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Chapter 1

Introduction to Billiards

This chapter presents a brief introduction to random billiards with microstructure

and explains the motivation behind the thesiswork. It also includes an overview

of the main results and some examples to illustrate them.

1.1 Random Billiards with Microstructure

Billiards are dynamical systems that have been well-studied by mathematicians

during the past half-century [9], [1]. A typical billiard describes the path that

a point particle travels inside a domain in R2 with piecewise smooth boundary,

alternating between straight-line motion and specular reflection (i.e. the angle of

incidence equals the angle of reflection) from a boundary, which we call the billiard

table. Therefore, a billiard is usually a deterministic dynamical system.

However, in this thesis, we are concerned with random billiards, which are

probabilistic dynamical systems akin to ordinary billiards, except the point par-

ticle’s elastic (i.e., no loss of speed) reflection with the billiard table may not be

specular. Instead, the particle’s post-collision angle is specified by a stochastic

(scattering) operator that depends, in general, on the pre-collision angle.
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In particular, my work focuses on billiards with microstructure, which are ran-

dom billiards that are derived in the following way. Consider the collisions of a

billiard particle with the macroscopically flat walls of a channel (i.e. billiard ta-

ble). Suppose that the walls have a microgeometry, i.e., a periodic microstructure

that is specified by a deterministic billiard system associated with a second bil-

liard table, Q. We call Q the billiard cell, and it takes the shape of one interation

in the pattern of the microstructure. See Figure 1.1.

Figure 1.1: A macroscopically flat channel with its periodic microstructure.

The particle’s angle of incidence, θ ∈ (0, π), is fixed, but the precise position,

r, that it enters one of the billiard cells, Q, of the microstructure, is random. Once

inside Q, the particle undergoes ordinary billiard reflection until it exits the cell

at angle Θ = Ψθ(r). See Figure 1.2.

Since r is generally assumed to be uniformly random on [0, 1], the post-collision

angle, Θ, is a random function, and the transition probabilities operator, P , that

describes the scattering process depends on the microgeometry of the billiard table.

2



Figure 1.2: A particle enters a billiard cell at position r and angle θ and exits at
angle Θ = Ψθ(r).

1.2 Motivation and the Markov Operator P

The transition probabilities operator, P , gives rise to a class of Markov chains

with continous state space. Hence, P is a Markov operator.

Remark. Recall that a Markov chain is a sequence of random variablesX1, X2, X3, ...

with the Markov property, that is, given the present state, the future and past

states are independent.

One of the main questions of Markov chains is to determine the stationary

distribution(s) and the rate of convergence to stationarity. It turns out that the

measure ν, which is given by dν = 1
2

sin θdθ and called the (Knudsen) cosine law

[8], is the (often unique) stationary measure, ν, for the types of billiards that we

will study.

The Markov operator P can be defined on L2([0, π], ν). Then P takes the form

(Pf)(θ) =

∫ 1

0

f(ψθ(r)) dr (1.1)

and, under reasonably general conditions, turns out to be a bounded, self-adjoint

operator [4].

A natural question for the study of billiards with microstructure is to determine
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how the spectrum and microgeometry of P are related. It has been shown that

the rate of convergence to stationarity is related to the spectral properties of P [2],

[6]. Of particular interest in connection with the spectrum is the spectral gap of P ,

i.e., the difference between 1 and the eigenvalue with the next highest modulus.

(The operators we are interested in are often compact so it makes sense to talk

about their discrete spectrum of eigenvalues.)

Another quantity, which seems at first to be very different from the spectral

gap and has not, as far as we know, been considered before in such a setting, has

to do with what we have termed the second moment of scattering.

Definition 1.1. Define the jth moment of scattering, j = 0, 1, ..., by

Ej(θ) := E[(Θ− θ)j] =

∫ 1

0

(Ψθ(r)− θ)jdr,

where E denotes expectation.

It has been observed through my numerical experiments (see Figures 1.3 and

1.4) and by analysis of some very specific examples, e.g., [6], that these two quan-

tities are very closely related to each other in many cases.

The significance of this relationship lies in the observation that the second

moment has a more intuitive geometric interpretation than the spectral gap and

can, in certain cases, be computed by elementary geometric calculations.

There are a few cases, however, for which
Eh2 (θ)

γ(h)

h→0−−→ 1 does not hold true. For

example, consider Figure 1.5.

A natural next step is to formulate a question concerning the asymptotic equal-

ity of the spectral gap and the second moment for certain parametric families of

random billards (e.g., the one described in Figure 1.6). We denote the Markov

operators associated with these parametric families by {Ph}, and require that as

the parameter h tends to 0, the second moment Eh2 (θ) also tends to 0, i.e., the

4
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Figure 1.3: A random billiard with microstructure that has its cell shape defined
by the graph (on the left) of h(1− x4) for x ∈ [−1, 1] is examined. On the right,
the ratio (y-axis) of the second moment (Eh2 (θ)) and the spectral gap (γ(h)) of the
associated Markov operator, Ph, tends to 1 as h tends to 0.
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Figure 1.4: A random billiard with microstructure that has its cell shape defined
by the graph (on the left) of h sinx for x ∈ [0, π] is examined. On the right, the
ratio (y-axis) of the second moment (Eh2 (θ)) and the spectral gap (γ(h)) of the
associated Markov operator, Ph, tends to 1 as h tends to 0.
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Figure 1.5: A Markov operator approximating the Ph associated with a mi-
crostructure cell shape that is defined by the graph of an isosceles triangle with a
rational base angle hπ is examined. The wild fluctuation in the spectral gap γ(h)
implies that its ratio with the second moment will not tend towards 1 as h→ 0.

reflection becomes more specular. In addition, the associated Markov chains are

assumed to be geometrically ergodic. In particular, for any delta measure δθ (not

concentrated on 0 or π), δθP
n
h

n→0−−→ ν in terms of total variation. Then we can

ask the following question for parametric families (e.g., the one in Figure 1.6) that

possess the aforementioned properties.

Figure 1.6: A random billiard with microstructure that has its cell shape defined
by the graph of h(1− x2) for x ∈ [−1, 1].

Question 1. Denote the spectral gap and second moment of Ph by γ(h) and

Eh2 (θ), respectively. Let θ be bounded away from 0 and π. Under what conditions

6



on a parametric billiard family will
Eh2 (θ)

γ(h)
−→ 1 as h→ 0?

Most of my current work has consisted of obtaining information, both numer-

ical and analytical, to help answer this question.

1.3 Main Results

The conjecture was originally suggested by a connection between Sturm -Liouville

operators and certain random billiards with microstructure.

Let Ph be the Markov operator associated with a parametric family of random

billiards with the properties described above, and let θ and Θ denote the incom-

ing and outgoing angles, respectively. We also define the absolute moments by

E j(θ) := E[|Θ − θ|j]. The main results of the thesis are rooted in a comparison

between the billiard Laplacian Ph − I and Legendre’s equation

(LΦ)(θ) =
1

2 sin θ

d

dθ

(
sin θ

dΦ

dθ

)

on the interval (0, π). For h > 0, we define a normalized billiard Laplacian,

Lh = Ph−I
l(h)

, on L2([0, π], ν), where l(h) is dependent on the geometric properties

of the parametric family. In addition, we write the moments and absolute moments

of scattering as Ehj (θ) and Ehj (θ), respectively, to show their dependence on the

parameter h.

Definition 1.2. We say that the billiard scattering family with perturbation pa-

rameter h satisfies the L-weak scattering condition if there is a c > 0 and,

for each h, a θh > 0 so that

1. Eh1 (θ) = ch2

2
cot θ + o(h2) and Eh2 (θ) = ch2 + o(h2) for all θ in [θh, π − θh],

2. Eh1(θ) = O(h), Eh2(θ) = O(h2), and Eh3(θ) = o(h2) for all θ in [0, π],

7



3. θh = o(h
1
2 )

We now consider parametric billiard families that satisfy the L-weak scattering

condition, so we may write the normalized billiard Laplacian as

Lh :=
Ph − I
ch2

c > 0.

Remark. It is important to observe that if a parametric billiard family satisfies

the L-weak scattering condition, its first and second moments approximate the

first and second coefficients of Legendre’s equation for small values of h.

With this in mind, it is reasonable that the following proposition holds.

