found:;
where ?x is substituted appropriately.

So (I (pitcher gooden) (home)} becomes
(I (pitcher gooden) (with gooden) (home)).

ex. { (VAR-UNIFY (hit-batsman ?x ?y})
(ADD (imperfect-game}) (VAR-BIND (base-on-balls 7?y}))

says to add (hit-batsman) and the result of binding
(base-on-balls ?y) with the unifier of ?y, whenever
(hit-batsman ?x ?y) is successfully unified.

So (hit-batsman gooden duncan) becomes
(I (base-on-balls duncan} {(imperfect-game)
(hit~batsman gooden duncan)).

syntax. ((VAR-UNIFY (prop [...vars...J]})) [...ADD or VAR-BIND exprs...])

note. Variables must occur at the top level in a list. So
(double-play-combo ?x backman) is ok, and so is (?x ?y) and (?x),
but ?x is unacceptable, since it is not in a list, and so is
{bob (went ?x)), since the variable occurs below the

Jul 5 10:57 1989 manual Page 15

top-level.
note. Variables in var-bind not used in var-unify are set tec nil.
note. Currently, the first successful unification terminates
attempted unification with subsequent properties on a
list. 8o if
(I (hit-batsman gooden duncan} (hit-batsman myers gibson))
is expanded, the result is
(I (base-on-balls duncan) (imperfect-game)
{hit-batsman gooden duncan)
({hit-batsman myers gibson)).

This can be altered, but the shortcut saves inference time.

ref. struct.lisp: Adif-unify-rule (rule)

AND rules.

ex. { (AND (VAR-UNIFY {ss ?x)) (VAR-UNIFY (Zb ?y}})
(VAR-BIND (double-play-combo ?x ?y)}))

will convert (I (ss elster} (2b backman)}) into
(I (double-play-combo elster backman}) (ss elster) (Z2b backman}).

syntax. ((AND (... VAR-UNIFY or FIND exprs ...])
[...ADD or VAR-BIND exprs...]J)

note. unification fails if a variable is not bound to the same
value in both expressions. So the rule
(AND (VAR-UNIFY (ss 7?7x)) (VAR-UNIFY (2b ?x}))
would fail on (I (ss elster) (2b backman)}, and since
there is no backtracking, it would also fail on
{I (ss elster) (Zb backman} (2b elster)).

ref, struct.lisp: 4if-and-rule (rule}

Obviously, most of this forward-chaining can be improved by
putting in a better forward-chainer, or by rewriting the system in PROLCG.
The function (expand ...} and its sub-functions are all that need to be
altered.

2.2. Statements in KBASE.

Statements in the knowledge base are currently of the following
recognized types:

MEM statements.

ex., {MEM wg (night))

Jul 5 10:57 1989 manual Page 16

syntax.

ref,

acc—-k.

says that wg is an element of the set (night).

(MEM [x] [Y]}
says that x is an element of Y.

struct.lisp: if-mem-stmt (stmt)

alsc puts on MEMBASE.

REC statements.

ex.

syntax.
struct.lisp: if-record-stmt (stmt)

ref.

acc-k.

note,

note.

note.

note.

note.

(REC (recnum 001} (home t) (night t) (win £})

says that 001 1s a game at night at home that was not a win.
This is our principal way of including sampling data.

A REC statment is the cons of 'REC and an association list.
also puts on RECBASE.

struct.lisp: rec-match (rnum)
will return the most recent REC statement
matching recnum rnum.

at the moment, REC statements are not individuated by
recnum, and recnum’s need not appear, though this may
change in future versions.

the (c¢dr) of a REC statement is a record, alsc an assoc list,
and we will say that properties can hold of a record.

properties can hold of a record, t, their negations
can hold of a record, £, or there may be insufficient
data to tell if a property or its negation holds, nil.

to check i1f a property holds of a REC statement, we first
check 1f the property names a bound function. Examples are
(home) and (pitcher gooden} and (double-play-combo elster backman}.

{home)} :
If thexe is no function bound to ‘home, then it returns
the {(assoc) of "home on the record.

{(pitcher gooden}:
(pitcher gooden) is treated differently because it is a 1list.
If no function is bound to ‘pitcher, then we do an (assoc) of
‘pitcher on the record. If the slists match, return t; if
not, return £. If there is no asscciation for ‘pitcher in
the association list, return nil.

(double-play-combo elster backman):
If "double-play-combo is bound, then we eval this s-expression
after appending the record as the third argument. The
definition of double-play-combo might look like this:

(defun double-play-combo (X y r)

Jul 5 10:57 1989 manual Page 17

{cond
{({(and (equal =z (cadr (assoc ‘ss r})}
)

)
)

{equal y (cadr (assoc '2b r}) ')
{{and (assoc ’'ss r) (assoc "2Zb r)} £)
{(t nil)
1)
(Yes, the 't is redundant, but improves readability}. In

fact, 1f ’'pitcher had been bound, it could have been bound to

{defun pitcher (x r)
{cond
{(equal x (cadr {(assoc 'pitcher r})} "t)
{{asscc ‘pitcher r) 'f)
(t nil)
})

and had the same effect.

ACC-AT statements,

ex. (ACC-AT .7 (MEM wg (night)})

says that the MEM statement should be accepted at oxr below
acceptance level .7,

syntax. (ACC-AT [lev] [statement]}
ref. struct.lisp: if-acc-at-stmt (stmt)
acc-k. alsc puts on ACCBASE,

IFF statements.

ex. (IFF (MEM wg (win)) (MEM tg {(win)})
says that wg is in (win} just in case tg is in {(win}.

syntax, {IFF [statement] [statement]}
ref. struct.lisp: if-iff-stmt {stmt)
acc-k. also puts on IFFBASE.

note. The only useful IFF statements are those that connect two
MEM statements. They are treated symmetrically, so
(IFF sl s2) need not accompany (IFF s2 sl).

