Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-90-40

1990-12-05

Determining Interior Vertices of Graph Intervals

Victor Jon Griswold

The problem of determining which events occur "between" two bounding events A and B in
partially-ordered logical time is equivalent to being able to list, for a directed acyclic graph, the
vertices on all paths with origin a and terminus b. Four approaches to this problem are
presented, each exploiting more knowledge about this work's application domain and hence
becoming progressively less memory intensive. The two most promising of these approaches
are examined in depth.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Griswold, Victor Jon, "Determining Interior Vertices of Graph Intervals" Report Number: WUCS-90-40
(1990). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/713

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F713&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F713&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F713&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F713&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F713&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/713?utm_source=openscholarship.wustl.edu%2Fcse_research%2F713&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

Determining Interior Vertices

of Graph Intervals

Victor Jon Griswold

WUCS-90-40
(revision of WUCS-90-9)

December 5, 1990

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

St. Louis, Missouri 63130-4899

Abstract

The problem of determining which events occur "between" two bounding events A and B in
partially-ordered logical time is equivalent to being able to list, for a directed acyclic graph,
the vertices on all paths with origin @ and terminus 4. Four approaches to this problem are
presented, each exploiting more knowledge about this work’s application domain and hence
becoming progressively less memory-intensive. The two most promising of these approaches
are examined in depth.

This work has been supported by NSF grant DCI-8600947, Bellcore, BNR, Italtel, NEC, DEC,
SynOptics, and NTT. The author may be reached via email address vig@wucsl.wustl.edu.

jii

TABLE OF CONTENTS

Ne. Page
1. IMFOdUCHON . .. ot e e e e e 1
1.1 Background e 1

12 IS . o e e 2

1.3 Problem Definitiono e 2

1.4 Two Complexity ISSUES ot it e 5

1.5 History Graph Diagramsttt ittt it e e 5

2. Transitive Closure Method i e e 9
2.1 ApProach e 9

22 Algorthm e 9

3. Search Tree Method i e 13
3.1 ADDIOACh . 13

32 Algorithm 14

3.3 ARALYSIS L L e e 20

3.4 Comparison With Transitive Closure Method 24

4. Wavefront Method 27
4.1 Approach 27

42 Algorithm 29

43 ANAlYSIS . .o 36

5. Bounded-Search Method 39
S0 ADDIOACH . . . e 39

6. Future WOtk 41
6.1 Simulation 41

6.2 Enhanced QUeieS ittt 41

6.3 Distributed Implementationsttt 41

7. ADPDENAICES 43
Appendix 7.1 Pseudocode Representation, 45

7.1.1 Control SITUCIULIESottt ittt e e e e e 45

T12 OPeIAIOIS & ittt i e e 46

7.1.3 Simple and Structured TYpesot .. 46

7.1.4 High-level Structured Types 47

Appendix 7.2 Italiano’s Path Retrieval Algorithm 49
Appendix 7.3 Search Tree Method Algorithm 53
Appendix 7.4 Wavefront Method Algorithm 61

8. BIbHOgIapnY .. o 71

No.

Figure 1.
~ Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.

iv

LIST QF FIGURES

Page

History Graph Structure and Operations 6
Declaration of Required Operations i, 10
Operations Provided by Italiano’s Algorithm 11
Cross-Timeline Path Information for Search Tree Method 15
Search Tree Method Data Structures 16
Scarch Tree Method Update # xtProcedure 18
Search Tree Method Add_edge Procedure 19
Search Tree Method List_interval Procedure 21
Worst-Case Space for Search Tree Method 25
Cross-Timeline Path Information for Wavefront Method 28
Wavefront Method Data Structure Modifications 29
Wavefront Method Update tl xt Procedure 31
Wavefront Method Add_edge Procedure 32
Wavefront Method Disable_candidate Procedure 33

Determining Interior Vertices
of Graph Intervals

Victor Jon Griswold

1. Introduction

1.1 Background

The project leading to the work presented in this report involves the monitoring of
distributed systems by means of observing "events" generated by the sysiems being monitored.
In order to organize and interpret those events, the monitor must be able to determine which
events occur "between” two bounding events A and B in quasi-ordered logical time.* Use of
this temporal paradigm allows a directed acyclic graph to be constructed such that its vertices and
edges are in one-to-one correspondence with, respectively, events and those temporal orderings
which the monitor can explicitly recognize (through the use of various rules). The target of this
report, the above "list all events V; between A and B" problem, is therefore equivalent to being

able to list, for a directed acyclic graph, the vertices v; on all paths with origin ¢ and terminus b.

* The menitor interprets the temporal progress of a distributed system by means of quasi-ordered logical time[7],
not real time. A quasi order is an "irreflexive partial® order, meaning that A < A is false. Though quasi order
is the proper description of distributed time, few people regularly use this term. Throughout the remainder of
this paper, partial order will be used for quasi order except when ambiguity may otherwise result.

2 Griswold

1.2 Terms

A history graph H = (V, E) is a directed acyclic graph. A vertex v; € V corresponds to a single
event V; in our application. A directed edge ¢, = (v,, v;,) € E corresponds to the temporal
relationship "V, occurred before V,". Let v = |V|, and € = |E]|.

The quasi-ordering between any two vertices in f is defined by the relation <, called precedes.
Specifically, v; < i if and only if there exists a directed path in H with origin v; and
terminus v, We say that v; follows v;, written v; > v;, if and only if v; < v;. The relations

i
<’ and '»’ are defined according to their classical meanings in terms of *<°, *>’, and '=".

Given two vertices a and b, those vertices v; such that @ < v; < b are said to be between
a and b {a and & inclusive).

The graph interval, or just interval, in A from @ to b as the set containing the vertices on all
directed paths with origin « and terminus & in H. This is written [a = b]; a is the start
bound and 4 is the end bound of the interval. Intuitively, fa = b] is all vertices between

aand b. Ifandonlyifa ¢ &, [a = b] = .

1.3 Problem Definition

The goal of this report is to be able 1o answer queries about intervals in H as H is
constructed incrementally. Algorithms developed for this purpose can not depend on additional
vertices and edges not being added to H after the first query is posed. Given these requirements,

three basic operations must be supported:

ADD_VERTEX. Given a graph Hy gy

Hy, = (Vq, E) where Vg=Vqa VY {vq}.

= (Vq_l, E) and a vertex Vg» construct
ADD_EDGE. Given a graph Hyp = (Vq, E_ ;) and an edge e = (v, vp),

construct Hy, =V, E;) where £, = E 3 U {g].

LIST_INTERVAL. Given a graph H =(V, E) and two vertices v, € V and

v, € V, construct a set [= [v; = v,]. Define v;= |/| = |[v, = v]|

Perhaps the most common approach to optimizing a set of algorithms is to have the
algorithms make use of regularities in their input data. For the monitor application, one might

suppose that events generated by the same object could be grouped together in some fashion. This

Determining Interior Vertices of Graph Intervals 3

is indeed the case: events can be grouped with respect to both graph structure and sequencing of
the above operations without loss of generality.

Consider an object in a distributed system, such as a processor or shared data object,
which possesses a sequential event history. Events from that object are probably most frequently
ordered with respect to other events from the same object. Also, given the object’s sequential
event history, a total ordering of those events is known. This ordering is valid for both real and
logical time and means that events from the same source can be added to H in order. With this
knowledge, we can define A in a different, though equivalent, manner, and adjust the definition

of ADD_VERTEX to accommodate this:

A history graph H = (G, T) is composed of a directed acyclic graph G = (V, E)
along with a set T of distinguished paths in that graph. A directed path
t € T, called a timeline, is an alternating sequence of vertices v e V()
and edges e € E(f). TcoversV; thatis, V = UIGTV(t). Any given edge
or vertex Occurs at most once as a component on a given path (by
definition of path), but might be a component of more than one path. It
is useful to identify those edges in E which are not a component of any

path in T. These edges, called crgss-timeline edges, make up the set

X=E-U_pE@®. Let t=|T] and ex = |[X|. The index of a vertex
within a path is referred to as its version on that path; the vertex is said
to be ordered on that path. A path with origin Vorg and terminus v, is

denoted by (v

org’ 1”t(:rm)'
ADD_VERTEX. Given H =(G, T), a vertex v, a set T,, c 7, and a non-
negative integer <., construct H” = (G’, T"). T’ consists of the union of

three sets: 7 - T

o

new’
the set of paths derived by appending Vg 85 a new
terminus to each of the paths in T, (along with an edge from each path’s
previous terminus to vp), and a set of 7., new paths each of which
contains only v, G =(V,E) where V' =V u {vq}, and E' = E U {the

new edges added to the paths in T,_}.
These definitions of # and ADD_VERTEX are effectively equivalent to the original

definitions if one enforces that every added vertex augment a unique timeline (ie. T, = @ and

Toew = | for every ADD_VERTEX).

4 Griswold

It has been found useful, in both a practical sense and an algorithmic one, for H (©
initially contain one distinguished vertex, vy, which is the origin of every timeline. Practically,
vy represents the “start of time" for the monitor. Algorithmically, the use of v helps avoid
explicit checks for several boundary conditions in the algorithms to be presented later. The
existence of v, is not mandatory from a absolute point of view, but, since it does make the
algorithms more easily understood, it shall be assumed to exist. Given this use of v, the
construction of 7" in the above ADD_VERTEX definition must be changed so that the T, new
paths initially contain vy, not Vg

A second avenue towards optimization is to restrict the domain of operations which may
be performed on /. For the monitor application, the domain (pairs of vertices) over which
LIST_INTERVAL operations may be requesied is known. Additionally, there is a significant
amount of knowledge about the domain over which ADD_EDGE operations are performed. With
such information, vertex sets B and B, can be identified so that LIST_INTERVAL operations are
restricted to intervals [v; = v,] where v; € B; and v, € B,. Similarly, vertex sets A, and A can
be identified so that ADD_EDGE operations are restricted to edges {v,, v,,) such that v, € A, and
v, € A,. The definitions of the above operations are suitably amended, and one more operation

is defined:

Vertex sets B, B, A,, and A are the enabling sets for their elements to be an
interval start or end bound or 1o be a tail or head in an ADD_EDGE
operation, respectively. If a vertex v, € B, B,, A, or Ay, v, is said to be
a candidate for use in the corresponding situation. A statement such as

"v, € B." will often be phrased as "v, is an s candidate".

ADD_VERTEX. The vertex v, may be added to one or more of B, B, A, or

A;. This is the only time Vg May be added to an enabling set.
ADD_EDGE. It is required that v, € A, and that v, € A,
LIST_INTERVAL. It is required that v; € B, and that v, € B...

DISABLE_CANDIDATE. Given a veriex v, and one or more of the enabling

sets B, By, A, and A, Remove v, from each of those enabling sets.

This set of definitions is still equivalent to the originals if each added vertex is placed into

every enabling set and DISABLE_CANDIDATE is never invoked. It should be noted that every

Determining Interior Vertices of Graph Intervals 5

newly-added vertex ¥ Tust initially be at least an h candidate. This is so that Vg can be the head
of an edge from the previous terminus of each timeline(s) on which Vg is ordered (unless, of

course, v, is the origin of each of those timelines, though the use of vy removes even that

q

possibility). Also, unless a vertex Vg is known to be the final teiminus of a timeline, Vo must be

at least a t candidate so that it can be the tail of the edge to the timeline’s next terminus.

1.4 Two Complexity Issues

Though the speed of responding to LIST_INTERVAL is not unimportant, the monitor
application makes the space requirements for that response of paramount importance. A
distributed system might generate thousands of events, each corresponding to a vertex in H. Any
algorithm requiring just O(v®) space is therefore considered of no practical use. Given this, O(g)
is adopted as the target space complexity.

The analysis of LIST_INTERVAL faces a problem akin to that present when analyzing
database query algorithms.[13] Since it is possible for LIST_INTERVAL to retum V in ifs
entirety, the time cost for just building 7 in such a case is (v} - for the same cost, an algorithm
could determine which vertices to put into / by simply comparing every veriex in H 1o the
interval’s bounds. Such a complexity measure for LIST_INTERVAL, referred to as the locate-
and-copy time, is generally considered too coarse to be useful. Instead, the locate and copy times
for LIST_INTERVAL are differentiated in this report. The locate time can be viewed as the time

required to distinguish 7 and the copy time as the time required to output 7.