Proposition 1.1. Assume that the L-weak scattering condition is satisfied by

a billiard scattering system with perturbation parameter h. Let Φ ∈ C3([0, π])

be such that Φ′(θ) = O(sin θ), so Φ′ vanishes to first order at 0 and π. Then

lim
h→0
||LhΦ− LΦ||2 = 0.

Now, a geometric study of the moments leads to the following main theorem.

Theorem 1.1. Consider a parametric billiard family whose microstructure con-

sist of cells with a piecewise smooth boundary given by a symmetric function

fh(x). Without loss of generality, we assume that the cell entrance has normal-

ized length 1 and lies on the x=axis with x ∈
[
−1

2
, 1

2

]
. Define the parameter

by h = sup
x∈[− 1

2
, 1
2 ]
|f ′h(x)|. Furthermore, suppose that lim

h→0

8

h2

∫ 1
2

0

(f ′h(x))2 dx exists.

Then lim
h→0
||LhΦ− LΦ||2 = 0.

1.3.1 Results About Eigenvalues and Eigenfunctions

Let Φn(θ) = Pn(cos θ), where Pn(cos θ) are the Legendre polynomials. It is

well-known in spherical harmonics that the Pn(x) form an orthogonal basis for

8



L2((0, π), ν) and are eigenfunctions for L with eigenvalues −1
2
n(n + 1). (Note

that our L is the standard Legendre operator multiplied by a factor of 1
2
.)

It is natural to ask whether the eigenvalues of Lh will converge to those of the

limit operator L. The following theorem provides an answer to this question.

Theorem 1.2. Let σ denote the spectrum of L. The spectrum of Lh converges to

a subset of σ ∪ {−∞} as h goes to 0.

1.3.2 Billiards in Higher Dimensions

So far, we have assumed that our billiard surface is in R2 and the associated

Markov operator is one-dimensional. One can ask if there are analgous results

about the convergence of Lh to L and the approximation of Lh’s spectrum in

higher dimensions. It turns out that we can prove a similar convergence theorem

in n-dimensions.

Consider point particle collisions on a parametric billiard family whose mi-

crostructures are give by the graph of functions fh : Rn → R (see Figure 1.7) with

the following two properties:

1. periodicity: fh(x+
∑
i

miaiei) = f(x), ai > 0, mi ∈ Z

2. symmetry fh(−x) = fh(x).

Let n(x) and n(x) denote the unit normal vector to the graph of fh at x ∈ Rn

and its orthogonal projection to Rn, respectively. We define the parameter h by

h = sup
x∈Tn

||n(x)||.

Let

A(h) :=

∫
Tn

n(x)∗ ⊗ n(x) dx,

where the n(x) arises from the graph of fh. Also, let Φ ∈ L2(Dn, dx), where Dn is

9



Figure 1.7: A collision of a point particle with a n+1-dimensional billiard surface.
r, v, and V are the orthogonal projections of the r, v, and V . We take v to be a
vector in the open unit disc Dn.

the n-dimensional unit disc and dx is normalized Lebesgue measure. Define

Lh =
Ph − I

2h2

and

LΦ =
n∑
i=1

ci
∂

∂xi
(1− ||v||2)

∂Φ

∂xi
,

where ci = lim
h→0

λi(h)

h2
and the λi’s are the eigenvalues of the operator A(h) associ-

ated to the particular fh we are examining. Note that this limit will exist in most

of the surfaces we consider.

The newly defined L reduces to the well-studied Legendre operator in dimen-

sion one. For this reason, L can be viewed as a higher-dimensions generalization

of the Legendre operator. As far as we know, this natural extension has not been

considered in other literature. Therefore, we will include a brief examination of

its spectral information later. For now, we will familiarize ourselves with L with

an example.
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Example 1.3. Consider a 2-dimensional random parametric billiard family whose

microstructure cells have the shape of a pyramid with a rectangular base (see

Figure 1.8). For simplicity, instead of l(h), we will denote the height of the

pyramid by l. In order to find L in this case, we only need to determine the values

of c1 and c2.

Figure 1.8: A random billiard with microstructure that has its cell shape defined
by a 3-dimensional rectangular-base pyramid. The height of the pyramid is de-
noted by l and the outward-pointing normal vectors to each face are represented
by ni, i = 1, 2, 3, 4.

A geometric calculation based on Figure 1.8 shows that

n1 =
1√

l2 +
a21
4

(
l, 0,

a1

2

)
n2 =

1√
l2 +

a22
4

(
0, l,

a2

2

)
n3 =

1√
l2 +

a21
4

(
−l, 0,−a1

2

)
n4 =

1√
l2 +

a22
4

(
0,−l, a2

2

)
.

Normalizing and projecting the normal vectors to R2, we obtain

n1 =
1√

l2 +
a21
4

(l, 0) n2 =
1√

l2 +
a22
4

(0, l)

n3 =
1√

l2 +
a21
4

(−l, 0) n4 =
1√

l2 +
a22
4

(0,−l).

11



The parameter h is given by max

{
1√

l2+
a21
4

, 1√
l2+

a22
4

}
. Assuming that a2 ≥ a1,

h =
1√

l2 +
a2

1

4

.

Observe that

n∗1 ⊗ n1 =
l2

l2 +
a21
4

(1, 0)∗ ⊗ (1, 0) = n∗3 ⊗ n3

n∗2 ⊗ n2 =
l2

l2 +
a22
4

(0, 1)∗ ⊗ (0, 1) = n∗4 ⊗ n4.

Since the area of the base is a1a2, it follows that

A(h) =
1

a1a2

[
a1a2

2

l2

l2 +
a21
4

(1, 0)∗ ⊗ (1, 0) +
a1a2

2

l2

l2 +
a22
4

(0, 1)∗ ⊗ (0, 1)

]
=

1

2

[
l2

l2 +
a21
4

e∗1 ⊗ e1 +
l2

l2 +
a22
4

e∗2 ⊗ e2

]

So

A(h) =


l2

l2 +
a2

1

4

0

0
l2

l2 +
a2

2

4

 .

It is immediate that the eigenvalues of A(h) are

λ1(h) =
l2

l2 +
a2

1

4

, and λ2(h) =
l2

l2 +
a2

2

4

.

12



We can now see that

c1 = lim
h→0

λ1(h)

h2
=

1

2

c2 = lim
h→0

λ2(h)

h2
=

1

2

4l2 + a2
1

4l2 + a2
2

.

Assuming that there are at most a finite number of collisions before each

billiard trajectory exits the cell, we have the following result concerning the con-

vergence of Lh to L in higher dimensions.

Theorem 1.4. Assume that a billiard scattering system with perturbation param-

eter h has microstructure given by the graph of a symmetric and periodic function

fh(x). Let h = sup
x∈Tn

||n(x)||, where n(x) is the orthogonal projection to Rn of

the unit normal to the graph of fh(x). Moreover, we assume that each billiard

particle collides with the walls of a cell surface at most k times before exiting

for some k > 0. Let Φ ∈ C3(Dn) and denote the eigenvalues of the self-adjoint

operator A(h) by λi(h). Suppose ci = lim
h→0

λi(h)

h2
exists for 1 ≤ i ≤ n. Then

lim
h→0
||LhΦ− LΦ||2 = 0.

We can also say a little more about the eigenfunctions of L. Notice that we can

view L as a symmetric operator on the smooth functions on Dn ⊂ [−1, 1]n. Let Pk

denote the kth Legendre polynomial on [−1, 1]n and let Πi : [−1, 1]n −→ [−1, 1] be

the ith coordinate projection map. Then for a multi-index m = (m1, ...,mn) ∈ Nn,

we define Φm as Φm :=
n∏
i=1

Pmi
◦ Πi|Dn .

Theorem 1.5.

{
Φm

}
m∈Nn

is a complete family of eigenfunctions for L and forms

a basis for L2(Dn, dx).

13



1.4 A Look Ahead

In Chapter 2, we become more familiar with the billiard map and the associated

Markov operator by delving into a discussion on the background material that is

necessary to present the main results. Next, we examine random billiard systems

in one dimension and explore the L2 convergence of Lh to L and the comparison

of the two operators’ spectra in Chapter 3. Then we consider billiard families

in higher dimensions in Chapter 4, where we generalize the Legendre operator

to n dimensions, study its spectral information, and prove a similar convergence

theorem for Lh and L.

14



Chapter 2

A detailed discussion on the

billiard map and P

We will now elaborate on the properties of the billiard map and the operator P

for random billiards with microstructure which possess the properties discussed

in the introduction. We will always assume that the boundary segment Γ0 (where

the particle enters the billiard cell Q) is flat and of normalized length 1.