STAT statements.

ex. (% (home win) (.3 .7})})

says that the per cent of wins among the members of home
is the interval [.3, .7].

note. when counting records to create samples, a % statement is

5 10:57 1989 manual Page 18

coerced to a hypothetical sample that would vield the reported
bounds at the current acceptance level.

syntax. (% ({Y] [2]}) ([p] [g])}
ex. (s% ({home) (win)) (4 2})

says that a sample from (home) of size 4 yielded 2
elements of (win) and two elements of (NOT (win)}

syntax. (s% ([Y] [Z]) (Is] I[x1))
ex. (ks% ({I home night)} win)} (.8 (10 3}) (.7 (11 4)))

says that at or below .7, the sample 4 of 11 is
appropriate for wins among home night games, and above
that, but at or below .8, the sample of 3 of 10 is
appropriate. These rules are defeasible, so when they
both hold, the more specific rule (the former) takes
precedence.

syntax. (ks% ([¥] [2]) ({levl] ([sl] [ril)} ([lev2] ([s21 [x21))} . . .)
note. lev’s must be decreasing.

ex. {(nc%>s ({I (home} (night}) (win))}
ex. (nc%<s ({(I (home) (night}} {(win)}

ex. (nc%=s ((I (home)} ({night}} {(win))
ex. (nc%?s ((I (home) {night}} (win))

o T W,
W Www

3))
.5))
.5))
.5))

these statements say that the interval [.3, .5] reports

the frequency of (win)s among (home) (night) games, and

that these should not be coerced to hypothetical samples
when adding relevant REC statements to samples (s%, ks%, and
coerced % statements).

The operater (>, <, =, and ?) says what to do in relation to
samples that are constructed by counting REC statements:

>s says to throw out any sample with the same sampling
class and target property.

<8 says to replace by any sample.

=s says to keep both and allow them to reflect each other.

?s says keep both and do not allow them to reflect each
other,

syntax. (nc%lrel-opls ([Y] [Z]} ([p] [al))
ref, strxuct.lisp: if-stat-stmt (stmt)
acc-k. also puts on %BASE.

AND statements.

ex. (AND (MEM wg (home)) (MEM tg (I (home) (night))})
syntax. {AND s1 s52)

Jul 5 10:57 1989 manual Page 19

ref, struct.lisp: if-and-stmt (stmt)
acc-k. simply mapc’s AND statements.

RESTRICT statements. (unimplemented)

ex. (RESTRICT (win) ({{home) (night} ({(rain}))} ({(grass)}) }

which says that candidate reference classes for

{(win) are either intersections of combinations of
{home), (night)}, and (rain}, (273} or combinations of
{(grass}, (271).

syntax. (RESTRICT [target-prop] {([list-1] [list-2] . . . })

Jul 5 10:57 1989 manual Page 20

3. Functions and Variables of Interest.

3.1. Interface Functions.

kbstuff.lisp: new-kbase~only ()
+ clears KBASE and all its sublists.
kbstuff.lisp: new-ibase-only ()
+ clears IBASE and all its sublists.
kbstuff.lisp: new-kbase ()
kgztuff.lisp: new-bases ()
+ ¢lears KBASE and IBASE and sublists.
+ clears KBASE and IBASE and sublists.

kbstuff.lisp: save-bases ()

+ writes KBASE on kbase.l and IBASE on ibase.l.

kbstuff.lisp: acc-i (rule)
+ accepts a forward chaining rule intc IBASE.
+ rule syntax appears in 2.1.

kbstuff.lisp: forward-chain (s}

+ forward chains a statement using current IBASE.

kbstuff.lisp: acc-k (stmt)
+ accepts a statement into KBASE and its sublists.

+ does forward chaining, uses include to check for redundancy,
and checks toc see if KBASE should be split.

kbstuff.lisp: faster-acc-~k (stmt}
+ accepts a statement into KBASE and its sublists.

+ does forward chaining, uses cons with no check for redundancy,

Jul 5 10:57 1989 manual Page 21

and checks to see 1f KBASE should be split.

kbstuff.lisp: fastest-acc-k (stmt)
+ accepts a statement into KBASE and its sublists.

+ does n¢ forward chaining, uses cons with no check for
redundancy, and does not check to see if KBASE should

ke split.

probkerns.lisp: P (&rest args)

+ calculates the probability of a statement with several
options, which may cccur in any order, and all of
which have default values. The options are

rquery, :prob, :def, :defaunlt, :x, :2,
:given, :gensym,

tbind, :print, :show, :graph,

1lev, :level, :max-combs,

:count,

:iter, :lev-list, :std-iter,

itrace, :major-sections, :why,

rauto, raugment, :no-auvto, :no-—-augment

and are explained next,

:query, :prob, :def, :default, :x, :Z, :given, :gensym
are ways of specifying what query is to be
calculated.

- follow :query and :prob with a MEM
statement, ' (MEM x Z}.
ex. (P :query ' {MEM wg win})

—~ follow :def and :default with an x and a 2.
ex. (P :def "wg “win)

- follow :x with an x.
ex. (P :x "wg)

(it will use the previous target
property if none 1s specified)

- follow :Z with a Z.
ex. (P :x 'wg :2 ‘win)
ex. (P 2 "win}

(it will use the previoug target
individual if none is specified)

- follow :given with a list of properties
being given, or else an intersection
of properties, or else a MEM
statement, or an AND statement.

If not a MEM statement, it is

assumed this is a Y, and we accept
the statement *(MEM ,x ,Y).

:given affects KBASE only temporarily.

Jul

5 10:57 1989 manual Page 22

:bind,

ex.

(P :def ‘win 'wg :given ' {I home night})
ex,

(P :def ‘win "wg :given ' (home night})
ex.

