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ABSTRACT OF THE THESIS

Classification Trees and Rule-Based Modeling Using the C5.0 Algorithm for

Self-Image Across Sex and Race in St. Louis

by

Rohan Shirali

Master of Arts in Statistics

Washington University in St. Louis, 2016

Professor David Wright, Chair

The study population comprised children, adolescents, and adults who were residents of

the city of St. Louis at the time of data collection in 2015. The data collected includes sex,

age, race, measured height and weight, self-reported height and weight, zip code, educational

background, exercise and diet habits, and descriptions and strategies of participants’ weight

(i.e. overweight and trying to lose weight, respectively). I use the C5.0 algorithm to create

classification trees and rule-based models to analyze this population. Specifically, I model a

binary self-image variable as a function of sex, age, race, zip code, and a ratio of reported

versus measured BMI (body mass index), and a multi-level categorical weight description

variable as a function of sex, age, race, zip code, BMI ratio, and weight strategy. I compare

the performance of the C5.0 algorithm with and without rules and boosting for independent

and grouped categories, for both the binary and multi-level outcome. This comparison is

limited due to sample size constraints. Ultimately, C5.0 performed best when modeling the

binary variable and using either rules or boosting for independent categories.
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1 Introduction

Background

In this paper, the research team will be using classification tree modeling algorithms to

examine self-image across different demographics in St. Louis. The study population com-

prised children, adolescents, and adults who were residents of the city of St. Louis at the

time of data collection in 2015. The research team collected data from a variety of com-

munity sites, including public schools, YMCA, faith organizations, university settings, and

more. Data was collected through a survey and by taking certain measurements, and survey

information was entered into REDCap, an online data entry tool. REDCap can take certain

quality control checks, and in exporting our data for further manual quality control checks,

we omitted subjects whose consent was not obtained. For inclusion in the study population,

subjects’ data were required to have measured height, measured weight, and sex. This study

was approved by the Washington University in St. Louis Institutional Review Board.

The researchers at the Washington University in St. Louis School of Medicine initially

gathered this data for a public health survey, examining weight status across different de-

mographics and areas in St. Louis. They intend to identify areas and demographics with

particularly affected weight status, and improve ongoing public health initiatives to address

obesity according to the behaviors and/or resource allocation that influences the distribution

of obesity. The data we collected, which I will describe in depth soon, is also suited to allow

the researcher to analyze individuals’ body image perceptions across these demographics,

and I find self-image across race and sex to be especially pertinent today.

Research is continually surfacing that points to disparities in the way certain demo-

graphics are treated and portrayed in the media, and how that can influence individuals’

self-image. Specifically, women are often depicted in ways that set unreasonable standards of

beauty. This depiction affects individuals, specifically younger women, in how they perceive

themselves, and may lead women to want to lose weight even when they are underweight or
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Table 1: Gender Distribution (n=3307)

Gender Percentage of Sample Total
Male 47.0% 1554
Female 53.0% 1753

have a healthy weight. Additionally, people of different races tend to be treated and por-

trayed differently in the media. Recently this has been relevant with issues like “Hollywood

whitewashing,” an issue in which actors and actresses of color are seldom recognized and

awarded for their work. We might expect white participants to have a more positive self-

image than most minorities, in a way that parallels their media depiction. The research team

is interested in examining whether our data from St. Louis in 2015 reflects these expected

discrepancies in self-image across race and sex.

Data Description

Data was gathered through a survey in which participants gave information about their age,

sex, race, ethnicity, zip code, education, exercise habits, and diet. Subjects also estimated

and then measured their own height and weight. The distribution of age was skewed right,

ranging from 3 - 87 years old, with mean 16.57 and median 11.10 years old. Most participants

were between the ages of 9 and 16 years old. Those who were at least 20 years old were

categorized as adults, and subjects under 20 were considered youth; 83.7% of the population

were youth, and 16.3% adult. 53% of the subjects were female and 47% were male (n=3307).

The distribution of weight was skewed right, presumably relating to the similarly skewed

distribution of age, with mean 51.26 and median 46.00 kilograms. The distribution of height

was approximately normal, with mean 149.5 centimeters. Body Mass Index, or BMI, was

calculated using the formula:

BMI =
Weight in kg

(Height in cm)2

The BMI distribution is also skewed right, with mean 22.07 and median 20.40 kg/cm2.

