Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-90-39

1990-11-02

Segment Streaming for Efficient Pipelined Televisualization

Fengmin Gong

The importance of scientific visualization for both science and engineering endeavors has been
well recognized. Televisualization becomes necessary because of the physical distribution of
data, computation resources, and users involved in the visualization process. However,
televisualization poses a number of challenges to the designers of communication protocols. A
pipelined televisualization (PTV) model is proposed for efficient implementation of a class of
visualization applications. Central to the proposed research is the development of a segment of
streaming IPC (interprocess communication) mechanism in support of efficient pipelining
across very high speed internetworks. This requires exploration of special issues arising from
extending... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

6‘ Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Gong, Fengmin, "Segment Streaming for Efficient Pipelined Televisualization” Report Number:
WUCS-90-39 (1990). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/712

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F712&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F712&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F712&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F712&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F712&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F712&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F712&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/712?utm_source=openscholarship.wustl.edu%2Fcse_research%2F712&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/712

Segment Streaming for Efficient Pipelined Televisualization

Fengmin Gong

Complete Abstract:

The importance of scientific visualization for both science and engineering endeavors has been well
recognized. Televisualization becomes necessary because of the physical distribution of data,
computation resources, and users involved in the visualization process. However, televisualization poses
a number of challenges to the designers of communication protocols. A pipelined televisualization (PTV)
model is proposed for efficient implementation of a class of visualization applications. Central to the
proposed research is the development of a segment of streaming IPC (interprocess communication)
mechanism in support of efficient pipelining across very high speed internetworks. This requires
exploration of special issues arising from extending a pipeline across networks with errors and high
latency, determination of alternative solutions, and evaluation of such solutions. The novel aspects of the
proposed segment streaming mechanism include a two-level flow control method and an intelligent error
control mechanism.

https://openscholarship.wustl.edu/cse_research/712?utm_source=openscholarship.wustl.edu%2Fcse_research%2F712&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/712?utm_source=openscholarship.wustl.edu%2Fcse_research%2F712&utm_medium=PDF&utm_campaign=PDFCoverPages

SEGMENT STREAMING FOR EFFICIENT
PIPELINED TELEVISUALIZATION

Dissertation Proposal

Fengmin Gong

WUCS-90-39

November 1990

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899

Segment Streaming for
Efficient Pipelined
Televisualization

(Dissertation Proposal)

Fengmin Gong
Hg@wucsl.wustledu
(314) 726 4163
November 2, 1990
wuUcs-90-39

Abstract

The importance of scientific visualization for both science and engineering endeavors
has been well recognized. Televisualization becomes necessary because of the physical
distribution of data, computation resources, and users involved in the visualization process.
However, televisualization poses a number of challenges to the designers of communication
protocols.

A pipelined televisualization (PTV) model is proposed for efficient implementation of a
class of visualization applications. Central to the proposed research is the development of
a segment streaming IPC (interprocess communication) mechanism in support of efficient
pipelining across very high speed imternetworks. This requires exploration of special issues
arising from extending a pipeline across networks with errors and high latency, determination
of alternative solutions, and evaluation of such solutions. The novel aspects of the proposed
segment streaming mechanism include a two-level flow control method and an intelligent
error control mechanism.

Segment Streaming for Efficient Pipelined
Televisualization

(Dissertation Proposal)

Fengmin Gong
Ifg@wucsl.wustl.edu
(314) 726 4163

1. INTRODUCTION

1.1. Motivation

The 1987 NSF report Visualization in Scieniific Compuiing defines visualization as a method of com-
puting which transforms symbolic information into geometric information, enabling the researchers
to gain better insight into their simulations and computations [39]. It has been further pointed out
that visualization is a critical tocl for discovery and understanding, as well as a tool for communi-
cation and teaching [16].

Scientific visualization has emerged as a major computer-based field of study due to the follow-
ing three key factors: (1) large-scale computations and high bandwidth data sources (e.g. medical
scanners and satellite imaging) generate huge amounts of data that scientists cannot analyze in nu-
merical form in reasonable time [25, 49]; (2) it is believed that the human vision system has a data
bandwidth on the order of gigabits per second, but this bandwidth is not exploited by text-oriented
data presentation methods which limit the data bandwidth made available for interpretation [61];
and (3) images can convey information far more effectively than numerical data [39].

The use of visualization for many scientific applications has been well documented {62, 29,
40]. New visualization applications have been rapidly emerging with developments in visnaliza-
tion methodology and underlying technologies. In short, visualization is beginning to revolutionize
the way research is done in various disciplines of science and engineering.

Televisualization is visualization that utilizes data and computing resources that are physically
distributed. There are three components in the visualization process, namely data, computation,
and user interaction. As long as the locations of these components are not all the same, the need for
televisualization arises. For example, in a three-tiered computing facility environment such as the
one at NCSA [25] and as envisioned in the NS¥ report, a large simulation is run on a supercomputer
while a scientist views the visual output and steers the simulation at a workstation. Furthermore,
the scientist may wish to do parts of the visualization computation on separate machines in order to
distribute the computation load and achieve better performance. Therefore, we believe a significant

2 Pipelined Televisualization

fraction of practical visualization will be televisualization.

It is interesting and important to note that many visualization applications fit into a pipeline
model [25]. For example, steps of a visualization process such as data preparation, mapping of raw
data to atiributes of visual data, and graphics rendering are readily identifiable stages of a pipeline.
It is this class of applications that will be considered in this research effort. Since felevisualization
is important, and a pipeline is an appropriate computation model for many televisualization appli-
cations, a natural question is:

Can we successfully use the pipeline model across high speed networks to make demanding tele-
visualization applications possible?

I believe the answer to this question is yes and therefore propose to demonstrate the viability of
the pipelined televisualization mode] through this research.

1.2. Support for Pipelined Televisualization

Efficient pipelined televisualization (PTV) requires support far beyond what is needed for visualiza-
tion on a single computer. It requires networks with high bandwidth and low latency, an efficient
interstage communication mechanism on the networks, and proper adaptation and partitioning of
the visualization computation. We elaborate on the networking and pipelining aspects of PTV in
the following paragraphs.

Networking

Suitable network support is critical to the success of televisualization. Trends in networking suggest
that the necessary support will be possible. Fast packet switching networks are being developed in
many research laboratories (e.g. BPN at Washington University [59], Sunshine at Bellcore [22], and
ATOM at NEC [56]). These networks can support communication channels with high transmission
rates and low queueing delay. They will have some resource allocation capability and provide perfor-
mance guarantees. In order to make this guaranteed network bandwidth available to applications,
the host-network interface must be designed to support the high data rates. A number of research
groups have also begun addressing these issues [3, 11, 30, 54].

However, it is important to note that host-to-host connections with high bandwidth and perfor-
mance guarantees are necessary but not sufficient conditions for successful deployment of demanding
distributed applications. As a result of decreased queueing delay in newer networks, the speed of
light propagation delay will increasingly dominate the communication latency in wide area networks.
The networks will continue to have more packet errors and losses than a local environment. More-
over, the new networks have much higher bandwidth-delay products which affect flow and error
control strategies at the application and transport levels. It is the responsibility of applications and
the transport protocols to cope with these conditions and to convert the high bandwidth into high
performance for the applications. It has been recognized that suitable solutions can be found by
developing deep understanding of the communication requirements of various classes of applications
[42]. In the case of PTV, the pipelinedprocessing and high communication latency coupled with the
demand for high performance present a unique set of interprocess communication (IPC) requirements
that have not been adequately addressed by existing research on networking or visualization.

Gong 3

Pipelining

The pipeline principle has been successfully used in many ways and at different levels of abstraction
to achieve high performance. For example, instruction pipelines are used in most new processor
designs to obtain high overall processing speed. Arithmetic pipelines are extensively nsed to achieve
high performance for floating point and vector operations. Pipelining is also one of the major princi-
ples used in systolic array and wavefront array processors [33, 35]. A pipeline with parallel processes
at each stage has been used as a parallel computation model on a multiprocessor system for certain
scientific computations [20]. Many methodologies for the design and operation of hardware pipelines
have been developed [32, 27, 15]. The proposed use of the pipeline model across networks for tele-
visualization, however, is a new idea and requires significant research. Intrastage computation, in-
terstage communication, and their interaction become important factors affecting PTV performance.

There are two major requirements for efficient pipelining: engineering the pipeline to achieve
minimum and equal cycle time for all stages; and operating the pipeline with minimum delay or
interruption. To satisfy the first requirement in televisualization pipelines, visualization computation
has to be partitioned with respect to the communication overhead and allowed to overlap as much
as possible with the communication process. Appropriate flow and error control mechanisms are
required to minimize the effect of the network latency and errors on the operation of the pipeline.

Open Issues

To summarize, specific issues concerned with this research for supporting pipelined televisualization
are the following:
o How can visualization algorithms be adapted for efficient pipelining?

* How is the visualization computation partitioned and stages of the pipeline mapped to dis-
tributed computers?

e What IPC paradigm should be used for interstage communication to achieve maximum overlap
between the communication and intrastage computation?

What is an effective and efficient interstage flow control method for the pipeline?

o Iow can application-oriented error control be used to achieve better performance for PTV?

The rest of this proposal is organized as follows: Section 2 describes the pipelined televisualization
model in more detail; Section 3 discusses in depth a set of research problems in pipelined televisual-
ization and provides the focus for this research; Section 4 explains the propoesed solutions; Section 5
outlines the plan for action; Section 6 reviews other relevant work; and Section 7 summarizes the
expected contributions.

2. PIPELINED TELEVISUALIZATION MODEL

This section is a more detailed discussion of the pipelined televisualization model. First, pipelining
is discussed in the context of concurrent computing, and a descriptive definition of the pipeline as
a computational model is presented. Then, the pipelined televisualization model is defined and the
applicability of a televisualization for pipelined processing is shown.