2.1 The Billiard Map

Denote by Γ = ∂Q = ∪iΓ̃i the decomposition of the boundary of the billiard cell

Q into its smooth component curves, or walls. We call n the unit normal field

that points inward on each smooth component and orient the boundary of the cell

by requiring that Q is left of each Γ̃i. Moreover, let

Mi = {(q, v) ∈ Γ̃i : 〈v,n(q)〉 ≥ 0}

15



and define the collision space M asM = ∪iMi. Excusing the abuse of notation,

let the union of the boundaries of the Mi’s be called ∂M and M◦ = M\∂M.

Then let F : M −→ M denote the billiard map. (The detailed definition of F

can be found in [1].)

Consider x = (q, v) ∈ M◦. Let q′ be the first intersection of the ray q+tv, t > 0

with ∂Q and v′ denote the orthogonal reflection of v on the tangent space to ∂Q

at q′. If q′ is not a corner point (i.e. an endpoint to a wall) and v is not a tangent

vector to ∂Q at q′, then F(x) = (q′, v′).

Other items of interest include F±m, the iterates of F , and their associated

singular sets, S±m, which are defined using induction. Let S0 = ∂M, S±1 =

S0 ∪ {x ∈ M◦ : F±1(x) /∈ M◦}, and continuing this way,

S±(m+1) = S±m ∪ F∓m(S±m).

Also, let M̃ := M\ ∪∞i=−∞ Sj. It can be shown that M\S±1 are open sets and

F : M\S1 −→ M\S−1 is a smooth diffeomorphism. In addition, F has an

associated invariant measure on M, and F ’s iterates are smooth on M̃, which is

a dense Gδ-subset of M of full Lebesgue measure.

Define M = M0 as the subset of M that consists of pairs (q, v) such that

q ∈ Γ0. Let µ be the measure obtained by restricting and normalizing the invariant

measure on M to M . Note that µ is a probability measure. Then Poincaré

recurrence implies that there exists E0 ⊂M ∩M̃ such that E0 has full µ-measure,

and billiard orbits that begin in E0 will return to M and are non-singular. The

number of steps that the orbits take to return to M will be finite, so each x ∈M

has a neighborhood in M on which the return map is smooth, and all the points in

this open set return to M in the same number of steps as the orbit of x. It follows

that E0 is open, has full measure, and the first return map to M is well-defined and

16



smooth on it. Moreover, we can extend E0 to a set E that also contains singular

orbits that eventually still return to M . Then the first return map T : E −→ M

is defined for all vectors that enter the cell at angles close enough to 0 or π, and

all vectors that are based at the two endpoints of Γ0 are included in E0.

Let S1 and S−1 denote the singular sets of T and T−1, respectively. Note that

S1 and S−1 are compact subsets of M . Then T : M\S1 −→ M\S−1 is a smooth

diffeomorphism. We often consider T as a map from M to itself for simplicity and

call T the reduced billiard map on M . Observe that µ is T -invariant.

Defining I and V as I = [0, 1] and V = [0, π], we can parametrize M by writing

M = I x V . Denote by r ∈ I the position at which the particle enters Γ0 and by

θ ∈ V the angle the initial vector makes with the positive tangent unit vector to

the boundary. Note that this definition of θ differs from the usual one where it

is measure from the normal vector. As a consequence, µ = λ⊗ ν, where λ is the

Lebesgue measure on I and dν(θ) = 1
2

sin (θ)dθ.

2.2 The Markov Operator

Given a random billiard with microstructure whose cells have a symmetric shape,

we can define an associated Markov operator, P . Also called the collision operator,

P is the transition probabilities operator for certain Markov chains that will be

discussed soon. Using the notations for the billiard map and letting π2 : M −→ V

be the coordinate projection map, we define the operator P on L∞(V, ν) by

(Pf)(θ) =

∫
I

f(π2 ◦ T (s, θ)) ds.
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Then for each measurable A ⊂ V , the conditional probability that the post-

collision angle lies in A is given by

P (A|θ) := (P1A)(θ0).

In addition, if η is a signed measure on V and f ∈ L∞(V, ν), then P acts

naturally on η via the relation

(ηP )(f) = η(Pf),

where η(f) is the integral of f with respect to η. In particular, when η is the

probability distribution of pre-collision angles, then ηP will be the distribution of

post-collision angles. It is simple to check that another representation for ηP is

ηP = (π2 ◦ T )∗λ⊗ η, (2.1)

where the underscore asterisk denotes the push-forward of the measure. Using

Equation 2.1 and the T -invariance of µ, we can show that ν is the stationary

probability of P on V (i.e. ν is P -invariant) since

νP = (π2)∗T∗µ = (π2)∗µ = ν.

Let L2(V, ν) be the Hilbert space with the integral inner product < f, g >=∫
V

fg dν. Note that we usually deal with real functions, so the conjugation that

appears in the standard inner product is not necessary. We can combine the P -

invariance ν and an appeal to Jensen’s inequality to argue that P is a bounded

operator on L2(V, ν) of norm 1.
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2.3 The Markov chains determined by P

Consider the Markov chains that arise from the angles associated with the colli-

sions of billiard trajectories. Let R0, R1, ... be independent, uniformly distributed

random variables with values in I. In addition, let Θ0 be a random variable with

distribution η on V . (Θ0 can be thought of as the initial angle of the billiard

trajectory.) For n = 0, 1, ..., we define the random angle Θn+1 by

Θn+1 = π2(T (Rn,Θn)).

Then Θ1,Θ2, ... is the Markov chain associated to P with initial probability dis-

tribution η. It is easy to see that the transition probabilities are obtained using

the equation

Prob(Θn+1 ∈ A|Θn = θ) = P (A|θ) := (P1A)(θ).

Moreover, Prob(Θn ∈ A) = (ηP n)(1A). As shown in [4], under very general

assumptions, these Markov chains are irreducible and aperiodic. So ηP n will

converge to the stationary distribution ν as n → ∞ for any starting distribution

η.

2.4 Other Properties of P

The L2 dual of P is given by the following:

(P ∗f)(θ) =

∫
I

f(π2 ◦ T−1(s, θ))ds.
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Since the billiard cell Q has a symmetric shape, it turns out that P is self-adjoint

[5]. Therefore, its spectrum is contained in [-1,1].

Moreover, let M1 ⊂ M be the open subset consisting of the pairs (r, θ) such

that Ψ′θ(r) 6= 0, where Ψθ(r) := π2T (r, θ). Consider the partition of M into M1

and M2 = M\M1. Since T is smooth on the set E0 ⊂M , which has full measure,

we will disregard M\E0 for simplicity and assume that T is also smooth on M2.

Then we can write the Lebesgue decomposition of P as

P = α1P1 + α2P2,

where P1 is absolutely continuous with respect to ν and P2 is the singular part.

It can be shown that P1 is an integral operator on L2(V, ν). That is,

(P1f)(θ) =

∫
V

ω1(θ, φ)f(φ) dν1(φ).

The proof and a detailed discussion of the kernel ω1 is provided in [5]. Two items

to note are that ω1(θ, φ) = ω1(φ, θ) because Q is symmetric and time reversibility

of the Markov chains implies ω1(θ, φ) = ω(π − φ, π − θ).
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Chapter 3

The Billard and Legendre

Operators in One Dimension

3.1 Approximating Lh by L

The importance of Proposition 1.1 is that it relates the operator Lh to the Legen-

dre operator, which, in turn, allows us to approximate the spectrum of Lh using

the eigenvalues of L.

Remark. It is well-known [3] that when the limit operator L has the form of

the Legendre operator, there exists a domain in which L will be a self-adjoint

operator whose eigenfunctions and eigenvalues are precisely the standard Legendre

functions and polynomials.

Proposition 1.1. Assume that the L-weak scattering condition is satisfied by

a billiard scattering system with perturbation parameter h. Let Φ ∈ C3([0, π])

be such that Φ′(θ) = O(sin θ), so Φ′ vanishes to first order at 0 and π. Then

lim
h→0
||LhΦ− LΦ||2 = 0.