Some participants did not fill out certain information in their surveys, so smaller subsets
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Table 2: Race Distribution (n=2892, 415 missing)

Race Percentage of Sample Total
Black 72.6% 2100
White 22.3% 646
Asian 4.2 % 121
American Indian 0.8% 23
Native Hawaiian 0.1% 2

of the population will be taken into account for analysis pertaining to those variables. The

racial distribution of the population was as follows: 72.6% Black, 22.3% White, 4.2% Asian,

0.8% American Indian, 0.1% Native Hawaiian (n=2892). All participants (adult and youth)

were asked to describe their current strategy for gaining, or losing weight, with the following

distribution: 52.2% are trying to lose weight, 11.0% are trying to gain weight, 19.8% are

trying to stay the same weight, and 17.0% are not trying to do anything about their weight

(n=864). In order to examine weight strategy as a binary variable for self-image, we will

associate negative self-image with trying to either lose or gain weight, and positive self-

image with trying to stay the same weight or not trying to do anything about one’s weight.

By this categorization, 63.2% have negative self-image and 36.8% have positive self-image

(n=864). Additionally, subjects categorized as youth were asked to describe their own weight

from a list of options, with the following results: 55.9% said about the right weight, 22.8%

slightly overweight, 14.4% slightly underweight, 3.8% very overweight, 3.1% very underweight

(n=320). I will be using the subsets of the population that have data for weight strategy

and weight description, respectively, for my two sets of analyses.

As previously mentioned, participants were asked to report their height and weight prior

to having measured their height and weight. This data required a bit more quality control,

since certain subjects reported heights and weights that are physiologically unreasonable.

Self-reported height values were excluded if they were at least 8 feet or less than 3 feet.

Self-reported weight values were excluded if they were at least 650 pounds or less than 50

pounds. Self-reported BMI values, calculated from self-reported height and weight, were

excluded if they were at least 100 kg/cm2 or less than 12 kg/cm2. These exclusions were
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Table 3: Gender Distribution for Self Report Data (n=777, 2530 missing)

Gender Percentage of Sample Total
Male 41.8% 325
Female 58.2% 452

not chosen arbitrarily; the CDC recommends these as exclusion criteria for self-reported

information [CDC (2015)]. For the sake of having only one subset of self-reported data,

and since the exclusion criteria are quite lenient, any individual who failed to meet all three

criterion was excluded entirely. After accounting for the exclusions, the distribution of the

ratio of reported weight to measured weight is approximately normal with slight left skew

and mean 0.9951. The distribution of the ratio of reported height to measured height is

approximately normal with slight right skew and mean 1.006. This information gives us

the sense that on average, the population tended to slightly underestimate their weight and

slightly overestimate their height. Being slightly taller and skinnier would reflect a decrease

in BMI, and as expected, the distribution of the ratio of reported BMI (calculated from

reported height and weight according to BMI formula) to measured BMI is approximately

normal with slight left skew and mean 0.9847.

I consider weight strategy, weight description, BMI ratio, height ratio, and weight ratio,

as variables especially pertinent to self-image. The research team will be examining these

self-image variables across different demographics; we should ensure that the distributions

of demographics, particularly sex and race, are similar for the subsets of the population that

we analyze as for the entire population. It is important to check these distributions because

as previously mentioned, there are a lot of missing data for some of the self-image variables.

Of those subjects with information about their weight strategy, 57.8% were female and

42.2% were male, 61.7% were adults and 38.3% were youth (n=864). The racial distribution

was as follows: 52.4% Black, 37.2% White, 8.2% Asian, 2.0% American Indian, and 0.2%

Native Hawaiian (n=858, 6 were missing information on race). Of those with a description

of their own weight, all of whom are youth subjects, 47.2% were female and 52.8% were

4



Table 4: Weight Strategy Data (n=864, 2443 missing)

Weight Strategy Percentage of Sample Total
Trying to gain weight 11.0% 95
Trying to lose weight 52.2% 451
Trying to stay the same weight 19.8% 171
Not trying to do anything about their weight 17.0% 147