4 Pipelined Televisualization

2.1. Pipeline and Concurrency

Concurrency, in which multiple operations of a larger computation are carried out within a given
time interval, is one of the most important goals for computer science research. Two well-recognized
techniques for achieving concurrency by simultaneous operation on multiple computing elements
are parallelism and pipelining. While parallelism achieves concurrency by replicating a hardware
structure many times and having each replication execute in parallel different parts of the large com-
putation, pipelining splits the hardware structure into a sequence of substructures (called stages)
corresponding to phases of the computation task and achieves concurrency by allowing all stages to
operate simultaneously on different parts of the computation [32, Chapter 1].

It has been pointed out-that pipelining is the most distinctive, powerful and ubiquitous means
for achieving concurrency in computer architectures [15, 18]. Pipelining has also been recognized
as an important computation model at the programming level (20, 9]. Instruction pipelining and
arithmetic pipelining in modern computers are good examples of pipelining for achieving fine-grained
parallelism, ie. the basic operations being overlapped are relatively simple. On the other hand, the
application of pipeline principles to obtain large-grained parallelism are also numerous. For exam-
ple, a road-following algorithm for robot vehicles has been implemented on the CMU Warp in an
8-stage pipeline [34]. A general architecture called a pipeline net has been proposed for performing
vector compound functions (VCF’s)! [28]. The pipeline net is constructed from multiple functional
pipelines that can be arbitrarily interconnected through a crosshar network, which is itself pipelined.

In summary, the success of pipelining principles can be attributed to three important factors.
First pipelining supports concurrency; a pipeline with m stages can potentially offer an m-fold
speedup over a nonpipelined computation. Second, many computations can be pipelined at various
levels of granularity. Third, pipelining avoids many difficulties associated with the parallel approach.
For example, there is no need for broadcast communication, and the sequentiality in the pipeline’s
data flow makes synchronization much easier.

It is the pipeline as a computation model that is of interest to this research. A descriptive defi-
nition of the pipeline that emphasizes this modeling aspect will now be presented.

Input e Py [~ Py [=P=| D3 P @ 0® —P» Dy; () Output

Figure 1: An m-stage Pipeline

Assume we need to perform a computation C on n data items dy,ds,...,d, independently.
Instead of designating one processor P for the computation C, we first partition C into m subcom-
putations c1, ¢z, ..., cm, such that a complete computation on each data item d; is accomplished by
applying ¢y, ¢a,...,¢m in sequence. Next, we designate one processor for each subcomputation, so
that we get m corresponding processors pi, pa, ..., Pm. Finally, we create a link between each pair of
neighbor processors (p;, piy1, (1 < ¢ < m — 1)), such that when a data item is finished computing
at p; it can be passed to piq;. We have thus defined a pipeline for the computation C. Figure 1
is a graphical representation of such a pipeline. Data are fed into the pipeline one at a time from
the input end. Each data item undergoes computation ¢; as it passes through processor p;. By the
time a data item reaches the output end, it will have finished the complete computation C. These

1 A VOF is a collection of linked scalar operations to be executed repeatedly many times in a looping structure.

Gong 5

processaors performing subcompuibations will be called stages of the pipeline in subsequent discussions.

Notice that this model does not exclude parallelism or pipelining within each stage of the pipeline.
For example, the second stage processor (pa) can be a multiprocesor itself, executing the correspond-
ing stage function ¢, in parallel on several (sub)processors; this is one level below the pipeline ab-
straction referred to here. In principle, the pipeline can either operate in lock-step fashion by a global
clock or by having each stage processor synchronize only with its neighbors through a handshaking
protocol. In the first case, the pipeline is called a synchronous pipeline; the second case corresponds
to an asynchronous pipeline. While a synchronous pipeline is simple and efficient in many cases,
an asynchronous pipeline is necessary when stages of the pipeline are physically separated or have
unequal processing times.

2.2. Pipelined Televisualization Model

The pipelined televisualization model is the application of the pipeline model (defined in Section 2.1)
to a class of televisualization computations. In particular, stages of the televisualization pipeline will
reside on computers distributed across networks. "This subsection first discusses the computation
model for pipelinable visualization and then presents a high level communication model for the
televisualization pipeline.

2.2.1. Computation Model.

We start by considering a visualization process that is very useful for study of cell development
in biology. In this study a researcher takes a number of cells, marks them using some coloring
techniques, and then allows the cells grow under controlled conditions. At certain time intervals
snapshots are taken of the cells in the form of a set of digitized sectional images; these 2-dimensional
images describe the state of cells in 3-dimensional (3D) space for that instance of time. For the time
pericd of study, a set of volume images will have been collected. One desirable way of visualizing the
data is to create a sequence of 3D scenes of the cells using polygons, each from one volume image
of the development process. The researcher can then interactively view each scene by rotation,
zooming and so on. Furthermore, animations showing the development of the cells can be created
which will allow observation of the dynamics and serve to communicate with other researchers. This
visualization process involves five steps: deblurring of each sectional image, image segmentation and
contour generation, surface tiling, rendering of the surfaces, and user interaction. Fach of these
steps i1s now discussed in more detail.

Deblurring. Because of limited focusing accuracy of the microscope, sectional images are often
blurred. Filtering algorithms are applied to reduce the blur.

Segmentation and contour generation. Areas corresponding to each cell on sectional images
have to be identified and their boundary contours generated.

Surface tiling. Once sets of planar contours are generated, a polygon-based surface tiling algorithm
is used to generate polygons connecting corresponding contours on adjacent planes.

Surface rendering. The list of polygons, together with additional user input (such as lighting and
viewing information), is used to produce images on display devices.

] Pipelined Televisualization

User interaction. Since there may be processing parameters with each of above steps that can be
fine tuned for better visualization (e.g. use of different deblurring algorithms), the user should
be able to modify these parameters and observe the effect. Interpreting user requests and
interfacing with other steps is the function of user interaction.

These steps form a natural partition of the computation. Sectional images are collected under the
control of a laboratory computer and saved in mass storage. This computer could also conveniently
work on the deblurring task. Another computer may serve as the stage for segmentation and contour
generation. The biologist also has access to a supercomputer for the intensive computation required
by the surface tiling, Visual output needs to be presented on a graphics workstation that is remote
from both the supercomputer and the lab, We therefore assign rendering and user interaction to
the graphics workstation. This results in a televisualization pipeline. For high efficiency, we choose
a sectional image (2D) as the granularity of data processing in the pipeline instead of the entire 3D
volume.

It should be pointed out that, for this application, it is possible to perform all the computation
on the laboratory computer and ship image frames to the workstation, or to ship blocks of raw data
to the workstation which performs all the computation. However, with PTV model, it is possible
to utilize four appropriate computers in a 4-stage pipeline. Sectional image granularity is used to
achieve high pipelining efficiency. The speedup due to pipelining provides better visualization per-
formance.

There is a significant class of visualization applications whose computation contains several well-
defined stages [37, 60, 26, 25]. We can generalize them into the following five-stage description:

Data generation. This is the step in which the original data is generated. Numerical simulation
and image scanning are two examples.

Data preparation. This stage derives visualization data from the observational, experimental, or
simulation data. For example, for visualization of a simulation, additional data points may be
interpolated to transform an irregular grid into a regular one.

Visualization mapping. This stage constructs abstract visualization objects (AVO [25]) from the
data derived at the previous stage. Specifically, it maps the derived data (e.g. pressure, tem-
perature, intensity) to the attributes of the AVO (e.g. geometry, color, opacity) for graphics
rendering.

Graphics rendering. Abstract visualization objects generated in the last step are rendered into
images for display at this step. The actual operations may include image processing, surface
rendering, and volume rendering,

User interaction. The user interacts with the visualization process through the image display
and the input devices such as a keyboard, joystick, and dials. Interpreting user input and
interfacing with rest of the computation stages are functions of this stage.

These stages can be readily mapped onto a pipeline. In addition, computation at some stages
may be further partitioned, thus creating more stages for the pipeline. In the cell development
example, deblurring, segmentation, and contour generation are all data preparation functions, but
they were mapped onto two pipeline stages.

Gong 7

2.2.2. Communicafion Model.

Applying the pipeline model to these televisualization applications leads naturally to a PTV imple-
mentation. Figure 2 illustrates, at a high level, the communication model for a visualization process
(VP) at stage & to pass data to another visualization process at stage k + 1 which is separated by
an internetwork. Interprocess communication is provided through a set of communication protocols,
which logically consists of the transport protocol ('TP), the internetwork access protocol (IAP), and
the network access protocol (NAP). The direct link shown between the two stages is an abstraction
of the underlying internetwork. In practice, performance of the underlying internetwork hardware
and the comununication protocols will have direct impact on the performance of pipelined televisu-
alization. The emphasis of the proposed research is on the interface area between the visnalization
application and the communication protocols (shown as shaded).

Stage k Stage k+1

Figure 2: Interstage Data Communication Path

It should be noted that having the abstract PTV model does not guarantee acceptable perfor-
mance for televisualization applications. Efficient application and communication support is needed
for practical implementations. Therefore, our next task is to identify the important issues in sup-
porting the PTV model.

3. RESEARCH ISSUES IN DETAIL

This section first reviews the operation and performance metrics of an ideal pipeline. Then, televi-
sualization pipelines are examined to identify important research issues involved. The focus for this
proposed effort will be detailed.

3.1. The Ideal Pipeline

Space-time diagrams® have been widely used [10, 15, 24, 27] to depict the processing of tasks in a
pipeline and to conduct timing analysis. A space-time diagram is a two-dimensional diagram with
time as the horizontal axis; it contains as many rows as there are stages in the pipeline and as
many columns as there are distinct intervals of time that need to be represented. Entries in a row
show tasks that are processed by the corresponding stage over successive time intervals. We define
the cycle time of a pipeline stage to be the minimum delay between two sucessive outputs of data

2Space-time diagrams are also called Gantt charts. The tevm space-time diagram is more widely used in the context
of pipelines and is also self explanatory.

