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ABSTRACT OF THE DISSERTATION

Underwater Direction-of-Arrival Finding:
Maximum Likelihood Estimation and Performance Analysis
by
Tao Li
Doctor of Philosophy in Electrical Engineering
Washington University in St. Louis, May 2012
Research Advisor: Dr. Arye Nehorai

In this dissertation, we consider the problems of direction-of-arrival (DOA) finding
using acoustic sensor arrays in underwater scenarios, and develop novel signal models,

maximum likelihood (ML) estimation methods, and performance analysis results.

We first examine the underwater scenarios where the noise on sensor arrays are spa-
tially correlated, for which we consider using sparse sensor arrays consisting of widely
separated sub-arrays and develop ML DOA estimators based on the Expectation-
Maximization scheme. We examine both zero-mean and non-zero-mean Gaussian
incident signals and provide detailed estimation performance analysis. Our results

show that non-zero means in signals improve the accuracy of DOA estimation.

Then we consider the problem of DOA estimation of marine vessel sources such as
ships, submarines, or torpedoes, which emit acoustic signals containing both sinu-
soidal and random components. We propose a mixed signal model and develop an

ML estimator for narrow-band DOA finding of such signals and then generalize the
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results to the wide-band case. We provide thorough performance analysis for the pro-
posed signal model and estimators. We show that our mixed signal model and ML
estimators improve the DOA estimation performance in comparison with the typical

stochastic ones assuming zero-mean Gaussian signals.

At last, we derive a Barankin-type bound (BTB) on the mean-square error of DOA
estimation using acoustic sensor arrays. The typical DOA estimation performance
evaluation are usually based on the Cramér-Rao Bound (CRB), which cannot pre-
dict the threshold region of signal-to-noise ratio (SNR), below which the accuracy of
the ML estimation degrades rapidly. Identification of the threshold region has im-
portant applications for DOA estimation in practice. Our derived BTB provides an

approximation to the SNR threshold region.
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Chapter 1

Introduction

Direction-of-arrival (DOA) estimation aims at finding the direction from which the
signals impinge on the sensor array, which consists of a group of sensors arranged in
a specific geometry that are able to measure the values of the impinging signals. In
the underwater environment, the impinging signals are often acoustic signals, which
are commonly called hydroacoustic signals whose DOAs can be estimated by acoustic
sensor arrays. Underwater DOA estimation has important applications in the detect-
ing, localizing, and tracking of marine vessels like ships, submarines, and torpedoes.
In this dissertation, we propose new signal models, maximum likelihood (ML) esti-
mation methods, and performance analysis results for underwater DOA estimation

problems.

1.1 Formulation

According to their bandwidths, the incident signals can be classified into narrow-band

and wide-band signals. The bandwidth of a narrow-band signal is small such that it



can be considered as sinusoidal. Usually a signal can be considered as narrow-band if

D/e< 1/B, (1.1)

where D, ¢, and B are the array length, signal propagation speed, and signal band-
width, respectively [1]-[3]. Suppose there are L signals incident on an array of M
sensors from the far field, which means the incident signal waves are plane waves. If
the signals are narrow-band, the array measurement model can be neatly formulated
as [1]

y(t) = AO@)x(t) +€(t), t=1,...,N, (1.2)

where y(t) is a M x 1 vector containing the array output at the ¢-th snapshot,

A(0) = [a(0y),--- ,a(fL)] (1.3)

is the array steering matrix, a(#;) is the L x 1 steering vector corresponding to the
[-th source, @ = [0,...,0r]" with 6, the DOA of the I-th source, {-}7 denotes the
matrix transpose, x(t) is the L x 1 vector of signal values at the t-th snapshot, €(t)
is an M x 1 vector of noise values on the array sensors, and N is the total number
of temporal measurements. The steering matrix A(0) is determined by the array
geometry, signal carrier frequencies, and DOA (see [1] for the formulation of steering
matrix). But since both the array geometry and carrier frequencies are known, the
steering matrix becomes only a function of DOA. The aim of narrow-band DOA

finding is to estimate @ from the noise corrupted array output y(t), t =1,..., N.

If the narrow-band condition in (1.1) is not satisfied, the signals are considered as
wide-band, and the measurement model in (1.2) cannot be applied. In this case, we

usually first decompose the wide frequency band into a set of narrow sub-bands [1], in
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each of which the narrow-band condition is satisfied such that the model in (1.2) can
be applied. For instance, if we decompose the wide frequency band into K sub-bands,
in each of which (1.2) holds. Then the wide-band measurement model can be written
as

Yp(t) = Ap(@)xzy(t) +€x(t), t=1,....N, k=1,...,K, (1.4)

where y,(t) is the M x 1 measurement vector at the t-th snapshot from the k-th
sub-band,

Ai(0) = [ay(0h), -+, ar(0L)] (1.5)

is the array steering matrix for the k-th sub-band, xj(t) is the L x 1 signal value
vector from the k-th sub-band, € (t) is the M x 1 noise vector from the k-th sub-band.
Note that the DOA vector 6 is identical for all sub-bands but the carrier frequencies
differ for different sub-bands. So the steering matrices from different sub-bands are

different.

1.2 Maximum Likelihood Estimation

Typical DOA estimation methods include beamforming techniques [4], subspace-
based methods such as MUSIC [6] and ESPRIT [2], and maximum likelihood (ML)
methods (see [7] for examples). Among varieties of DOA estimation methods, the ML
methods are often able to provide better performance than the others not only due to
their asymptotic performance usually achieving the Cramer-Rao bound (CRB), which
is a lower bound on estimation errors, but also because they can take advantage of
better signal or noise models to provide better DOA estimation performance (see [§]

for an example).