Table 5: Gender Distribution for Weight Strategy Data (n=864)

Gender Percentage of Sample Total
Male 42.2% 365
Female 57.8% 499

male (n=320). The racial distribution was as follows: 64.6% Black, 25.4% White, 5.6%

Asian, 3.8% American Indian, and 0.6% Native Hawaiian (n=319, 1 missing). Later when I

model weight description, weight strategy will be included as a predictor; the weight strategy

distribution within those who had weight description is: 16.7% trying to gain weight, 42.6%

trying to lose weight, 19.2% trying to stay the same weight, and 21.5% not trying to do

anything about their weight (n=317, 3 missing). Of those subjects whose self reported height,

weight, and BMI were included for analysis, 58.1% were female and 41.9% were male, 65.2%

were adults and 34.8% were youth (n=777). The racial distribution was as follows: 52.1%

Black, 38.0% White, 8.0% Asian, 1.7% American Indian, 0.1% Native Hawaiian (n=771,

6 missing). With the exception of the proportion of adults and youth in these subsets,

specifically the subset for weight description which includes only youth, the distributions

tend to resemble that of the study population.

Since the distributions of variables in the subsets of the data are similar to those for the

Table 6: Race Distribution for Weight Strategy Data (n=858, 6 missing)

Race Percentage of Sample Total
Black 52.4% 450
White 37.2% 319
Asian 8.2% 70
American Indian 2.0% 17
Native Hawaiian 0.2% 2
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Table 7: Weight Description Data (n=320, 2987 missing)

Weight Description Percentage of Sample Total
Very underweight 3.1% 10
Slightly underweight 14.4% 46
About the right weight 55.9% 179
Slightly overweight 22.8% 73
Very overweight 3.8% 12

Table 8: Gender Distribution for Weight Description Data (n=320)

Gender Percentage of Sample Total
Male 52.8% 169
Female 47.2% 151

Table 9: Race Distribution for Weight Description Data (n=319, 1 missing)

Race Percentage of Sample Total
Black 64.6% 206
White 25.4% 81
Asian 5.6% 18
American Indian 3.8% 12
Native Hawaiian 0.6% 2

Table 10: Weight Strategy for Weight Description Data (n=317, 3 missing)

Weight Strategy Percentage of Sample Total
Trying to gain weight 16.7% 53
Trying to lose weight 42.6% 135
Trying to stay the same weight 19.2% 61
Not trying to do anything about their weight 21.5% 68
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whole population, the data are well-suited for analysis. I will utilize some of the variables to

try and model and predict the self-image binary variable I have created, and then create a

second model to predict how youth might describe their weight based on the same predictors

but including their weight strategy. This will allow the researcher to utilize classification

tree modeling for categorical and binary outcomes, evaluating their relative performances.

In modeling self-image, we expect to see higher self image scores for white adult males and

lower scores for younger women of color.

7



2 Methodology

Decision Trees

I will analyze the data using classification trees, which are a kind of decision tree. Decision

tree algorithms begin with a set of training vectors xi ∈ Rn, i = 1, ..., l and a label vector

y ∈ Rl. First, decision trees recursively partition the data such that observations with the

same label are grouped together. We will refer to the data at node m as Q. For each

candidate split θ = (j, tm) with feature j and threshold tm, divide the data into subsets

Qleft(θ) and Qright(θ), so that

Qleft(θ) = (x, y)|xj ≤ tm

Qright(θ) =
Q

Qleft(θ)

We calculate a statistic called impurity at m using an impurity function H() specified within

different algorithms. Let nleft be the number of observations in Qleft and nright be the number

of observations in Qright, so that Nm = Qleft +Qright is the total number of observations at

a given node,

G(Q, θ) = H(Qleft(θ))
nleft
Nm

+H(Qright(θ))
nright
Nm

We choose the parameters such that the impurity is minimized

θ? = argminθG(Q, θ)

and continue recursively for subsetsQleft(θ
?) andQright(θ

?) until either the maximum allowed

depth is attained, Nm < minsamples, or Nm = 1. When the target variable outcome can take

a finite set of classes with values 0, 1, ..., K − 1, we use classification trees. In a node m
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representing region Rm with Nm observations, let

p̂mk =
1

Nm

∑
xi∈Rm

I(yi = k)

be the proportion of observations from class k in node m. For classification trees, we use

proportion p̂mk with an appropriate impurity function. A few frequently used measures of

impurity are:

Entropy: H(Xm) = −
∑
k

p̂mk log(p̂mk),

Gini Index: H(Xm) =
∑
k

p̂mk(1− p̂mk), and

Misclassification: H(Xm) = 1−max(p̂mk)

This is how decision trees are formally created, using a minimization problem to create the

tree sequentially. I will now explain more about classification trees in general and aspects of

the specific models we use.