(P :def ‘win 'wg :given ' (MEM wg home}}
- ;gensym says the same as :x (gensym).

It is a useful way to generate an

arbitrary individual quickly,

in conjunction with :given.

ex,

(P :Z2 'win :gensym :given ’ (home night})
- if query information is missing,

the previous query’s x and/or 2

are substituted. So (P} makes

sense 1f x and Z are understood;

it’s not the exact quexry as

before; rather, it is the default

query with the last x and 2.

:print, :show, :graph

are ways of specifying what to do with the
result. The default is to bind.
:graph is assumed on :std-iter.
:print and :show are the same thing.

:lev, :level, :max-combs

rcount

riter,

rtrace,

rauto,

set level and max-combs temporarily.

- follow :lev or :level with a real in
[0, 1]. Actually, levels {.5, 1]
are the ones that make sense.

- follow :max-combs with an integex;
effective range is 3 to 6 or maybe 7.

says to include counts of REC
statements for this query.
- note that the default is NOT te¢ count.

:lev-list, :std-iter

says to iterate the calculation.
- follow :lev-list with a list of
levels, such as "{.99 .88 .5}).
- 1f a :lev-1list is not provided,
the standard iter list is used.

:major-sections, :why

sets trace temporarily.

- describes major computations as they
proceed.

- producs a {why) output after the query
1s processed.

raugment, :no—auto, :no-augment

temporarily forces the flag for augmenting
KBASE with ACC-AT results of queries,

Jul 5 10:57 198% manual Page 23

+ some examples:

(P :bind :iter :count :trace :given ' {gl g2)
:prob ftl :gensym}

(P :bind :no-trace :print :given *(MEM tl Y1) :lev
iprob f(MEM t1 Z1})

(P :show :level .66 :x "tl :2 "21)

(P :def "t1 ’"21)

(P ":given ’ (home} :gensym)

(P x " (win))

(P :count)

{P :std-iter :count)

(P :lev-list 7 (.99 .8 .54} :graph)

probkerns.lisp: why ()

+ attempts to do a trace of why the reference class is
in fact the reference class; takes BEST~STAT
and checks for reflection and disagreement with
RELEVANT-STATS.

+ will work only after a query.

probkerns.lisp: why-not (class)

+ attempts to explain the failure of the inference
structure based on the class supplied.

+ will work only after a query.

kbstuff.lisp: close-kbase ()
+ finds all the meaningful queries in KBASE and
attempts to find their probabilitles, iterating
over levels.

+ a very ambitious computation which you should expect to
have to interrupt.

kbstuff.lisp: forward-chain-kbase ()

+ mapcar’s 'forward-chain on KBASE and
sets the result to KBASE,

+ this resets the sub~bases, e.g. ACCBASE.

3.2. Environment Functions.
arith.lisp: Dbest-interval (s r lev)

+ returns the narrowest interval at lev for a sample of r

Jul 5 10:57 1989 manual Page 24

from s.
arith.lisp: invert-interval (pair lew)
+ attempts to invert the interval at the level, e.g., (.4 .7)
at .9 inverts to (24 13), since 13 out of 24 at .9
yields the interval (.39 .69); (.4 .7) at .8 inverts
to (11 6) because 6 out of 11 at .8 yields (.38 .70).

kbstuff.lisp: lev-additions ()

+ returns detached ACC~AT sentences that are acceptable at
the current ACC~LEVEL.

kbstuff.lisp: find-queries ()

+ finds meaningful queries in XBASE.
kyburg.lisp: dif-undefeated (stat slist)

+ t if stat is undefeated in slist.
kyburg.lisp: if-defeated (stat slist)

+ t if stat is defeated in slist.
kyburg.lisp: if-stat-reflects (statl stat2)

+ t if (set-o0of statl) reflects (set-of stat2).
kyburg.lisp: best-of (stat-list)

+ calculates the best stat among stat-list; that is,
essentially, finds the strongest undefeated stat.

probkerns.lisp: prob (x Z)

+ 0ld form of (P :def x 7}
probkerns.lisp: count-prob (x Z)

+ old form of (P :def x 2 :count}
probkerns.lisp: GP {(given-set prop)

+ 01ld form of (P :gensym :Z prop :given given-set)
probkerns.,lisp: GN (given-set prop)

+ old form of (P :gensym :Z2 prop :given given-set :count)
probkerns.lisp: match-class {(class stat-list)

+ finds the stat in stat-list with (set-of) matching class.

probkerns.lisp: match-YZ (¥Z stat-list)

Jul 5 10:57 1889 manual Page 25

+ finds the stat in stat-list with ({set-of) (prop-of}}
matching YZ.

relstats.lisp: find-relevant-stats (x 2)
+ finds relevant stats for x and Z.
relstats.lisp: XP-augment (source-list)
+ adds interesting combinations of source-list stats.
sets.lisp: if-subset (setl set?2)
+ checks to see if setl is subset of set2.
sets.lisp: i1f-reflects (setl set2)
+ checks if setl reflects set?, including XP forms of sets.
struct.lisp: contains many useful functions for breaking apart
sentences, and changing forms, etc., such as
make-set (x)
x—-0f (stmt)
Y~of (stmt)
YZ-of (stat)
set-of (statl)
prop—-of (statl)
make~stat (stmt)
create-stat (YZ-info)
reverse—flatten (sexup)
no-order {(a b) t)
struct.lisp: rec-match (rnum)
+ returns the first REC statement with (recnum rnum).

struct.lisp: incr-stat (stmt incr)

+ increments s% stmt with incr, where incr is usually
{1 1y or *(1 0)..

struct.lisp: bound-pair-of (statl)

+ computes interval of all kinds of stat statements
at current ACC-LEVEL, including s% and ks% stmts.

struct.lisp: props~heclding-here (count-pair this-rec)
+ determines which props in count-pair,
e.g. { ((home) (night)) (win})
hold in this-rec.

struct.lisp: determine-tvalue (prop rec)

+ determines whether prop is &, £, or nil (indeterminate)

Jul 5 10:57 1989 manual Page 26

on a rec stmt,
struct.lisp: expand (pred-list)
+ forward chains a list ¢of predicates.
struct.lisp: zrelevant-rules {trigger)

+ for triggexr, such as ' (FIND {(pitcher gooden)},
returns possibly relevant in FINDBASE hash table.

xp.lisp: =xp-two-bounds (boundl bound2)
+ mapcar’s the xp function, g, to the bounds.
xp.lisp: xp-stats (statl stat2)

+ produces the XP combination of two stats.