8 Pipelined Televisualization

itemns from the stage. The cycle time of a pipeline is defined as the maximum cycle times of all the
stages. The treatment of ideal pipelines in this section is based on the treatments given in [15, 24, 27].

A pipeline is ideal if it satisfies the following four conditions:

» all stages take an equal amount of time in processing all data items
¢ the time for passing data from one stage to the next is negligible
the pipeline is synchronized by a global clock

o there is no other delay in the data flow in the pipeline

Assume that we have to process n data items, and it takes 7° time to process one data item
without pipelining. We can design an ideal pipeline by partitioning the processing into m subtasks
each taking T//m time, which becomes the cycle time of the pipeline. Figure 3 shows the space-
time diagram for an ideal pipeline with m = 3,7 = 3, and n 3> 3. Numbered circles are used to
represent data items being processed. The n data items enter the pipeline at one per unit time
from the first stage, moving down the pipeline at the same rate, and finally exit at stage 3. It
is worth noticing that after 2 units of time, the pipe is fully loaded, and the three stages of the
pipeline are operating simultaneously on three data items. All data are processed by time 3 4+n — 1.
It is easy to see that (m-++n—1)(T/m) units of time will be taken for a general m-stage ideal pipeline.

30000 @
2| OO &)
. Ol &) Ol e

0 1 2 3 4 5 34n-1

O®®
OB

O,
®

Figure 3: Space-Time Diagram of an 3-Stage Ideal Pipeline

The four most useful metrics for pipeline performance are the throughput (TH), speedup (SU),
stage efficiency (SE), and pipeline efficiency (PE). The throughput of a pipeline is the number of
data items completely processed by the pipeline per unit time. For the m-stage ideal pipeline:

n

——— dafa items/unit time 1
(m+n-1L /)

TH(n,m)=

As n — oo, TH(n,m) approaches m/T (the reciprocal of the pipeline cycle time) which is the
maximum throughput of the pipeline.

The speedup is the ratio between the time it takes to process n data items without pipelining
and the time taken by the m-stage pipeline to process the same amount of data. For the m-stage

ideal pipeline, this becomes:

Gong 9

SU(n,m) = — (2)
m+n-—1

SU(n,m) approaches m as n — co, resulting in the ideal speedup that one can expect from an
m-stage pipeline.

The efficiency of a pipeline stage is the ratic between the number of time units for which the
stage is busy and the total number of time units for the pipeline to process n data items. For the
ideal pipeline all stages have equal efficiency:

SE(n,m) = mfm (3)

The limit of SE(n, m} is clearly unity with n — co.

The efficiency of the whole pipeline is the average of the efficiencies for all the stages. Thus, for
an m-stage ideal pipeline it is the same as SE(n, m):

PE(n,m)= Eﬁ-ﬁffi (4)

The limit of PE(n,m) is also unity as n — co.

The speedup SU{(n,m) and the efficiency PE(n, m) are related by:

SU(n,m)

PE(n,m) = —

(5)

With finite n, performance of an ideal pipeline is solely determined by three parameters: process-
ing timne per data item in a nonpipelined system 7', number of pipeline stages m, and total number of
data items n. The state of the pipeline when n — 0o is called the steady state. The limits as n — oo
of the performance metrics defined above naturally characterize the steady state performance of the
ideal pipeline. In reality rnany pipelines are not ideal. Televisualization pipelines are such examples.

3.2. Televisualization Pipelines

In this subsection, we discuss in more detail the important research issues in televisualization
pipelines. We do so by properly extending the treatment of the ideal pipeline. First of all, it is
important to note that a televisualization pipeline is different from an ideal pipeline in several ways.

o The very complex computation of visualization makes it almost impossible to obtain perfect
partitioning,

o A televisualization pipeline must operate in an asynchronous mode, because the pipeline stages
are distributed. Furthermore, asynchronous operation will be necessary for achieving high effi-
ciency with less than perfect partitioning of computation. This means that adjacent stages of
the pipeline have to accomplish the exchange of data through explicit message communications.

10 Pipelined Televisualization

e The overhead for interstage communication is no longer negligible because of the delays and
errors in the underlying networks, and because of the large volumes of data being transferred.
The success of PTV depends critically on how well the pipeline can cope with this overhead.

o User interaction with different stages of the televisualization pipeline is also required. The

pipelining mechanism has to support such interaction with minimal additional pipeline delay.

Additionally, it should be noted that data items in televisualization have a much larger granularity
than typically has been the case for other pipelines. How these differences will affect the performance
of the televisualization pipeline needs to be understood.

3.2.1. Algorithms Adaptation and Pipeline Engineering.

The first step in implementing pipelined televisualization is to organize the visualization computa-
tion as a linear array of processes pi, pa2,..., pr as shown in Figure 4.

Input o Py > D, | p; > 0008 ! D, o Output

Data Image

TFigure 4: A Pipelinable Computation Form

Each segment of visualization data is first processed by p;, the result from p; is then fed to ps, and
so on until the final result is produced by pr. In general, process p;(1 < i < &) receives an input from
pi—1 and sends the result to p;41. The objective is to adapt the processes to work with the smallest
data granularity. The importance of a smaller data granularity is shown in the following paragraphs.

Assume that we have an m-stage ideal pipeline to process n data items; let 7" be the time for
processing one data item without pipelining and T/m be the cycle time of the pipeline; then the
speedup of this pipeline is as given by Equation (2):

SU = —%
m+n—1

Suppose we can reorganize the computation such that each input data item is further partitioned
into ¢ (¢ > 1) parts (new data items). If the overhead due to partitioning is negligible, each stage
now only takes T/(mgq) time and there are ng new data items. The speedup SU, is therefore:

sy — __nma
T mtng—1

It can easily be shown that SU, is a2 monotonically increasing function of ¢ for m > 1. This means
that, for a given computation and a fixed number of pipeline stages, use of smaller data granular-
ity leads to larger speedup. In practice, the effectiveness of using smaller data granularity will be
limited by the overhead from the partitioning and the communication. Therefore, for high PTV
performance it is critical to adapt the visualization algorithms such that they can work with smaller
data partitions (e.g., subgrids of a simulation result, CT data slices) in an incremental fashion. The
overhead introduced in the adaptation process should be kept minimal.

Gong 11

Once the visualization computation is in a pipelinable form, careful engineering is required to
map the sequence of processes onto a set of computers. The objective is to obtain equal cycle time for
all stages of the pipeline. To appreciate the impact of unequal partitioning on pipeline performance,
we derive a relationship between performance and a measure for unequalness of partitioning. The
approach taken is adapted from [27].

Assume an m-stage televisualization pipeline that satisfies all the ideal conditions (Section 3.1)
except that not all stages have equal processing time. Let £; be the cycle time (same as the processing
time given the assumption) for stage 7 (1 < i < m). Let T be the total processing time for one data
item on a single computer which serves as a reference for speedup calculation:

Suppose that stage 7 (1 < j < m) has the longest cycle time:

T
ij:;"l"é §>0

where 6 is the additional time required at stage j above that for the ideal partitioning. Then stage j
becomes the bottleneck of the pipeline. Assuming n >» m for PTV applications, we can approximate
the pipeline throughput by its steady state value:

1 m
TH(n,m)—z;_..T_i_ém (6)
The speedup and efficiency are correspondingly given as:
mT
SU(nym) = s (M)
T
PD(TJ., m) = m (8)
1
> 0.8 [.
= - : .
2 " 3
Eg 0.6 F \\ -]
= r \\]
o 0 . 4 L \\\\\ :]
= C TR .
S 0.2 et bbb
o C : T
ot o H H —
0 B I i]

0 1 2 3 4 5 8 T]
Exira Time § (normalized to T/m)

Figure 5: Effect of Unequal Partitioning on Pipeline Efficiency

Figure 5 shows a plot depicting the relationship between the efficiency and extra time é. The
vertical axis represents the pipeline efficiency; the horizontal axis represents § relative to T/m. The

12 Pipelined Televisualization

pipeline efficiency shows significant decrease with increased §. For example, efficiency of the pipeline
reduces to 0.5 when & reaches 7'/m; the throughput and the speedup of the pipeline are limited to
50% of the maxima possible.

Therefore, an important issue is how to partition a visualization computation to achieve equal
cycle times among the pipeline stages.

Algorithm adaptation and partitioning are application dependent issues. These issues overlap
with the general problems of computation partitioning, process assignment, and scheduling in a
multiprocessor system [21]. But it should be noted that much higher and less predictable conmmuni-
cation overhead, as well as the potential variations in execution speed of pipeline stages, make these
issues more difficult in televisualization pipelines. These issues will be addressed for two target ap-
plications to a degree that will enable us to understand their implication on the issues of interstage
communication and synchronization, as well as error control.

3.2.2. Compautation and Communicaiion Overlap.

In this subsection, we demonstrate that reducing the interstage communication overhead and over-
lapping communication with the visualization computation within a pipeline stage are both essential
to high performance of a televisualization pipeline.

Consider an m-stage televisualization pipeline that is ideal except for a significant interstage
communication overhead. Also assume for now that visualization computation does not overlap
with interstage communication. Figure 6 illustrates the timing within a stage k (1 < k£ < m) under
this assumption. For each data item, stage k first receives data from stage k& — 1 using ¢, units of
time, processes the data in ¢, time, and then sends the result to stage k -+ 1 which takes ¢, units of
time.