Classification Trees

The classification tree model is appropriate for my data since they can be easily interpretable

and are capable of managing many predictors and missing data [Kuhn & Johnson (2013)].

We assume that all of the predictor variables have finite domains, and that the response

belongs to a finite set of mutually exclusive classes. Classification trees are meant to model

a finite set of values for the target variable, whereas regression trees are used when the

target variable is continuous. Classification trees can often handle predictor variables that

are continuous and categorical. The model will use a series of if-then statements, which can

be visualized as a tree. The tree is split into branches that meet at nodes which specify

different paths for different values of predictors, and prediction proceeds from the top of

the tree on the path that corresponds to the predictors’ values for each observation. This

9



culminates at a terminal node, which represents a value of the target variable attained from

the specific values of the predictors.

In practice, these models rely more on algorithms than theoretical foundation, and as

such there are several different approaches for creating and pruning classification trees. Many

of these algorithms have been written for packages in R, and I will use the C5.0 package to

model and predict self-image. I will also examine the robustness of the procedure as it varies

with different options, all of which I explain below.

Classification trees are used as a descriptive and predictive modeling approach in machine

learning and data mining. The goal is to predict the value of a response variable based on

given values of predictors. The way this takes place in classification trees is to divide the data

into smaller subsets in which the nodes of the splits in the tree contain larger proportions

of one class. In other words, the splits filter different values of predictor variables, and are

meant to correspond to a more homogeneous set of response variables, wherein the rate of

misclassification is minimized. The criterion for dividing the data into groups to minimize

classification error is referred to as purity. There is an important distinction between purity as

minimizing misclassification as opposed to maximizing accuracy, since maximizing accuracy

might lead us to partition the data so that we sample mostly from one class of the target

variable, which is not the intention and would not yield good results. Usually purity is

evaluated using either the Gini index or information statistics, depending on which algorithm

is being used for classification tree modeling. Split points are evaluated based on their purity,

and there are partitioning algorithms that examine almost all split points and create new

partitions based on which split optimizes the purity criterion. For continuous predictors,

deciding the split will involve a simple optimization of the purity criterion over the domain

of the variable. For categorical predictors, we have a choice of whether to optimize the purity

criterion across the categories independently or in groups, the pros and cons of which are

discussed below. It is important to note that partitioning algorithms tend to favor categorical

predictors with many levels q, as the number of partitions grows exponentially in q and the

10



more choices are available, the more likely it is the algorithm can find a good option for the

given data [Hastie et al. (2008)]. The purity criterion for C4.5 and C5.0, also defined below,

is based on the concept of information entropy.

The algorithm continues iteratively, making the tree more complex and adding split

points according to the optimality criterion until it meets some specified stopping criteria.

It is important not to overfit the tree with too many split points, because then the model

would not be generalizable at all. Having too many split points is analogous to overfitting

in regression in cases where, for example, an n-degree polynomial is fit to n+ 1 data points.

So the algorithms then typically include a pruning step to simplify the tree, in which the

branches of the tree are evaluated to see if they are individually contributing enough to the

classification decisions to remain in the tree. There are several different methods for pruning,

such as cost-complexity pruning or reduced-error pruning. I will describe the pruning process

for C4.5 and C5.0 below. Classification trees can have many different specifications and

variations to better adjust to different kinds of data, such as boosting, rules, and grouped

categories. These features are also described below as they appear in C5.0, the algorithm I

am using and evaluating, and C4.5, its predecessor.