3.3. Global Variables of Interest.

This is how globals.lisp: initializes all of the global variables.

(setg TRACE t)
; TRACE controls trace output

{setqg ACC-LEVEL .9)
; acceptance level (not affected by probk)
{setq MAX-COMBS 3)
; maximum number of XP-combs
{setq ADD-COMBS t)
; add XP-combs
(setq AUTO-AUGMENT t)
; augment KBASE when statement is acceptable at a level
(setqg AUTO-AUGMENT-WRITE nil)
; write augments of KBASE to kbase.l

(setq ITER-CALC nil}

; flag that is set when iter-kernel is being used -- see verbose()
{setg CLOSE-KBASE~TRACE t)

; trace on close-kbase fn

(setg BEST-STAT 7 (% (nil nil) (0 1)))
; most recent best-statl
(setg RELEVANT~-STATS nil)
; most recent relevant-stats
{setg XP~STATS nil}
; most recent xp-stat list
(setq RELEVANT-STATS-BEFORE nil)
; most recent stats after counting, but before posting of nc%>s’s
(setqg KB-STAT-LIST nil)
; most recent stats from XKBASE prior to counting
(setg A-KBASE nil)
; most recent result of (augment-KBASE)
{setqg MSPEC-CLASS nil}

Jul 5 10:57 1989 manual Page 27

; most recent find-most-spec-class calculation

{setqg INCLUDE~STATS-ON-COUNTS t)
: includes % and s% (and n% ...} stmts on count-prob queries
{setq FORWARD-CHATIN-ALL nil)
; expands form of sets all the time, not just on query input or
acc-k

{setg KBASE nil)
(setqg $BASE nil)
(setg MEMBASE nil)
{setqg IFFBASE nil)
{setq ACCBASE nil)
(setq RECBASE nil)
(setq IBASE nil)
{setqg FINDBASE (make-hash-table})
(setqg UNIFYBASESSSstarted$$s nil)
(setq UNIFYBASE nil)

{setq X nil)
{setq 2 nil}
; last x and 2 in queries

(defun verbose ()
(and TRACE (not ITER-CALC})
)

{setqg MAJOR-SECTION-TRACE nil)
; prints beginning of major sections of computation

3.4, All Functions.
The folleowing is a list of ALL the functions currently defined, of
which there are 238.

3.4.1. By Package.

arith: fact (x)

arith: short-comb {(a b)

arith: binomial-summand (s x p)
arith: normal-z-for (alpha)

arith: interpolate (x table)

arith: dinterpolate-sub (x last remain)
arith: linear-interp (x xl1 vyl %2 y2)
arith: one-less-half (alpha)

arith: k-alpha (lev)

arith: x-~bar (s r)

arith: +-minus-interval (base vary)
arith: best-interval {(s r lev)
arith: sqg (x)

arith: invert-interval {pair lev)
arith: dirty-invert-inv (1b ub lev)
arith: solve-n (m d k)

arith: se¢lve-r (n m)

arith: dinvert-inv (lb ub lev)

arith: err-fn (paixl pair2)

Jul 5 10:57 1989 manual Page 28

arith: bisect-on-d (m d lev lo hi)

arith: width ()

arith: mid (x y)

arith: bisect (hi-fn lo hi)

globals: verbose ()

kbstuff: lev-additions ()

kbstuff: lev-filter-KBASE (stmt)

kbstuff: acc-if-level-high-enough (stmt-acc-level real-stmt)
kbstuff: possibly-augment (x & ran-stat)
kbstuff: try-to-augment (acc-level x Z lbound)
kbstuff: poorer-lev (stmt x Z min-level)
kbstuff: Dbetter-lev (stmt x 2 min-level)
kbstuff: find-queries ()

kbstuff: find-gqueries-sub (kbase-remains queries)
kbstuff: more—-queries (mem-pair queries)
kbstuff: find-target-props {(Z kbase-remains props)
kbstuff: possibly-add (queries x Y-list)
kbstuff: close-kbase ()

kbstuff: close-kbase-k (query-list lev-list)
kbstuff: do-all-gqueries {(query-list)

kbstuff: save~bases ()

kbstuff: acc~k {stmt)

kbstuff: faster-acc-k (stmt)

kbstuff: fastest-acc-k (stmt)

kbstuff: forward-chain (s)

kbstuff: forward-chain-kbase ()

kbstuff: try-to-insert (x Z min-level)

kbstuff: kbase-sub (name-of-sub-base filter-fn)
kbstuff: new-kbase-only ()

kbgtuff: new-ibase-only ()

kbstuff: new-kbase ()

kbstuff: new-bases ()

kbstuff: ibase-sub (name-of-sub-base)

kbstuff: acc-i (rule)

kbstuff: hash-find-rule (rule fbase)

kbstuff: include-unify-rule (rule)

kbstuff: recursive-hash (rule remain-key current-table)
kyburg: if-undefeated (stat slist)

kyburg: if-defeated (stat slist)

kyburg: Aif-stat-reflects (statl stat2)

kyburg: if-dis ({statl stat2)

kyburg: if-stronger (statl stat2)

kyburg: Dbest-of (stat-list)

kyburg: best-of-r (ordstr checklist)

kyburg: best-of-retrospective (statl remainlist)
printing: princt (x)

printing: wvprint ()

printing: print-new-candidate (statl)

printing: print-sets (select-list stat-source)
printing: pr-print (stat)

printing: pretty-print-pair (pair)

printing: rbound-pair-of (stat)

printing: show-legend ()

printing: show-graph (r bounds)

printing: round2 (x)

printing: p-very-roundZ (x)