The ML methods aim at finding the DOA estimates by maximizing the log-likelihood
(LL) functions over the unknown parameters including DOAs and unknown signal and
noise parameters. Different signal or noise models may result in different LL functions
and therefore different ML estimators. For example, the deterministic (conditional)
signal model in [8] considers the signal values at all snapshots as deterministic un-
known parameters and assumes the noise to be spatially and temporally white. Under
this assumption, the unknown parameters in (1.2) include the DOA vector 6, the sig-
nal values x(t), t = 1,..., N, and the noise power ¢%. By omitting constant terms,

the LL function can be written as

L(6,X,Q)=—Nlog|Q| — trace {Q™'C(6, X)}, (1.6)
where
X =[z(1), -, =(N)], (1.7)
CO,X)=[Y - AO)X]|[Y — A(6)X]", (1.8)
Y =[y(1),--y(N)], (1.9)

Q = oIy, Iy is an M x M identity matrix, and | - | and trace{-} denote the

determinant and the trace of a matrix, respectively.

Also in [8], the stochastic (unconditional) signal model considers the noise as spatially
and temporally white as well but assumes the signal values are temporally indepen-
dent and follow a zero-mean Gaussian distribution with unknown correlation matrix

P at each snapshot. According to this model and after omitting constant terms, the



LL function can be formulated as
L(6,P,Q) = —log |A(9)PA"(6) + Q| — trace{ [A(0)PA"(0) + Q] ‘1Ryy} ,(1.10)

where

. 1
R,, = NYYH. (1.11)

The unknown parameters in (1.10) are 8, P, and o2

We can see that the LL functions in (1.6) and (1.10) have different formulations and
unknown parameters. Maximizing (1.6) and (1.10) with respect to their unknown
parameters,respectively, will definitely results in different ML DOA estimators. It
has been shown in [8] that the ML estimator based on the stochastic signal model
provides better performance than the ML estimator based on the deterministic signal
model for DOA estimation of zero-mean Gaussian signals. Therefore, to improve the
performance of ML DOA estimation, we ought to design signal and noise models to

be as accurate as possible.

1.3 Owur Contributions

In this research, we develop new signal models, ML estimators, and performance
analysis results for some underwater DOA estimation problems. We summarize our

contributions as follows.



ML DOA Estimation in Spatially Colored Noise Using Sparse

Arrays

Sparse sensor arrays have been explored as an effective solution to DOA estimation
in spatially colored noise, which is quite common in underwater scenarios. We con-
sider the narrow-band DOA estimation in spatially colored noise using sparse sensor
arrays and develop new ML DOA estimators under the assumptions of zero-mean
and non-zero-mean Gaussian signals based on an Expectation-Maximization (EM)
framework. For the DOA finding of non-zero-mean Gaussian signals, we compute
the CRB as well as the asymptotic error covariance matrix of the ML estimator that
improperly assumes zero-mean Gaussian signals. We provide both analytical and nu-
merical comparisons for the existing deterministic and the proposed ML estimators.
The results show that the proposed estimators provide better accuracy than the ex-
isting deterministic estimator, and that the non-zero means in the signals improve

the accuracy of DOA estimation.

DOA Finding for Hydroacoustic Signals From Marine Vessels

The hydroacoustic signals from marine vessels are known to consist of two parts: the
noise-like part with continuous spectra and the sinusoidal part with discrete frequen-
cies, which can be exploited to improve the DOA estimation accuracy. We consider
the DOA estimation of hydroacoustic signals from marine vessel sources by modeling
such signals as the mixture of deterministic sinusoidal signals and stochastic Gaussian
signals, and derive the ML DOA estimator. We compute the asymptotic error covari-

ance matrix of the proposed ML estimator, as well as that of the typical ML estimator



assuming zero-mean Gaussian signals, for DOA estimation of such signals. Our an-
alytical comparisons and numerical examples show that compared with the typical
ML estimator, the proposed ML estimator enhances the DOA estimation accuracy

for the hydroacoustic signals from marine vessels.

A Barankin-Type Bound

Identification of the signal-to-noise ratio (SNR) threshold region, below which the
accuracy of the ML estimation degrades rapidly, has important applications in the
DOA estimation practice. The Barankin bound is a useful tool in estimation problems
for predicting this threshold region of SNR. We derive a Barankin-type bound on the
mean-square error (MSE) in estimating the DOAs of far-field sources using acoustic
sensor arrays. We consider both narrow-band and wide-band deterministic signals,
and scalar or vector sensors. Our results provide an approximation to the threshold of
the SNR below which the ML estimation performance degrades rapidly. For narrow-
band DOA estimation using uniform linear acoustic vector-sensor arrays, we show that
this threshold increases with the inter-sensor distance. As a result, for medium SNR

values, the performance does not necessarily improve with the inter-sensor distance.

1.4 Outline of the Dissertation

The rest of the dissertation is organized as follows. In Chapter 2, we present the results
for the MLL DOA estimation in spatially colored noise using sparse arrays. In Chapter
3, we develop the narrow-band DOA estimation models and results for hydroacoustic

signals from marine vessels. Chapters 4 and 5 generalize the narrow-band results in
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Chapter 3 to the wide-band case. In Chapter 6, we derive a Barankin-type bound on
DOA estimation. At last, in Chapter 7, we summarize our contributions and discuss

possible topics for future work.