Proof. Let Φ be a C3 differentiable function with bounded first, second, and third
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derivatives. Consider the second-order Taylor expansion of Φ(Θ) around θ,

Φ(Θ) = Φ(θ) + Φ′(θ)(Θ− θ) +
1

2
Φ′′(θ)(Θ− θ)2 +R2(θ,Θ),

where

R2(θ,Θ) =
1

2

∫
I(θ,Θ)

|Φ′′′(t)|(Θ− t)2 dt

is the remainder term and I(θ,Θ) is the interval with endpoints θ and Θ. Recalling

that (PhΦ)(θ) = Eh
θ [Φ(Θ)], we take expectations and obtain

(PhΦ)(θ)− Φ(θ)

=Eh
θ (Φ(Θ))− Φ(θ)

= Eh1 (θ)Φ′(θ) +
1

2
Eh2 (θ)Φ′′(θ) + Eh

θ (R2(θ,Θ)).

Since |R2(θ,Θ)| ≤ 1
2
||Φ′′′||∞|Θ− θ|3, we obtain

∣∣∣∣((PhΦ)(θ)− Φ(θ))−
(
Eh1 (θ)Φ′(θ) +

1

2
Eh2 (θ)Φ′′(θ)

)∣∣∣∣ ≤ 1

2
||Φ||∞E

h

3(θ) = o(h2).

Dividing through by ch2 and taking limits results in

lim
h→0

∣∣∣∣(LhΦ)(θ)− 1

ch2

(
Eh1 (θ)Φ′(θ) +

1

2
Eh2 (θ)Φ′′(θ)

)∣∣∣∣ = 0

for all θ ∈ [0, π]. For convenience, define

(LhΦ)(θ) :=
1

ch2

(
Eh1 (θ)Φ′(θ) +

1

2
Eh2 (θ)Φ′′(θ)

)
.

We have just shown that |LhΦ(θ)−LhΦ(θ)| is bounded and converges to 0 point-
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wise as h goes to 0, which implies that

lim
h→0
||LhΦ(θ)− LhΦ(θ)||2 = 0.

We are done if we show that ||LhΦ(θ)−LΦ(θ)||2 goes to 0 for each Φ ∈ C3([0, π]).

In order to accomplish this, we write

||LhΦ(θ)− LΦ(θ)||22 = J1 + J2,

where we define J1 and J2 by

J1 :=

∫
[θh,π−θh]

|LhΦ(θ)− LΦ(θ)|2 dν(θ),

J2 :=

∫
[θh,π−θh]c

|LhΦ(θ)− LΦ(θ)|2 dν(θ).

It is immediate from parts 1 and 3 of the L-weak scattering condition that J1 → 0

as h → 0. For J2, we first consider the interval [0, θh]. Recalling that dν(θ) =

1
2

sin θ dθ and using the definition of LhΦ(θ), we have

∫ θh

0

|LhΦ|2 dν(θ) ≤ 1

2c2

∫ θh

0

(
Eh1(θ)

h2
|Φ′(θ)|+ E

h

2(θ)

2h2
|Φ′′(θ)|

)2

sin θ dθ.

Consider the two terms under the square of the integrand on the right-hand side.

By the L-weak scattering condition, Eh1(θ) = O(h) and Eh2(θ) = O(h2). Then

using the assumption that Φ′(θ) vanishes to the first order at 0, we observe that

the first term is of order O( θ
h
) and the second term is bounded. Thus, we have

1

2c2

∫ θh

0

(
Eh1(θ)

h2
|Φ′(θ)|+ E

h

2(θ)

2h2
|Φ′′(θ)|

)2

sin θ dθ = O
(
θ4
h

h2

)

so the integral goes to 0 since θh = o(h
1
2 ). A similar argument can be employed
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for the interval [π − θh, π], and it follows that

lim
h→0

∫
[θh,π−θh]c

|LhΦ|2 dν(θ) = 0.

Since Φ is a C3 function with bounded derivatives, we have that |LΦ|2 sin θ is

bounded, i.e., ∃M > 0 such that |LΦ|2 sin θ ≤M . Then

lim
h→0

∫
[θh,π−θh]c

|LΦ|2 dν(θ)

= lim
h→0

1

2

∫
[θh,π−θh]c

|LΦ|2 sin θ dθ

≤ 1

2
M lim

h→0

∫
[θh,π−θh]c

1 dθ

= 0.

Both lim
h→0

∫
[θh,π−θh]c

|LhΦ|2 dν(θ) = 0 and lim
h→0

∫
[θh,π−θh]c

|LΦ|2 dν(θ) = 0, so we

conclude that J2 also goes to zero, thereby completing the proof.

3.2 Billard Operators From Families With Sym-

metric Cells

One of the main assumptions that we make in order to obtain our spectral compar-

ison between Lh and L is that the billiard system satisfies the L-weak scattering

condition. We will now discuss various billiard families that fulfill this assumption.

Thus, Proposition 1.1 implies the Lh converges to L for these families.

Consider a billiard family consisting of microstructure cells with a piecewise

smooth boundary given by a symmetric function fh(x) (see Figure 3.1). Without

loss of generality, we assume that fh(x) is symmetric about the y-axis and the

normalized entrance segment is of length one and lies on the x-axis on the interval
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[
−1

2
, 1

2

]
. The parameter is defined by h = sup

x∈[− 1
2
, 1
2 ]
|f ′h(x)|.

Figure 3.1: A microstructure cell consisting of a piecewise smooth boundary given
by a symmetric function fh(x).

Note that for any bilaterally symmetric billiard cell shape, the identity

π −Ψθ(r) = Ψπ−θ(1− r)

holds. Therefore, we will perform our analyses assuming θ ≤ π
2

because the results

for θ > π
2

can be obtained using the aforementioned identity.

We will show that the billiard system with the aforementioned properties sat-

isfies the L-weak scattering condition. To achieve this, we start by finding θh. We

want θh to have the property that if sin θ ≥ sin θh, the billiard trajectory will only

collide with the walls of the cell once.

Let x0 ∈ [−1
2
, 1

2
] be such that f ′h(x0) ≥ f ′h(x) for any x ∈ [−1

2
, 1

2
]. Define β

2

as the angle between the normal and downward vertical vectors at fh(x). (see

Figures 3.2 and 3.3).

Suppose a trajectory only collides once with the walls of the cell. A geometric

calculation based on Figure 3.3 shows that θ = Θ− 2α, and note that α,Θ ≤ β
2
.
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Figure 3.2: An initial angle of θh results in a billiard trajectory hitting the corner
point, reflecting off Γ1, and exiting at a grazing angle to Γ2.

It follows that θh ≤ β
2

+ 2
(
β
2

)
, so

θh ≤
3β

2
.

Figure 3.3: A focusing cell displaying the definition of β and a billiard trajectory
that exits at x = 1

2
. The normal and tangent vectors to the cell are shown in gray.

Now assume that θ is such that sin θ ≥ sin θh.

Geometric calculations based on Figure 3.4, which hold true for all symmetric

cell shapes, show that for x ∈
[
−1

2
, 0
]
,

Θ = θ − 2α, (3.1)

tanα = f ′h(x). (3.2)
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Figure 3.4: A billiard from a dispersing family with parameter h. The entrance
segment (dotted line) lies on the x-axis on the interval

[
−1

2
, 1

2

]
. The normal and

tangent vectors to the curve at the collision point are shown in gray and α is the
angle between the normal and downward vertical vectors at the collision point.

It follows from Equations 3.1 and 3.2 that

Θ = θ − 2 tan−1(f ′h(x)). (3.3)

Another look at Figure 3.4 gives the relation (x, fh(x)) = (r, 0) + s(cos θ, sin θ),

which implies that

r = x− fh(x) cot θ. (3.4)

By a similar argument Equations 3.3 and 3.4 are also true for x ∈
[
0, 1

2

]
. Differ-

entiating gives us

dΘ

dx
= −2

d

dx
tan−1(f ′h(x)) = −2

f ′′h (x)

1 + f ′h(x)2

dr

dx
= 1− f ′h(x) cot θ

for x ∈
[
−1

2
, 1

2

]
. Using this, we can write the operator Ph as an integral over the
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interval
[
−1

2
, 1

2

]
. Keeping Equation 3.3 in mind, for Φ ∈ L2([0, π], ν), we have

(PhΦ)(θ)

=

∫ 1

0

Φ (Ψθ(r)) dr

=

∫ 1
2

− 1
2

Φ (Ψθ (r (x)))
dr

dx
dx

=

∫ 1
2

− 1
2

Φ(θ − 2 tan−1(f ′h(x))(1− f ′h(x) cot θ) dx.