5 10:57 1989

printing:
probkerns:
probkerns;

manual Page 29

p-very-short (x)
P (&rest args)
P-sub (result pending-lewvs kernel x z key-pri key-gra

key-why lev-flag)

probkerns:
probkerns:
probkerns:
probkerns:
probkerns;:
probkerns:
probkerns:
probkerns:
probkerns:
probkerns:
probkerns:
probkerns:
probkerns:
probkerns:
probkerns:
probkerns:
prebkerns:
probkerns:
probkerns:
probkerns:
probkerns:
probkerns:
probkerns:
probkerns
probkerns:
probkerns:
probkerns:
rrobkerns:
probkerns:
probkerns:
probkerns:

.

prob (x Z}

probl (pair)

probk (x 2 k)

prob-kernel (x Z)

prob-kernell (pair)

prob-iter (x Z)

prob-iter—-show (x Z}

iter (k-probfn x Z)

iter-sub (k-probfn x Z lev-list)
iter-show (kernel-probfn x Z)
iter-show-sub (kernel-probfn x Z lev-list)
prob-iter-sub (x 2 lev~list)
prob-iter-show-sub (% Z lev-list)
prob-sub (x Z ran-stat)
generic-probk (x 2 k)
generic-prob~kernel (x Z)
generic-common-kernel (x Z stats)
generic-show (x Z ran-stat)

why ()

why-not (class)

why~kernel {(class)

why—-not—~kernel (class)
match-class (class stat-list)
match-YZ (YZ stat-list)
count-prob (x Z)

count-probl {(pair)

count—-probk (x Z k)
count-prob-iter (x Z)
count—-prob-iter-show (x Z)
count~prob-kernel (x Z)
count-prob-list-check (x Z lev-add count-pairs

count-pairs-remain)

probkerns:
probkerns:
probkerns:
probkerns:
probkerns:
probkerns:

count-prob-ex (x 2 lev—-add count-pairs)
data-prop-extract (count-pairs zxec-list)

prob-aggregate (x 2 data-list-count count-pairs lev-add)
before-and-after—~stat {(one-list)

post-after-stats {after slist)

count-into-kb-stat-list (count-pairs data-list-count

agg-list-virgin)

probkerns:
probkerns:
probkerns:
probkerns:
probkerns;
probkerns:
probkerns:
probkerns:
probkerns:
probkerns:
relstats:

relstats:

relstats:

augment-agg-list (count-pairs data-list-count agg-list)
maybe~incr (one-stat datum-for-this-pair)
if-sub-con-pre (x y)

GP (given-set prop)

GN (given-set prop)

G (given-set prob-fn prop)

G-sub (given-set prob-fn x prop)

given (condition prob-query)

given-sub (condition prob-query)
new-given-sub (condition)
find-bicond-pairs (x 2 lev-add so-far)
find-relevant-stats-pre (x Z)
find-relevant-stats (x 2 lev-add)

5 10:57 1989

manual Page 30

relstats: find-relevant-stats-sub (x 2 lev-add)

relstats: find-relevant-stats-mspec (count-pairs lev-add)
relstats: relevant-stat-list-check (Z most-spec-class lev-add)
relstats: relevant-stat-list (Z lev-add most-spec-class so-far)
relstats: find-most-spec-class (x lev-add so-far)
relstats: XP-augment (source-list)

relstats: also-add-maximal-XP (result scurce-list)
relstats: maybe~add-this-comb (select-list source-list result)
relstats: maximal-select-list (try-list socurce-list)
relstats: maximal-sel-sub {whole-list untested source-list)
relstats: maximal-selection (this remaining-tests source-list)
relstats: add-stat-combs (choose stat-source add-to)
relstats: add-this-comb (select-list stat-source add-to)
relstats: this-comb {select-list stat-source result)
relstats: add-or-pass {(stat add-to)

sets: if-subset (setl set?)

sets: if-onset (setl set2)

sets: share-prop (a b)

sets: if-sub-con (listl list2)

sets: if-any-sub-con {pl p2)

sets: df-any-sub-all-con ({(list-listl list-list?2)

sets; dif-reflects (setl set?2)

sets: make-explicit-xp (setl)

sets: flat-intersect (setl set2)

struct: make-list-if-nec (%)

struct: make-set (x)

struct: if-and-stmt (stmt)

struct: if-mem-stmt (stmt)

struct: x-of (stmt)

struct: Y-of {stmt}

struct: if-rec-stmt (stmt)

struct: if-record-stmt (stmt)

struct: rec—-match (rnum)

struct: if-acc-at-stmt (stmt)

struct: if-iff-stmt (stmt)

struct: if-stat-stmt {stmt}

struct: 1f-XP-stat-stmt (s}

struct: YZ-of (stat)

struct: set-of (statl)

struct: prop-of (statl)

struct: bound-pair-of (statl)}

struct: zright-pair-of (acc-at-1list)

struct: right-pair-of-sub (acc-remain result)

struct: simple-bound-pair-of (statl)

struct: compute-bound-pair (pair level)

struct: make-stat (stmt)

struct: mem-stmt-match {x Y stmt)

struct: categorical (stmt x Z)

struct: non-intersection (set)

struct: beginning-select (choose)

struct: follow-select-r (choose inc)

struct: increment-select (select-list from)

struct: increment-carry (from remain build)

struct: any-order (a b} t)

struct: dinclude (mem set)

struct: list-member (mem set)