Chapter 2

Maximum Likelihood
Direction-of-Arrival Estimation in
Spatially Colored Noise Using

Sparse Arrays!

Spatially colored noise is quite common on sensor arrays in underwater direction-
of-arrival (DOA) estimation scenarios. In this chapter, we consider the problem
of maximum likelihood (ML) DOA estimation of narrow-band signals in spatially
colored noise using sparse sensor arrays, which consist of widely separated sub-arrays
such that the unknown spatially colored noise field is uncorrelated between different
sub-arrays. We develop ML DOA estimators under the assumptions of zero-mean
and non-zero-mean Gaussian signals based on an Expectation-Maximization (EM)
framework. For DOA estimation of non-zero-mean Gaussian signals, we derive the

Cramer-Rao bound (CRB) as well as the asymptotic error covariance matrix of the

'Based on T. Li and A. Nehorai, “Maximum Likelihood Direction Finding in Spatially Colored
Noise Fields Using Sparse Sensor Arrays,” IEEFE Trans. Signal Process., vol. 59, pp. 1048-1062, Mar.
2011. (©[2011] IEEE.



ML estimator that improperly assumes zero-mean Gaussian signals. We provide
analytical and numerical performance comparisons for the existing deterministic and
the proposed ML estimators. The results show that the proposed estimators normally
provide better accuracy than the existing deterministic estimator, and that the non-

zero means in the signals improve the accuracy of DOA estimation.

2.1 Introduction

Array processing for DOA estimation has been a topic of intensive research interest
during the past two decades. Many proposed estimators assume spatially white noise
(see [7]-[11] for examples) such that the array noise covariance matrix is proportional
to an identity matrix. However, this assumption is not realistic in many practical
applications [12]-[18] where the noise fields are spatially colored. The spatial correla-
tion or nonuniformity in the colored noise may significantly degrade the performance
of the estimators assuming spatially white noise [19], [20]. In these applications, it is
beneficial to take the spatial color of the noise into account to improve the resolution

of DOA estimation.

Unfortunately, the problem of DOA estimation under spatially colored noise is not
solvable unless special constraints are imposed on signals or noise. For instance,
in [14], the noise field is assumed to satisfy a spatially autoregressive model. In [16],
the signals are required to be partially known as a linear combination of a set of basis
functions. The estimator proposed in [17] requires the temporal correlation length of
the signals to be larger than that of the noise. However, these assumptions do not
always hold in practice, and the performances of these estimators may deteriorate

when the required constraints are not satisfied.
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To avoid the constraints on signals and noise, sparse arrays consisting of separated
sub-arrays were exploited for DOA estimation in spatially colored noise [21]-[24]. This
technique sets the sub-arrays to be well separated such that noise is uncorrelated
between different sub-arrays. As a result, the array noise covariance matrix presents
a block-diagonal structure, which guarantees the identifiability of DOA information
[24]. The early works on this topic [21]-[23] explored estimation methods using two
separated sub-arrays. Recently, a deterministic ML estimator was proposed for the

case of multiple sub-arrays [24].

In this chapter, under the assumption of Gaussian signals, we develop ML estimators
based on an Expectation-Maximization (EM) framework for narrow-band DOA esti-
mation in spatially colored noise using sparse arrays consisting of multiple sub-arrays.
To the best of our knowledge, no similar estimator has been proposed so far. Many
existing ML estimators assume the means of the Gaussian signals are zero (see [8]-
[11] for examples). In this chapter, we consider both zero-mean and non-zero-mean
Gaussian signals. The ML DOA estimation of non-zero mean signals under spatially
colored noise was addressed in [14], [25]. The estimator in [14] is developed based
on an autoregressive noise model, and is not a rigorous ML DOA estimator. The
work in [25] shows that the non-zero mean component can be used to extract DOA
information under spatially colored noise without any constraint needed on the sensor
arrays, signals or the noise field. Some applications with non-zero mean signals were
also given in [25], such as short-term MEG and EEG [26], [27], communication us-
ing amplitude-modulated or frequency-shift keying (with large frequency deviation)
signals [28], [29], and underground source localization using gradiometer arrays [30].
Non-zero mean signals can also be used to describe acoustic waves from ships and sub-

marines, which normally consist of sinusoidal components and noise with continuous

11



spectrums [31]. Since the frequency of a sinusoidal component can often be estimated
accurately (see [32]-[36] for examples), we can obtain a non-zero-mean complex am-
plitude from a narrow-band acoustic wave by focusing the carrier frequency on the

frequency of its sinusoidal component.

The ML estimator in [25] uses only the non-zero mean component in signals for
DOA estimation. Our proposed ML estimator takes advantage of the block-diagonal
structure of the noise covariance matrix and makes use of the total signal power for
DOA estimation. We present relevant performance analysis results and give both
analytical and numerical comparisons for estimators based on different signal models.
We show that with the same correlation matrices of signals and noise, the non-zero-
mean signals improve the accuracy of DOA estimation compared with the zero-mean

ones.

The remainder of this chapter is organized as follows. We present the measurement
models in Section 2.2, and derive our EM-based ML estimators in Section 2.3. Section
2.4 gives the results of analytical performance analysis. Numerical examples appear

in Section 2.5. We give our conclusions in Section 2.6.

2.2 Measurement Models

In this section, we give the narrow-band measurement models for DOA estimation

using sparse arrays under spatially colored noise.