» Time

DLMMMIMIY

Figure 6: Nonoverlapped Timing within Stage &

The cycle time for stage k is:
tk - tr + tp -+ ts
Let the communication overhead be f. = ¢, + t,, and let R be the ratio of ¢, to the intrastage

processing time £, that is:
Lttt

R=
t? tp

The pipeline eycle time can thus be rewritten as:

i = (l + R)tp

Gong 13

The following expressions for the steady state performance can be derived:

1

TH(n,m) = m

(9)

SU(nm) = -2 (10)

1

PE(R, m) = m

(11)
Comparing Equations (9) to (11) with (6) to (8), we find that communication overhead affects the

pipeline performance in essentially the same way as does unequal partitioning. The plot of B vs.
pipeline efficiency as given by Equation (11) is very similar to that for (8) and is not repeated here.

For maximum performance with a given partitioning, it is required that B = 0 (t. = 0), but this
is impossible to achieve in a real environment. Two approaches can be taken to reduce the impact
of the communication overhead. One is to make #, as small as possible; the second is to overlap #,
with £, as much as possible.

When there is a partial overlap between the intrastage computation and interstage communica-
tion, . represents the portion of the communication overhead that is still visible to the intrastage
computation. Thus, Equations (9) to (11} are a characterization of the performance of the pipeline
for all computation and communication overlaps.

Figure 7 shows an overlapping of computation and communication within the kt* stage of a
pipeline. The top row represents the receiving of data by the communication interface (data items i
and i+1 are shown); the middle row corresponds to the processing of the received data (i—1,4,i+1);
and the bottom row shows the transmission of the data (¢ — 1, 7).

= Time
receive _,
compute NNERARNN NEEINEN
send | i o

b

cycle i-1 cycle i cycle i+1
Figure 7: Overlapped Timing within Stage &

The receive time ¢, and the send time ¢, in Figure 6 are further defined as ¢, = ty, + 1, and
ts = 15, +t,,, where ,, and #,, represent communication overhead that can overlap with the

14 Pipelined Televisualization

visualization processing, and #,, and {,, represent those parts that cannot; the pure visualization
processing takes ¢, time per data item, but the local processor will be occupied by either receive or
send processing during the periods that cannot overlap. Figure 7 is drawn with implicit assumptions
tr, =15, and tp, = ¢, =1, the corresponding cycle time is:

i = trn + ta,, + tp
In general, the cycle time for stage ¥ is determined as:

ty = max({,, + max(ty +tr,, 1,) tr, + max(t, + ., x,)) (12)

Achieving maximum overlap is a difficult issue. Tirst of all, data prefetching is necessary to
allow overlap. This raises standard issues:regarding the effectiveness of prefetching: how much to
prefetch, when to prefetch, and where to store the prefetched data. These issues can only be properly
addressed with thorough understanding of the application’s data requirement and communication
overhead. A high speed host-network interface is required to support parallelism between the data
transmission and the local visualization processing. The part of the communication overhead that
cannot overlap with the local processing may include time for context switching between application
processes and the communication processes, and for moving data between communication buffers and
the application space. This overhead must be minimized by appropriate design and implementation
of the interface between the visualization application and the communication protocols as well as
appropriate buffer management.

3.2.3. Interstage Synchronization and Error Control.

Consider stage S; (1 <k < m) of a typical m-stage hardware pipeline as shown in Figure 8. There
are latches Ly and Ly between S; and its two neighboring stages Si.; and Spy1 Each input data
item has to be fetched from latch Ly, processed, and then loaded to latch Lpy41. Access to these
latches has to be implemented in such a way that data fetched from L; is always valid output of
stage £ — 1, and data in L4y will not be overwritten before being used by stage k4 1. This is the
basic function of pipeline synchronization.

o Sia =P Ly Sy - 1101 Sis1 -

Figure 8: Interstage Synchronization

Since it is infeasible for the televisualization pipeline to use hardware circuitry to directly imple-
ment this function, inferstage synchronization has to be realized through explicit message exchanges.
The interstage synchronization problem then becomes a problem of interstage flow control which
will be addressed at the transport level. The suitability of several existing flow control methods
(combined with error control) to the televisvalization pipeline is examined next. More detailed
discussions of these methods can be found in textbooks on computer networks [51, 57). We only
present and discuss the most relevant results applicable to pipeline flow and error control.

Gong 15

Stop and Wait Protocol

The simplest form of flow and error control is step and wad, in which the sender sends only one data
segment for each request. The request message can be an acknowledgement (ACIK} which causes
the sender to send the next data segment, or a negative acknowledgement (NAK) which causes a
retransmission of the segment associated with the NAK.

Figure 9 depicts two stages exchanging data segments using the stop and wait protocol. fumg
is the data segment transmitting time. It is clear that only one segment can be sent with every
roundtrip delay (i4) assuming no errors. Stop and wait will be an acceptable solution if arbitrarily
large segments can be sent without errors for each ACK/NAK. In practice the use of very large seg-
ment sizes is not possible, thus stop and wait leads to very inefficient flow control. This problem is
even more significant for a televisualization pipeline which utilizes high data bandwidth in presence
of high latency.

Stage k Stage k+1

TACRNAR—
y

.............. txmt
W i
..... -
.

*—-.-.-_-_-'-'--._

Figure 9: Stop and Wait Protocol

Sliding Window with Cumulative Acknowledgement

In this protocol, a sender can send a series of data segments determined by a window size W without
receiving an acknowledgement. Each segment has a sequence number corresponding to a window
slot. Upon detection of an error, the receiver sends a NAK to the sender and discards all future
incoming segments until the segment in error is corrvectly received. The sender must retransmit the
segment in error plus all succeeding segments after the NAK is received.

This protocol improves on the stop and wait by allowing multiple data segments to flow without
waiting, thus overcoming the large communication delay.

16 Pipelined Televisualization

In case of errors, cumnulative acknowledgement will result in the retransmission of multiple seg-
ments, some of which are duplicates of good packets, thus bandwidth is wasted. Since the receiver
only accepts data segments in sequence, out of sequence data will be discarded and subsequently
have to be retransmitted. The cumulative acknowledgement flow control has been shown to limit
the effective utilization of the comrmunication link. Combining flow control and error control within
one sliding window mechanism leads to their mutual interference. Furthermore, sliding window flow
control involves a tradeoff between tight control versus high channel utilization, i.e. while a large
window size is required to overcome latency in long haul networks, a smaller window is needed for
effective flow control [11, 14].

Most importantly, the fact that the sliding window protocol uses acknowledgements to advance
the window makes it ineffective in unreliable networks. A receiver cannot stop the incoming flow by
withholding acknowledgements because a sender cannot tell whether an acknowledgement is lost or
withheld by the receiver.

Therefore, we believe that the sliding window with cumulative acknowledgement is not a good
solution for general high speed network environments, especially for the more stringent performance
requirement of PTV applications.

Sliding Window with Selective Acknowledgement

Sliding window with selective acknowledgement improves on connection utilization by selectively ac-
knowledging and retransmitting only data segments in error.

As a potential scheme for flow and error control in high speed network environments, the sliding
window with selective acknowledgement still has several disadvantages if considered in its simplest
form:

o Receivers and transmitters need more complex control logic. To maintain the sequence, re-
ceivers must save all the data segments following the one in error until it is retransmitted;
senders need to be able to send out segments in arbitrary order to respond to retransmission
requests.

» These mechanisms provide completely reliable communication regardless of application re-
quirements. Even though correctly received data is saved at the receiver, the application is
not allowed to access the partially received data. Every data segment lost or corrupted is
retransmitted, even if applications can tolerate some lost segments.

¢ Although selective acknowledgement is more appropriate than cumulative acknowledgement
for high speed networks, this scheme has not been widely implemented and still has the dis-
advantages of interference between flow and error control.

There are two major reasons for considering application-oriented error control in PTV:

e Lrror retransmission introduces significant communication delay which in turn reduces pipeline
performance.

e Not all visualization applications require retransmission of every packet in error.

Gong 17

Thus, simply insisting on providing error-free communication does not guarantee an effective visu-
alization. In addition, the large and variable communication latency makes accurate determination
of timer values difficult. Furthermore, bursts of errors together with the high data rates tend to
produce less predictable error patterns and loss of large data segments. These are all difficulties
facing a PTV error control mechanism. We need to understand application tolerance for errors and
design an intelligent error control mechanism.

In summary, we believe that the flow and error control requirements for PTV cannot be satisfied
by existing mechanisms. However, the following guidelines can be drawn for the design of the PTV
flow and error control:

o The flow and error control functions should not adversely interact with each other.

» The flow control should work well over networks with high bandwidth-delay products and with
different classes of applications.

o The error control should integrate the selective retransmission scheme with the application-
oriented approach and be able to optimize for different classes of applications.

4. PROPOSED SOLUTIONS

The issues outlined in the previous section can be addressed in the framework of network IPC
support for pipelined televisualization. This IPC support should introduce minimum overhead in
exchanging data segments between the computation process and the communication system. It
should include an effective flow control mechanism to fulill the synchronization requirement of the
televisualization pipeline. Finally, it should have intelligent error control that attempts to satisfy
visualization application error tolerance with minimum retransmissions. The proposed solution
contains three important parts, namely use of the Axon segment streaming paradigm, a two-level
flow control method, and the appropriate application-oriented error control. They will be discussed
in this section.

4.1. Axon Communication Architecture

Axon is a high performance communication architecture for disiributed systems proposed by Ster-
benz and Parulkar [54]. The primary goal of the Axon architecture is to support a high performance
data path delivering high (inter)network bandwidth directly to applications. The significant features
of Axon are: (1) an integrated design of host and network interface architecture, operating systems,
and communication protocols; (2) a network virtual storage system (NVS} which includes support
for virtual shared memory across networks [53]; (3) application-oriented lightweight transport proto-
cols for different classes of applications; (4) a network interface which can provide a high bandwidth
low latency path directly between the network and host memory [52).