1.5 History Graph Diagrams

The diagram format for history graphs in this report represents each vertex as a circle with
its ADD_VERTEX sequence inside the circle and its candidacies to the side of the circle.®*
Edges are represented as arrows from tail to head. Vertices within the same timeline are arranged
vertically with the timeline’s origin towards the top (i.e. precedes order "flows down" the timeline

path). If a vertex is ordered on more than one timeline, it is highlighted with a double instead

* Ideally, copy time for LIST_INTERVAL would be O(vp). Unfortunately, this is not always the case because
of scanning complications such as avoiding putting a vertex into / multiple times if that vertex is on more than
one path between the interval bounds.

Fik It has been found that displaying vertices’ candidacies at the sides of the vertices is easier to read than listing
the enabling sets alongside the graph.

Griswold

— Initial Conditiong ~

add v, on £, with {t,h}
add eq= (vq, vy
dis_cand v;, {t}
dis_cand v,, {h}
add es= (v4, ¥a)
dis_cand v;, {h}

add v, on ¢ with {£,h,s) add v, on ¢, with {t,h}
add eg= (v, vy) add e;= (v, v)
dis_cand v;, {h) add e;= (v,)

dis_cand v,, (h}
add v5 on #, with {t,h,e}
add Eq= (Vz, V3)

5)t
add vs on #y with {t,h} As 10 the left, but:
add eg= (vg, vs) — v implied
add e;= (vy, v5) — order within a timeline

dis_cand v,, {t}
dis_cand vs, {h}

Figure 1. History Graph Structure and Operations

implied

Determining Interior Vertices of Graph Intervals 7

of a single circle. A vertex v is said to be ordered with a timeline ¢ if there exists a path in #
with terminus v and origin any v € V(). Similarly, two vertices v and w are ordered with respect
to each other if either v < worw < v.

Figure 1, which contains six examples of history graph diagrams, shows the construction
of a history graph H from five vertices besides vy, three timelines, and the potential for one
interval query. In the following discussion, the operations and queries performed on H are
referred 1o as being supplied by "the user,” though in reality this "user" would be a program.

As shown in Figure 1, Hy contains only vy Vertex vy is a t candidate, so it may be the
tail of subsequent edges. It is not, however, an s candidate, so no interval query may designate
Vg as its start bound. Vertex v, is then added to Hy. Vertex vy is ordered on timeline ¢; and is
version 1 of that timeline (v, is version 0 of ¢, and all other timelines). Initially, v; is a t, h, and
s candidate, so it may be the tail or head of subsequent edges and the user may pose an interval
query with v, as the start bound (but not an interval query with v; as the end bound). Next, edge
€g 18 added to H from vy to vy, as shown by the arrow. The user, in this example, determines that
ey can be the only edge with head vy, and therefore removes vy from Ap. If the user can not
discern this property and does not disable v;’s h candidacy, proper query results are not affected
but certain data structure optimizations can not be made. This completes the construction of H,.

The constructions of H, and, afterwards, H, are similar to that of Hy, and involve the
addition of two vertices and three edges. Of note is that v, is an e candidate; after v4 and all its
incident edges are added to H (i.e. after H; is completed), the user may pose an interval query for
[v; = v4] (and would receive {v, v,, v3} in response). Additionally, after the addition of v,, v,
is highlighted with a double circle since it is a component of both #; and #,.

H, consists of H; with one more vertex and two more edges. Moreover, the user
determines that no further edges may have tail v; and removes v, from A, providing an avenue
for further data structure optimizations. Hs adds the final vertex and edges to this example. In
Hs, neither v nor v, may be incident to any new edges to be added to H. For this graph, the
response for an interval query of [v; = vs] is {vy, v5, va, v4}. The response would not include
vs because, though vs follows vy, its ordering with v is indeterminate.

The last graph in Figure 1 shows a somewhat abbreviated representation of Hs; this is the
style of representation used throughout the remainder of this report. In this style of representation,
vy and the edges incident to it are implied since they are present in all history graphs.

Additionally, those edges which show the progression of order along a timeline are represented

8 Griswold

simply by segments instead of by arrows, since arrows within a timeline would always point down

in a graph representation.

Determining Interior Vertices of Graph Intervals 9

2. Transitive Closure Method

2.1 Approach

A rather robust means of responding to LIST_INTERVAL queries is by maintaining
complete transitive closure information about the history graph, making no assumptions about its
structure other than that it is directed and acyclic. When a query is posed for [a = b], the answer
is simply all vertices v; 2 (@ 5 v; < b).

To the author’s knowledge, the fastest published algorithm for incrementally maintaining
the transitive closure of a directed acyclic graph was developed by Giuseppe F. Italiano.[5] This
algorithm adds edges to a graph in O(v) amortized time per edge and reports the ordering between
two vertices in O(1) (constant) time. Unfortunately, Italiano’s algorithm requires prior knowledge
of the maximum number of vertices in the graph (due 1o storage allocation considerations*) and

has a space complexity of O(v?).

2.2 Algorithm

As stated above, Italiano’s algorithm makes no assumptions about the structure of the
history graph. For the monitor application, this general-purpose nature makes the algorithm’s
space complexity prohibitive and ADD_EDGE time undesirable. Nonetheless, the use of
Italiano’s algorithm remains of interest as a basis for comparison.

We take this opportunity to introduce the pseudocode representation employed for the
expression of algorithms in this report. The pseudocode employs an Ada-like syntax, explained
in detail in Appendix 7.1. The four operations defined in Section 1 are declared in Figure 2,
along with the data types used in the declarations and some data structures which might support
those operations.

The operations and data structures provided by Italiano’s algorithm are presented in
Figure 3 and detailed in Appendix 7.2. As shown, one may add an edge, check if a path exists
between two vertices, or find a path between two vertices. The data structures maintained include
an array with which t0 make O(1) path-existence checks and a set of trees to record the actual

paths,

* It is possible to dynamically increase the maximum number of vertices, but such an adjustment would require
a significant reorganization of the algorithm’s index data structure (this need not increase the O(v) running time,
just the constant factor). Such resiructuring would cause a bursty and unpredictable (and thus unacceplable)
performance impact on the monitor application.

10 Griswold

constants
v_limit, €_limit : integer := some large positive number /[greatest # of elements
id_null ; integer = -1; // "no such object"
types
natural = range [0..] of integer;
vertex_id = range [id_null..v_limit] of integer;
edge_id = range [id_null..e limit] of integer;

timeline_id = range [id_nuil..] of integer;
version_index = natural;

ordering = record // version (order) of a vertex on a timeline
tid : timeline_id;
ver : version_index;

end ordering;

candidacy = (t, h, s, €); /{ edge tail or head, interval start or end

vertex = record
// whatever an implementation needs to keep track of
end vertex;

edge = record
tail, head : vertex_id;

end ecdge;

globals
V . array [0..v_limit] of vertex; // any O(1) access time stracture
v : natural = 0; /f current number of vertices
E : array [0..e_limit] of edge; [/ any O(1) access time structure
& : natural = Q; /! current number of edges
A, . set of vertex_id; // vertices which may later be an edge tail
Ay : set of vertex_id; // vertices which may later be an edge head
B . set of vertex_id; // vertices which may be a query start bound
B, : set of vertex_id; /f vertices which may be a query end bound

// Return the vertex_id corresponding to {timeline_id, version_index).

/i

function get_vertex (ord : “ordering) : vertex_id;

procedure add_vertex (new_V : vertex;
T, : set of timeline_id; candidate_for : set of candidacy;
out Vq: vertex_id);

procedure add_edge (v,, vy, : vertex_id; out ¢, : edge_id);
function list_interval (v, v, : vertex_id) : set of vertex_id;
procedure disable_candidate (v, : vertex_id; not_candidate_for : set of candidacy);

Figure 2. Declaration of Required Operations

Determining Interior Vertices of Graph Intervals 11

Unless reorganization of the path existence lockup table is permitted, the maximum
number of vertices is fixed for Italiano’s algorithm. The add_vertex procedure is thus a no-op
with respect to the Italiano data structures. Furthermore, since Italiano’s algorithm makes no
optimizations based on knowledge of future ADD_EDGE or LIST_INTERVAL operations, the
disable_candidate procedure is also effectively a no-op. The procedure add_edge is not a no-op,

though is trivial:

procedure add_edge (v, v, : vertex_id; out e_ . edge_id);

begin
Ital_add_edge(v, v,)
e, = E
refurn;

end add_edge;

Of particular use for LIST_INTERVAL is the v X v lookup table, index, maintained by

Italiano’s algorithm in order to directly check for the existence of a path from any vertex v; to any

types
vertex_id = range [0..v_limit] of integer; // no need for id_null

Ital_node = record
key : vertex_id;
parent : ~Mtal_node;
child : Altal_node;
sibling : Altal_node;
end Ital_node;

globals
/f index[v;, vj] # null — a path exists from v; to Vi
/f
index : array [vertex_id, vertex_id] of Altal_node := null;
desc : array [vertex_id] of ~tal_node;

procedure Ital_add_edge (v, v, : vertex_id);

function Ital_check_path (v : vertex_id) : Boolean;

org? Vierm
function Ital_get_path (vorg, Vierm - vertex_id) : list of vertex_id;

Figure 3. Operations Provided by Italiano’s Algorithm

12 Griswold

other veriex v, The algorithm’s ability to list a single path from v; to v; is of little use for

LIST_INTERVAL'’s purpose of listing all such paths.* Hence, the query is resolved by using
index 10 find the intersection of those vertices after the interval’s start bound with those before
its end bound. The following list_interval implementation, though quite straightforward, still
takes O(v) locate time. This is similar to the @(vy) locate-and-copy time limit for the query but

is perhaps much larger. Copy time is O(vyp).

function list_interval (v, v, : vertex_id) : set of vertex_id;
I': set of vertex_id = &;
v vertex_id;

begin
if index[v, v,] # null then
Tu={v, v.};
for v in [0..v-1] do
if index[v,, v] # null and index([v, v.] # null then
Tu={v}
endif;
endfor;
endif;

return /
end list_interval;

* It is not feasible to modify Italiano's algorithm in order to report all paths between a pair of vertices. The very

optimization which allowed him to achieve (v} (instead of 0(vlogv)) ADD_EDGE time was the removal
of all such "redundant” multiple-path information from the algorithm’s data structures.

Determining Interior Vertices of Graph Intervals 13

3. Search Tree Method

3.1 Approach

This second method of responding to LIST_INTERVAL. relies on the history graph’s
timeline structure to achieve O("czlogaX +tlogv) add_edge and O(t(logey +vp) list_interval
time while requiring O(tey +v) space.* Such space costs at first appear worse than those of
Italiano’s algorithm because g, for a general graph, is 0(\12). The monitor application’s removal
of edges which are redundant through transitivity, however, makes £ closer to G(tv). For graphs
with a large number of vertices relative to the number of timelines, the search tree method (STM)
may thus require considerably less time and space than the transitive closure method using
Italiano’s algorithm.

The core of the search tree method is its cross-timeline path data structures. For each
timeline ¢, in H, a sorted set of vertices** is maintained for the path ¢, itself. Along with that
sorted set are sorted sets for each timeline ¢, with which some vertex on ¢, is ordered. These
sorted sets contain the origin and terminus of all paths from ¢, to ¢, which are not redundant
through transitivity. For graphs in which vertices (and thus edges) are added in topological order,
update of the cross-timeline structures when a new edge e, is added to X can be performed with

the following simplified procedure:

. Given e, ={v, v). Determine timelines # and ¢, such that v, € V(z,) and
v, € V(t,).
® Through ¢, ’s cross-timeline path records, find the origin of all cross-timeline paths

to t, with terminus v,. This includes those paths not explicitly recorded as
terminating with v, but which are instead recorded as terminating with a vertex
on z, which has an earlier version than v, (recording an explicit path to v, would
thus have been redundant). Since e, has been added to H, each of these origins

is also the origin of a path with terminus vy,

* For brevity in the remainder of this report, all time and space complexity measurements shall be assemed to be
asymptotic complexities ("O™) unless otherwise stated.

o A sorted set is a set tota]ly ordered by a relation over a key attribute of each of the set’s elements.{12] A typical
operation on a sorted set is, naturally, scarching for an element with a particular key value. The most common
implementations of soried sets are search trees and hash tables. For the STM path records, sorted sets are
implemented as threaded AVL treesf4][11] ordered by version on the timeline.