C4.5 and C5.0 Algorithms

I will be using a modified version of Quinlan’s C4.5 classification model, which became

popular in the late 2000s, called C5.0. The algorithm has more features available to it than

C4.5 to further specify the model. The C5.0 algorithm is faster, more memory efficient, and

creates simpler trees than C4.5. C5.0 also offers winnowing, boosting, which can give the

tree more accuracy, and unequal costs for different types of errors [Kuhn & Johnson (2013)].

Both C4.5 and C5.0 allow rule-based models and evaluation of variable importance. I will

explain the C4.5 algorithm and the changes and additions made for C5.0 that contribute to

these claimed advantages.

The core algorithm C4.5 builds decision trees using information entropy, and at each

11



node chooses splits using normalized information gain as the purity criterion. Information

gain is based on the idea of entropy, a measure of uncertainty from information theory. With

pi referring to the probability of a given class as the outcome for each of m possible classes

for the target variable, information entropy is defined as

IE(p) = −
m∑
i=1

pi log pi = info(p)

If the probabilities of the classes are more balanced, the information entropy will be higher.

In other words, the more equally balanced the family of probabilities, the more uncertainty

associated with randomly guessing the true class of an observation. This makes sense: it’s

harder to correctly guess a coin flip (p1 = p2 = 0.5) than whether a die will land on 1 or not

(p1 = 5
6
, p2 = 1

6
), so it is desirable to have more distinct probabilities and low information

entropy.

For a given split in the classification tree, the information gain, or mutual information,

refers to the difference in information entropy before and after the split. The information

entropy before the split is straightforward to calculate, using each of the class probabilities as

pi from the equation above. But we must condition on the split to calculate the probabilities

for each class after the split. So for a given split S with k partitions, let infoi be the sum of

the information entropy in the ith resulting partition and ni equal to the number of samples

that would result in the ith partition from S. So,

infoSbefore = −
m∑
i=1

pi log pi

infoSafter =
k∑
i=1

infoi
ni
n

We assign weights to each of the k partitions according to the ratio of the number of samples

in that partition to the total number of samples after the partition. So the information gain

12



is calculated as

gain(S) = infoSbefore − infoSafter

If the difference between the class probabilities before versus after the split is substantial,

we would expect a higher information gain. Note that both the information entropy and the

information gain are convex functions. Higher information gain is desirable, since this would

correspond to higher information entropy, or uncertainty, before the split as compared with

after. We normalize the information gain to level our consideration of each class.

This normalized information gain is the optimality criterion that C4.5 uses to choose

splits. The class with the highest normalized information gain is selected, and the algorithm

continues this process for smaller subsets, and prunes the tree for branches that do not

contribute to the purity of classification. The branches not contributing enough to the model

are removed methodically according to different pruning processes in different algorithms.

The specific pruning process used by C4.5 and C5.0 is called pessimistic pruning. In

pessimistic pruning, we evaluate each subtree individually to decide whether the tree as a

whole should be simplified. Pessimistic pruning estimates the errors with and without each

subtree by following the subsequent paths on the tree and using the class frequencies at the

terminal nodes. For each error rate p, and s nodes in a given subtree,

pwithout subtree =
Total number of misclassified samples

Total number of samples

pwith subtree =

s∑
i

Number of misclassified samples at node i of subtree

Total number of samples at node i

We choose α according to our confidence level and calculate the upper bounds for the errors

using the normal approximation to the binomial distribution:

Pessimistic upper bound = p+ zα/2

√
p(1− p)

n

13



For these situations, it is accepted to take α = 0.25. Of course increasing the confidence

would give us a larger tree, just as a 99% confidence interval is wider than a 90% confidence

interval for the same data. We then compare the pessimistic upper bound for the error with

and without the subtree: if the error rate is greater when we include the subtree then we

prune it entirely.

For C4.5 and C5.0, pessimistic pruning serves as a less mathematical but often more

practical approach than cross-validation, since it is quite effective and far more efficient

in determining the tree size. The author of the C4.5 algorithm, Quinlan, notes that this

procedure is not well-grounded theoretically, but does tend to yield good results, which only

reflects my earlier comment that these algorithms are often more practical than theoretically

based. There is shell script, called xval, included in C5.0 for cross-validation techniques.