Recall that Ehj (θ) := Eh [(Θ− θ)j] and the symmetry of fh(x) implies f ′h(−x) =

−f ′h(x). Then employing a similar strategy as in the calculation for Ph, we obtain

Ehj (θ)

=Eh
[
(Θ− θ)j

]
=

∫ 1

0

(Ψθ(r)− θ)j dr

=

∫ 1
2

− 1
2

(Ψθ(r(x))− θ)j dr
dx
dx

=

∫ 1
2

− 1
2

[2 tan−1(f ′h(x)]j (1− f ′h(x) cot θ) dx

=

∫ 1
2

0

[2 tan−1(f ′h(x)]j (1 + f ′h(x) cot θ) + [−2 tan−1(f ′h(x)]j (1− f ′h(x) cot θ) dx

=

∫ 1
2

0

2j
[
tan−1(f ′h(x)]j [(1 + f ′h(x) cot θ) + (−1)j(1− f ′h(x) cot θ)

]
dx

=2j
∫ 1

2

0

[
tan−1(f ′h(x)]j [(1 + (−1)j) + (1− (−1)j)f ′h(x) cot θ)

]
dx.
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Thus,

Ehj (θ) =


2j+1

∫ 1
2

0

[tan−1(f ′h(x)]j dx if j is even

2j+1

(∫ 1
2

0

[tan−1(f ′h(x)]jf ′h(x)

)
cot θ dx if j is even

(3.5)

It follows that

Eh1 (θ) = 4

(∫ 1
2

0

tan−1(f ′h(x)f ′h(x)

)
cot θ dx

and Eh2 (θ) = 8

∫ 1
2

0

[tan−1(f ′h(x)]2 dx.

With one extra assumption, we can show that these billiard systems satisfy

the L-weak scattering condition.

Theorem 1.1. Consider a parametric billiard family whose microstructure con-

sist of cells with a piecewise smooth boundary given by a symmetric function

fh(x). Without loss of generality, we assume that the cell entrance has normal-

ized length 1 and lies on the x=axis with x ∈
[
−1

2
, 1

2

]
. Define the parameter

by h = sup
x∈[− 1

2
, 1
2 ]
|f ′h(x)|. Furthermore, suppose that lim

h→0

8

h2

∫ 1
2

0

(f ′h(x))2 dx exists.

Then lim
h→0
||LhΦ− LΦ||2 = 0.

Proof. Recall that β
2

is the angle between the normal and downward vertical vec-

tors at the point of the cell boundary that has the largest slope (after taking

absolute value). (See Figure 3.3). This implies that

tan(
β

2
) = sup

x∈[− 1
2
, 1
2 ]
|f ′h(x)| = h,

so

β

2
= tan−1(h).
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Then θh ≤ 3β
2

= 3 tan−1(h). Expanding tan−1(h) as a Taylor series gives θh =

o(h
1
2 ) and proves part 3 of the condition.

Let θ ∈ [θh, π − θh]. To conclude that Eh2 (θ) = ch2 + o(h2), it suffices to show

that

lim
h→0

8
∫ 1

2

0
[tan−1(f ′h(x))]2 dx− ch2

h2
= 0 (3.6)

for some c > 0. Solving for c, we see that the limit is zero if and only if c =

lim
h→0

8

h2

∫ 1
2

0

[tan−1(f ′h(x))]2 dx. Since the difference between tan−1(f ′h(x)) and f ′h(x)

is of order o(h2), c = lim
h→0

8

h2

∫ 1
2

0

(f ′h(x))2 dx. Then by our assumption, Equation

3.6 is true. Similarly, to see that Eh1 (θ) = ch2

2
cot θ+ o(h2), it suffices to show that

lim
h→0

(
4
∫ 1

2

0
tan−1(f ′h(x))(f ′h(x) dx

)
cot(θ)− ch2

2
cot θ

h2
= 0 (3.7)

Solving for c, we have that the equality holds if and only if

c = lim
h→0

8

h2

∫ 1
2

0

tan−1(f ′h(x))f ′h(x) dx.

Since tan−1(f ′h(x)) − f ′h(x) = o(h2), it follows that c = lim
h→0

8

h2

∫ 1
2

0

(f ′h(x))2 dx.

Appealing once more to our assumption on c, we may conclude that part 1 of the

condition is satisfied.

As for part 2, let θ in [0, π]. Let αi be the angle between the normal and

downward vertical vectors at the ith collision point. Recall that αi ≤ β
2
. If there

is only one collision, the relation |Θ − θ| = 2|α| implies that |Θ − θ| ≤ 2(β
2
) =

2 tan−1(h).

If there are multiple collisions, we only have to consider the relationships be-

tween the first two and the last two (see Figure 3.5). Note that θ1 = θlast if the
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Figure 3.5: A trajectory with multiple collisions. The normal and tangent vectors
to the points of collision are in gray.

trajectory collides twice. By straightforward calculations based on Figure 3.5 we

obtain

|θ| ≤ |θ1|+ 2|α1|

|Θ| ≤ |θlast|+ 2|αlast|.

Observe that |θ1|, |θlast| ≤ tan−1(h) and |α1|, |αlast| ≤ β
2
≤ tan−1(h). It follows

that |Θ− θ| ≤ |Θ|+ |θ| ≤ 6 tan−1(h).

Thus, for θ ∈ [0, π],

|Θ− θ| ≤ k tan−1(h)

where k = 2 if there is only one collision and k = 6 if there are multiple collisions.

It follows from the Taylor expansion tan−1(h) = [h− 1
3
h3 + ...] that

Eh1(θ) = Eh[|Θ− θ|] ≤ k tan−1(h) = k[h− 1

3
h3 + ...] = O(h).

Similar calculations give Eh2(θ) = O(h2) and Eh3(θ) = o(h2). Thus, our proof is

finished.

Recall that the Legendre polynomials, Φn(θ) = Pn(cos θ), are eigenfunctions

for L with eigenvalues −1
2
n(n + 1). Moreover, the Pn form an orthogonal basis
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for L2((0, π), ν). An important observation to make about the Φn(θ) is that the

derivative Φ′(θ) = −P ′n(cos θ) sin θ vanishes at 0 and π, which satisfies the last

assumption in Proposition 1.1.

3.3 Relating the spectra of Ph and L

By assuming the L-weak-scattering condition and applying Proposition 1.1, we will

show that the eigenvalues and eigenfunctions of the normalized billiard Laplacian

Lh = 1
ch2

(Ph − I) can be approximated by those of the Legendre operator L.

We start by letting Πh denote the spectral family of the (bounded, self-adjoint)

operator Lh. Then define the spectral measure µψ,φh by

µψ,φh := 〈Πh(·)ψ, φ〉 ,

where ψ and φ are any two functions in L2([0, π], ν). In particular, if ψ is a unit

vector, µψh := µψ,ψh is a probability measure over the spectrum of Lh.

Proposition 3.1. Let σ denote the spectrum of L and assume that the L-weak

scattering condition is satisfied. Then for any two functions ψ and φ in L2([0, π], ν),

the support of µψ,φh limits to a subset of σ in the folowing sense: For every open

neighborhood U of σ and every compact subset K of R,

lim
h→0

µψ,φh (U c ∩K) = 0.

In addition, for each n, 〈Πh(K)ψ,Φn〉 goes to 0 with h for any compact set K that

does not contain λn = −1
2
n(n+ 1).

Proof. Let U be an open subset of R that contains
{
λn := −1

2
n(n+ 1) : n = 0, 1, ...