Figure 10 shows a block diagram of the Axon host-network interface architecture [52]. The di-
rect path from CMM (communication memory module) to CMM, consisting of the data path and
per packet processing as enclosed by the dashed line, is implemented in hardware as part of the
CMP (communications processor). The CMP consists of datapath (CMPg4) and control (CMP,)
portions. The CMP datapath interfaces to the VHSI (very high speed internetwork) optical links
and the serial ports of the CMM, and performs such functions as encryption/decryption and data
format conversion. The CMP control functions are those directly related to the datapath such

18 Pipelined Televisualization

Host i Host j

CPU [caAP caP [cpu
............................ L3S S, J . S—
CMPe CMPe '
Yy Iy Iy AR
|| CMM | CMPd CMPd (el CMM |

...

Figure 10: Axon Host-Network Interface

as header build/decode, checksum generate/compare, rate specification timing, as well as the per
packet congram® multiplexing and control. The CMM is a multiported memory, with serial ports
connected to the CMP transmitting and receiving data paths, and random access port available to
the host CPU for program execution.

A high performance microprocessor, the CMP assist processor (CAP), performs functions that
are not part of the critical path, but require high performance that would be inadequately provided
by the host CPU and would adversely impact the performance of other host processes. Exam-
ples include packet arrival to page presence mapping and packet retransmission timer management
functions. The host CPU is responsible for link/segment/page fault handling (for network virtual
storage) and per congram functions.

The Axon host-network interface provides hardware support for high data rates at the host-
network interface and for maximum parallelism between the host application processing and the
communication processing. With the high bandwidth CMM-to-CMM path available, it is the re-
sponsibility of the distributed application and its transport protocol to make efficient use of the path
for high application performance. The next three subsections provide a systematic description of
the proposed solution for PTV applications.

4.2. Segment Streaming

Segment streaming [63] is an IPC paradigm proposed for supporting exchange of a stream of segments
among processes with high bandwidth and low latency. Segment streaming is provided through two
transport level operations: send-siream which is used to send a segment stream to a remote host,
and get-stream which is used to retrieve a segment stream from a remote host. Application processes
invoke these operations by making corresponding system calls. Segment streaming supports both
repelilive transmission of a segment and sequeniial transfer of segments defined as a segment group.
Initiation of the transmission of each segment (repetitive or sequential) can be based on a specified

3 A congram combines the desirable features of a datagram with those of a (soft) connection. It can be thought as
a connection with the added attributes of rapid setup and survivability in presence of network failures [52].

Gong 19

interval (interval synchronized) or the execution of a specified program call {program synchronized).

The combination of repetitive transmission with program synchronization within the get-stream
operation is the most useful option for PTV applications. A segment buffer will be repetitively
transmitted in a stream, with initiation of each transmission determined by the flow control mech-
anism. Error control is provided by a separate error control mechanism.

The essence of segment streaming is that a single get-stream call (by an application process)
performs the request for all of the segments. Each segment will be transmitted when ready across a
VHSI connection without the latency of request or setup. Therefore, it supports segment prefetching
and allows overlapping between the visualization computation and the communication processing.
Provisions will also be made to allow the communication system direct access to the application
data space. Overall, with respect to the cycle time of the pipeline (Equation (12) in Section 3.2.2),
segment streaming allows packet transmitting time (length/rate) to be part of ¢, or i,,, and allows
t., and %, to be minimized.

n

contro] -—eg—— control

VP: Visualization Process
UCC: Upstream Communication Control
DCC: Downstream Communication Control

Figure 11: Block Diagram of the Segment Streaming Mechanism

A high level block diagram of the proposed segment streaming for PTV applications is given
in Figure 11. The mechanism consists of two major parts: the upstream communication control
(UCC) and the downstream communication control (DCC). The upstream control logic is respon-
sible for receiving data segments from the upstreamn neighbor and the downstream control logic is
responsible for sending result segments to the downstream neighbor. Both receiving and sending
operations are subject to proper flow control and error control. The data path is shown in thick
lines and the control information flows in thin lines. Referring to the Axon host-network interface
in Figure 10, visnalization process (VP) and high level streaming control will be executed by the
host CPU. The UCC and DBCC functions will be partitioned among the CAP and CMP. CMP will
be assigned those normal per packet processing functions, e.g. rate specification timing and packet
encapsulation/decapsulation. CAP will take on functions such as packet retransmission timer man-
agement, packet to segment presence mapping, and the simple window control.

20 Pipelined Televisualization

Petri nets have been widely used for describing and analyzing concurrent systems [44]). We chose
Petri nets for presenting the proposed segment streaming. Informally, a Petri net is a directed
bipartite graph with nodes in one partition represented by bars and nodes in the other partition
represented by circles. The bars are referred to as transitions and the circles are referred to as places.
The input places of a transition are those with an arrow to the transition and the output places
are those having an arrow from the transition. A transition will fire when a precondition on the
presence of tokens in its input and output places holds. In a traditional Petri net, the precondition
may be that all the input places contains at least one token and all the output places contain no
more than certain number of tokens. The firing of a transition removes one token from each of the
input places and produces a new token to each of its output places. The Petri net model we will
use is an extended one based on [41]. This model allows tokens to have attributes and allows a
procedure to be associated with a transition.

In a segment streaming representation, places represent buffers. A place may contain tokens
which can represent data, control or status information. The transitions represent processing of
data and decision making processes. A macro transition, represented by a rectangular box, is recur-
sively defined as a Petri net which may contain simple or macro transitions. Macro transitions will
be used to represent some logic at a higher level of abstraction.

Figure 12 shows a further decomposition of the UCC presented in the extended Petri net model.
For ease of presentation transition names will be in caps of font SANS SERIF and place names will
be in roman boldfaces. Three threads of processing can be identified with the three columns in the
diagram:

» The receive path on the left contains three simple transitions, the upstream rate control
(URC;), the upstrearm error control (UEC,) and the upstream window control (UWC,). These
transitions represent the data path consisting of normal per packet processing for incoming
data segments from the upstream neighbor,

s The send path on the right contains correspondingly, three simple transitions UWC,, UEC,
and URGC;. The control packets (pmt for window control and NAK for error control) normally
follow this path to the upstream neighbor.

o The middle column (shaded) consists of three macro transitions for window control, error
control, and rate control respectively. This more complex logic is activated only in response
to exceptional flow and error conditions.

Places in the diagram consist of two types. The first type includes the “internal” places which
indicate intermediate states of data and control information within UCC. For example, pkt.recv
signals the arrival of a packet from the rate control and pkt_ok indicates a packet that has passed
error checking; the second type of places are interface points between UCC and other control logic
(e.g. pkt_in for packet from the network, VP _st for the status of visualization process).

The downstream part (DCC) of the segment streaming can be similarly decomposed. This is not
shown due to the lack of space. It should be noted that simplifying the data paths and increasing
concurrency among the three threads will make segment streaming more efficient.

4.3. Two-Level Flow Conirol

The purpose of the pipeline synchronization is to guarantee orderly and efficient data flow in the
pipeline. This problem is addressed by the design of an interstage flow control mechanism. The ob-
jective of the flow control is to allow processed data segments to be sent to downstream neighbors as

Gong 21

UwC
pkt_ok . pmt_pkt

UEC
pkt_recv . pmt/NAK

URC

pkt_in pkt_out

Figure 12: Petri Net Model for UCC

soon as possible but without causing overflow. This objective will be achieved through the proposed
two-level flow control method at the transport level.

The two-level method consists of a simple window flow control on top of the rate contrel mech-
anism. The simple window control directly interfaces with the visualization process within each
stage by receiving and sending segments for the process. The rate control mechanism enforces data
transmission and reception rates which are derived from the flow requirement of the simple window
control and agreed upon by the underlying network at the time of connection setup.

The specifics of the rate control will be adopted from a related research [1, 8]. The enforcement
of rate will be based on derivatives of the leaky bucket model [1]. The following discussion will
concentrate on the window control portion. The window control is exercised between two neighbor
stages of the pipeline. The receiver starts by sending a control packet (a permit) to the sender
specifying the next expected segment number NV and the credit limit W (the maximum number of
segments the sender can send without further permit). The sender can send a segment only if there
are available window slots (N, N +1,...,N + W — 1). A segment is sent as a sequence of packets,

22 Pipelined Televisualization

each carrying a segment number, a packet number within the segment, and a credit confirmation
number (which is the concatenation of one toggle bit with the most recently received credit limit).
During pipeline operation, the sender keeps track of the consumption of credits and the newly issued
credits. The receiver accepts only packets with valid credit and makes decisions as to when to grant
new credit to the sender and how much credit to grant.

A Petri net graph is given in Figure 13 which is an expansion of the upstream window control
in Figure 12, This logic accomplishes three major functions: checking input packets for valid credit
(the window slot number), dynamically controlling the receiving window, and retransmitting win-
dow control permit.

...............

UWC

pkt_ok

Figure 13: Window Flow Conirol Logic of UCC

As shown in Figure 13, a packet to the UWC logic from upstream should always be a data packet.
The arrival of a data packet corresponds to a token at pkt_ok (packet error-checked). This token
is subject to credit checking at PKT_CHK. If it belongs to a segment within a valid window slo,
it is passed to pkt_acd (packet accepted). Otherwise the token is discarded in sink s. Transition

Gong 23

CTL_EXTR (control extraction) passes the data to VP and extracts the window information for
credit control. At transition SEG.CHK (segment checking), the presence of packets in pkt.acd is
mapped into the presence of segments in seg_acd (segment accepted) and the credit confirmation
flag (in cr_conf) is set accordingly for permit retransmission control.

The decision on granting new credit is made at CR_.CTL (credit control) according to three fac-
tors: the current status of VP in VP _st, the previous setting of credit in er_max (maximum credit),
and the current usage of the credit from seg_acd. If more credit should be issued, transition CRED-
ITOR will update the record in er_max, set the cr_rec for input packet checking, set the number
of granted credits in cr_grd which will be sent to the upstream neighbor in a permit packet, and
set the timer for permit loss detection.