Cross-validation is meant to give a reliable estimate of the predictive accuracy of a given

model. With k-fold cross-validation, split the training set into k equally sized blocks. For

each block, we would construct a classifier from the rest of the blocks and test it on the

selected block. One may choose to use multiple trials of a k-fold cross-validation to be

really confident about the accuracy. The default for C5.0 is to compute 1 trial of a 10-fold

cross-validation.

C5.0 offers an option for a rule-based model, which utilizes independent conditional

statements to evaluate individual rules and prune the model accordingly. First, we create an

initial tree including every path, and collapse each path into a rule. We evaluate each rule on

independent conditional statements to assess if they can be generalized by eliminating terms

in the conditional statement. For example, if we are evaluating rule d out of D possible

rules, we consider

p(xd|x1, x2, ..., xd−1, xd+1, xd+2, ..., xD)

and then eliminate terms and evaluate

p(xd|x2, ..., xd−1, xd+1, xd+2, ..., xD), p(xd|x3, ..., xd−1, xd+1, xd+2, ..., xD)

14



and so on. We then compare our error rate to a pre-determined pessimistic error rate (distinct

from the pessimistic error rate upper bound mentioned for the tree model pruning step) and

remove the worst rule if any are not above the pessimistic error rate. The pessimistic error

rate is recalculated and the same test is conducted for the smaller tree. This continues

iteratively until all conditions are above the baseline error rate or all are removed, in which

case the rule is removed. Then C5.0 has each rule vote for the most likely class and the class

with the highest vote is used. The predicted confidence value will be that associated with

the most specific active rule [Kuhn & Johnson (2013)]. I will utilize C5.0 models both with

and without rules.

Boosting, in which many weak classifiers are combined into a strong classifier, is available

in C5.0 as well. Boosting is meant to reduce bias and variance. The boosting algorithm

utilized by C5.0 is similar to the AdaBoost algorithm from the early 1990s [Kuhn & Johnson

(2013)]. It fits models sequentially, adjusting each case weight based on accuracy. C5.0

constructs trees to have approximately the same size as the first tree, forcing them to have

a similar number of terminal nodes. Consider training set size N , with Nincorrect incorrectly

classified samples. Let wr be the sample weight for the observation at the rth boosting

iteration, and Scorrect and Sincorrect be the sum of weights for the correctly and incorrectly

classified samples, respectively. Then the boosting algorithm finds the midpoint between the

sum of the weights for incorrectly classified samples and half of the overall sum of weights:

midpoint =
1

2
[
1

2
(Sincorrect + Scorrect)− Sincorrect] =

1

4
(Scorrect − Sincorrect)

Now the correctly classified samples are adjusted accordingly:

wr =
wr−1(Scorrect −midpoint)

Scorrect
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and the incorrectly classified samples take:

wr = wr−1 +
midpoint

Nincorrrect

With this algorithm, the weights change substantially for each misclassification, but the

weights decrease slowly at a decreasing rate when the samples are correctly classified. C5.0

includes an automatic stop feature, in which the algorithm detects when the model is es-

pecially effective or ineffective and stops boosting. Specifically, if Sincorrect < 0.10 or if the

average wr for the incorrect samples w̄r,incorrect > 0.50.

There are two ways to treat categorical predictor data for tree and rule-based models.

Both are available as options in the C5.0 algorithm. Categories will be either grouped or

independent. Grouped categories have each categorical predictor entered as a single entity

such that the model itself decides how to split them. Independent categories have the

predictors decomposed into binary dummy variables, and each is considered independently.

If only some of the categories are highly predictive, usually the grouped category approach

will be better. With my data, for example, the model may decide to group predictors sex

and race together if they are highly predictive of the target and the others are not. Since

we do not have that many predictor variables and do not expect any to be significant more

predictive than the other variables, we might expect the independent category approach

to be more appropriate. Because these approaches have their respective advantages and

disadvantages depending on the data and model, we utilize both and then evaluate and

compare their performance.

There are missing values for several of the variables, and we are assuming here the the

mechanism for missing data is random. We must account for or consider whether to use these

variables with many missing values, because we want to keep the sample size large enough

for good analysis while including enough predictors to evaluate their relative importance.