Consider narrow-band signals from L distant sources impinging on a sparse array
composed of K separated sub-arrays, the k-th of which consists of M} sensors. Let

M = 3% | My be the total number of sensors in the array. For one-dimensional (1D)

12



DOA estimation, the array output can be written as

y(t) = A@)z(t) +e(t), t=1,... N, (2.1)

where y(t) is the M x 1 measurement vector at the ¢-th snapshot,

A<9> = [a(01>’ T 70’(913)] (2'2)

is the array steering matrix, a(6;) is the steering vector corresponding to the I-th
source, @ = [0y, ..., 0r]7 is the vector containing the DOAs of all sources, {-}7 denotes
the matrix transpose, 6; is the DOA of the [-th source, x(t) is the L x 1 vector of all
signal values at the t-th snapshot, IV is the total number of temporal measurements,
and e(t) is the M x 1 noise vector following the zero-mean circular complex Gaussian

distribution with covariance matrix

Q = blkdiag{Q,, ..., Qx}, (2.3)

where blkdiag{-} denotes the block-diagonal matrix operator, and @, is the M} x Mj,
noise covariance matrix on the k-th sub-array. We assume the noise e(t) is temporally

white, wide sense stationary, and uncorrelated with the signals.
For 2D DOA estimation problems, we have

A(e) = [a’<91)7 T 70'(0L>]7 (24)

0=1[60,....01]", (2.5)

and 0; = [¢;, ;)T in (2.1), where ¢; and v; are the elevation and azimuth angles of

the [-th source, respectively.
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We now present the three types of signal models that will be considered in this chapter.

The deterministic signal model [8], [24] considers the signal values at all snapshots as
deterministic unknown parameters. Under the assumption of deterministic signals,
the unknown parameters in (2.1) consist of the DOA vector 8, the signal parameters

x(t), t =1,...,T, and the noise covariance matrix Q.

In contrast, stochastic signal models consider (t) to be a random process generated
from a specific probability density function (pdf), which is normally assumed to be
Gaussian. In this chapter, we consider both zero-mean and non-zero-mean circular

complex Gaussian signals.

For zero-mean complex Gaussian signals, we assume
E{z(t)z(s)"} = Pé,,, (2.6)

where E {-} denotes the expectation operator, {-}# denotes the conjugate transpose,
P is the signal covariance matrix, and d; s is the Kronecker delta function. Under the
assumption of zero-mean Gaussian signals, the unknown parameters in (2.1) consist

of the DOA vector 0, the signal covariance matrix P, and the noise covariance matrix

Q.

For non-zero-mean complex Gaussian signals, we assume

E{z(t)} = b, (2.7)

E{[x(t) — b][z(s) — b]"} = P9, (2.8)

14



where b is the signal mean. Under the assumption of non-zero-mean Gaussian signals,
the unknown parameters consist of the DOA vector 6, the signal mean b, the signal

covariance matrix P, and the noise covariance matrix Q.

Stochastic signals have been modeled with zero-mean Gaussian distributions in most
existing work (see [8], [10], [20] for examples). Non-zero-mean Gaussian signals can
be considered as mixtures of zero-mean Gaussian signals with deterministic unknown
constants. In the remainder of this chapter, for simplicity of notation and presenta-
tion, we use “stochastic signals” to represent zero-mean (Gaussian signals and use
o ) " . . o

mixed signals” to represent non-zero-mean Gaussian signals. Similarly, we use
“stochastic” and “mixed” estimators to represent the estimators developed under

the assumptions of zero-mean and non-zero-mean Gaussian signals, respectively.

2.3 Maximum Likelihood Estimation

In this section, we present our stochastic and mixed ML estimators for DOA finding
under spatially colored noise using sparse sensor arrays. For convenience of compari-
son and further analysis, we first summarize the results in [24] for the deterministic

ML DOA estimator.

2.3.1 Deterministic ML Estimator

After neglecting constant terms, the log-likelihood function based on the deterministic

signal model can be written as

L(6,X,Q) =—Nlog|Q| — trace {Q_lC(O, X)} , (2.9)
15



where

C0,X)=1]Y - AO)X]]Y — A0)X]", (2.11)
and | - | and trace{-} denote the determinant and the trace of a matrix, respectively.

By fixing @ and X, the ML estimate of Q can be obtained as

A 1

QO,X)= NC(O’X) O F, (2.13)
where ® denotes the Hadamard product,

E = blkdiag{E1, ..., Ex}, (2.14)

and E}, is an My x My matrix with all entries equal to one. By inserting (2.13) into

(2.9), the log-likelihood function can be simplified into

L(0,X) = —log

1
+C0.X)e E‘ . (2.15)

Similarly, by fixing @ and Q, the ML estimate of X can be expressed as

-1

X(0,Q) = [AH(e)A(e)] Ay, (2.16)

where A(0) = Q_%A(O) and Y = Q 2Y. By substituting (2.16) into (2.15), the

log-likelihood function can be rewritten as

16



L(6,Q) = — log ‘ [Q%Hj(e)ﬁyyﬂj(B)Q%] o E] , (2.17)

where
~ ~H ~ -1 _ H
L (0) = I — A(0) [A (o)A(a)] A" (), (2.18)
I is the identity matrix, and
2 1 1 1
R,, = NQ‘EYYHQ‘E. (2.19)

The deterministic ML DOA estimator proposed in [24] is implemented in an iterative

manner as follows.

Algorithm 1: Deterministic ML DOA Estimator

Step 1: Initialize Q at Q = I, an identity matrix.

Step 2: Find the DOA estimate as

~

0 = arg mein log

QmiOR, M0 0B e

Step 3: Compute X using equation (2.16) with the 6 value obtained in step 2.