A permit loss is detected at LOSS_DET if the time-out occurs before the reception of the permit
by the upstream neighbor can be confirmed. A permit loss will be indicated in pmt_loss, which will
trigger another firing of CREDITOR.

The down stream window control is much simpler. It needs only to keep track of the credit
consumption and the new credit issued by the downstream neighbor. It will block if the credit runs
out. The Petri net graph for the downstream window control is omitted.

The two-level flow control mechanism above sucessfully addresses the flow control issues raised
in Section 3.2.3. First of all, the rate control ensures that the sources (VP in case of PTV) do
not use more bandwidth than requested during connection setup. The next generation networks
(e.g. ATM) require this of data sources in order to manage network resources effectively and to
provide guaranteed services to applications. Such a performance guarantee from the network is
essential to the success of PTV. However, rate control alone is not sufficient for PTV flow control
for two reasons: (1) frequently adjusting the (inter)network connection rates to cope with speed
fluctuation of a pipeline stage is not practical, because changing the data rate requires decision
making by every packet switch and gateway on the connection path, which incurs significant delay
to render the flow control ineffective and add latency to the pipeline; (2) despite its appropriateness
for underlying networks, data rate is not a natural application level parameter for televisualization
which deals with data in segments. Therefore, the window control on top is used to adjust data
flow between two neighbor stages (VPs) to account for changes in the data consumption speed.
Large data granularity for each window slot is used to achieve efficiency in networks with high
bandwid th-delay product. Window update at the sending end is controlled by a special permit from
the receiver, not by the ACKs as in a traditional sliding window protocol. Therefore, the flow control
can be quickly activated by withholding new permits. The credit-based window control together
with buffers distributed among pipeline stages prevents data overflow and minimizes delay to the
pipeline in case of flow control activation. Since the window mechanism serves only the purpose of
stage-to-stage flow conirol, it is simple and free of the interferences from both error and congestion
conditions in the underlying network.

4.4. Application-Oriented Error Control

Error control has two aspects: (1) the detection of packet corruption, loss, and duplication; (2)
the compensation for these error conditions. The goal for error control should be to satisfy the
error tolerance of applications with minirmum error control overhead. We approach this problem by
using an application-oriented design. The application-oriented error control scheme for pipelined
televisualization has four important aspects:

24 Pipelined Televisualization

Timer at receiver. The timer for detecting data losses is located at the receiving end of a connec-
tion. The time-cut interval is easier to determine for a timer at the receiving end because a
more accurate estimate of one-way delay can be obtained than of a roundtrip delay [14]. More
importantly, the receiver is best qualified to make retransmission decisions and thus should
have control over the timer.

Selective retransmission. Segment streaming error control uses a selective acknowledgement scheme
rather than the cumulative acknowledgement. A receiver saves correctly received data packets
and requests retransmission for only the missing or corrupted parts. Therefore application pro-
cesses can be allowed earlier access to partially received data, and extraneous retransmissions
are avoided.

Retransmission strategies. In order to perform intelligent error control, we need to define a set
of retransmission strategies. Retransmission strategy can be defined in three dimensions [55]:
(1) granularity, which refers to how many missing packet events are accumulated before a re-
quest for retransmission is made; (2) fetch policy, which determines whether to always request
for retransmission of a packet (anticipatory retransmission), or only to request retransmis-
sion when the data corresponding to the packet is referenced (demand reiransmission); (3)
preemption specifies whether to allow retransmissions to preempt the primary data stream
(preemptive) or to make the retransmissions wait until all the data flowing in the primary
stream is transmitted (nonpreemptive).

Application error tolerance. Since the main objective of the application-oriented error control
is to satisfly an application’s requirement using minimum retransmission, a set of application
error tolerances needs to be defined which can be used by the error control mechanism to
determine the optimal control strategy. Application error tolerance can also be described in a
three dimensional space: (1) bit error tolerance (bit ervor rate, the minimum distance between
two error bits); (2) packet loss tolerance (packet loss rate, minimum distance between two
lost packets); (3) real time requirement (e.g. most recent data preferred, minimum animation
speed).

The error control logic is described by two Petri net graphs in Figures 14-15.

The function of the upstream error control is to detect errors (bit error, packet duplicate, and
packet loss) associated with the packet stream from the upstream stage and take appropriate actions
(e.g. ignore, request for retransmission) according to the given error tolerance of the application. A
Petri net graph for this logic is given in Figure 14.

An arriving packet is represented as a token in pkt_recv (packet received). Transition RECY.CTL
(receive control) will pass the packet directly to pkt_ok if no bit error is detected. Duplicate packets
are discarded. The timer is set at the stream setup according to the data and retransmission
granularities. A packet loss is detected when time-out occurs hefore the corresponding packet is
received. In case of bit error or packet loss, the retransmission request decision is made with respect
to the error condition and the given error tolerance. If retransmission is needed, a token is produced
to nak {negative acknowledgement). Transition MUX combines the NAK and the window permit
into one token stream and passes them to the URC logic.

The downstream error control serves two purposes: detecting and discarding the corrupted packet
(either a NAK or a window permit) from the downstream stage and processing retransmission re-
quests according to the given application error tolerance. Figure 15 depicts this logic in a Petri net.

Gong 25

UEC

J
'
"
]
8
<

B R O

Figure 14: Error Control Logic of UCC

For a data packet that arrives from downstream, a token is generated in pkt.recv. Error check-
ing is performed at RECV_CTL (receive control). If a bit error occurred, the packet is discarded into
the sink s; if the packet contains a NAK but the tolerance indicates no need for retransmission the
packet is also discarded; otherwise the packet is accepted into pkt.acd. Next, transition DEMUX
produces a token to nak in case of a NAK packet and one to pmt._pkt if it is a permit packet. A
NAK token causes one retransmission of the packet in error. The permit token will be interpreted
by the DWC logic as described in Section 4.3.

The most significant feature of the proposed error control mechanism is its support for selecting
different error control strategies according to application requirements. Therefore, error control can
be optimized for the performance requirements of different applications (e.g. animation, real-time
process monitoring).

1t should be noted that only by separating error control function from flow control is it possible
to use different error control strategies without adversely affecting the flow control function. Fur-
thermore, by allowing the receivers to control timers and retransmissions, the proposed error control
is less reliant on the accuracy of roundirip delay estimate.

5. PLAN OF ACTION

The pipelined segment streaming is intended to be part of the Axon system. It also assumes
support from Axon’s host-network interface design, but a complete implementation of Axon cannot
be expected in the time frame of this proposed work. In order to develop the ideas of segment

26 Pipelined Televisualization

VP

seg_out

DWC

pmt_pkt pkt_to_send

pkt_acd data_pkt : DEC

pkt_recv

i i R T S A

..

Figure 15: Error Control Logic of DCC

streaming with two-level flow control and intelligent error control and to demonstrate the viability
of the PTV model, the following steps will be taken to conduct this research:

Ydeutification and adaptation of target applications. Two target applications have been cho-
sen for this study. The first, interactive visualization of cell development process, was intro-
duced in Section 2.2.1. The second application is visualization of a 3-D scalar data set using
the volume rendering technique [37, 58]. These applications have been selected because they
represent applications with challenging computation and communication requirements, and
they cover the two major rendering techniques (surface rendering and volume rendering) used
for visualizing natural 3-D data.

Determination of the optimal error control strategies for target applications. Thisinvolves
careful evaluation of the applications error tolerance with respect to different visualization ob-

jectives.

Design and simulation study. In the design of the segment streaming mechanism, two specific
issues will have to be addressed: (1} determining the conditions under which two-level flow
control and intelligent error control will be effective; (2) comparing the effectiveness of different
Hlow control policies and error control strategies. This requires understanding the dynamics
of the visualization application, flow control, and error control, as well as their interactions.
Such complex and dynamic behavior makes 1t very difficult to apply an analytical approach.
We therefore resort to discrete-event simulation for the design and analysis of the segment

Gong 27

streaming mechanism [36, 31]. A simulator will be built on top of the Axon simulator which
is under development in a related effort. The Petri net specification of segment streaming will
be simulated to help understand these issues.

Experimental implementation of the segment streaming mechanism. Thesegment stream-
ing (with two-level flow control and the application-oriented error control) will be implemented
on top of existing IP (internet protocol). The campus network will provide the underlying net-
work support. A model for the implementation is shown in Figure 16.

SS SS SS
ALTP ALTP ALTP
MCHIP MCHIP MCHIP
NAP NAP NAP

(Inter) network >

Figure 16: Segment Streaming Implementation Model

In this logical hierarchy of the protocols, the network access protocol (NAP) for Ethernet al-
ready exists. The internetwork protocol is a multi-point congram-oriented high performance
internet protocol (MCHIP) which will be provided by a related research effort [43, 38]. A sub-
set of the ALTP (application-oriented light weight transport protocol) will be implemented,
which supports only the segment streaming operation with a two-level flow control mechanism
and the appropriate error control mechanism. The high level segment streaming (SS) control
includes functions such as prediction of the local processor load condition for flow contrel and
a simple application interface to allow the invocation of the segment streaming operation.

Computing resources to be utilized in this experiment include several workstations, a Pixar
image computer [46, 47), and a Titan graphics supercomputer [7, 17].

Implementation of the target applications. The two target applications will be implemented
as PTV using the segment streaming support. Their performance will be studied using real
measurements. The results will be used to verify those of the simulation study.

Characterization of suitable PTV applications. A set of rules will be developed which can be
used to determine whether a visualization application is suitable for PTV implementation,
given some parameters of the data and computation requirements as well as the available
network support.