14 Griswold

. For each path (Vo55;p» V) determined above, record the path (v o;n, vy) if it is not
already implied through transitivity. This is the case whenever v, is also the

origin of a path to some verfex on t,, which has an earlier version than v;.

The pairwise-timeline sorted sets are the reason for the 72 factors in the search tree
method’s complexity measures. If, for a particular H, ordering between timelines has a strong
locality (for instance, each processor represented as a timeline might only communicate with its

“neighbors™), the 72 factors will actually be T or tlogt.
Figure 4 illustrates a history graph along with the cross-timeline path information

maintained for that graph. In Figure 4a, we see a history graph with three timelines and fourteen
vertices (not counting vy); Figure 4b-d show the cross-timeline paths recorded for that graph, one
sub-figure for the path information associated with each of the three timelines. In each of
Figure 4b-d, the path-origin timelines of the underlying graph are de-emphasized by showing them
as dotted lines while the terminus timeline and the cross-timeline paths themselves are shown as
bold lines. Given the cross-timeline path data structures in this example, checking for the

existence of a path from v; to vy, proceeds as follows:

1 Inspect those paths which originate from v,'s timeline (z5) and terminate at v;5’s
timeling (¢;). Of these, find the path the terminus of which has the highest
version less than or equal to that of v;,. This terminus would be vy4.

2) Determine if the origin of that path has a version greater than or equal to that of
v. In this case, the origin is vg, which does follow v; on #; . It has thus been
demonstrated that a path from v, to v, exists by recognizing three of its sections:
the path originates at v, on #;, proceeds to vg along some number of edges on 5,
proceeds to vig on #; along some number of edges across some number of
intermediate timelines, and finally terminates at v}, along some number of edges

on fl.

3.2 Algorithm

Before examining the algorithms in this subsection, some elaboration is necessary. The
existence of the sorted set operations described in Appendix 7.1 is assumed. Their implementation
requires time per operation on the order of the log of the number of items in the set.[12] In

addition to the data structures of Figure 2, the search tree method makes use of those presented

Determining Interior Vertices gf Graph Intervals 15

(¢) (4)

Figure 4. Cross-Timeline Path Information for Search Tree Method

16 Griswold

types
ordering_set = srt_set of ordering key tid;

i Versions of origin and terminus of a path from one timeline to another. If
// both timelines are identical, the origin’s version is repiaced with the vertex
// ideniifier of the terminus since the origin’s version would simply be terminus
// version - 1,
I
x_tl_path = record
case (cross_timeline, in_timeline) of
cross_timeline : (org : version_index;);
in_timeline : (vid : vertex_id;);
endcase;
term : version_index;
end x_tl_path;

origin_paths = record
org _tid : timeline_id; /f id of il on which origins are ordered
path : srt_set of x_tl_path key term, org; // we need to search by either field
end origin_paths;

timeline = record
id : timeline._id;
self ; Morigin,_paths; // convenience: always points to xtpaths[id]
xtpaths : srt_set of origin_paths key org_tid;

end timeline;

globals
T : srt_set of timeline key id;

// Return the version of v on .
i

function version(v : vertex_id; ¢ : timeline_id) : version_index;

Figure 5. Search Tree Method Data Structures

in Figure 5. Keep in mind that the cross-timeline data structures keep track nof of individual
edges between timelines, but of paths between timelines. For analysis purposes, it is considered
trivial to determine each timeline on which a vertex is ordered and the vertex’s version on that
timeline.* Similarly, given a timeline and version, it is assumed that one can quickly find the

corresponding vertex. Implicit "conversions” between vertices and vertex_ids are often made in

* In an actual implementation of these algorithms, the add_vertex T, parameter is stored with the vertex in V
along with the vertex’s version on each timeline.

Determining Interior Vertices of Graph Intervals 17

this subsection. It is proper to be able to search the path field of origin_paths by either term
or by org because it is true that for all x_tl_paths in a particular path sorted set, x.term > y.term
implies x.org > y.org (i.e. when path is sorted by term, it is also sorted by erg). A search by
term is denoted with path[key] and a search by org with path.orglkey].

Since the search tree method makes no optimizations based on knowledge of future
ADD_EDGE or LIST_INTERVAL operations, its disable candidate procedure is effectively a
no-op. The pseudocode presented in this subsection is a high-level description of the algorithms;
a more detailed description is found in Appendix 7.3.

One optimization in the algorithms presented here should be noted before confusion arises.
A procedure which responds to a LIST_INTERVAL query must report the identifiers of the
vertices in the requested interval. The search tree method’s path recording mechanism, however,
generally tracks only the version of a vertex on a timeline (since veriices are ordered on a timeline
by version, not by the vertex identifier). Either a separate data structure 1o record the verlex
identifiers must be mainfained or the identifiers must be maintained along with the paths. The
optimization makes use of the property that, when a path is recorded between two vertices on the
same timeline, the version of the origin is always 1 less than that of the terminus. The space
ordinarily used to hold the origin’s version is used, instead, to hold the terminus’ vertex identifier.

The STM add_vertex procedure is based on the second definition of ADD_VERTEX, in
which the edges from any previous terminus of vq’s timelines are added during ADD_VERTEX
instead of later. Aside from the add_edge calls, the operation of add_vertex is self-explanatory.
It should be realized that storage of new_V into V is of use only for the application invoking
add_vertex; the STM routines make no direct use of V. Pscudocode for add_vertex is:

procedure add_vertex (new_V : vertex; T, : set of timeline_id;
out Vg vertex_id);
t : timeline_id;

e, . edge_id; // ot used, in this case
begin

V4= 1;

v =V

V[vq] = new_YV,

for each t e T, do
add_cdge(TTs].self—lasi()—vid, Vg s
endfor;
return;
end add_veriex;

18 Griswold

The simplification made in this section’s intreduction, that vertices (and thus edges) are
added to H in topological order, can not be made in general. This complicates the add_edge
procedure because an additional level of transitivity is involved. After adding an edge from v, to
V,,» v, must follow all vertices v," < v,. For the general case, all vertices v,” » v, must also follow
all vertices v/ < v. Given all vertices v, < v, and all vertices v;," > v, the path records must be
updated so that v < v, < v, < v’ Further complications result from the possibility that v, is
ordered on multiple timelines.

An important subroutine of add_edge is update_{l xt, shown in Figure 6. This
subroutine accepts a vertex v, on a timeline ¢ and a set of vertices (identified as (timeline_id,
version_index)’s) which are origins of paths to v, ;. Update_tl_xt then updates ’s cross-timeline
records so that these paths are recorded. The creation of new cross-timeline structures (if ¢ had

no existing paths from a particular origin’s timeline) is also handled by update tl xt, as is the

procedure update_tl_xt(s : AMimeline; vy, : veriex_id;
origins : ordering_set);
Xt: Aorigin_paths;
origin : ~ordering;

begin
for origin € origins do
Xt = t—xtpaths[origin—tid];

if no existing paths to t originate from that timeline then
add a new cross-timeline path set to t—xtpaths;
add the initial vy to that set;

endif;

if origin—tid = t—id then
if a path from origin is not redundant then
add the (origin, v,) path to xt;
remove existing paths made redundant by this new path;
endif;
else
add (origin, v, to t—self, if not redundant;
endif;
endfor;

return;
end update_tl_xt;

Figure 6. Search Tree Method Update_{l xt Procedure

Determining Interior Vertices of Graph Intervals

procedure add_edge (v, v, : vertex_id; out e, : edge_id);
¢ : Mimeline;
Vorgs Vierm VeItex_id;
xt : Morigin_paths;
origins : ordering_set := &;

begin
g+=1;
e =g

_

Ele] = (v, v

// Find all vertices which are now < vy

/f

t = any timeline such that v, € V();

for xt e t—xipaths, xt # r—self do // 1 itself is handled below
find the latest Vorg < VO xt's origin timeline;

if Vorg # Yo then // everything follows v; ignore it
origins += {xt—org_tid, version(vorg, xt—org_tid));
endif;
endfor;

for each t such that v, € V(£) do
origins -+= (z, version(v, 2}
endfor;

// Update v, to follow origins

1/
for each t such that v, € V{#) do

update_tl_xt(t, vy, origins);
endfor;

// Update all vertices which follow v, to follow origins

/
forre T do
Vierm = the earliest vertex on t which follows v;
if v, # id_null then
update_tl_xt(z, v, ., origins);
endif;
endfor;
return;

end add_edge;

Figure 7. Search Tree Method Add_edge Procedure

20 Griswold

case when the new paths make existing paths redundant. This occurs in the following situation:
Consider v,," * Vi, 00 2. Update_tl xt is given Vorg ON L5y 8O that it can record (v, Viorm)-
Additionally, the path (Vorg', Vienn') Was previously recorded, vi," also on fr,. If v, < v,
explicitly recording (vorg’, Vierm J 18 1O longer necessary because it can be determined through the

. g . . ? Fi . . 3
transitive relationship Vo.," < Vor, < Vg < Vi Figure 7 lists the search tree method’s
add_edge procedure.

Vertices in an interval [v, = v,] are found through a three-step process:

Determine the set of all timelines with which v, is ordered. Call this set 7},

® For each t € T}, delermine the earliest vertex on ¢ which follows v, and the latest
vertex on ¢ which precedes v,.

° Foreach t € T, add to { all vertices after v, and before v,. This is referred to as
the span of vertices of / on £. Do not add vertices which are on more than one

timeline multiple times.

Pseudocode for list_interval is shown in Figure 8.

3.3 Analysis

The O('czlogex +7logv) time for add_edge is calculated by direct examination of the
procedure’s pseudocode. Begin with inspection of npdate_tl_xt. The top level of this subroutine
is a loop for each origin which v, should follow; there could be 1 origins. Within the Ioop,
Vierm $ limeline is searched for the existing cross-timeline paths originating from origin’s timeline.
This search is O(logt). If a structure containing these paths is not present, it is created with an
O(logt) insert. If the new (origin, v,..) path is not redundant, it is recorded with either two
O(logey) or one O(logv) insertion(s) (depending upon whether or not the path originates on
Vierm § OWN timeline, £). Whenever a path does not originate on ¢, an out-of-order situation must
be checked. The pseudocode above remedies this out-of-order situation with a slow O(exlogey)
delete loop for purposes of storage reclamation. This is desirable in many cases, but is not the
fastest way to remove the out-of-order information. If self-adjusting splay trees{12] are used
instead of AVL trees for the path records, two splay tree splits and a splay tree join, O(logey),
are all that is required to rectify the problem.