I will use predictor variables sex, age, race, zip code, and BMI ratio. Depending on their
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values, we will predict the value of a participant’s self-image (positive or negative), based on

the earlier binary self-image variable constructed from weight strategy information. I will

then include weight strategy or the binary self-image variable with the predictors and try to

model weight description for the subset of youth who have the corresponding information. I

will compare the models in terms of their error rates, calculated simply as:

Error rate =
Total number of misclassified samples

Total number of samples

These error rates are calculated both for the training set on which the models are built and

on the test set on which the models are tested.
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3 Results

I have read the data into R, and run several C5.0 models with different specifications. The

corresponding R code is provided for each model. For all of the models, I use half of the

sample as a training set and check the accuracy of the model with the remaining half of the

data (the test set). The training set error rates are a result of the algorithm not overfitting the

data with too many splits, and the test set error rates are those that result from prediction

with the remaining half of the data. What follows is a discussion of the models’ relative

error rates and sizes, based on the different specifications for the C5.0 algorithm.

The first model fits the C5.0 algorithm to predict binary self-image variable from zip

code, sex, race, BMI ratio, and age. All of the models for the binary self-image variable

have training and test sample sizes n = 432, respectively. This model does not use rules or

boosting, and has independent categories. The error rate was 21.5% for the training data

and 42.1% for the test data, with tree size 35. The tree uses zip code in nearly all of the

splits, age in over half, and the remaining three variables in less than 20% of the splits. For

example, the beginning of out decision-making for this model proceeds as follows: depending

on the value of zip code, prediction will proceed down a specific path. Junctions that follow

will split predictions based on the subject’s age, and later the subject’s race, BMI ratio, and

sex.

Next I fit a C5.0 model with rules, independent categories, and no boosting, using the

same predictor and response variables. The training set error rate was 28.2% and the test

set error rate was 36.8%, with 14 rules. This model utilizes race in nearly all of the splits,

with BMI ratio and sex in about half of the splits. Although the error rate is still quite high,

this model is better than the original, since it is simpler with a lower error rate.

The C5.0 model without rules or boosting and with grouped categories has training set

error rate 23.4% and test set error rate 42.1%, with tree size 31. Although the test set error

rate matches exactly that of the original model, they do still classify the data differently, as

seen in the R output. The grouped model uses zip code in almost all splits, and sex in about
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a third of the splits, and can be considered a slight improvement from the original model

since it is simpler and has less branches. Note that the output given from C5.0 actually does

not specify which predictors are grouped together in the model.

Next I fit a C5.0 model with boosting (10 trials) and independent categories, but without

rules. In spite of calling 10 trials, the boosting was reduced to 1 trial since the last classifier

is inaccurate and there are few classifiers. Still, it performed better than the original: the

training set error rate is 26.4% and the test set error rate is 35.6%, with tree size 24. The

model boosted with 10 trials uses race in every split, and zip code in about half of the splits.

The model with 10 trials can be considered better than the original and the grouped model,

and is approximately as good of a model as the rule-based model, which is simpler but has

a slightly higher test set error rate. To check if a model with real boosting (more trials)

improves performance, I ran the model with 30 trials. The boosting was reduced to 4 trials

for the same reasons, but the test set error rate actually increased slightly, to 38.0%.

For my data set and for independent categories, using either rules or boosting improves

the performance of the model, with the rule-based model being slightly simpler with a

slightly higher error rate. Even though there was only 1 trial for boosting, it still improved

the model, which shows us that the core algorithm is affected by including boosting. Again,

neither is particularly good at prediction, with test set error rates all exceeding 35%, which

is pretty high. Noting that boosting cannot be used for rule-based models, we compare the

two methods for grouped categories as well.

The model using rules and grouped categories has training set error rate 26.2% and test

set error rate 38.4%, with 13 rules. This is a slightly worse performance than the model with

rules and independent categories. Similar results follow for using boosting, which again was

reduced to 1 trial for similar reasons as previously mentioned. The training set error rate

was 20.1% and the test set error rate was 40.7%, with tree size 38.