To better appreciate the issue of the viability of the PTV model (also the feasibility of pipelining
across networks), we consider a visualization example using the volume rendering technique proposed
in [37]. Assume the input data consists of 256 slices of 512 x 512 each. Each voxel is represented
by 2 bytes. Simple analysis shows that about 100 arithmetic operations (addition or multiplication)
are needed to project one voxel onto an image plane from an orthographic direction. On a single
50Mflops computer, projection of one slice will take 100 x 512 x 512/(50Mflops) = 500ms. To apply
the PTV model, we have partitioned the computation into 6 stages, with the longest stage requiring

28 Pipelined Televisualization

23 operations/voxel. The per slice projection time, which is now determined by the longest stage,
becomes approximately 115ms. This means that over 4-fold (100/23) speedup is possible with ade-
quate IPC support. So what are the requirements of the IPC?

Let our goal be a modest 4-fold speedup. Then the cycle time of the pipeline should be no more
than 25 x 512 x 512flops/(50Mflops) &~ 131ms. Due to data expansion, an equivalent of 5 data slices
have to be passed between some pipeline stages. From Equation (12) in Section 3.2.2, we can show
that a sustained effective data rate of 159Mbps is required, even with the assumption that commu-
nication completely overlap with intrastage computation (i.e. ¢,, = t;, = 0} and communication
is 100% error-free. Without complete overlap between communication and computation, both #,._
and ¢, must be no more than 131 — 115 = 16ms and a higher data rate is required. Moreover,
networks are typically not 100% error-free and the error control overhead reduces the effective data
rate. Finally, the pipeline throughput can be significantly less than 1 image update/131ms unless
there is an effective flow control mechanism to avoid overflowing in the pipeline.

It is our belief that existing transport protocols and IPC mechanisms cannot meet such require-
ments of the application. It is my goal to develop an adequate IPC support at the transport level that
will be able to satisfy these requirements of the PTV pipeline, therefore establishing the feasibility
of pipelining across networks and the viability of the PTV model.

6. RELATED WORK

We know of no other efforts that attempt to develop special IPC mechanisms for efficient support
of pipelined televisualization. There are, however, some efforts that are related to specific aspects
of the proposed research. These are described in this section.

6.1. Televisualization Support

Existing network support for televisualization consists mostly of an efficient file transfer facility, typ-
ically used in batch or background mode. That is, the data generation step is performed first, then
the data is shipped to a graphics workstation or minisupercomputer for visualization. This process
does not support interactive visualization and often takes longer than necessary due to required
human intervention.

Two approaches have been talen to make this process faster and more interactive. With the first
approach, all visualization processing is performed on a supercomputer and images are then sent
to display devices either as pixels or as NTSC (National Television Standards Committee) video
signals [45, 4]. The transmission of pixels generally requires very high bandwidth, but resulis in
higher image fidelity. The second approach transfers raw data between the supercomputer and the
visualization facilities and requires higher bandwidth connections than NTSC analog signals. For
example, data sets of a simulation can be transferred at high speed to a minisupercomputer that
performs visualization computations [25, 62]. Neither of these are visualization solutions that every
scientist can afford.

The Rivers {(Research on Interactive Visual Environments) Project at NCSA (National Center for
Supercomputer Applications) is developing hardware and software systems for supporting interactive
steering of supercomputing by visualization [25]. This work would bring significant improvement to
the NCSA supercomputing environment.

Gong 29

6.2. IPC Paradigms

There are two widely used IPC paradigms: remote procedure call (RPC) and message passing
[2, 5, 19]. RPC derives its major advantage from its similarity to a conventional procedure call
in programming languages. With RPC, programmers of distributed applications need not concern
themselves with the details of managing communications with another address space or another
machine, or with the details of the communication system in use. This forms a clear contrast with
the message passing paradigm, in which application programmers are exposed to some of the lower
level communication details. Message passing, however, allows applications to define more powerful
IPC semantics to suit their needs.

It has been pointed-out-by many that RPC is not adeguate for parallel distributed comput-
ing because its call semantics prevent concurrent communication [42]. There have been attempts
to overcome this weakness by introducing more parallelism into the RPC semantics. Gifford and
Glasser introduced a channel model which includes a pipe extension to RPC for passing back incre-
mental results without call return, a provision for passing remote procedures as first-class values,
and a synchronization scheme for maintaining relative sequencing of calls on pipes and procedures
[23]. Satyanarayanan and Siegel extended RPC by allowing a process to make multiple RPC calls
without being blocked [50]. These extensions, however, do not directly address the concurrent corn-
munication requirement in a televisualization pipeline.

Message passing supports only the basic message sending and receiving semantics. Any more
complex semantics such as flow control will have to be supported by building additional mechanisms
on the basic message passing mechanism. Furthermore, most existing message passing support is
not designed to deal efficiently with large granularity data as needed in PTV applications.

6.3. Flow Control and Error Control

The two most significant flow control mechanisms are sliding window flow control [6, 57] and rate-
based flow control [14, 55, 43]. They have been discussed in Section 3.2.3 and Section 4.3 respectively.
The proposed two-level flow control attempts to combine the strong points of the window-based and
the rate-based flow control approaches to best serve the need of pipelined televisualization.

Many methods for error control have been discussed in standard networking textbooks [6, 57].
Major disadvantages with thetraditional error control method were pointed out in Section 3.2.3 and
the proposed application-oriented error control has been presented in Section 4.4,

6.4. Host-Network Interface

There have been several recent high performance host-network interface architecture projects. The
NAB (network adaptor board) [30] is a custom host-interface designed to support VMTP [11]. An-
other approach to the performance problem is to implement existing transport protocol mechanisms
in hardware, as in XTP (express transport protocol) and the PE (protocol engine) (12, 13). The Nec-
tar CAB (communication accelerator board) [3] provides a workstation-network interface of 10MBps,
and avoids a store and forward hop when CAB memory is mapped into the host address space. The
CAB is connected to the host through a VME bus port.

30 Pipelined Televisualization

Finally, the Axon network interface [52] (described in Section 4.1) emphasizes the integral design
of host architecture, protocols, and operating systems, as well as the systernatic evaluation of the
division of functionality between hardware and software.

It should be noted that an important aspect of new host-network interface designs is to provide
a high bandwidth memory-to-memory data path. This proposed research addresses the issue of how
to make efficient use of the data path for achieving high application performance.

7. EXPECTED CONTRIBUTIONS

The proposed work will be considered complete once the tasks outlined in Section 5 have been per-
formed.

Major contributions expected of this research can be summarized as follows:

o demonstration of the feasibility and usefulness of extending the pipeline principle to a network
environment

s demonstration of the PTV model as a viable approach for implementing some demanding
visualization applications

o development and understanding of the two-level flow control concept for PI'V applications

» understanding of the target application error tolerances and the determination of optimal error
control strategies

Additionally, since this research addresses several issues within the Axon architecture, its results will
have implications on the Axon architecture. Through the development of the network support for
PTV applications, further understanding will be gained about the general approach of application-
oriented protocol design.

Gong 31

References

[1] Akhtar, Shahid, Congestion Control in a Fast Packet Switching Network, Wash. U. CS Dept.,
M.S. thesis, St. Louis, Dec. 1987.

[2] Andrews, Gregory R. and Fred B. Schneider, “Concepts and Notations for Concurrent Pro-
gramming”, in Concurrent Programming, Narian Gehani and Andrew D. McGettrick, eds.,
Addison-Wesley, Wokingham, England, Mass, 1988, pp. 3-69.

[3] Arnould, Emmaneul, et al., “The Design of Nectar: A Network Backplane for Heterogeneous
Multicomputers”, ASPLOS-III (ACM SIGOPS OS Rev.)}, Vol. 23, ACM, New York, April 1989,
pp- 205216,

[4] Bancroft, Gordon V., et al., “Scientific Visualization in Computational Aerodynamics at NASA
Ames Research Center”, Computer, Vol. 22, No. 8, Aug, 1989, pp. 89-95.

[5] Bal, Henri E., et al., “Programming Languages for Distributed Computing Systems”, ACM
Computing Surveys: special issue on programming language paradigms, Vol. 21, No. 3, Sept.
1989, pp. 261-322.

[6] Bertsekas, Dimitri and Robert Gallager, Daia Networks, Prentice-Hall, Englewood Cliffs, New
Jersey, 1987.

[7] Borden, Bruce S., “Graphics Processing on a Graphics Supercomputer”, IEEE Compuler
Graphics and Applications, Vol. 9, No. 4, July 1989, pp. 56~62.

[8] Bovopoulos, Andreas D. and Einir Valdimarsson, “Performance Evaluation Of A User Network
Interface For ATM Networks”, 1990,

[9] Carriero, Nicholas, and David Gelernter, “llow to Write Parallel Programs: A Guide to the
Perplexed”, ACM Compt. Surv., Vol. 21, No. 3, Sept. 1989, pp.323-358.

[10] Chen, T. C., “Parallelism, Pipelining and Computer Efficiency”, Computer Design, January
1971, pp. 69-74.

[11] Cheriton, David, “VMTP: A Transport Protocol for the Next Generation of Computer Sys-
tems”, SIGCOMM ’86 Symposium: Communicalions Architectures and Protocols (Computer
Communication Review), Vol. 16, No. 3, ACM, New York, 1986, pp. 406-415.

[12] Chesson, Greg, “Protocol Engine Design”, Proceeding of the Useniz Conference, 1986.

[13] Chesson, Greg, ei al., “XTP Protocol Definition”, Revision 3.1, Protocol Engines, Inc., PEI
88-13, Santa Barbara, Calif., 1988.

[14] Clark, David D., Mark L. Lambert, and LiXia Zhang, “NETBLT: A High Throughput Transport
Protocol”, SIGCOMM °87 Symposium: Frontiers in Computer Communications Technology
{Computer Communication Review), Vol. 17, No. 5, ACM, New York, 1987, pp. 353-359.

[15] Dasgupta, Subrata, Computer Architecture A modern synthesis, Volume 2: Advanced Topics,
John Wiley & Sons 1989.