}
and I be a component interval of U c. For each n, choose ε > 0 such that
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|z − λn| ≥ ε for all z ∈ I. Let I+
h,n, I

−
h,n be a measurable partition of I such

that A 7→ ±
〈
Πh(I

±
h,n ∩ A)ψ,Φn

〉
are non-negative measures. Then

∣∣〈Πh(I
±
h,n)ψ, (Lh − L)Φn

〉∣∣ (3.8)

=

∫
I±h,n

|〈dΠh(z)ψ, (Lh − λn)Φn〉|

=

∫
I±h,n

|〈(Lh − λn)dΠh(z)ψ,Φn〉|

=

∫
I±h,n

|〈(z − λn)dΠh(z)ψ,Φn〉|

≥ ε
∣∣〈Πh(I

±
h,n)ψ,Φn

〉∣∣ . (3.9)

By Proposition 1.1, Expression (3.8), and hence Expression (3.9), goes to 0

with h. It follows that
〈
Πh(I

±
h,n)ψ,Φn

〉
→ 0 as h → 0, so the same is true for

〈Πh(I)ψ,Φn〉 (thus proving the last claim in the proposition). Now given ε > 0,

let N be a positive integer such that
∞∑

m=N+1

|〈Φm, φ〉|2 ≤ ε2. Observe that

∣∣∣∣∣µψ,φh (I)−
N∑
m=0

〈Πh(I)ψ,Φm〉 〈Φm, φ〉

∣∣∣∣∣ (3.10)

=

∣∣∣∣∣〈Πh(I)ψ, φ〉 −
N∑
m=0

〈Πh(I)ψ,Φm〉 〈Φm, φ〉

∣∣∣∣∣
=

∣∣∣∣∣
∞∑

m=N+1

〈Πh(I)ψ,Φm〉 〈Φm, φ〉

∣∣∣∣∣
≤

(
∞∑

m=N+1

|〈Πh(I)ψ,Φm〉|2
) 1

2
(

∞∑
m=N+1

|〈Φm, φ〉|2
) 1

2

≤ε||ψ||2

where we used the Cauchy-Schwarz inequality to obtain the fourth line and the fact

33



that

(∣∣∣∣∣
∞∑

m=N+1

〈Πh(I)ψ,Φm〉

∣∣∣∣∣
) 1

2

≤

(∣∣∣∣∣
∞∑
m=0

〈ψ,Φm〉

∣∣∣∣∣
) 1

2

= ||ψ||2 to establish the last

inequality. Since ε is arbitrary, we have that Expression (3.10) goes to 0 with h.

We showed above that 〈Πh(I))ψ,Φm〉 → 0 as h→ 0 for each m = 0, 1, ..., N , so the

summation in Expression (3.10) also goes to 0 with h. By the last two statements,

we have that lim
h→0

µψ,φh (I) = 0. As there are finitely many such intervals I which

intersect K, the first claim of the proposition follows.

The following result is an immediate consequence of Proposition 3.1 when we

recall that µψ,ψh is a probability measure over the spectrum of Lh for any unit

vector ψ ∈ L2([0, π], ν).

Theorem 1.2. Let σ denote the spectrum of L. The spectrum of Lh converges to

a subset of σ ∪ {−∞} as h goes to 0.

Theorem 1.2 also gives us information about the spectrum of Ph. Let σLh and

σPh denote the spectra of Lh and Ph, respectively. Since Ph = I + ch2Lh, we can

obtain a correspondence between σLh and σPh via the map

σLh −→ σPh

z 7−→ 1 + ch2z

Besides the L-weak scattering condition, we need to assume one more property

about Lh in order to further approximate its spectrum with that of L.

Definition 3.1. The family Lh has non-dissipating spectrum if 0 is a simple

eigenvalue and for every ψ and φ in L2([0, π], ν) ⊂ C⊥

lim
j→∞

lim sup
h→0

∣∣∣µψ,φh (Kc
j )
∣∣∣ = 0

where Kj is some increasing sequence of compact sets exhausting (−∞, 0).
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We now prove three properties about open neighborhoods in R that only con-

tain one eigenvalue of the Legendre operator.

Lemma 3.1. Let the family Lh satisfy the L-weak scattering condition and have

non-dissipating spectrum. Given an open interval neighborhood I of −1
2
l(l + 1)

that does not contain any other eigenvalues λm, the follow statements are true:

1. lim
h→0
〈Πh(I)ψ, φl〉 = 〈ψ,Φl〉

2. lim
h→0
〈Πh(I

c)ψ, φl〉 = 0

3. lim
h→0

µψh (I) = |〈ψ,Φl〉|2.

Proof. To prove the second statement, write Ic = K ∪ Kc, where K is a large

compact set. By the final claim of Proposition 3.1 and the assumption of a non-

dissipative spectrum, 〈Πh(K)ψ, φl〉 and 〈Πh(K)ψ, φl〉 go to 0 with h, respectively.

It follows that lim
h→0
〈Πh(I

c)ψ, φl〉 = 0. Then the conclusion of the first statement

is immediate since Πh(I) + Πh(I
c) is the identity operator. For the third limit,

given ε > 0, choose N such that N > l and

(
∞∑

m=N+1

|〈Πh(I)ψ,Φm〉|2
) 1

2

≤ ε2. In

addition, we can write

〈Πh(I)ψ, ψ〉 =
∞∑
m=0

|〈Πh(I)ψ,Φm〉|2 (3.11)

due to the following calculation:

〈Πh(I)ψ, ψ〉

= 〈Πh(I)ψ, [Πh(I) + Πh(I
c)]ψ〉

= 〈Πh(I)ψ,Πh(I)ψ〉

= 〈〈Πh(I)ψ,Φm〉Φm, 〈Πh(I)ψ,Φm〉Φm〉

=
∞∑
m=0

|〈Πh(I)ψ,Φm〉|2 .
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Now using Equation (3.11) and the Cauchy-Schwarz Inequality, we obtain

∣∣∣∣∣µψh (I)−
N∑
m=0

|〈Πh(I)ψ,Φm〉|2
∣∣∣∣∣

=

∣∣∣∣∣〈Πh(I)ψ, ψ〉 −
N∑
m=0

|〈Πh(I)ψ,Φm〉|2
∣∣∣∣∣

=

∣∣∣∣∣
∞∑

m=N+1

〈Πh(I)ψ,Φm〉 〈Πh(I)ψ,Φm〉

∣∣∣∣∣
≤

(
∞∑

m=N+1

|〈Πh(I)ψ,Φm〉|2
) 1

2
(

∞∑
m=N+1

|〈Πh(I)ψ,Φm〉|2
) 1

2

≤ε||ψ||2

where the the last inequality is established by bounding one of the square roots

with our assumption and the other with

(∣∣∣∣∣
∞∑
m=0

〈ψ,Φm〉

∣∣∣∣∣
) 1

2

= ||ψ||2. Therefore,

∣∣∣µψh (I)− |〈Πh(I)ψ,Φl〉|2
∣∣∣ ≤ ε||ψ||2 +

∑
m6=l,m≤N

|〈Πh(I)ψ,Φm〉|2 .

By part 2 of the lemma, the summation on the right-hand side goes to 0 with h,

implying that the left-hand side can be made arbitarily small as h→ 0. Combining

this information with the first statement of the lemma, we may conclude that

lim
h→0

µψh (I) = |〈ψ,Φl〉|2.

We are now ready to compare the spectral information of Lh and L.

Proposition 3.2. Suppose that the L-weak scattering and non-dissipating condi-

tions are satisfied. Let ψ ∈ L2([0, π], ν) and δλm be the delta measure at λm =

−1
2
m(m+ 1). Then

lim
h→0

µψh =
∞∑
m=0

|〈ψ,Φm〉|2 δλm .

Moreover, let ε > 0 be small enought so that Iεl := (λl− ε, λl + ε) does not contain
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any eigenvalue of L except λl. Then

lim
h→0
||Πh (Iεl )ψ − 〈ψ,Φl〉Φl||2 = 0.

Proof. The first statement follows immediately from Lemma 3.1. To prove the

second statement, we write

||Πh (Iεl )ψ − 〈ψ,Φl〉Φl||22

=
(
µψh (Iεl )− |〈ψ,Φl〉|2

)
+ 2

(
|〈ψ,Φl〉|2 − 〈Πh (Iεl )ψ,Φl〉 〈ψ,Φl〉

)
,

where the two differences in the second line go to 0 with h due to part 3 and part

1 of Lemma 3.1, respectively. The final limit in the proposition is then a direct

consequence.
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Chapter 4

The Billard and Legendre

Operators in N Dimensions

4.1 Billiard Families in N Dimensions

Figure 4.1: An n+1-dimensional billiard surface. Let n(x) and n(x) denote the
unit normal vector to the graph of f at x ∈ Rn and its orthogonal projection to
Rn, respectively.

Let {ei}ni=0 be the standard basis for Rn. Consider a parametric billiard family

consisting of microstucture cells whose shapes are given by functions fh : Rn → R

(see Figure 4.1) with the following two properties:
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1. periodicity: fh(x+
∑
i

miaiei) = f(x), ai > 0, mi ∈ Z

2. symmetry fh(−x) = fh(x).