The above analysis yields an O(T(logt +logey) +logv) running time for update tl_xt

(only one origin can be on v,,..’s own timeline). One can, though, compare T and ey in order

Determining Interior Vertices of Graph Intervals

function list_interval (v, v, : vertex_id) : set of vertex_id;
I : srt_set of vertex_id := &; /! avoid duplicates
I_terms : list of ordering := [1; /{ termini of all spans of vertices making up /
[_term : Mordering;
Vr_org VI terme Vi ¢ vertex_id;
£, t; © Mimeline;
Xt ; “origin_paths;

begin
1/ Find the latest vertex before v, for each timeline with which v, is
// ordered.
i

t = any timeline such that v, € V(1);
for xt € t—xtpaths do
if xt # t—self then
Jind the latest vy oy < Ve On XU'S OFigin timeline,
else - /1 this will lead to putiing v, in /
VI term IS Ve itself;
endif’;
if v torm # Vg then // again, ignore v,
I_terms &= (xt—org_tid, Version(vy o, xt—org_tid));
endif;
endfor;
I Add all vertices after v, and before v, to /, scanning one timeline at a time
// between the first veriex afier v, and the latest vertex before v, (stored in /_terms).
i
I, = any timeline such that v, & V(1);
for I_term « [_terms do
t = T1I_term-->tid];
VI term = get_vertex(/_term);
Xt = r—oxtpaths[z.—id]; // we want paths from ¢, to ¢
if xt # null then
VI org = the earliest vertex z vs on f;
if vy o # id_null andif v; ., < vy oy then
I += all vertices v, on t 3 (v,“Org E v[wmm);
endif;
endif;
endfor;
return make_set(f); // convert from srt_set to set
end list_interval;

Figure 8. Search Tree Method List_interval Procedure

22 Griswold

to achieve a less verbose measure. A timeline has cross-timeline structures for itself and for all
other timelines with which its vertices are ordered; its vertices can be ordered with no more
timelines than there are edges between timelines, €y. Therefore, for this calculation, T £ €y + 1
and thus O(logt) < O(logey). The time required by update I xf is hence simplified to
O(tlogey +logv).

The pseudocode for add_edge consists of three primary phases: find the "new" vertices
before v, (i.e. v, and all vertices which come before v}, update v,’s cross-timeline paths, and
update the cross-timeline paths of all vertices which follow v,. Finding the vertices before v,
requires an O(logt) search to find a timeline ¢ on which v, is ordered and, for each of #'s 7
potential cross-timeline structures, an O(logey) search on xt and possible O(logT) insert into
origins.* The ordering of v, itself with respect to v, is handled with an G(logt) insert for each
timeline on which v, is ordered (T possible). Total time is O(tlogey), using the same
O(logt) < O(logey) argument as above.

Updating vy,’s cross-timeline structures involves, for each of T possible timelines ¢ on
which v, is ordered, finding ¢ with an O(logt) search and applying update tl xt to it. Given the
above analysis for update_tl_xt, the time cost for this phase is O(z(tlogey +logv)).

To complete add_edge, the cross-timeline paths of all vertices which follow v, must be
updated. For each timeline ¢ in the graph, add_edge must determine if any vertex on ¢ is ordered
with some timeline on which vy is ordered (i.e. determine if a set of cross-timeline paths to ¢
originate from some timeline on which v, is ordered; @(logt)). If so, add_edge finds the first
vertex on ¢ following v, (O(logey)) and applies update_tl_xt when appropriate. Completion of
add _edge thus requires O(Tzlogex) time, similar to updating v,’s cross-timeline structures.
When combined with the analyses of the other two phases within add_edge, this result implies
that add_edge as a whole is of time cost O(Tzlog Ey +TlogVv).

As for add_edge, list_interval’s time complexity is calculated by examination of the
pseudocode. The algorithm begins by finding a timeline ¢ on which v, is ordered (requires one
O(logt) search), then finding the latest vertex VI term before v, on each timeline containing the

origin of a path to v,. There could be 7 timelines, and the v; ..., search requires an O(logey)

* It is possible to replace the O(logt) origins srt_set insert with an O(1) list insert by simultaneously scanning
the origin timelines from xtpaths and the limelines on which v, is ordered. Since this change would not affect
the overall time cost of add_edge and would make the algorithm more difficult to read, it was not done here.

Determining Interior Vertices of Graph Intervals 23

lookup and an O(1) append. Time for this phase of the algorithm is therefore O(tlogey), which
classifies as part of the “locate” time for list_interval.

1, the set of vertices to be returned by list_interval, is built by scanning each timeline ¢
containing the origin of a path terminating at v,. Given such a ¢ and a timeline £, on which v, is
ordered, list_interval begins by locating ¢ and its cross-timeline paths originating from ¢, (both
searches are O(logt)). If any such paths exist, list_interval finds the first vertex v; ., on ¢
following v, (O(logey)) and finds ¢'s path itself (O(logt)). Finally, the span of vertices on #’s
own path between vy ., and vy oy i traversed, adding each vertex to / (O(vp); see below). The
list-building phase thus requires O(tlogey) additional locate time and O(Tv) copy time.
Combined with the first phase of list_interval, this results in an O(tlogey) locate time and an
O(tvy) copy time for list_inferval as a whole.

The list_interval copy time cost is quite pessimistic; Tvy is an accurate measure only if
the number of instances when a vertex is on more than one timeline is O(1). In most "realistic”
systems, a vertex on muliiple timeline signifies a rendezvous between two processes, Q(1), not
between some O(T) group of processes. For this common case, list_interval copy time is simply
O(vp).

One may notice that an O(1) time cost is attributed to adding each vertex into /, even
though 7 is defined as a srt_set which should require O(logv) for adding each vertex. This is
because the sole purpose of making / a srt_set in the algorithm as presented above is to avoid
duplicate entries for a vertex. This can just as easily be done with a vertex-flagging strategy,
followed at the end of list_interval with a scan through 7 to reset the flags. The problem with
this has to do with any potential distributed implernentations of the search tree method algorithms.
Using a flagging strategy prohibits concurrent access to a vertex by more than one list_interval
query at a time, while adding the vertices to a srt_set presents no such data structure locking
problem. Since the current implementation is non-distributed, it uses flagging and has an 0(1)
time. This issue, however, should be noted for future implementations.

The search tree method’s space requirements (in terms of path records maintained in the
cross-timeline structures) are measured by examining the data structures themselves instead of the
algorithms which operate on them. 7Two approaches to deriving this space requirement are
presented: one employs commutativity of sequences of ADD_VERTEX and ADD_EDGE

operations, the other directly counts cross-timeline paths. For both approaches, it is a given that

24 Griswold

each timeline maintains knowledge of itself; space requirements can not, therefore, be less than
o).

For the first approach, recollect what happens when an edge is added. The tail of the
edge, v,, follows vertices on at most T timelines, and, after the edge is added, the head v, must
also follow those vertices, origins. A potential of T paths must be recorded for each new edge.
The problem is that not only must v, be recorded as following origins: all vertices following v,
must follow origins, as well. Since there may be vertices on T timelines following vy, this line
of reasoning implies that 72 potential path entries might be added for the new edge. The question
is whether or not this implies an O(12 €y) space requirement.

The answer is no, because it is possible to rearrange the sequence of vertex additions
—building the same history graph— so that there exist no vertices after the head of a new edge.
This is because a history graph is a directed acyclic graph and thus possesses a topological
ordering of vertices. If vertices (and thus edges) are added to the graph in topological order, no
vertices yet exist which follow the head of each new edge and the space required per new edge
is at most T. This yields a modest O(tey +Vv) space complexity. Since an arbitrarily-created
history graph and its corresponding topologically-created history graph are the same graph
represented by the same structures, they require the same space to store.

The second approach counts the maximum cross-timeline paths directly. Each path is
recorded only at its terminus, the head of its last component edge. There are exactly &y of these
head vertices, and each one may be ordered on at most T timelines. This argument again yields
an O(Tey +Vv) space complexity.

The above space complexity i$ a tight bound. Though not all graphs reach it, the simple

graph shown in Figure 9 does exhibit this worst-case space requirement.

3.4 Comparison With Transitive Closure Method

Comparison between the search tree and transitive closure methods is difficult because the
search tree method uses the monitor application’s underlying timeline structure. It is not realistic
to compare the two methods according to the degenerate graph case in which each vertex
augments a unique timeline (i.e. in which T = v). Therefore, a somewhat less unrealistic approach
is taken. For the monitor application, the number of timelines is usually very small compared to
the number of vertices and is often fixed. Hence, this discussion will consider T a constant factor.

Additionally, no distinction will be made between € and ey.

Determining Interior Vertices of Graph Intervals 25

Figure 9. Worst-Case Space for Search Tree Method

Time for ADD_EDGE in the transitive closure method is O(v) (amortized). For the search
tree method, it is O(loge). The search wree method time is clearly superior. Similarly,

LIST_INTERVAL locate time in the transitive closure method is O(v), verses O(loge) for the
search tree method. Copy time for both is O(vp).

The search tree method shows a distinct space improvement cver the transitive closure
method for graphs which are not strongly connected. The transitive closure method takes @)(vz)
space, while the search tree method takes O(e).

Each of these comparisons demonstrate that, for graphs with a relatively small number of
timelines relative to vertices, the search tree method should be preferred. This is especially true

when a graph has substantial locality of connectivity between timelines.

26

Griswold

Determining Interior Vertices of Graph Intervals 27

4. Wavefront Method

4.1 Approach

The wavefront method (WVM), so named for the manner in which the LIST INTERVAL
query is resolved, uses information about future vertex operations to decrease both time and space
costs. While the search {ree method maintains information about every path terminating with a
cross-timeline edge, the wavefront method maintains path information only when the path’s
terminus is an end-bound candidate or tail candidate. If the user is knowledgeable about which
vertices can still be incident with new edges, this optimization saves considerable space over the
scarch tree method. Its cost is the loss of rapidly available complete transitive closure
information: it is no longer possible to determine the ordering of two arbitrary vertices.*®

An example of this optimization is illustrated in Figure 10. Figure 10a presents a simple
history graph. Figure 10b shows the search tree method’s cross-timeline paths maintained for the
second timeline of this graph, and Figure 10c shows the cross-timeline paths maintained by the
wavefront method for the same timeline. The reduction of the cross-timeline paths of vertices vy,
vs, and vg into that of v, demonstrates a space savings over the search tree method, while the path
reduction from vg into vg merely moves data from one vertex to another (and loses information
content while doing so). Notice that records of the paths from v, 10 vs, v5 t0 vg, and v; 10 vg are
also reduced from the wavefront method’s cross-timeline records (though they must be recorded
elsewhere in order to satisfy a list_interval query).

Since complete transitive closure information is not readily available, it is not possible to
immediately determine the first vertex on each timeline which follows an interval’s start bound.
In order to resolve a LIST_INTERVAL query, a depth-first search originating at the start bound
is used to determine the vertices in the interval. This search terminates at the last vertex on each
timeline which precedes the interval’s end bound (knowledge of which is maintained). The
search is pruned before leading to any timelines which are unordered with respect to the end

bound.

* Transitive closure information may very well, however, be regenerated efficiently over individual intervals when
necessary for query purposes.

28

Griswold

(b) (e)

Figure 10. Cross-Timeline Path Information for Wavefront Method

Determining Interior Vertices of Graph Intervals 29

4.2 Algorithm

Slight modifications to the basic Figure 2 data structures are necessary for implementation
of the wavefront method. To facilitate the list_interval depth-first search, information is added
to each vertex about all edge tails with which the vertex is incident. This is maintained as a
circular list from the vertex through each such edge and back to the veriex; details are presented
in Figure 11. As with the search tree method, the pseudocode presented here is quite high-level.

The more detailed code is found in Appendix 7.4.

types
next_edge = (edge_link, vertex_link);

wv_vertex = record
l in addition to what an implementation needs...
I
out : edge_id;

end wv_vertex;

wyv_edge = record
case Iink : next_edge of
edge_link : (next : edge_id;);
vertex_link ; (tail ; vertex_id;);
endcase;
head : vertex_id;
end wv_edge;

/' Versions of origin and terminus of a path from one timeline to another.
i
x_tl_path = record
org, term : version_index;
end x_tl_path;

wv_ordering = record
vid : vertex_id;
tid : timeline_id;
ver : version_index;
end wv_ordering;

globals
V :array [0..v_limit] of wv_vertex; /f any O(1) access time structure
E : array {0..e_limit] of wv_edge; // any O(1) access time structure

Figure 11. Wavefront Method Data Structure Modifications

30 Griswold

Remain aware that in the following algorithms only end-bound and tail candidate vertices
arc maintained in the cross-timeline path records. "Consecutive"” vertices recorded on the same
timeline will no longer necessarily have immediately consecutive versions (though they will, of
course, be in order). Furthermore, a vertex & referenced as a cross-timeline path origin can later
be removed from the path records when it is no longer an e or t candidale. Even wilh b itself
removed from the path records, though, virtually no references to b are altered since all lookups
in the WVM algorithms search relative to their target (< or 2 the target’s version). For this
example, lookup results would either find some vertex a preceding b or some veriex ¢ following
b, whichever is appropriate.