Jul 5 10:57 1989 manual Page 31

3.4.

struct:
struct:
struct:
struct:
struct:
struct:
struct:
struct:
struct:
struct:
struct:
struct:
struct:
struct:
struct:
struct:
struct:
struct:
struct:
structkt:
struct:
struct:
struct:
struct:
struct:
struct:
struct:
struct:
struct:
struct:
struct:
struct:
struct:
struct:
struct:
struct:
struct:
struct:
struct:
struct:
struct:
struct:
struct:
struct:
struct:
struct:
struct:
struct:
struct:

insert (mem set ordfn unique)

app-prop (key val propname)

mapsmart (fn-name v-list)

mapsmart—-fast {(fn-name v-list)

v-current (v-remain)

all-last-v (list-of-lists)

v—next (v-remain)

cdr-or-repeat (some-list)

props-holding (count-pairs this-rec)
props-holding-here (count-pair this-rec)
props—holding-one (maybe-list-pre this-rec)
determine-tvalue (prop rec)

special-extract {(condition elist etrace)

extract (condition elist etrace)

create-stat (YZ-info)

null-stat (stmt)

incr-stat (stmt incr)

expand {pred-list)

expand-sub-first-time (pred-list result-list pending)
expand-sub-subsequent {pred-list result-list pending)
expand-sub-reenter ({(pred-list add-list result-list pendinag)
reverse~flatten (sexp)

reverse—-flatten-r (remain result)
relevant-rules—-first-time (trigger)
relevant-rules (trigger)

relevant-hash (remain-key current-table)
no-order (a b} t}

augment-list (old new exclusion-list)
expand-this (pred-list adds-so~far a-pred i-rules)
try-to-add (pred-list a-rule a-pred adds-so-far)
and-summarize (res-list}

combine~unifications (remain result)
combine-these (remain result)

if-and-rule ({(rule}

if-find-rule {(rule)

if-unify~rule (rule)

if-and-rule-car (rule-car)

if-find-rule-car (rule-~car)

if-unify-rule-car (rule-car)

match-bind (pred-list rule-car a-pred)
first-match-bind-sub (pattern pred-list)
match~bind-sub (pattern datum bindings)
is-new-variable (token bindings)

is-old-variable (token bindings)

is-variable (token)

try-to-add-sub (bindings rule-cdr adds-so-far)
add-till-empty (bindings rules adds-so-far)
replace-vars (bindings template)
replace-vars—-sub (bindings remains so-far)

Xp: Xp-two-sets (setl set2)

xp: insert-sub {head ins-list)

Xxp: xp-two-bounds (boundl bound2)
Xp: xXp-two-bound-pailxs (pairl pair2)
Xp: xXp-stats (statl stat2)}

Sorted.

Jul 5 10:57 1989 manual Page 32

+-minus-interval (base vary) :arith

acc—i (rule) :kbstuff

acc-if-level-high-enough (stmt-acc-level real-stmt) :kbstuff

acc~k (stmt} :kbstuff

add-or-pass (stat add-to} :relstats

add-stat-combs (choose stat-source add-to} :relstats

add-this-comb (select-list stat-source add-to} :relstats

add-till-empty (bindings rules adds-so-far} :struct

all-last-v (list-of-lists}) :struct

also—add-maximal-XP (result source-~list) :relstats

and-summarize (res-list) :struct

any-order (a b} :struct

app-prop (key val propname) :struct

augment-agg-list (count-pairs data-list-count agg-list) :probkerns

augment~list (old new exclusion-1list) :struct

before-and—~after-stat (one-iist) :probkerns

beginning—select {choose} :struct

best-interval (s r lev) :arith

best-of (stat-1list} :kyburg

best-of~r {(ordstxr checklist) :kyburg

best—-of-retrospective (statl remainlist) :kyburg

better-lev (stmt x 2 min-level} :kbstuff

binomial-summand (s r p) :arith

bisect (hi-fn 1o hi} :arith

bisect-on-d (m d lev lo hi) :arith

bound-pair-of {statl) :struct

categorical (stmt x 2} :struct

cdr-or—-repeat (some-list) :struct

close~kbase () :kbstuff

cleose-kbase~k (query-list lewv-1ist) :kbstuff

combine-these (remain result) :struct

combine-unifications (remain result) :struct

compute-bound-pair (pair level) :struct

count-into-kb-stat-list (count-pairs data-list-count
agg-list-virgin) :probkerns

count-prob (x 2Z) :probkerns

count-prob-ex (¥ Z lev-add count-pairs) :probkerns

count-prob-iter {x 2} :probkerns

count-prob-iter-show (x 2) :probkerns

count-prob-kernel (x Z) :probkerns

count-prob—-list-check (x Z lev-add count-pairs
count-pairs—-remain) :probkerns

count-probl (pailr) :probkerns

count-probk (x Z k) :pxobkerns

create-stat (YZ-info)} :struct

data-prop-extract (count-pairs rec-list) :probkerns

determine-tvalue (prop rec) :struct

dirty-invert-inv (lb ub lev) :arith

do-all-queries (guery-list) :kbstuff

err—-fn (pairl pair2) :arith

expand (pred-list) :struct

expand-sub-first-time (pred-list result-list pending} :struct

expand-sub-reenter (pred-list add-list result-list pending) :struct

expand-sub-subsequent (pred-list result-list pending} :struct

expand-this (pred-list adds-so~far a-pred i-rules} :struct

5 10:57 1989 manual Page 33

extract {condition elist etrace) :struct

fact (x) :arith

faster-acc-k (stmt} :kbstuff

fastest—-acc-k (stmt} :kbstuff

find-bicond-pairs (x 2 lev—-add so-far) :relstats
find-most~spec~class (x lev-add so-far) :relstats
find-queries () :kbstuff