The next set of models will predict how youth describe their own weight from a list of 5

options (very underweight, slightly underweight, about the right weight, slightly overweight,
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Table 11: Error Rates and Tree Size for C5.0 Variations Modeling Binary Self-Image Variable

Categories Rules Boosting Training Error Rate Test Error Rate Tree Size
Independent No No 21.5% 42.1% 35
Independent Yes No 28.2% 36.8% 14
Independent No 10 Trials 26.4% 35.6% 24
Independent No 30 Trials 23.8% 38.0% 18.25

Grouped No No 23.4% 42.1% 31
Grouped Yes No 26.2% 38.4% 13
Grouped No 10 Trials 20.1% 40.7% 38

Table 12: Variable Importance for C5.0 Modeling Binary Self-Image Variable

Variable: Importance Average Max Min
Zip Code 70.40% 99.77% 21.06%

Age 51.09% 99.77% 18.29%
Race 35.09% 89.35% 9.95%
Sex 11.51% 25.23% 0.00%

BMI Ratio 7.74% 16.44% 2.08%

very overweight) based on their sex, age, race, BMI ratio, zip code, and weight strategy, as

defined earlier. We will see if similar results follow for variations of the C5.0 algorithm for this

multi-level categorical response variable compared with the earlier binary response variable.

We must note that the sample size is less than half for this subset of the population compared

with that for modeling binary self-image (n = 160 for training and test sets, respectively).

Surely this will limit the performance of these models relative to the earlier models.

The basic C5.0 model fits a tree with 1 branch with training set error rate 43.1% and test

set error rate 45.0%, which is clearly not a very useful model. Adding rules into the model

gives training set error rate 39.4% and test set error rate 44.4% with 4 rules. Weight strategy

is utilized in nearly all the splits and age is in about a fourth of the splits. This is hardly

an improvement from the original model. Fitting a model with 10 trials for boosting, the

boosting is reduced to 7 trials since the last classifier is very inaccurate. Although the boosted

training set error rate is very low, 6.9%, the test set error rate, which is really what matters

more, is 52.5%, which is a reduction in performance from the original model. The boosted

model uses weight strategy in nearly all splits, and age and race in over half of the splits.
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Table 13: Error Rates and Tree Size for C5.0 Variations Modeling Multi-Level Weight De-
scription Variable

Categories Rules Boosting Training Error Rate Test Error Rate Tree Size
Independent No No 43.1% 45.0% 1
Independent Yes No 39.4% 44.4% 4
Independent No 10 Trials 6.9% 52.5% 3
Independent No 30 Trials 32.5% 46.9% 1

Grouped No No 44.4% 43.8% 1
Grouped Yes No 30.0% 48.8% 5
Grouped No 10 Trials 40.6% 45.6% 2

Oddly, when we specify 30 trials for boosting, the boosting is reduced to just 1 trial, and

gives a tree with 5 branches, training set error rate 32.5% and test set error rate 46.9%. The

discrepancy in when the boosting stops for different numbers of trials raises some concerns

about the algorithm. None of the models above seem adequate to model weight description,

but the rule-based model seems to be slightly more reliable than the boosted model, neither

of which are substantial improvements in performance from the original model.

When we allow for grouped categories but do not use rules or boosting, the training set

error rate is 44.4% and the test set error rate is 43.8%, again with only 1 branch, so this

model is not very useful either. Using rules and grouped categories, we get a model with

5 rules, training set error rate 30.0% and test set error rate 48.8%, and again uses weight

strategy in nearly all of the splits. Finally, we boost with 10 trials for grouped categories,

and get a decision tree with size 2. The training set error rate was 40.6% and the test set

error rate was 45.6%, which is again not a substantial improvement from the original model.

Although we must take into account the limitations of sample size, the C5.0 model is

not adequate to predict weight description from the given predictor variables, since it has

an error rate of about 50% with each variation on the algorithm.

In evaluating variable importance, we see that not much of the models’ predictive abil-

ities are attributed to race and sex. Zip code and age were used much more frequently in

determining classification, which makes sense considering what we mentioned earlier about

these algorithms favoring classification variables with many different levels. Noting that a
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continuous variable may be split in many different ways, the algorithm tends to favor con-

tinuous predictors over categorical variables with few levels as well. So in interpreting the

results, it is hard to say whether sex and race have an impact on self-image in St. Louis,

since we are not sure whether our model is being influenced by the nature of the variables

or the content of their values.
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