We define the parameter h by h = sup
x∈Tn

||n(x)||. Observe that we may write

n(x) = n(x) + n0(x)e0 =
e0 − gradxfh√
1 + ||gradxfh||2

. (4.1)

It follows from Equation 4.1 that n0 = 1√
1+||gradxfh||2

=
√

1 + ||n||2. Now fix

a constant c > sup
x∈Tn

||fh(x)|| and consider intial velocities v for trajectories that

intersect the horizontal plane at height c in Rn+1 at point r and collide with the

billiard surface (i.e. graph of fh(x)). We denote the after-collision velocities by V

(see Figure 4.2).

Figure 4.2: A collision of a point particle with a n+1-dimensional billiard surface.
r, v, and V are the orthogonal projections of r, v, and V . We take v to be a vector
in the open unit disc Dn.

A calculation based on Figure 4.2 shows that for single collisions, r−x
fh(x)−c = − v

v0
.

This implies r = x− (fh(x)− c) v
v0

, and it follows that

drx = I − (dfh)x ⊗
v

v0

.
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Using this equation and the matrix determinant formula [7], we have that

det(drx) = 1− (dfh)x

(
v

v0

)
.

From Equation 4.1 one can obtain the relation gradxfh = − n(x)
n0(x)

, so

(dfh)x

(
v
v0

)
=
〈
− n(x)
n0(x)

, v
v0

〉
. Then

det(drx) = 1 +

〈
n(x)

n0(x)
,
v

v0

〉
. (4.2)

We are now ready to find an equation for the billiard operator Ph. Let Φ ∈

L2(Dn, dx), where dx is the normalized Lebesgue measure. Since the reflection

law states that the post-collision velocity V (r, v) is given by V = v−2 < n, v > n,

the following also holds:

V (r, v) = v − 2 < n, v > n. (4.3)

For v that result in only one collision, we can use Equations 4.3 and 4.2 to show

that the billiard operator is given by

(PhΦ)(v)

=

∫
Tn

Φ(V (r, v)) dr

=

∫
Tn

Φ(v − 2 < n, v > n) dr

=

∫
Tn

Φ(v − 2(< n(x), v > +n0(x)v0)n(x))

(
1 +

〈
n(x)

n0(x)
,
v

v0

〉)
dx.

The symmetry of fh(x) means n(−x) = −n(x) and n0(−x) = n0(x). Using
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these two properties, we can expand the integral formula for Ph as

(PhΦ)(v)

=
1

2

∫
Tn

[
Φ

(
v − 2(< n, v > +n0v0)n

)(
1 +

〈
n(x)

n0(x)
,
v

v0

〉)
+

Φ

(
v + 2(− < n, v > +n0v0)n

)(
1−

〈
n(x)

n0(x)
,
v

v0

〉)]
dx

=

∫
Tn

[
Φ(v − 2 < n, v > n− 2n0v0n) + Φ(v − 2 < n, v > n+ 2n0v0n)

2
(4.4)

+

Φ(v − 2 < n, v > n− 2n0v0n)− Φ(v − 2 < n, v > n+ 2n0v0n)

2

〈
n(x)

n0(x)
,
v

v0

〉]
dx.

Consider the second-order Taylor approximation of Φ(V ) around v:

Φ(V ) = Φ(v) + dΦv(V − v) +
1

2
d2Φv(V − v) +R2(v, V ),

where

R2(v, V ) =
1

2

∫
Uv,V

d3Φv(v − t)(V − t)2 dt

is the remainder term and Uv,V is open set of Dn containing the set of vectors whose

length is between ||v|| and ||V ||. Recalling that (PhΦ)(v) =

∫
Tn

Φ(V (r, v)) dr, we

obtain

(PhΦ)(v)−Φ(v) =

∫
Tn

dΦv(V − v) drx +

∫
Tn

1

2
d2Φv(V − v) drx +

∫
Tn

R2(v, V ) drx.
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Equation 4.4 can be used to find

∫
Tn

dΦv(V − v) drx and

∫
Tn

1

2
d2Φv(V − v) drx.

dΦv(V − v)

=
1

2

[
dΦv(−2 < n, v > n− 2n0v0n) + dΦv(−2 < n, v > n+ 2n0v0n)

+(
dΦv(−2 < n, v > n− 2n0v0n)− dΦv(−2 < n, v > n+ 2n0v0n)

)〈
n(x)

n0(x)
,
v

v0

〉]

= dΦv

[
− 2 < n, v > n− 2n0v0n

〈
n(x)

n0(x)
,
v

v0

〉]
=− 4 < n, v > dΦv

=− 4dΦv ◦ (n(x)∗ ⊗ n(x)) (v)

Therefore,

∫
Tn

dΦv(V − v) drx = −4dΦv

[ ∫
Tn

n(x)∗ ⊗ n(x) dx

]
v. (4.5)
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Furthermore,

1

2
d2Φv(V − v)

= d2Φv(n, n)(−2 < n, v > −2n0v0)2

+ d2Φv(n, n)(−2 < n, v > +2n0v0)2

+ d2Φv(n, n)(−2 < n, v > −2n0v0)2

〈
n

n0

,
v

v0

〉
+ d2Φv(n, n)(−2 < n, v > +2n0v0)2

〈
n

n0

,
v

v0

〉
= d2Φv(n, n)

[
2 < n, v >2 +2n2

0v
2
0 +

〈
n

n0

,
v

v0

〉(
4 < n, v > n0v0

)]
= d2Φv(n, n)

[
6 < n, v >2 +2(1− ||n||2)(1− ||v||2)

]
= 2(1− ||v||2)d2Φv(n, n) +

(
6 < n, v >2 −2||n||2(1− ||v||2)

)
d2Φv(n, n)

= 2(1− ||v||2)d2Φv(n, n) +O(||n||4).

Therefore,

∫
Tn

1

2
d2Φv(V − v) = 2(1− ||v||2)d2Φv

[ ∫
Tn

n(x)⊗ n(x) dx

]
+O(h4). (4.6)

We can write

A :=

∫
Tn

n(x)∗ ⊗ n(x) dx =
∑
i,j

ai,je
∗
i ⊗ ej

B :=

∫
Tn

n(x)⊗ n(x) dx =
∑
i,j

ai,jei ⊗ ej,

and observe that A is a linear map from Rn to Rn which is self-adjoint and non-

negative definite. Note that A and B depend on h, so we can denote them as

A(h) and B(h). However, to simplify notation, we will continue to refer to them
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as A and B. Then

dΦv(Av) =
∑
i,j

ai,j < v, ei > dΦv(ej)

d2Φv(B) =
∑
i,j

ai,jd
2Φv(ei, ej),

so if x1, ..., xn is the orthonormal eigenbasis of Rn associated with A, then A =
n∑
i=1

λiu
∗
i ⊗ui, where the λ′is denote the eigenvalues of A. Thus, for intial velocities

v ∈ Dn that cause only one collision,

∫
Tn

dΦv(V − v) drx +

∫
Tn

1

2
d2Φv(V − v) drx

=− 4dΦv(Av) + 2(1− ||v||2)d2Φv(B) +O(h4)

=− 4
n∑
i=1

λi < v, xi > dΦv(xi) + 2(1− ||v||2)
n∑
i=1

λid
2Φv(xi, xi) +O(h4)

=2
n∑
i=1

λi
∂

∂xi
(1− ||v||2)

∂Φ

∂xi
+O(h4), (4.7)

where the second equality is due to Equations 4.5 and 4.6.

4.2 The Convergence of Lh to L

The convergence of Lh to L in the one-dimensional case holds true in higher

dimensions given that the maximum number of collisions before a particle exits

the billiard surface is finite. For the n-dimensional case, we define Lh as

Lh =
Ph − I

2h2
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and take inspiration from Equation 4.7 to define L as

LΦ =
n∑
i=1

ci
∂

∂xi
(1− ||v||2)

∂Φ

∂xi
,

where ci = lim
h→0

λi(h)

h2
and the λi’s are the eigenvalues of the operator A associated

to the particular fh we are examining. Note that this limit will exist in most of

the surfaces we consider.

Before we are ready to prove the convergence of Lh to L, we need the following

lemma.

Lemma 4.1. Suppose the microstructure of a billiard table is given by the graph

of fh, which has the properties of symmetry and periodicity as described at the

beginning of the chapter. Let v ∈ Dn be an intial velocity of a trajectory that has

at most k collisions before exiting the billiard cell. Then ∃M > 0 such that

||V − v|| ≤ 2kMh2.