find-queries-sub (kbase-remains queries) :kbstuff
find-relevant—-stats {(x Z lev-add) :relstats
find-relevant-stats-mspec (count-pairs lev-add) :relstats
find-relevant—stats-pre (x 2Z) :relstats
find-relevant-stats-sub (x Z lev-add) :relstats
find-target-props (Z kbase-remains props) :kbstuff
first-match-bind-sub (pattern pred-1list) :struct
flat~intersect (setl set2) :sets

follow-select-r (choose ing) :struct
forward-chain (s) :kbstuff

forward-chain-kbase ()} :kbstuff

G (given-set prob-fn prop) :probkerns

G-sub (given-set prob-fn x prop) :probkerns
generic-common-kernel (x Z stats) :probkerns
generic-prob-kernel (x Z) :probkerns
generic-probk {x Z k} :probkerns

generic~show (x Z ran-stat) :probkerns

given (condition prob-query) :probkerns
given-sub (condition prob-query) :probkerns

GN (given-set prop) :probkerns

GP {(given-—set prop) :probkerns

hash-find-rule (rule fbase) :kbstuff

ibase-sub (name-of-sub-base) :kbstuff
if-acc-at-stmt ({stmt) :struct

if-and-rule (rule) :struct

if-and-rule-car (rule-car) :struct

if-and-stmt {stmt) :struct

if-any-sub-all-con (list-listl list-1list2) :sets
if-any-sub-con (pl p2) :sets

if-defeated (stat slist) :kyburg

if-dis (statl stat2) :kyburg

if-find-rule (rule) :struct

if-find~rule-car (rule-car) :struct

if-iff-stmt {(stmt) :struct

if-mem-stmt (stmt) :struct

if-onset (setl set2) :sets

if-rec-stmt ({(stmt) :struct

if-record-stmt {stmt) :struct

if-reflects (setl set2) :sets

if-stat-reflects (statl stat2) :kyburg
if-stat-stmt (stmt) :struct

if-stronger (statl stat2) :kyburg

if-sub-con (listl list2) :sets

if-sub-con-pre (x y) :probkerns

if-subset (setl set2) :sets

if-undefeated (stat slist) :kyburg
if-unify-rule (rule} :struct

if-unify-rule~car {(rule-car) :struct
if-XP-stat-stmt (s) :struct

Jul 5 10:57 1989 manual Page 34

include (mem set) :struct

include-unify-rule (rule) :kbstuff

incr-stat (stmt incr) :struct

increment-carry (from remain build} :struct

increment-select (select-list from) :struct

insert (mem set ordfn unique} :struct

insert-sub (head ins-list} :xp

interpolate (x table} :arith

interpolate-sub (x last remain} :arith

invert-interval {(pair lewv} :arith

invert—-inv (1lb ub lev} ‘:arith

is-new-variable (tcken bindings} :struct

is-~old-variable (token bindings} :struct

is-variable (token} :struct

iter (k~probfn x Z) :probkerns

iter-show (kernel-probfn x Z} :probkerns

iter-show-sub (kernel-probfn x Z lev-list} :probkerns

iter-sub (k~probkfn x Z lev-list) :probkerns

k-alpha (lev) :arith

kbase—sub (name-of-sub-base filter-fn) :kbstuff

lev—-additions ()} :kbstuff

lev—-filter-KBASE (stmt) :kbstuff

linear-interp (x xl vyl x2 y2) :arith

list-member {(mem set) :struct

make-explicit-xp (setl) :sets

make-~list-if-nec (x) :struct

make-set (x) :struct

make—stat ({stmt) :struct

mapsmart (fn—-name v-list)} :struct

mapsmart—-fast (fn-name v-1list) :struct

match-bind (pred-list rule-car a-pred) :struct

match-bind-sub (pattern datum bindings) :struct

match—~class (class stat-list) :probkerns

match-YZ (YZ stat-list) :probkerns

maximal-gel-gsub (whole-list untested source-list} :relstats

maximal-select-list (try-list source-list) :relstats

maximal-selection (this remaining-tests source-list) :relstats

maybe~add-this-comb (select-list source-list result} :relstats

maybe~incr (one-stat datum-for-this-pair} :probkerns

mem~stmt-match (x Y stmt) :struct

mid (x y) :arith

more-queries (mem-pair queries) :kbstuff

new-bases (} :kbstuff

new-glven-sub (condition) :probkerns

new-ibase-only () :kbstuff

new-kbase ()} :kbstuff

new-kbase-only (} :kbstuff

no-order {(a b} :struct

non-intersection (set) :struct

normal-z-for (alpha) :arith

null-stat (stmt} :struct

one-less—half (alpha) :arith

P {&rest args) :probkexrns

P-sub (result pending-levs kernel x z key-pri key-gra key-why
lev-£flag) :probkerns

p-very-round2 (x} :printing

Jul 5 10:57 1989 manual Page 35

p-very-short (x) :printing

pocrer-lev (stmt x Z min-level) :kbstuff

possibly-add (queries x Y-list) :kbstuff
possibly-augment (x Z ran-stat} :kbstuff
post-after-stats {(after slist}) :probkerns

pr-print (stat) :printing

pretty-print-pailr (pair) :printing

princt (%} :printing

print-new-candidate (statl) :printing

print-sets (select-list stat-source) :printing

prob (x Z} :probkerns

prob-aggregate (x Z data-list-count count-pairs lev-add) :probkerns
prob-iter (x Z) :probkerns

prob-iter—-show (x Z)} :probkerns

prob-iter-show-sub (x 2 lev-list) :probkerns
prob-iter-sub {(x Z lev-list) :probkerns