Refine Q using equation (2.13) and the obtained values of @ and X.

Iterate Steps 2 and 3 several times to obtain the final ML DOA estimate.

We now modify this estimator for the special case when all blocks in @ are equal.

Suppose Q; = Q, = -+ = Qi = Q. Then we have the log-likelihood function

L(6,X,Q,) = —NKlog |Q,| — trace {Qy'Co(6, X)} , (2.21)
17



where

Co(6.X) =) Ci(0.X)=F[C(0,X)0 E|F", (2.22)
k=1
F=1}®1Iy,, (2.23)

C(0, X) is the k-th diagonal block of C(0,X) ® E, 1k is a K x 1 vector with all
entries 1, My is the dimension of Q, Iy, is the My x M, identity matrix, and ®

denotes the Kronecker product.

We use the following lemma [37] to obtain the ML estimate for @, directly.

Lemma 1. Let C be an M x M positive definite matriz. Then, for a > 0 and b > 0,
Q|7 exp{—atrace{Q*C}} < |aC /b|™" exp{—Mb} (2.24)

for all M x M positive definite matrices Q. The equality holds if and only if Q =
aC'/b.

According to equation (2.21) and Lemma 1, we obtain the ML estimate for Q, as

Q,(0,X) = N—lKCO(O,X) = N—lKF[C(O,X) ® E|FT. (2.25)

Inserting (2.25) into (2.21) and omitting constant terms, we rewrite the log-likelihood
function as

L(6,X) = —log ﬁF[C(e,X) ® E|FT|. (2.26)

When 6 and Q are fixed, the ML estimate of X is the same as that in equation

(2.16). Substituting (2.16) into (2.26), we have
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N

L(6. Q) = ~log| - F[ (QTT5(0) Ry, T4 (0)Q

)oB|F"

. (2.27)

Therefore, when all the blocks of @ are equal, the iterative ML DOA estimation
can be implemented following steps similar to those in Algorithm 1, except that the

estimate of @ in Step 2 should be replaced with

~

A : 1 A3 ~
0 = argmemlog ?FKQ Hi(@)RyyHﬁ(e)Q ) ©) E} FT|, (2.28)

and the estimate @ in Step 3 should be replaced with Q, using equation (2.25).

2.3.2 Stochastic ML Estimator

For stochastic signals, the log-likelihood function can be formulated as follows after

omitting constant terms.

L(0.P.Q) ~ ~loz | A()PA"(6) + Q)

—trace { [A(0)PA"(0) + Q] Ryy} : (2.29)
where
. 1
R, = NYYH. (2.30)

Closed-form ML estimates for P and Q as functions of 8 are generally not available
except for some special cases such as Q = ¢2I. Herein, we present an iterative ML

DOA estimation procedure based on the EM framework [38]-[41].

Let a = {6, P,Q} denote all the unknown parameters. Suppose our current pa-

rameter estimates are a = {9, 15, Q}, and let {Y, X} and Y be the complete and
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incomplete data, respectively. According to the EM algorithm, the improved esti-

mates can be found in the next step as

a"™v = arg max Exjy.a{log f(Y,X;a)}, (2.31)
where Ex|y a{-} is the expectation under the conditional distribution f(X|Y, &).
The joint pdf f(Y, X; &) parameterized by a can be written as

fY. X:a) = f(Y]X.0,Q)f H| Q|exp{ y() — AO)z ()"

Q! [y(zf)—A(@)sc(zt)]},?jP| exp {2 (1) P~ w(t)} (2.32)

Note that in (2.32) we assume the signals are not fully coherent such that P > 0 (i.e.,
P is positive definite as a matrix), which is true in most practical applications [21].

Neglecting constant terms, we obtain

N

log f(¥, X; ) x —Nlog|Q| — Nlog|P| = Y {y" ()@ 'y (1)
-y ()Q T A(0)x(t) - fl/‘;;;)AH(G)Q_ly(t)
+a' (1) [AT(0)Q ' A(0) + P'] w(t)}

— Nlog|Q| — Nlog |P| — trace{Q—lYYH
—Q'AGXYT - Q 'y X" A" (6)
+[A"(0)Q ' A(6) + P XXH}

= —Nlog|P| — trace {P"'X X"} — Nlog|Q|
—trace{Q*1 [YYH _A@XYT —YXTAT ()

+A(9)XXHAH(0)] } (2.33)
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From the joint complex Gaussian distribution of y(t) and x(t), we can obtain the

posterior distribution [42]
2(t)|y(t), & ~ CN (g(1). @),
where CN(-) denotes the complex Gaussian distribution,

& = [AH(Q)Q_IA(é) + 15‘1} o

g(t) = PA"(6)[A(6)PA" () + Q] 'y(1).
Let G = [g(1), -+ ,g(N)], then we have

Exya{X} =G,

Exya{XX"} = Nb+GG".
Using the results from (2.33), (2.37), and (2.38), we have

Exy.a{log f(Y, X; )}

— _Nlog|P| — trace {P*l <N<'i'> + GG) }
~Nlog|Q| - tmee{Q*1 [YYH —AO)GY"
—YG"AT(0) + A®6) (N<i> + GGH) AH(O)] }

x ~log| P| — trace{ P~ (® + Ry ) }

~10g|Q| — trace{ @ 'T(6) }

= —log|P| — tmce{P‘1 <<i> + Rgg) }

— i (log Q| + trace{Qlerk(e)D )
k=1
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where

(2.41)

CQ>

A iy L al
Ryy = 3,66 = > al0g
I(0) = % Yy' - A@)GY" Y& A 6)
TA(0) (N(i) + GG) AH(@)}

1

— A(0)2AT(0) + —

< (v - 40)6) (v - A(@)é)H o (242)

and I'y(@) is the k-th diagonal block of I'(0) ® E.