The add_vertex procedure is similar to that of the search tree method. The only additions
are initializing the list of edges originating at the vertex and putting Vg into the appropriate
enabling sets.

procedure add_vertex (new_V : vertex;
T, . set of timeline_id; candidate_for : set of candidacy;

out Vg vertex_id);

¢ : timeline_id;

e, . edge_id; /{ not used, in this case
begin

vi=1;

Vg = Vs

V{vq] = {new_V, id_null);

for each t e T, do
add_edge(7[¢].self—last)—vid, Vg eh
endfor;

/{ Check for each of t, h, s, and e candidacies and add to appropriate enabling sets.
i

if s € candidate_for then
B, u= {vq};
endif;

return;
end add_vertex;

The wavefront method’s add_edge procedure (and thus update_tl_xt) is actually simpler
than that of the search tree method, though almost identical in general approach. While the
wavelront method must maintain the list of edges originating at each vertex, it does not treat a

path between two vertices on the same timeline as a special case. Update tI xt is shown in

Determining Interior Vertices of Graph Intervals 31

procedure update_tl_xt(z : Mimeline; v, : vertex_id;
origins : ordering_set);
Vierm - vertex_id;
Xt : Morigin_paths;
origin : “ordering;

begin
Vierm = the first e or t candidate = v, on 4

for origin e origins do
Xt ;= t—xtpaths[origin—stid];

if no existing paths to t originate from that timeline then
add a new cross-timeline path set to t—Xtpaths;
add the initial vy to that set,

endif;

if a path from origin is not redundant then
add the (origin, v...,") path to xt;
remove existing paths made redundant by this new path,
endif;
endfor;
return;
end update_tl_xt;

Figure 12. Wavefront Method Update tl xt Procedure

Figure 12; add edge is shown in Figure 13.

The disable_candidate procedure, listed in Figure 14, executes in three basic steps:

] Remove v, from the enabling sets designated in not_candidate_for. If v_ is still
either an e or t candidate, disable_candidate is done.

® If not, remove v, from the cross-timeline path records of each timeline ¢, on
which v, is ordered. For each such 7,
O Find the next vertex v, on z,, following v_.

O For each path (v on ¢, change that path to (v

r
origin’ vc)' 1"origin origin® Vc)

unless there already exists a recorded path from some vertex on f, 10 v,.'.

In that case, remove (v v.) because it is made redundant by the

origin’

existing path terminating with v.”.

On timelines for which v_ is the origin of a path, there is no need to alter records because

all necessary references to v, are made with *<’ or "»’, not ’=". More importantly, however, those

32 Griswold

procedure add_edge (v, v, : vertex_id; out e, : edge_id);
{ : Mimeline;
Vorg: Vierm * vertex_id;
Xt ¢ Morigin_paths;
origins : ordering_set = &;

begin
/{ Add e to E and to edge list at v,
H
g +=1;
e, = g

if this is the first edge with tail v, then
Ele] := (vertex_link, v,, v;,);
else
Ele] = {edge_link, V[v].out, v;»;
endif;
Vv].out == e
// Find all vertices which are now < v,
i
[= any timeline such that v ¢ V(¢);
for xt € r—xtpaths do
find the latest v, < v, on XUs origin timeline;

if vor, # vp then /[everything follows vy; ignore it
origins += {(xt—org_tid, version(vmg, xt—rorg_tid)}y;
endif;
endfor;

for each 1 such that v & V() do
origins += {t, version(v,, £));
endfor;

// Update vy, to follow origins

I

for each t such that v, € V() do
update_tl_xi{¢, v;,, origins);

endfor;

/[Update all vertices which follow v, to follow origins

/!
for1e T do
}’wrm = th_e earliest veriex on [which follows v;
if vy, # id_null then o
update_t!_xt(t, v, Origins);
endif;
endfor;
return;

end add_edge;

Figure 13. Wavelront Method Add_edge Procedure

Determining Interior Vertices of Graph Intervals 33

procedure disable_candidate (v, : vertex_id; not_candidate_for : set of candidacy);
v, : vertex_id;
Xt : ~origin_paths;

p: Mx_tl_path;
t: Mimeline;
begin
I Check for each of t, h, s, and e candidacies and remove from appropriate
// enabling sets.
i
if s € not_candidate_for then
B 5 {vc};
endif;
1/ If this operation made v, be neither an e nor t candidate, remove
/it from the path records of all timelines on which it is ordered.
i

ifv,e B and v, ¢ A, then
for each t such that v, e V(1) do
v, = the next vertex on t which follows v;

Vi Remove v, and change those path records with v, as terminus
// to show v, as terminus, instead.
i
for xt e r—xtpaths do
p = xt—path[v,]; // find a path p with v, as terminus
if p # null then
remove p from xt;

{ If a path to v,” already exists, it is from a higher-version
// origin than that of the path to v, and should not be changed.
1/

if xt->path(v,'] = null then
add a (p-yorg, v.') path to xt;
endif;
endif;;
endfor;
endfor;
endif;

refurn;
end disable candidate;

Figure 14. Wavefront Method Disable_candidate Procedure

34 Griswold

records must not be altered because of the case in which v, is the origin of a path with terminus
v, the end bound of a potential list_interval query. In this case, list_interval must be able 1o
determine exactly where (o cease putting vertices from v_’s timeline into /, The correct vertex on
which to stop is v, not v,

The list_interval query progresses as a series of passes between two sets of bounds,
todo_set and done_set. Todo_set stores the earliest vertex on each timeline which is known to
follow v, but which has not yet been added to /; done_set contains the earliest vertex on each
timeline which should no longer be added to /, either because it has already been added or
because it is known to not be in the interval. The initial value of done_set is those vertices one
version after the latest vertices which precede v, on each timeline, along with the next vertex afier
v, on its own timeline. Todo_set begins with v,. Note that only those timelines with which v,
is ordered have an entry in done set. A failed reference to any timeline is therefore considered
to mean that the entire timeline is "done” with respect to list_interval.

During execution, todo_set is broadened to contain an entry for another timeline whenever
an edge extends from doing—vid, the currently scanned vertex, to some vertex vy, on a different
timeline, so long as vy is not "done.” A timeline’s entry in todo_set may be pulled back to an
earlier vertex when new edges are encountered. Timeline entrics in done_set arc updated at the
beginning of every pass to reflect the span of vertices to be added to / during that pass.

function list_interval (v, v, : veriex_id) : set of vertex_id;
I :srt_set of vertex_id = &; //avoid duplicates
Vi VI term - Vertex_id;
e: edge_id;
t: “imeline;
Xt : forigin_paths;
doing, next : Awv_ordering;
todo_set : srt_set of wv_ordering key tid := &;
done_set : ordering_set ;= &;

begin
/I Find the latest vertex v; .., < v, on each timeline with which v, is ordered.
/i -
t = gny timeline such that v, € V(8),
for xt € t—xtpaths do
if xt—org_tid # t—id then
find the latest vy o < V, on XUs origin timeline;
else // this will lead to putting v, in /
YV term 15 Ve it5elf;
endif;

Determining Interior Vertices of Graph Intervals 35

if VI_‘thm * Yo then
/I Add the vertex on T{xt—org_tid] just after v; ., to done_set.

"
done_set += (xt—org_tid, 1 + version(v; o, xt—org_tid));
endif;
endfor;
i Add all vertices between v and v, 10 /, doing one span of a timeline’s verlices
// ata time.

//
if v, < v, then
1= any timeline such that v, € V(1);
todo_set += (v, t—id, version(v,, £)); // start todo_set with v

while todo_set # & do
doing := todo_set.first(); /f pick any element from todo_set
todo_set -= doing; // ... and remove it

/ Find where this span of vertices should terminate, then update
/{ done_set to show that another span is about to be completed.

i

VI torm = get_vertex{done_set[doing—tid));
done_set += {doing—tid, doing—ver);

while doing—svid < v; .- do
I 4= doing—vid;

// Find where vertex ‘doing’ leads.

i

next = end of span; // in case doing is the terminus of its timeline
for ¢ € V[doing—vidloutdo // every edge whose tail is V[doing—svid]
vy, = Efe].head;
for each t such that v, & V(1) do
if +—id = doing—tid then
next = (v, (—id, version(v;, 0 M just keep going along ¢

else
/ If v, should be in /, is not already in /, and we have not
/f already recorded that it should be in /, record v, in todo_set.
i

if vy, < v, andif v, ¢ 7 andif v, < todo_set[¢]—vid then
todo_set += (v, {—id, version(v,, £);
endif’
endif;
endfor;
endfor;

doing = next;
endwhile;
endwhile;
endif;

refurn make_set(/); /f convert from srt_set to sel
end list_interval;

36 Griswold

4.3 Analysis

For this analysis, it is useful to define vy, = the number of vertices which are either e or
t candidates. It is much more difficult to calculate &y, the number of cross-timeline edges with
this characteristic: the cross-timeline paths terminating with that edge have not all been reduced
from the path records. The paths might be "moved” to vertices following their true terminus, but
some still exist. With the search tree method, this was simply &y; with the wavefront method’s
reduction of perhaps several vertices’ cross-timeline paths into that of the following e- or t-
candidate vertex, &y < €x.

The &y measure will not, however, necessarily be the count of those vertices which are
both the head of a cross-timeline edge and are either e or t candidates, vxyw. The wavefront
method’s disable candidate procedure can move path records from one vertex to another, not
necessarily performing any combination of information at all. This would happen in the case of
a path record moved from one vertex to a following e-candidate vertex which was not previously
the head of any cross-timeline edge. The bounds which can generally be determined are that
Vy~w S Ew < &y

The add_edge time for the wavefront method is derived effectively the same as for the
search tree method and is 0(':210gew+'clogv w)- Examination of the disable candidate
pseudocode reveals this same time complexity. A vertex v, may be on T timelines, each ordered
with T others. Updating a path record takes O(logey,) time if that record is not for a timeline on
which v, is ordered, or O(logVv) if it is.

Initialization for the wavefront method’s list_interval involves done_set in a similar
manner as does the search tree method'’s list_interval initialization of I _terms. The required time
is O(tlogey). During scanning from todo_set to done_set, list interval might rcquire an
O(logt) update to done_set for each of vy vertices within the interval. Also, for each edge whose
tail is a vertex in the interval (let the count of such edges be ¢p), there is at least an O(logt)
search and perhaps T O(logt)} updates of todo_set, one for each timeline on which the edge’s
head is ordered.

Total locate time for list_interval is therefore O(tlogey, +1glogt), while copy time is
O(v (T +logT)), or just O(Tvy). As with the search tree method, the T factors in the O(tglogT)
and O(tvp) terms are considered quite pessimistic since they are present only due to the
possibility of vertices ordered on O(t) timelines. For the common case of vertices ordered on

O(1) timelines, copy time would be O(v log?).

Determining Interior Vertices of Graph [ntervals 37

The wavefront method’s space requirement, not surprisingly, is also derived in a similar

manner to that of the search tree method. This requirement is O(T&w + V).

38

Griswold

Determining Interior Vertices of Graph Intervals 39

5. Bounded-Search Method

5.1 Approach

The fourth method investigated to resolve LIST_INTERVAL attempts {0 minimize space
requirements at the expense of speed. No cross-timeline path records are made except for the
edges themselves. The interval [v; = v,] is determined by what appears, at first, to be a sequence
of two brute-force depth-first searches: one from v, forward, the other from v, back. The query
is resolved when the two searches meet at common vertices.

It is obvious that a simple search from v, forward will terminate only at v, or at the end
of the history graph. This, alone, might not be too inefficient if queries are posed shortly after
their end bound becomes known. The search back from v, however, will not necessarily
terminate until the beginning of the history graph: poteniially thousands of vertices will be
uselessly scanned. The backwards search must be bracketed. Preferably, the forward search
should be bracketed ag well,

The searches are limited by maintaining knowledge of the topological order of vertices.
Topological order requires that, for two vertices g and b, top(a) < top(b) if @ < b. Note that this
is if, not iff. Maintaining topological numbering is trivial if vertices are added in topological
order, but requires the use of a "differences” tree* or pruned O{g) renumbering when verlices are
not added in order.