prob-kernel {(x Z) :probkerns

prob-kernell (pair) :probkerns

prob-sub (x 2 ran-stat) :probkerns

probl (pair) :probkerns

prokk (x Z k) :probkerns

prop-of (statl) :struct

props-holding ({(count-pairs this-rec) :struct
props-holding-here (count-pair this-rec) :struct
props-holding-one {maybe-list-pre this-rec) :struct
rbound-pair-of (stat) :printing

rec-match {rnum) :struct

recursive-hash (rule remain-key current-table) :kbstuff
relevant-hash {(remain-key current-table) :struct
relevant-rules (trigger) :struct
relevant-rules-first-time (trigger) :struct
relevant-stat-list (Z lev-add most—spec-class so-far) :relstats
relevant-stat-list-check (Z most-spec-class lev-add} :relstats
replace-vars (bindings template) :struct
replace~vars-sub (bindings remains so-far) :struct
reverse—flatten (sexp) :struct

reverse—flatten—-r (remain result) :struct
right-pair-of (acc-at-list) :struct

right-pair-of-sub {(acc-remain result) :struct

round2 (x) :printing

save-bases () :kbstuff

set-of (statl) :struct

share-prop (a b} :sets

short-comb (a b} :arith

show-graph (r bounds) :printing

show-legend ()} :printing

simple~bound-pair-of {(statl) :struct

solve-n {m d k) :arith

solve-r (n m) :arith

special-extract (condition elist etrace) :struct

s5g (x}) :arith

this-comb (select-list stat-source result) :relstats
try-to—add (pred-list a-rule a-pred adds-so-far) :struct
try-to-add-sub (bindings rule-cdr adds-so-far)} :struct
try-to-augment {(acc-level x Z lbound) :kbstuff
try—-to-insert (x 2 min-level) :kbstuff

Jul 5 10:57 1989 manual Page 36

v-current (v-remain) :struct
v-next (v-remain} :struct

verbose ()} :globals

vprint (x) :printing

why ()} :probkerns

why~kernel (class) :probkerns
why-not {class) :probkerns
why-not-kernel {(class) :probkerns
width (%) :arith

X-bar (s r) :arith

x-of (stmt} :struct

XP~augment (source-list) :relstats
x¥p-stats (statl statZ2) :xp
xp-two-bound-pairs (pairl pair2) :xp
xp~two-bounds (boundl bound2) :xp
Xp-two-sets (setl setl) :xp

Y-of (stmt} :struct

YZ-of (stat) :struct

Jul 5 10:57 1989

4, Explanation of Output.
Finally,

line by line.
The query

(P :def “tg ! {win)

produces the output

--->counting (((I (N-TURF)

(((I (N-TURF) (HOME)) NIL))
((NIL ((WIN))))

{({I (N-TURF)

{EOME)

(PITCHER GOODEN)

manual Page 37

let’s try to understand the ouput on the queries above,

:count :bind)

(PITCHER GOODEN}) (WIN)))
; says that this is the
list of count-pairs being
counted on RECBASE.

(HOME}) {((WIN))}))

; apparently there were three REC
statements, and for each, we show
which properties held.

interval (1 1)} at 0.9 is (.29 1.0)

interval

&{0 1) (I (N-TURF)

(5 3) at 0.9 is (.28

{PITCHER GOCDEN)

.85)

; 8% statements, the result of
coercing % statements and updating
statistical info by counting, is
finally converted to intervals.

; next, we consilder each

combination of % statements, to

see if we want to add their XP
combination, "add" means it was
added; "pass" means it wasn‘t.

&(0 1) refers to the combination
being attempted, and the corresponding
classes, whose combination is being
contemplated, are printed.

(HOME)})} NIL

pPass;

&{0 2y (I (N-TURF) (PITCHER GOODEN) (HOME)} (I (N-TURF) (BOME)})
pass;

& (1 2YNIL (I (N-TURF} (HOME))
pass;

&(0 1 2)(I (N-TURF) (PITCHER GOODEN) (HOME})} NIIL (I (N-TURF)

{HOME))

Jul 5 10:57 1989 manual Page 38

pass;

<

; we now consider each statistical
statement, in (partial) order of
strength. For each candidate
statistic, we print how it fares
against all the other statistics,
until a disagreement is found, or
until it is discovered that this
is the best stat.

new candidate % (I (N-TURF)} (PITCHER GOODEN)} (HOME}} (.29 1.0)
no dis > % (I (N-TURF) (PITCHER GCODEN) (HOME)) (.29 1.0)

no dis > % NIL (.10 1)

reflect > % (I (N-TURF} (HOME)} (.28 .85)

((0.2905129316293615 1.0})

The query

; the value is bound.

:def "wg ' (win) :graph :iter :count)

produces the output

—————— O

_____________________________________ | (.17 .92)
________________________________ | (.24 .88)
____________________________ | (.28 .85)
_________________________ | (.32 .83)
_______________________ | (.35 .80)
_____________________ | (.38 .79)
___________________________ | (.24 .76)
_________________________ | (.26 .74)
_____________________ | (.28 .72)
___________________ | (.31 .69)

; this graphs the probability value at
each ACC-LEVEL, and shows the numeric
value. WNote that if AUTO-AUGMENT is
set, the probability is (1.0 1.0} when
the lower bound on the probability at
the last level exceeds the current
ACC-LEVEL, This would be printed as a
"+% instead of a "|"™ on the right
border. This doesn’t happen for (0.0
0.0) because we don‘t do inference
with (NOT).

Jul 5 10:57 1989 manual Page 39

5. Further Information.

Questions and problems should be directed to loui@wucsl.wustl.edu,
or kyburg@cs.rochester.edu.

	User's Manual for CCRC: (Common Lisp Version) Computing Reference Classes Statistical Reasoning Shell v. 2.5
	Recommended Citation
	User's Manual for CCRC: (Common Lisp Version) Computing Reference Classes Statistical Reasoning Shell v. 2.5

	tmp.1459809062.pdf.BvX0y