According to Lemma 1, we have

=P+ Ry, (2.43)
o — F(g) @ E‘ezéncw. (245)

Inserting (2.43) and (2.45) into (2.39), we can obtain 8" as

A~ new

0 =arg min log [T'(0) ® E|. (2.46)

Though we may implement the DOA estimation completely using the EM results in
(2.43)-(2.46), we note that when @ is fixed, the ML estimate for 6 is [10]

A6)P6)A" (6) + 1\

izyy}}, (2.47)

0 = arg mein { log

H

+trace{ [A(e)ja(e)zx ) + I]
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where

(0)A(0) - (2.48)

The ML estimate for P can be obtained as P (). Equations (2.47) and (2.48) provide
the optimal results for @ and P when @ is fixed. They also demonstrate that the

EM updates 6" and P™°" are not the best match for Q= Qnew.

When 6 and P are fixed, a closed-form ML estimate for @ is normally not available
[20]. However, we can update the estimate for @ using the EM result. Assuming the
existing parameter estimates are 9, P, and Q, according to the EM result in (2.45),

an improved estimate for @ can be found as

—T(9) o E. (2.49)

We now consider the special case when Q, = Q, = --- = Qi = Q. For this special
case, the results in (2.47) and (2.48) still hold when @ is fixed. To obtain the EM

update equation for Q,, we rewrite (2.40) as

Exy.a {log (Y, X; ) }

x —log|P| — trace{P_l <¢’ + Rgg) }

-K (log Qo + trace{QalI‘o(H)}) : (2.50)
where N
Ty(0) = % D Tw(6) = %F[F(H) ® E|FT”. (2.51)



So if the existing parameter estimates are 9, 157 and Q, an improved estimate for Qo

is

s new 1

Q = gF[F(é) © E|FT. (2.52)

Based on the results in (2.47)-(2.49) and (2.52), we propose our EM-based stochastic

DOA estimator as follows.

Algorithm 2: EM-Based Stochastic ML DOA Estimator

Step 1: Initialize the parameter estimates at 0= 0., P= P, and Q = Qinit-

Step 2: Update Q using equation (2.49).

Step 3: Fixing Q at the Q value obtained in Step 2, update 0 and P using

(2.47) and (2.48).

Iterate Steps 2 and 3 until convergence to obtain the final ML DOA estimate.
Replace (2.49) in Step 2 with (2.52) for the special case Q; = Q= -+ = Qi =

Q-

2.3.3 Mixed ML Estimator

Omitting constant terms, we have the log-likelihood function for mixed signals as

L(0,b,P,Q) = —log|A(6)PA"(0) + Q|

_trace { [A(0)PA™(6) + Q] ' C,y(6, b)} , (2.53)
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where

€,y 0.1) %Z by () — A(6)b]". (2.54)

When Q is fixed, we can obtain the closed-form ML estimate for b as a function of 6

as

b(9) = [AHw)A(e)} A" 0y, (2.55)

where § = + SV, y(t). Substituting (2.55) into (2.53), we can see that the result-
ing log-likelihood function (6, 6(0), P, Q) is similar to the stochastic log-likelihood
function in (2.29). The only difference is that the matrix Ry, in (2.29) is replaced by
C,y(0) = C,,(0,b(0)) in L(0,b(8), P, Q). Consequently, the results for stochastic
signals in (2.47) and (2.48) still hold for mixed signals by replacing Ry, in them with
C,,(8) [10], or equivalently, by replacing y(t) in them with y(t) — A(8)b(8). There-
fore, for mixed signals, by fixing @ and using equations (2.47), (2.48) and (2.55), we

can obtain the ML estimate for 6 as

6 — argmin { log (A(Q)P(O)A ) +

1
viace{ [A(0)P(0)A"(0) + 1] Cy(0)} ). (2.56)

(9),21(0)} . (2.57)

The ML estimates for b and P are b(8) and P(8), respectively. Similarly, if the

existing estimates are 9, 13, 15, and Q, then the update equations for @ in (2.49) and
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(2.52) can still be used for mixed signals by replacing y(t) with y(t) — A(8)b. We

thus propose the following algorithm for mixed ML DOA estimation.
Algorithm 3: EM-Based Mixed ML DOA Estimator

Step 1: Initialize the parameter estimates at 0= 0:.it, b= binit P= P, and
Q = Qinit‘
Step 2: Update Q using equation (2.49), with y(t) replaced by y(t) — A(0)b,
t=1,...,N.

Step 3: Fixing @ at the Q value obtained in Step 2, update 9, I;, and P using
(2.56), (2.55) and (2.57), respectively.

Iterate Steps 2 and 3 until convergence to obtain the final ML DOA estimate.
Replace (2.49) in Step 2 with (2.52) for the special case Q; = Qy = -+ = Qx =
Q.