List_interval begins with a forward depth-first search from v, towards v,. Each probe
of the search is stopped when some vertex vy (o is encountered such that top(v; ,..)) 2 top(v,).
This guarantees that list_interval has not searched past v,, but does not imply that all vertices v;
which have been scanned are in vy = v,] — it is known that v; ¥ v, but not that v; < v,
(Vg < Vf torm ¥ Ve)-

The second search, back from v,, finishes list_interval. Each probe of this search stops
when it encounters any vertex scanned by the first search, or when a vertex V/_org 18 encountered
such that top(v;) < top(vy). In other words, when vy ... can no longer follow v, and thus can

not be in the interval (v o, + vg). When, as described above, the full forward search is

* Such a data structure maintains, at each node, the difference of some attribute between itself and its parent, This
allows the search for a node X to calculate the value of X's attribute by summation along the path to X, and
also allows adding a constant to the attribute of all nodes after X by adjusting X’s attribute difference.

40 Griswold

performed before the backwards search is done, one only need search back a single edge from v,
It is for variations on this approach that the topological bound on the backwards search is needed.

Optimizations to this algorithm might involve heuristics which perform breadth-first
searches between vg and v, alternating between the searches in hope that they will "meet in the
middle.” Another possibility is to delay updating H’s topological ordering until the ordering is
required by a list_interval query, expecting that many intermediate updates might not need to be

performed.

Determining Interior Vertices of Graph Intervals 41

6. Future Work

6.1 Simulation

Simulators have been developed for both the search tree and wavefront interval-detection
methods. These programs support both a command-line interface suitable for batch performance
analysis and a graphical interface which can animate all updates of the search tree and wavefront
method path records in real time. Comparison of the actual time and space characteristics of these
two methods is ongoing. The simulation test-case generators which drive these tests allow a
variety of graphs to be presented to the algorithms, from graphs containing uniformly random
cross-timeline edges to graphs with edges characteristic of localized "communication" between

timelines such as that experienced in a ring or hypercube.

6.2 Enhanced Queries

One of the advantages of interval logic is its ability to express nested intervals. The
algorithms presented in this report address only the problem of simple intervals. Their extension
to nested intervals is of considerable importance.

The LIST__INTERVAL query, as defined, returns only those vertices v; which must follow
the start bound v and precede the end bound v,: v, £ v; £ v.. In many situations, however, it
may be desirable to know those vertices which gould follow v, and precede v v, ¥ v; A v; # v,
This issue of temporal ambiguity is one inherent in distributed time, an area of concern for the
monitor application, and should be addressed.

A potential disadvantage of the wavefront method is that it does not maintain complete
transitive closure information. Since some history graph queries might find such information
necessary, it is important {0 know how difficult it is to generate transitive closure information for

an interval listed by the wavefront method.

6.3 Distributed Implementations

The application leading to the work presented in this report is the temporal analysis of
events generated in a distributed system. It is therefore useful to know whether these algorithms
can themselves be distributed, or instead require a centralized control which could become a
performance bottleneck. Study shows that the search tree and wavefront methods can be

distributed without excessive inter-process communication. Maintenance of the topological

42 Griswold

ordering used by the bounded-search method, however, appears to best be performed in a
centralized manner, though this is not certain. The interaction of distributing the algorithms along
with supporting enhanced queries is an area of tradeoffs and perhaps considerable future

investigation.

Determining Interior Vertices of Graph Intervals

7. Appendices

43

44

Griswold

Determining Interior Vertices of Graph Intervals 45

Appendix 7.1 Pseudocode Representation

The representation of algorithms in this report is done using pseudocode which reseimbles
a mixture of Pascal, Ada, and C++. All the standard control structures are available, defined types
may be expressed, and a variety of operators may be used.

Below are listed the details of this representation. In pseudocode tradition, however, the
more obvious operations in our algorithms are generally expressed with a certain amount of
English instead of detailed statements (such as "for every child of.." instead of “child:=
foo—»child; while child # null do..."). When such use of English is made instead of formal code,
this will be clarified by italicizing any English in our algorithms (e.g. "for every child of..." in the
above example).

In the following discussion, bold brackets ([1) indicate 0 or 1 occurrence of the enclosed
item, and bold braces ({ }) indicate 0 or more occurrences. Comments in this pseudocode are as

in C++: '/ indicates that the rest of the line is a comment.

7.1.1 Control Structures

Flow of control is Ada-like. Semicolons are statement terminators, not separators, and
loop entry statements are paired with matching loop exit statements. Procedures and functions

may be defined and nested, following the usual scope rules. Syntax is:

Sequence Conditional Alternative
statement, if condition then case expression of
{statement;} Sequence; value list.
else (sequence;);
sequence,
endif; others:
(sequence;);
endcase;
Iteration Repetition, Test At Entry Repetition, Test At Exit
for variable in range do while condition do repeat
sequence, sequence; sequence;

endfor; endwhile; until condition;

46 Griswold

Procedure Function
procedure proc_name(formal_parameters), function func_name(formal_parameters) :
declarations, result type,
begin declarations,
sequence; begin
return; Sequence;

return value;

end proc_name;
end func_name,

— where formal_parameters is a list, the elements of which are separated by semicolons and
have the form variable name{, variable_name} : type

7.1.2 Operators

assignment: = /i var = value
arithmetic: +, -, *,/, % /f add, subtract, multiply, divide, modulus
arithmetic assign: +=, =, *=, /=, %= [/ var op= value = var = var op value
comparison: =, #, < %, >, 2
logical: and, or, xor, not, andif, orelse // two "short circuit” operators

7.1.3 Simple and Structured Types

Basic types include the standard integer, real, Boolean, and character. Derived types
include enumerations and subranges of any ordinal type. Structure is expressed by use of array,
record, and pointer types which may be arbitrarily nested. As with C++, indexing of an array
and of a dereferenced pointer to an array is not distinguished; if a_p is a pointer to an array,

a_p"i} and a_pl[i] are equivalent. Records can have Pascal-like variant fields. Syntax is:

Subrange Enumeration Array
subrange type = enumeration_type = array_type =
range (first..last] (value{, value}), array [range{, range}]

of base_type; of base_type;

Determining Interior Vertices of Graph Intervals 47

Record Variant Record Pointer
record_type = record record_type = record pointer_type = Mbase_type,
field_name : type, {[field _name : type;]
[case [tag :] type of Pointer Dereference
end record_type, value_list: pointer variable™
(field_name : type; Also,
o) pointer_variable—
others: is equivalent to
(field_name : type; pointer_variable®.
0
endcase;]}

end record_type;

7.1.4 High-level Structured Types

Collections of elements of any other type may be built as sets, lists, and sorted sets (scarch
trees). The syntax for declaring such collections and the operations allowed with them are as
follows:

Sets

Sets are defined as unordered collections of objects with no duplicates. Basic set
operations of union, intersection, symmetric difference, proper subset and superset, construction,
and element containment may be expressed U, M, -, <, D, { element, element} } and <,
respectively.

declaration: type_name = set of base_type;
operators: U, N, -, = &, C, D, 3, €, and the assignment operators U=, M=, and =

constants: J — the empty set

Lists
Lists are defined as collections of objects ordered by their sequence of appearance within
the list; duplicates are allowed. Operations include concatenation, construction, element reference,
and sublist reference expressed by &, [element{, element}], list(element number), and
listlelement_range], respectively.
declaration: type_name = list of base_type;
operators: &, (element_number), [element_range], and the assignment operator &=

constants: [] — the empty list

48 Griswold

Sorted Sets

Sorted sets are defined as collections of objects ordered by means of a "key" value, with
no duplicate key values allowed between two elements. This key may either be the element itself,
if the sorted set is of a simple type, or is the value of one field of an element, if the sorted set is
of a record type. Operations include insertion and removal of elements and search according to
a key.

Insertion of an element into a sorted set either adds an entirely new element or replaces
an existing element of the same key. This operation is expressed as set + element. Removal of
an element from a soried set, expressed as set - element, fails if the element is not part of the
sorted set. Reference to an element by key has many search criteria and retums a pointer to that
element (or null if no such element is found). The search may be for the element with key equal
to the search key (’=’ search); for the element with the greatest key less than the search key (*<’
search); for the element either with the search key or, if not found, with the greatest key less than
the search key ("<’ search); and so on for ">’ and =’ search. Equal-to search is common enough
to be expressed as sorted_setlkey]; searches with other criteria are expressed as sorted set(cri-
terion, key).

Algorithms which perform a search for a particular element in a sorted set and then scan
successive elements of that set starting at that search point are quite common. To this end,
operations next and prev are provided to scan in increasing and decreasing order, respectively.
If no further elements exist in that "direction” in the set, these operations return null. So that a
scan may begin at either the start or end of a sorted set, the operations first and last are provided.
These operations return the appropriate element, or null if the set is empty.

declaration: type_name = srt_set of base_type [key field name J;
operators: +, -, €, [key] — equivalent to '=" criterion below,
(criterion, key), where criterion is one of =, <, >, £, or 2,
next(), prev(), first(), last(), and the assignment operators += and -=

constants: & — the empty sorted set

Determining Interior Vertices of Graph Intervals 49

Appendix 7.2 Italiano’s Path Retrieval Algorithm

Developed by Giuseppe E italiano, the following data structures and algorithms permit
the incremental construction of a directed acyclic graph G = {V, E) in such a way that queries may
be made in order to check for the existence of a path between any two vertices in & and 10 repoit
the vertices along a path between any origin and terminus vertices in G.[6] Edges are added and
paths reported in O(v} amortized time per operation, v = |V|; the existence of a path may be

checked in O(1) (constant) time. The data structures require @(vz) space.

constants
v_limit ; integer = some large positive number [/ greatest # of elements

types
vertex_id = range [0..v_limit] of integer; // used as indices, not just as ids

Ital_node = record
key : vertex_id;
parent : ~ltal_node;
child : Altal_node;
sibling : Mtal_node;
end Ital_node;

globals
/l index[v; vj] # null — a path exists from v; to v;
/f If the path exists, this points to Vi in the descendent tree
/f of v
/

index : array [vertex_id, vertex_id] of AMtal_node := null;

// Trees of all descendants of each vertex in the graph
/4

desc : array [vertex_id] of ~lial_node;

50

procedure Ital_initialize();

Vp v; 1 vertex_id;

begin

for v; in [0..v_limit] do
desc[v;] := new(Ital_node);
desc[v,]* = {v;, null, null, null);
for v; in [0..v_limit] do

index[v;, vj} = null;

endfor;

endfor;

return;
end Ital_initialize;

Griswold

function Ital_check_path (v, Vior @ vertex_id) : Boolean;

begin
refurn index{vorg, Viorm] # null;
end Ital_check_path;

function Ital_get_path (vorg, Vierm - vertex_id) : list of vertex_id;

p : list of vertex_id :=[]; // path from v, 10 vy
curr_vertex : Mtal_node;
begin
if index[vorg, vmm]l;é null then /' Vrm 18 reachable from Vorg
CuIT_vertex := mdex[vorg, Vierml> // locale terminus in desc[vcrg]
P = Vgl
repeat /g0 up in desc[v,,]
curr_veriex = curr_vertex-»parent;
p = [curr_vertex—key] & p; // prepend vertex to path (&= appends)
until curr_vertex—parent = null; /1 ... until we reach vy,
endif;
return p;

end Ital_get_path;

Determining Interior Vertices of Graph Intervals 31

procedure Ital_add_edge (v, v, : vertex_id);

Vorg * vertex_id; /f some vertex < v,
begin
if index[v,, v;] = null then // no path already recorded from v, 0 v,
for Vorg in [0..v_limit] de
if index[vorg, v,] # null and index[vorg, V] = null then
// The edge {v,, v},) gives rise to a new path from Vorg 0 ¥
i
meld(Vyrgs Vi Vi Vi /I update descv,,] by means of desc[v]
endif;
endfor;
endif;
return;

end Iial_add_edge;