[16] DeFanti, Thomas A., et al., “Visualization : Expanding Scientific and Engineering Research
Opportunities”, Computer , Vol. 22, No. 8, Aung. 1989, pp. 12-25.

[17] Diede, T., et al., “The Titan Graphics Supercomputer Architecture ”, Vol. 21, No. 9, Computer,
Sept. 1988, pp.13-30.

32 Pipelined Televisualization

{18] Dubey, Pradeep K. and Michael J. Flynn, “Optimal Pipelining”, Journal of Parallel and Dis-
tributed Computing, Vol. §, No. 1, January, 1990, pp. 10-19.

[19] Filman, Robert E. and Daniel P. Friedman, Coordinated Computing: Tools and Technigques for
Distributed Software, McGraw-Hill, New York, 1984.

{20] Gajaski, Daniel, et al., “CEDAR?”, in Tutorial, Supercomputers: Design and applications, edited
by Kai Hwang, Computer Society Press 1884, pp. 251-275,

[21] Gajaski, D. D., and J-K Peir, “Essential Issues in Multiprocessor Systems”, Computer , Vol.
18, No. 6, 1985, pp. 9-28.

[22] Giacopelli, J. N., et al., “Sunshine: A High Performance Self-Routing Broadband Packet Switch
Architecture”, 1989, pp. 1-22.

[23] Gifford, David K., and Nathan Glasser, “Remote Pipes and Procedures for Efficient Distributed
Communication”, ACM Trans. Comput. Syst., Vol. 6, No. 3, August 1988, pp. 258—283.

[24] Hayes, John P., Computer Architecture and Organization, Second Edition, McGraw-Hill 1988.

[25] Haber, Robert B., “Scientific Visualization and the Rivers Project at the Center for Supercom-
puting Applications”, Computer, Vol. 22, No. 8, Aug. 1989, pp. 84-89,

[26] Helman, James and Lambertas Hesselink, “Representation and Display of Vector Field Topology
in Fluid Flow Data Sets”, Computer, Vol. 22, No. 8, Aug. 1989, pp. 27~36.

[27] Hwang, Kai and Faye’ A. Briggs, Computer Architeclure and Parallel Processing, McGraw-Hill
1984.

[28] Hwang, K., and Z. Xu, “Multipipeline Networking for Compound Vector Processing”, IEEE
Trans. Computers, Vol. 37, No. 1, January 1988, pp. 3347,

[29] Jameson, Antony, “Computational Aerodynamics for Aircraft Design® Science, Vol. 245, No.
4916, 28 July 1989, pp. 361~371.

[30] Kanakia, Hernant and David R. Cheriton, “The VMP Network Adaptor Board (NAB): High
Performance Network Communication for Multiprocessors”, SIGCOMM 88 Symposium: Com-
municalions Architectures and Protocols (Computer Communication Review), Vol. 18, No. 4,
ACM, New York, 1988, pp. 175-187.

[31] Kobayashi, H., Moedeling and -Analysis: An Introduction to System Performance Evaluation
Methodology, Addison-Wesley Publishing Company, Inc. 1981.

[32] Kogge, Peter M., The Archilecture of Pipelined Computers, Hemisphere Publishing Corporation
1981.

[33] Kung, H.T., “Why Systolic Architecture?”, Compuler, Vol. 15, No. 1, January 1982, pp. 37-46.

[34] Kung, H.T., “The CMU Warp Processor”, in Supercompulers Algorithms, Architectures, and
Scientific Computation, (eds.) F.A. Matsen and T. Tajima, University of Texas Press, Austin
1986, pp. 236-247.

[35] Kung, 8.Y. et al., “Wavefront Array Processor-Concept to Implementation”, Computer, Vol.
20, No. 7, July 1987, pp. 18-33.

[36] Law, Averill M. and W. David Kelton, Simulation Modeling and Analysis, McGraw-Hill Inc.
1982.

Gong 33

[37] Levoy, Marc, “Display of Surfaces from Volume Data”, Computer Graphics and Applications,
Vol. 8, No. 3, May 1988, pp. 29-37.

[38] Magzraani, Tony Y. and Gurudatta M. Parulkar, “Specification of a Multipoint Congram-
Oriented High Performance Internet Protocol”, Proceedings of the Ninth Annual Joint Confer-
ence of the IEEE Compuler and Communications Societies (INFOCOM?90) IEEE Computer
Society, Washington D.C., June 1990, abridged from: Washington University Department of
Computer Science, technical report WUCS-89-20, St. Louis, Aug. 1989.

[39] McCormick, Bruce H., et al., (eds.), “Visnalization in Scientific Computing”, Computer Graph-
ies, Vol. 21, No. 6, November 1087.

[40] Nielson, Gregory M. and Bruce D. Shriver (eds.), Scientific Visualization bringing data into
fecus, special issue, Computer, Vol. 22, No. 8, Aug. 1989.

[41] Noe, Jerre D., and Gary J. Nutt, Macro E-Nets for Representation of Parallel Systems”, IEEFE
Transactions on Compulers, Vol. 22, No. 8, August 1973, pp. 718-727.

[42] Partridge, Craig (ed), Proceedings of Internet Research Steering Group (IRSG)} Workshop on
Architectures for Very-High-Speed Networks, January 24-26, 1990, Cambridge, Massachusetts.

[43] Parulkar, Gurudatta M., “The Next Generation of Internetworking” , Computer Communica-
tion Review, Vol. 20, No. 1, ACM SIGCOMM, New York, Jan. 1990, pp. 18-43, also: Washing-
ton University Department of Computer Science, technical report WUCS-89-19, St Louis, May
1989,

[44] Peterson, James L., Petri Net Theory and the Modeling of Systems, Prentice-Hall 1981, Engle-
wood Cliffs, New Jersey.

[45] Phillips, Richard L., “Distributed Visualization at Los Alamos National Laboratory”, Com-
puter, Vol. 22, No. 8, Aug. 1989, pp. TO-77.

[46] Pizar Image Compuier Programmer’s Manual, Pixar 1987.
[47] Pizar Image Computer Application SW USER’S GUIDE, Pixar 1987.

(48] Ramakrishnan, K. K., and Raj Jain, “A Binary Feedback Scheme for Congestion Avoidance
in Computer Networks with a Connectionless Network Layer”, SIGCOMM °88 Symposium:
Commaunications Archilectures and Protocols (Computer Communication Review), Vol.18, No.4,
ACM, New York, 1988, pp.303-313.

[49] Rosenblum, Lawrence J., “Visualization of Experimental Data at the Naval Research Labora-
tory”, Compuler, Vol. 22, No. 8, Aug. 1989, pp. 95-101.

[50] Satyanarayanan, M, and Siegel EH, “Parallel communication in a large distributed environ-
ment”, IEEE Trans. Computers, Vol. 39, No 3, 1990, pp. 328-348.

[51) Stallings, William, Data and Compuier Communications, second edition, Macmillan Publishing
Company 1988,

[62] Sterbenz, James P. G., Azon: Host-network interface Design, Washington University Computer
Science Department, technical report WUCS-90-7, St. Louis, March 1989.

[53] Sterbenz, James P. G., Gurudatta M. Parulkar, “Axon: Network Virtual Storage Design”,
Computer Communicalion Review, Vol. 20, No. 2, ACM SIGCOMM, New York, April 1990,
pp. 50-56, abridged from: Washington University Computer Science Department, technical
report WUCS-89-13, St. Louis, May 1989.

34 Pipelined Televisualization

[54] Sterbenz, James P. G., Gurudatta M. Parulkar, “Axon: A High Speed Communication Ar-
chitecture for Distributed Applications”, Proceedings of the Ninth Annual Joint Conference of
the IEEE Computer and Communication Socielies (INFOCOM’90) IEEE Computer Society,
Washington D.C., June 1990, pp. 484-492, also: Washington University Computer Science
Department, technical report WUCS-89-36, St. Louis, September 1989.

[65] Sterbenz, James P. G., Gurudatta M. Parulkar, Azon: Applicalion-oriented Lightweight Trans-
port Protocol Design, Washington University Computer Science Department, technical report
WUCS-89-14, St. Louis, September 1989.

[56] Suzuki, Hiroshi, et al., “Cutput-buffer Switch Architecture for Asynchronous Transfer Mode”,
Conf. Rec. Ini. Conf. Commun. Vol. I (of 3), IEEE International Conference on Communica-
tions (IC'C’89), Boston, MA, USA, June 11-14 1989, pp. 99-103.

[57] Tanenbaum, Andrew S., Computer Networks, Prentice-Hall 1988.

(58] Tiede, UIf, et al., “Investigation of Medical 3D-Rendering Algorithms”, Computer Graphics and
Applications, Vol. 10, No. 2, March 1990, pp. 41-53.

[69] Turner, Johnathan S., “Design of a Broadcast Packet Switching Network”, IEEE Transactions
on Communication, Vol.38, No. 6, New York, June 1988, pp. 734-743.

[60] Upson, Craig, et al., “The Application Visualization System: A Computational Environment
for Scientific Visualization”, Computer Graphics and Applications, Vol. Vol. 9, No. 4, J uly 1989,
pp. 3042,

[61] Winkler, Karl-Heinz A., et al., “On the Characteristics of a Numerical Fluid Dynamics Sim-
ulator”, in Supercomputers Algorithms, Archilectures, and Scientific Computation, (eds.) F.A.
Matsen and T. Tajima, University of Texas Press, Austin 1986, pp. 416-429.

[62] Winkler, Karl-Heinz A., et al., “A Numerical Laboratory”, Physics Today, Vol. 40, No. 10,
October 1987, pp. 28-37.

	Segment Streaming for Efficient Pipelined Televisualization
	Recommended Citation
	Segment Streaming for Efficient Pipelined Televisualization

	tmp.1456444019.pdf.JUfM6