We now consider the mixed ML estimator for the special case of spatially white noise

with Q = 02I. When Q = o%I, the ML estimate of b becomes

A~

b(o) = [AT(6)A6)] " AT(0)7. (2.58)

Using (2.58) and the well-known results of DOA estimation for stochastic signals [8],

[10] under spatially white noise, we obtain the ML estimate of 8 as

~

6 = arg min {1og (A(9>15(0)AH(3) + &2(0)1‘} , (2.59)
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where

5%(0) = T Ltrace{ [I — A(9) (AT (9)A(0)) AH(G)] . éyy(e)}, (2.60)
P(9) = [A"(6)A(6)] " A"(6)C,,(6)A(6)
x [AT(0)A(6)] " —62(0) [AT(0)A(0)] (2.61)

2.4 Analytical Performance Analysis

In this section, we present analytical results on the performances of the deterministic,
stochastic, and mixed ML DOA estimators. We also extend some well-known CRB
and asymptotic error results for 1D DOA estimation to the 2D case. Our theorems
and proportions derived in this section hold for both 1D and 2D DOA estimation
under arbitrary proper noise covariance matrices unless the DOA dimension or noise
covariance matrix structure is clearly specified for the theorem or proposition. For

convenience of formulation, we define the following notations.

R=A0)PA"(0) + Q, (2:62)
[ da(6y) da(6s) da(0r)
b= { a9, dby, 0 dop | 209
b_o'p (2.64)
b_R'D (2.65)
. [aa(oTl), 9a(8y) 7<9a<9TL>} | (2.66)
007 7 96! 007
D, — Q_%DQ, (2.67)
D, — R_%Dz, (2.68)
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A(6) =R 2A(0), (2.69)

11
A= , (2.70)
11
. 1 X
Ryp = > w(t)z (1), (2.71)
t=1
R.. =E{z(t)z(t)"}, (2.72)
R=Q :RQ:, (2.73)
dQ
= k=1,... 2.74
Qk do_ka ’ » D, ( 7 )
Q.=Q:Q.Q %, (2.75)
P, =P®I[1,1], (2.76)
A= [VGC{Q;},'-- , Vec {Q;H , (2.77)
E = [vec{eie] } -+ ,vec{esre]; }], (2.78)
where 01, 09, ..., 0, are the real unknown parameters from Q, p is the number of real

unknown parameters in Q, vec{-} denotes the vectorization operator stacking all the
columns of a matrix, one below another, into a vector, and ey is a 2L x 1 vector with
the k-th element 1 and all the other elements 0. For simplicity, in the remainder of
this chapter, we omit 6 and use A to represent A(6). Also we let o = [07, 02, ...,0,]"

be the real vector containing all the real unknown parameters from Q.

2.4.1 Cramér-Rao Bounds and Asymptotic Errors

We first present the CRB on DOA estimation of mixed signals in the following theo-

rem.
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Theorem 1. For DOA estimation of mized signals, the mixed CRB matrict CRBy ¢
can be written as

CRB, = [CRB;}, + CRB;}] ", (2.79)

where CRBg g and CRBg g are the deterministic and stochastic CRB matrices on
DOA estimation with measurements from CN(Ab, Q) and CN(O,R), respectively,

in which the unknown parameters are 68, b, P, and o .

Proof: See Appendix A.

The CRBs on 1D DOA estimation of deterministic and stochastic signals have been

well addressed in [19] and [43]. Herein, we extend these results to 2D DOA estimation.

Proposition 1. The CRB matriz on 2D DOA estimation of deterministic signals is
~H | = ~T -1
CRBp o = —Re { (D2 II ADQ) ® <Rm ® A)} , (2.80)
and the resulting asymptotic CRB matriz is

ACRBy = %Re { (bf Hﬁbg) ® (RL, ® A) }_1 . (2.81)

Proposition 2. The CRB matriz on 2D DOA estimation of stochastic signals is

1

CRBsy = % (Q-mMT'M") ", (2.82)

where
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Q= 2Re {(Df Hfii)z)@ [(PAHR_IAP)TQ@ A} } (2.83)

M, = 2Re {Ezi kHﬁQ;R_lAplk} , (2.84)
T, = 2Re {trace {anﬁégi{l }} — trace {anﬁégnﬁ} , (2.85)
M = 2Re {ET [(bf Hﬁ) ® <P2T ATR’T)} A*} , (2.86)
T —2Re {A" (R @ T05) A} - A7 ((115)" @ 115) A, (2.87)

where {-}* denotes the complex conjugate, My, and Ty are the (k,l)-th elements
of M and T respectively, and dy ) and Py are the k-th columns of D, and P,

respectively.
Note that if @ = %I, we have M = 0, and (2.82) simplifies to

T _
CRBg g = NQ L (2.88)

When Q = oI, the asymptotic error covariance matrix for deterministic ML 1D

DOA estimation is given in [9] as

o2

2N
9T

©[Roa +0* (474)"' | } [Re {(D"TI4D) © R}

ACpo = o [Re {(D"I5D) © RL,}] " Re{ (D"TI4D)

-1

(2.89)

For 2D DOA estimation, we modify this result as follows.

Proposition 3. For 2D DOA estimation under spatially white noise Q = o*I, the

asymptotic error covariance matriz of the deterministic ML DOA esimator is
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0_2

ON
<Re{ (DITIAD; ) © |(Raw + 0° (AHA)_I)T 2al}

ACp g = o [Re {(DYTI;D,) © (Ry, @ A)}]

x [Re {(DYTI4D,) ® (RL, @ A)}] . (2.90)

Propositions 1 to 3 can be proved following the same procedures as in [19], [43],

and [9]. Details of the proofs are omitted here.
Now consider the asymptotic error covariance matrix of applying a stochastic ML
estimator on DOA estimation of mixed signals.