/i Merge desc{vorg] with a pruned subtree of desclv,,.4] rooted at Vsub,_meld-
// The vertex of desclvyg] to which the pruned subtree will be grafied is vy | By
/' "pruning," we mean removing those vertices in desc[vy,e)q} which are already in desc[vg,].
/4
procedure meld(vy,, Vimelds Vorg links Vsub_meld * Yerex_id);
parent, child : ~tal_node;

begin

// Insert the root of Vg, g4 into desclv,,.] as a child of v,

I

if Vorg = Vorg_link then // index does not contain self-loops
parent ;= desc[vorg_ﬁnk];

else
parent := index[vorg, vorg_link};

endif;

index[vr,, Voup_metal = new(ltal_node);

index[Vorg: Vsub_metdl™ = /{ {key, parent, child, sibling)

(Vsub_meld» Parent, null, parent—child);
parent—child = index[vorg, vsub_meld];

for each child of vy, mejq i1 desclvygeql do /7 find child, then follow siblings

// 1f the child and its subtree are not already in desc{vorg], add them
i
if index{vorg, child—key] = null then
meld(Vore, Vield: Vsub_meld» Child—key);
endif;
endfor;
return;

end meld;

52

Griswold

Determining Interior Vertices of Graph Intervals 53

Appendix 7.3 Search Tree Method Alporithm

The following data structures and algorithms detail the Search Tree Method of interval

detection as presented in this report.

constants
v_limit, ¢ limit : integer = some large positive number [/ greatest # of elements
id_null : integer := -1; // "no such object”
types
natural = range [0..] of integer;
vertex_id = range [id_null..v_limit] of integer;
edge_id = range [id_null.e_limit] of integer;

timeline_id = range [id_null..] of integer;
version_index = natural;

ordering = record /f version (order) of a vertex on a timeline
tid : timeline_id;
ver : version_index;

end ordering;

ordering_set = srt_set of ordering key tid;

veriex = record

on : list of ordering; // though a list, this is sorted by tid
/I ... and whatever an implementation needs to keep track of
end vertex;

edge = record
tail, head : vertex_id;
end edge;

1 Versions of origin and terminus of a path from one timeline to another. If
// both timelines are identical, the origin’s version is replaced with the veriex
f/ identifier of the terminus since the origin’s version would simply be terminus
// version - 1.
i
x_tl_path = record
case (cross_timeline, in_timeline) of
cross_timeline : (org : version_index;);
in_timeline : (vid : vertex_id;);
endcase;
term : version_index;
end x_tl_path;

Griswold

origin_paths = record
org_tid : timeline_id; // id of tl on which origins are ordered

path @ srt set of x_tl_path key term, org; // we need to search by either field
end origin_paths;

timeline = record
id : timeline_id;
self : Aorigin_paths; /f comvenience: always points to xtpaths{id]
xtpaths : srt_set of origin_paths key org_tid;

end timeline;

globals
V :array [0..v_limit] of vertex; // any O(1) access time structure
Vv : natural =0 /f current number of vertices
E :array [0..e_limit] of edge; // any O(1) access time structure
£ : natural = 0 f/ current number of edges
T : srt_set of timeline key id;

procedure add_vertex (new_V : vertex; T, : set of timeline_id;
out Vg vertex_id);

sorted_T,_ : srt_set of timeline_id; // so that the vertex’s timelines can later be
Vi referenced in order
t : timeline_id;
e, . edge_id; // not used, in this case
begin
sorted_T,, := make_srt_set(T);
v4=1;
Vg =V
VIvgl i=new_V; /I store application-specific fields

for r € sorted_T,, do
V{vq] .on &= (t, T[t].self—last)—ver);
add_edge(T{t].self—slast()—vid, Voo e;
endfor;
return;
end add_vertex;

Determining Interior Vertices of Graph Intervals 55

procedure update_tl_xi(z : Mimeline; vy, : vertex_id;
origins : list of ordering;
VeI - version_index); // version of vy on ¢
xt : Morigin_paths;
p i M_tl_path;
origin : Mordering;
begin
for origin € origins do
xt ;= {—xtpaths[origin—iid];
if xt = null then
t—xtpaths += (origin—tid, &),
Xt ;= —»xtpaths{origin—tid];
/' Record a path to f from vy on the new origin timeline.

i
if origin—tid # t—id then // between t and some other timeline
/f make that path terminate with the first vertex on ¢, which might no
// longer be version 0 if garbage collection has taken place
/
p = t—self—path(2, 1);
xt—path += {0, p—term};
else /[titself
t—oself = xti;
xtopath += (v, 1% // remember the STM space optimization
endif;
endif;

if origin—tid # t—id then
if xt—path(s, ver,,)—org < origin—>ver then
xt—path += {origin—sver, ver,, »

// Remove out-of-order paths

i

p = xt—path(>, ver,);

while p # null andif p—org < origin.ver then

xt—path = p;
p = xt—path(>, ver,)
endwhile;
endif;
else /l xt=rt—oself

iff xt—path(s, ver,,)-sterm-1 < origin—ver then // term-1 = org for t—self
xt—ypath += (Vo0 Vel)
endif;
endif;
endfor;
return;
end update_tl_xt;

50 Griswold

procedure add_edge (v, v;, : vertex_id; out ¢, : edge_id),
t : Mimeline;
tidy, tid,, : timeline_id;

Velyryy Velyary, VeI, VEIy, VEI,, © version_index;

xt : Aorigin_paths;

ord : ~ordering;

origins : list of ordering := [|;

begin
g +=1;
e =&
Ele] = (v, vph
/i Check if v, = vy If so, only want to cross-reference each timeline on which v,
// is ordered with each other such timeline, not with all the timelines in the graph (v,
// is ordered on every timeline). To do otherwise would be quite inefficient, though not
// acmally wrong, because it would increase search time for every timeline’s xtpaths.
/s
if v, # v, then

// Find all vertices which are now < v, This is v, and those vertices < v,

1

tid,, := Vv].on(0)—tid; /{ Find any timeline on which v, is ordered. The
ver,, = V[v].on(0)—ver; / first such timeline is used because we must
¢ = Ttd,J; /f scan V[v,].on from the beginning, anyway.
VeI, = Ver,,;

for xt e t—xtpaths do {/ scanned in increasing org_tid sequence

if t—id # tid,,, then
/f find the latest v,,, < v, on xt’s origin timeline

I
VeI, = Xt—path(s, ver)—org;
if Vely, # (0 then /f everything follows v, ignore it
origing &= (xt-yorg_tid, verorg);
endif;
else
/[We want vs version itself, not that of the vertex before v,
/
origins &= (tid,, ver,,);
ord = V[v,].onnext(); /f next timeline on which v, is ordered

if ord # null then
tid,, = ord—tid;
ver,, = ord—»ver;

else
tid , = id_null;

endif;

endif;
endfor;

Determining Interior Vertices of Graph Intervals 57

else

for ord € V[v,].on do

origins &= {ord—tid, O);

endfor;
endif;
// Update v, to follow origins
/I
for ord € V[v;].on do

update_tl_xt(T{ord—tid], v, origins, ord—ver);
endfor;

// Update all vertices which follow v, to follow origins

i
tidy, := VIv,l.on(0)—tid; /I a reference point for comparisons against v,
ver, = Vv L.on(0)—ver;
for r e T, t—id = tid, do [l if t—id=tidy, the STM space optimization conflicts
xt = t—xtpaths[tidy J; // is any veriex on t ordered with T[tid,]?
if xt # null andif xt—path.org(z, ver,) # null then
// find the earliest vertex on ¢ which follows v
/i
Vel = Xt—>path.org(2, ver,)—term;
update_tl_xt(s, id_null, origins, ver,,); // V., unnecessary here
endif;
endfor;
return;

end add_edge;

Griswold

function list_interval (v, v, : vertex_id) : set of vertex_id;
I: srt_set of vertex_id = &; // avoid duplicates
I_terms : list of ordering = [J; /{ termini of all spans of vertices making up /
I_term : “ordering;
VeI, V€I, VETy (oo ¢ VErsion_index;
Py P term - "X t_path;
t: Aimeline;
tid, : timeline_id;
xt 1 Aorigin_paths;

begin
i Find the latest vertex before v, for each timeline with which v, is ordered.
i
t = TV]v,).on(0)—tid]; /I any (here, first) timeline on which v, is ordered

ver, .= V{v l.on(0)—»ver;
for xt € t—Xtpaths do
if xt # t—self then
// find the latest v; .., < v, On xt’s origin timeline

i
VeI orm = Xt—path(s, ver,)—org;
else // this will lead to putting v, in /
VEIY 1orm = VEla
endif;
if ver; o, # 0 then /{ again, ignore v,
I_terms &= (xt—org_tid, ver; ..
endif;
endfor;
i Add all vertices after v, and before v, to 7, scanning one timeline at a time

/! between the first vertex after v, and the latest vertex before v, (stored in /_terms).
/
tid; = V[v,J.on(0)—tid; // any (here, {irst) limeline on which v, is ordered
verg = Vv J.on(Q)—ver;
for I_term e I_terms do

t = T{I_term->tid];

xt := t—»xipaths(tid]; // we want paths from £, to ¢

if xt # null then

if xt # r—self then
// find the earliest vertex = v, on ¢

i

Prog = xt—path.org(2, ver,}; // can not search by org on t—self
if Plog® null andif Py_org—term < I term—3ver then
xt 1= t—self;
for each p ¢ xt—path
with p—term € [p,_org—nerm, I_term—ver] do
I += p—vid;
endfor;
endif’

Determining Interior Vertices of Graph Intervals

else
if ver, < I_term->ver then
for each p € xt—path
with p—term & [ver,, I_term—ver] do
[+= p—vid;
endfor;
endif;
endif’,
endif’;
endfor;
return make_set(/); // convert from srt_set to set
end list_interval;

59

60

Griswold

Determining Interior Vertices of Graph Intervals 61

Appendix 7.4 Wavefront Method Algorithm

The following data structures and algorithms detail the Wavefront Method of interval

detection as presented in this report.

constants
v_limit, g limit ; integer ;= some large positive number [/ greatest # of elements
id_null : integer = -1; // "no such object”
types
natural = range [0..] of integer;
vertex_id = range [id_null..v_limit] of integer;
edge_id = range [id_null..e_limit] of integer;

timeline_id = range [id_null..] of integer;
version_index = natural;

ordering = record // version (order) of a veriex on a timeline
tid ; timeline_id;
ver : version_index;

end ordering;

ordering_set = srt_set of ordering key tid;
wv_ordering = record

vid : vertex_id;

tid ; timeline_id;

ver : version_index;
end wv_ordering;

candidacy = (f, h, s, e); // edge tail or head, interval start or end

wv_veriex = record

on : list of ordering; /f though a list, this is soried by tid
out : edge_id;
/[... and whatever an implementation needs to keep track of

end wv_vertex;

nexi_edge = (edge_link, vertex_link);

62

Griswold

globals

wv_cdge = record
case link : next_edge of
edge_link : (next : edge_id;);
vertex_link : (tail : vertex_id;);
endcase;
head : vertex_id;
end wv_egdge;
// Versions of origin and terminus of a path from one timeline to another.
/i
x_tl_path = record
org, term : version_index;
end x_tl_path;
origin_paths = record
org_tid : timeline_id; /f id of tl on which origins are ordered
path : srt set of x_tl_path key term, org; // we need to search by either field
end crigin_paths;
timeline = record
id : timeline_id;
self : Morigin_paths; // convenience: always points to xtpaths[id]
xtpaths : srt_set of origin_paths key org_tid;
end timeling;
V . array [0..v_limit] of wv_vertex; // any O(1) access time structure
v : natural := 0; // current number of vertices
E : array [0..e_limit] of wv_edge; /{ any O(1) access time structure
g ; natural ;= (; /{ current number of edges
T : srt_set of timeline key id;
A, : set of vertex_id; /f vertices which may later be an edge tail
Ay © set of vertex_id; /{ vertices which may later be an edge head
B, : set of vertex_id; // vertices which may be a query start bound
B, : set of vertex_id; /{ vertices which may be a query end bound