Proof. Let vi be the velocity vectors after the ith collision. Note that by Equation

4.1, gradxfh = − n(x)
n0(x)

, so

∣∣∣∣vi0vi
∣∣∣∣ ≤ ||gradfh|| ≤ ||n(xi)||

|n0(xi)|
.

Then

|vi0| ≤
||n(xi)||
|n0(xi)|

||vi|| ≤ ||n(xi)||
|n0(xi)|

≤ mi||n(xi)||
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for some constant mi > 0. This implies that ∃M > 0 such that for any i,

〈
vi, n(xi)

〉
=
〈
vi, n(xi)

〉
+
〈
vi0, n0(xi)

〉
≤M sup

x∈Tn

||n(x)||

=Mh.

Consider the relation

vi = vi−1 − 2 < vi, n(xi) > n(xi).

Noting that ||n(xi)|| ≤ h for any i, it follows from the relation that ||V − v|| ≤

2kMh2.

Theorem 1.4. Assume that a billiard scattering system with perturbation param-

eter h has microstructure given by the graph of a symmetric and periodic function

fh(x). Let h = sup
x∈Tn

||n(x)||, where n(x) is the orthogonal projection to Rn of

the unit normal to the graph of fh(x). Moreover, we assume that each billiard

particle collides with the walls of a cell surface at most k times before exiting

for some k > 0. Let Φ ∈ C3(Dn) and denote the eigenvalues of the self-adjoint

operator A(h) by λi(h). Suppose ci = lim
h→0

λi(h)

h2
exists for 1 ≤ i ≤ n. Then

lim
h→0
||LhΦ− LΦ||2 = 0.

Proof. Let Φ be a C3 function with bounded derivatives up to the third order.

Consider the second-order Taylor approximation of Φ(V ) around v:

Φ(V ) = Φ(v) + dΦv(V − v) +
1

2
d2Φv(V − v) +R2(v, V ),
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where

R2(v, V ) =
1

2

∫
Uv,V

d3Φv(v − t)(V − t)2 dt

is the remainder term and Uv,V is open set of Dn containing the set of vectors whose

length is between ||v|| and ||V ||. Recalling that (PhΦ)(v) =

∫
Tn

Φ(V (r, v)) dr, we

obtain

(PhΦ)(v)−Φ(v) =

∫
Tn

dΦv(V − v) drx +
1

2

∫
Tn

d2Φv(V − v) drx +

∫
Tn

R2(v, V ) drx.

By Lemma 4.1,
∣∣R2(v, V )

∣∣ ≤ 1
2
||d3Φv||||V − v||3 = o(h2), so

∣∣∣∣((PhΦ)(v)− Φ(v))−
(∫

Tn

dΦv(V − v) drx +
1

2

∫
Tn

d2Φv(V − v) drx

)∣∣∣∣ ≤ o(h2).

Dividing through by 2h2 and taking limits results in

lim
h→0

∣∣∣∣(LhΦ)(v)− 1

2h2

(∫
Tn

dΦv(V − v) drx +
1

2

∫
Tn

d2Φv(V − v) drx

)∣∣∣∣ = 0

for all v ∈ Dn. For convenience, define

(LhΦ)(v) :=
1

2h2

(∫
Tn

dΦv(V − v) drx +
1

2

∫
Tn

d2Φv(V − v) drx

)
.

We have just shown that |LhΦ(v)−LhΦ(v)| is bounded and converges to 0 point-

wise as h goes to 0, which implies that

lim
h→0
||LhΦ(v)− LhΦ(v)||2 = 0.

We are done if we show that ||LhΦ(v)− LΦ(v)||2 goes to 0 for each Φ ∈ C3(Dn).
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In order to accomplish this, we write

||LhΦ(v)− LΦ(v)||22 = J1 + J2,

where we define J1 and J2 by

J1 :=

∫
Uh

|LhΦ(v)− LΦ(v)|2 drx,

J2 :=

∫
Uc
h

|LhΦ(v)− LΦ(v)|2 drx.

Here, Uh ⊂ Dn is the set of initial velocities that result in only 1 collision. Note

the Uh is getting larger as h goes to zero and the billiard surface becomes flatter.

In particular, Uh = Dn when h = 0. It is immediate from Equation 4.7 that

J1 → 0 as h→ 0. For J2, using the definition of LhΦ(v), we have

∫
Uc
h

|LhΦ|2 drx ≤
1

4

∫
Uc
h


∫
Tn

dΦv(V − v) drx

h2
+

∫
Tn

d2Φv(V − v) drx

2h2


2

drx.

Consider the two terms under the square of the integrand on the right-hand side.

By Lemma 4.1,

∫
Tn

dΦv(V − v) drx ≤ ||dΦv|| ||V − v|| = O(h2)

and

∫
Tn

d2Φv(V − v) drx ≤ ||d2Φv|| ||V − v||2 = O(h4).

It follows that the first term under the square is bounded and the second is of

order O(h2). Since U c
h shrinks to the empty set as h goes to zero, it follows that

lim
h→0

∫
Uc
h

|LhΦ|2 drx = 0. (4.8)
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Now consider

∫
Uc
h

|LΦ|2 drx. Since the coefficients of L are bounded over the

disc, LΦ is bounded over the disc since Φ belongs in C3(Dn) and has bounded

derivatives. Combined with the fact that U c
h’s volume shrinks to zero as h goes to

zero, we obtain

lim
h→0

∫
Uc
h

|LhΦ|2 drx = 0. (4.9)

By Equations 4.8 and 4.9, we conclude that J2 also goes to zero, thereby com-

pleting the proof.

4.3 The Eigenfunctions of L

Recall that the Legendre polynomials {Pk}k=0,1,... are the eigenfunctions (say, with

associated eigenvalues {λk}k=0,1,...) of the Legendre operator. We can use this

information to find the eigenvalues and eigenfunctions of the n-dimensional L.

Moreover, we can show that the eigenfunctions that we find will form a basis for

L2(Dn, dx).

Let Πi : [−1, 1]n −→ [−1, 1] be the ith coordinate projection map. Then for a

multi-index m = (m1, ...,mn) ∈ Nn, we define Φm as Φm :=
n∏
i=1

Pmi
◦ Πi|Dn .

Theorem 1.5.

{
Φm

}
m∈Nn

is a complete family of eigenfunctions for L and forms

a basis for L2(Dn, dx).

Proof. With the definition of L in mind, let ρ = 1 − ||v||2 and Liφ = ∂
∂xi

(1 −

||v||2) ∂φ
∂xi

. Consider φ and ψ, two smooth functions on Dn ⊂ [−1, 1]n such that
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φiψi = 0 for i = 1, ..., n. Then

L(φψ) =
n∑
i=1

ci

[
ρi(φψ)i + ρ(φψ)ii

]
=

n∑
i=1

[
(ρiφiψ + ρφiiψ) + (ρiψiφ+ ρψiiφ) + (2ρφiψi)

]
=

n∑
i=1

ci(Liφ)ψ +
n∑
i=1

ciφ(Liψ) + 0

=(Lφ)ψ + φ(Lψ).

This implies that if we let φik := Pk ◦ Πi|Dn and Φm :=
n∏
i=1

φimi
(where m =

(m1, ...,mn) ∈ Nn), then

LΦm =
n∑
i=1

φ1
m1
· · · Lφimi

· · ·φnmn
=

(
n∑
i=1

ciλmi

)
Φm.

This shows that

{
Φm

}
m∈Nn

is a complete set of eigenfunctions for L with associ-

ated eigenvalues

{ n∑
i=1

ciλmi

}
. Therefore, we have proved the first claim. For the

second part, we need to show that span

{
Φm : m ∈ Nn

}
is dense in L2(Dn, dx).

Let Ψ be a function in L2(Dn, dx). It can be approximated by Ψ̃|Dn , where Ψ̃

is a continuous function on [−1, 1]n. (Recall that the continuous functions are

dense in [−1, 1]n.) By the Weierstrass Approximation Theorem, Ψ̃ can be uni-

formly approximated by a polynomial
∑
|m|≤N

amx
m, where xm =

∏n
i=1 x

mi
i . Now

each xmi
i can be written as a linear combination of Legendre polynomials, i.e.

xmi
i =

Ni∑
k=0

bkPk(xi), because

{
Pk

}
k=0,1,...

is basis in the 1-dimensional L2 space.

It follows that span

{
Φm : m ∈ Nn

}
is dense in L2(Dn, dx).
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