Determining Interior Vertices of Graph Intervals

procedure add_vertex (new_V : vertex;
T,, : set of timeline_id; candidate_for : set of candidacy;
out Vg ! vertex_id);
sorted_t : srt_set of timeline_id; // so we can later reference a vertex’s
1/ timelines in order
t : timeline_id;
e, : edge_id; J/ not used, in this case

begin
sorted_t := make_srt_sei(T,,),
v4=1;
Vo=V
V{vq} = (new_V, id_null};

for ¢ € sorted_t do
Vivgl.on &= {t, T[{].self—last)—ver),
add_edge(T[z].self—last()~>vid, Voo s
endfor;

// Check for each of t, h, s, and e candidacies and add to appropriate enabling sets.
i

if t € candidate_for then
A[= {Vq};

endif’

if h e candidate_for then

endif;

if s e candidate_for then
B U= {vg);

endif’

if e € candidate_for then
B, U= {vq};

endif;

refurn;

end add_vertex;

63

64

procedure update_ti_xt(z : Mimeline;
origins : list of ordering;
Vel : version index); // version of v, on¢
VeI, : version_index;
Xt : Aorigin_paths;
p: "x_tl_path;
origin : Aordering;
begin
// Find the first e or t candidate following v, on &
i
if t—self # null then
p = t—oself—path(2, verg,,):
if p # null then
Vel 1= p—term;

else
s — "
Verterm b Verterm’
endif:
else
LA .
Vel = Vel
endif,

for origin € origins do
Xt = t—xtpaths[origin—tid];
if xt = null then
t—xtpaths += {origin—tid, &);
xt = t—oxtpathsforigin—tid];
// Record a path to ¢ from v on the new origin timeline.
i

Griswold

if origin—tid # t~3id then [/ between ¢ and some other timeline
i make that path terminate with the first vertex on ¢, which might no

// longer be version 0 if garbage collection has taken place
/i

p = t—self—path{z, 1);

xt—path += {0, p~>term);

else fl titself
t—self = xt;
xt—path += {0, 1);

endif;,

endif;

Determining Interior Vertices of Graph Intervals 65

if xt—path(s, ver, . ")—org < origin—ver then
xt—path += {origin—ver, ver,, ")

f/ Remove cut-of-order paths

/

p = xt—path(>, ver,)

while p # null andif p—org < origin.ver then

xt—path -= p;
p = xt-»path(>, ver,, "%
endwhile;
endif;
endfor;
return;

end update_tl_xt;

procedure add_edge (v, v;, : vertex_id; out e, : edge_id),
t : Mimeline;
tidy, tid,,, : timeline_id;
VeTypgr VeTiorm, VET,, VEIY, VET,, @ version_index;

xt : Porigin_paths;

ord : Mordering;

origins : list of ordering = [];

begin
e+=1;
e =&

if V[v,].out = id_null then

Ele,] = {vertex_link, v;, vi;
else

Ele,] := (edge_link, V[v].out, v);
endif;,
Viv].out = ¢
i Check if v, = v;. If so, only want to cross-reference each timeline on which vy
// is ordered with each other such timeline, not with all the timelines in the graph (v,
// is ordered on every timeline). To do otherwise would be quite inefficient, though not
/f actually wrong, because it would increase search time for every timeline’s xtpaths.
I
if v, # v, then

// Find all vertices which are now < v,. This is v, and those vertices < v,.

"

tid,, = Vv].on(Q)—tid; // Find any timeline on which v, is ordered. The
ver,, = V[v].on{0)—ver; / first such timeline is used because we must
t:=T[udJ; /f scan V[v,J.on from the beginning, anyway.

Ver, 1= Very;

66

Griswold

for xt € t—xtpaths do // scanned in increasing org_tid sequence
if t—id # tid_, then

else

/f find the latest v, < v, on xUs origin timeline

i

Vel = xt—path(s, ver,)—org,

if Velop # 0 then /{ everything follows v,; ignore it
origing &= (xt—org_tid, verorg>;

endif’;

/ We want v,’s version itself, not that of the vertex before v,
/i
origins &= (tid,, ver,»
ord = V[v,].on.next(; // next timeline on which v, is ordered
if ord s null then
tid,, = ord-»tid;
ver,, = ord—ver;
else
tid,,, = id_null;
endif;

endif;

endfor;

else

for ord € V[v,]l.on do
origins &= {ord—tid, O

endfor;

endif;

// Update v, to follow origins

1

for ord € V[v,].on do
update_tl_xt(TTord—tid], origins, ord—sver};

endfor;

// Update all vertices which follow v, to follow origins

i
tid, = V[v,).on(0)—tid; // areference point for comparisons against v,
very = Vv, l.on(0)—ver;
forte T do
xt = t—xtpaths[tid,]; /[is any vertex on ! ordered with TTtid, }?
if xt # null andif xt—path.org(2, ver,) # null then
// find the earliest vertex on ¢ which follows v
i
Velyom = Xt—path.org(2, very)—term;
update_tl_xt(s, origins, ver,)
endif;,
endfor;
return;

end add_edge;

Determining Interior Vertices of Graph Intervals 67

procedure disable_candidate (v, : vertex_id; not_candidate_for : set of candidacy);
Ver,, verc' : vertex_index;
Xt : Porigin_paths;
p . ~x_1l_path;
t: AMimeline;
ord : Aordering;

begin
if Check for each of t, h, s, and e candidacies and remove from appropriale
// enabling sets.
/4
if t € not_candidate_for then
A= (vl
endif;
if h & not_candidate_for then
Ah b {vc};
endif’;
if s € not_candidate_for then
B, = [v .}
endif;
if e & not_candidate_for then
B, = {v.};
endif;
i If this operation made v, be neither an e nor t candidate, remove
/{ it from the path records of all timelines on which it is ordered.
1

if v, B, and v, ¢ A, then
for ord € V{v.].on do
t := T{ord—td];
ver,, := ord—ver;
verc’ = t—selfopath(>, ver)—term; [/ next vertex on ¢ following v,

i Remove v, and change those path records with v, as terminus
/f to show v as terminus, instead.

Il

for xt € t->xtpaths do
P = xXt—path[ver,]; // find a path p with v_ as terminus
if p # null then
xt—path -= p;
i If a path to v.” already exists, it is from a higher-version
Z origin than that of the path to v, and should not be changed.

if xt—path[ver,'] = null then
xt—path += {p—org, ver,);
endif;
endif;
endfor;
endfor;
endif’
return;
end disable candidate;

Griswold

function list_interval (v, v, : vertex_id) : set of vertex_id;
I : srt_set of vertex_id = &; /f avoid duplicates
v, . vertex_id;
Ver,, VeI, Very, Vel; .. @ version_index;
tidg, tid, : timeline_id;
ord : ordering;
t: MMimeline;
e . edge_id;
xt ; Aorigin_paths;
doing, next : ~wv_ordering;
todo_set : srt_set of wv_ordering key tid :=
done_set : ordering_set := &;

begin
H Find the latest vertex v; .., < v, on each timeline with which v, is
// ordered. -
i
t = T[V[v,).on(0)—tid]; // find some limeline on which v, is ordered

ver, = V[v].on(0)-sver;
for xt € t—xtpaths do
if xt—org_tid # r—id then
VI 1oy = Xt—path(s, ver,)—org; // latest vertex < v, on xt's origin timeline
else // this will lead to putting v, in /
VEIy jorm = VeIg
endif;
if very (o, # 0 then
/1~ Add the vertex on T{xt—org_tid] just after v; .., 0 done_set.

l/
done_set += (xt—org_tid, ver; .. + 1);
endif;

endfor;
/i Add all vertices between v, and v, to /, doing one span of a timeline’s vertices
// at atime.
1/
tid, := V[v].on(0)—tid; // find some timeline on which v, is ordered

ver, = Vv].on(0)—ver,
if done_set[tid;] # null andif done_set[tid]~>ver > verg then // if v, < v, then
todo_set += (v,, tid,, ver,); /I start todo_set with v,

while todo_set # & do
doing := todo_set.firs1(); /{ pick any element from todo_set
todo_set -= doing; /... and remove it

Determining Interior Vertices of Graph Intervals 69

/ Find where this span of vertices should terminate, then update
/f done_set to show that we are about to complete another span.
i

VeI; term = done_set[doing—tid]—ver;
done_set += {doing—tid, doing—ver);

while doing—ver < very ., do
I += doing—vid;

// Find where vertex ‘doing’ leads.
/4
next := {id_null, doing->tid, ver; % // in case doing is the terminus
- // of its timeline
for ¢ € V[doing—vid].out do /l every edge whose tail is V[doing—vid]
v, = E[e].head;
for ord € V[v,].on do
tidy, = ord—tid;
very, = ord—ver;
if tid;, = doing—tid then
next = {v, tid,, very); // just keep going along ¢

else
1/ If v, should be in /, is not already in /, and we have not
// already recorded that it should be in /, record v, in todo_set.
/f

if done_set[tid,] # null andif ver, < done_set[tid,]—ver
andif (todo_set[tid,] = null
orelse very, < todo_set[tid,]—ver) then
todo_set += (v, tidy, very);
endif;
endif;
endfor;
endfor;

doing := next;
endwhile;
endwhile;
endif;
return make_set(/); // convert from srt_set to set
end list_interval;

70

Griswold

Determining Interior Vertices of Graph Intervals 71

10.

11.

12.

13.

8. Bibliography

Bates, Peter Charles, and Wileden, Jack C. "EDL: A basis for distributed system
debugging tools." Proceedings of the 15th Hawaii International Conference on Systems
Science (January 1982): 86-93,

Chandy, K. M., and Lamport, Leslie. "Distributed Snapshots: Determining Global States
of Distributed Systems.” ACM Transaclions on Computer Systems Vol. 3, no. 1 (February
1985): 63-75.

Harter, Paul K.; Heimbigner, Dennis M.; and King, Roger. "IDD: An Interactive
Distributed Debugger.” The 5th Intemnational Conference on Distributed Computing
Systems (May 1983): 498-506.

Horowitz, Ellis, and Sahni, Sartaj. Fundamentals of Data Structures. Rockville, MD:
Computer Science Press, Inc., 1982.

Italiano, Giuseppe F. "Amortized efficiency of a path retrieval data structure.” Theoretical
Computer Science Vol. 48 (1986): 273-281.

Italiano, Giuseppe F. "Finding paths and deleting edges in directed acyclic graphs."
Information Processing I etters Vol. 28 (30 May 1988): 5-11.

Lamport, Leslie. "Time, Clocks, and the Ordering of Events in a Distributed System."
Communications of the ACM Vol. 21, no. 7 (July 1978): 558-65.

Lamport, Leslie. "'Sometime’ is Sometimes *NOT Never’: On the Temporal Logic of
Programs." Conference Record of the 7th Annual ACM Symposium on the Principles Of
Programming Languages (January 1980): 174-85.

LeBlanc, Thomas 1., and Mellor-Crummey, John M. "Debugging Programs with Instant
Replay." IEEE Transactions on Computers Vol. C-36, no. 4 (April 1987): 471-81.

LeBlanc, Thomas I., and Miller, Barton P, ed. "Summary of ACM Workshop on Parallel
and Distributed Debugging.” Operating Systems Review Vol. 22, no. 4 (October 1988):
7-19.

Standish, Thomas A. Data Structure Techniques. Reading, MA: Addison-Wesley
Publishing Company, Inc., 1980.

Tarjan, Robert Endre. Data Structures and Network Algorithms. Philadelphia, PA: Society
For Industrial And Applied Mathematics, 1983.

Willard, Dan E. "New Data Structures For Orthogonal Range Queries." STAM Joumnal on
Computing Vol. 14, no. 1 (February 1985): 232-253.

	Determining Interior Vertices of Graph Intervals
	Recommended Citation

	tmp.1456444019.pdf.trs4D