Theorem 2. If a stochastic ML estimator is applied on DOA estimation of mixed
signals with correlation matrix Ry, then the asymptotic error covariance matrix
ACsg g is equal to the stochastic CRB matriz on DOA estimation with measurements
from CN(0, R), where

R=AR,, A" +Q (2.91)

and the unknown parameters are @, Ry, and o .

Proof: See Appendix B, in which the following lemma is used in deriving the result.

Lemma 2. Suppose € ~ CN(u,C), B and D are two square matrices with the same

size as C'. Then we have
E {azHBa:mHD:c} = trace{B(C + uuH) }trace{D(C + uuH)}
+trace{ B(C + pup")D(C + pp")} — p"Bup" Dp. (2.92)
Proof: See Appendix C.
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2.4.2 Analytical Performance Comparisons

In this section, we present some analytical comparison results on the performances
of the three types of estimators. We first examine the performance of the mixed ML

estimator on DOA estimation of stochastic signals.

Proposition 4. For DOA estimation of stochastic signals,

CRB, 9 = CRBg. (2.93)

Proof: According to the results in (A.7), (A.8), (A.11), and (A.15) in Appendix A,
we can see that CRB,;'y = CRBgy if b = 0, from which we obtain (2.93).

Proposition 4 shows that for DOA estimation of stochastic signals, the asymptotic

accuracy of the mixed ML estimator is equal to that of the stochastic one.

For DOA estimation of stochastic signals, it was shown [43] that the asymptotic
deterministic CRB is not larger than the stochastic CRB. We compare the asymptotic

deterministic CRB with the mixed CRB and obtain the similar result as follows.

Proposition 5. For DOA estimation of mized signals,

CRB, ¢ > ACRBp . (2.94)

Proof: See Appendix D.

For DOA estimation of mixed signals, it seems difficult to make analytical comparisons

for ACp_ g, ACs_ g, and CRB,; g under arbitrary proper @), since a closed-form ACp ¢
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is still not available and an analytical comparison between ACg g and CRB)y; ¢ seems
difficult. However, we have the following proposition holds under the special case

Q = 1.

Proposition 6. For ML DOA estimation of mixzed signals under spatially white noise
Q = o%1, we have

ACp g > ACs g > CRBy . (2.95)

Proof: See Appendix E. The following lemma is used in deriving ACp g > ACgyg

for 2D DOA estimation.

Lemma 3. Let A and C be two nonnegative definite matrices of the same size as B,

a Hermitian matriz, and let C' be the Moore-Penrose pseudoinverse of C. Suppose

NA{C} C N{B}, where N{-} denotes the null space of a matriz. Then,

1

{Re{A® B}} 'Re{A®C}{Re{A® B}} " > {Re{A® (BC'B)}} " (2.96)

if {Re{A ® C}}~! and all the matriz inverses in (2.96) exist.

Proof: See Appendix F.

When the noise is spatially white, the second inequality in (2.95) shows that with the
same signal correlation matrix and noise power, the mixed signals improve the DOA
estimation accuracy compared with the stochastic ones, and the mixed ML estimator

provides better performance than the stochastic ML estimator.

We have not shown (2.95) analytically for arbitrary proper noise covariance matrices.

However, since CRBy1 ¢ is the CRB on mixed signal DOA estimation, we should
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always have ACp g > CRB) ¢ and ACg g > CRB)1 g, where the equalities do not

always hold due to the result in Proposition 6.

For the more special case of 1D DOA estimation of a single source under spatially

white noise, we have the following proposition.

Proposition 7. For 1D DOA estimation of a single stochastic or mixed signal under
Q = 0?1, the asymptotic mean-square error of the deterministic ML estimator is

equal to that of the stochastic estimator, i.e, ACp g = ACgg.

Proof: For 1D DOA estimation of a single source, D HJAD, R,,, and (AH A)_1

are all real scalars. According to the result in (2.89), we have

o2

2N
T -

x| Rew + 0*(4"4)"'| [(D"TI4D) " R,

Trx

ACpg = [(DHHjD)_l R ] (DHHjD)

0,2

= ~{ (D"I4D) | R + 0 Ryp (A7 A)

1R,1

rxr

}T}l — ACs 4. (2.97)

The last equality holds from the result in [§].

2.5 Numerical Examples

In this section, we compare the performances of the deterministic, stochastic, and

mixed ML DOA estimators through two numerical examples.

In the first example, we consider a 1D DOA estimation problem of two sources using
a linear scalar-sensor array consisting of four separated linear sub-arrays, which are

composed of 3, 4, 3, and 4 scalar sensors, respectively. The distance between any
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two adjacent sub-arrays is 3\, where A\ is the wavelength of the narrow-band signal.
Within each sub-array, the spacing between scalar sensors is 0.5A. The linear sensor
array lies on the z axis. The elevation angles of the two sources are 15 and 30 degrees.
The elements of the noise covariance matrix are generated with the following widely

used noise model (see [24] and the references therein):

Qi = af exp { = (k= 1)°G;}, (2.98)

where 02 =2, 02 =3,05=4,07=5,( =06, (=07, =08, and {; = 0.9. We
consider both stochastic and mixed signals and apply the deterministic, stochastic,
and mixed ML DOA estimators to each of them. For the stochastic signal case, we

assume the signal covariance matrix

P = : (2.99)
03 1
For the mixed signal case, we assume the signal mean b = [0.7,0]7 and the signal
covariance matrix
02 0
P = : (2.100)
0 0.8

We consider the estimation algorithm achieves convergence at the n-th iteration if the
Euclidean norm of 9n — én_l is smaller than an error tolerance. The root-mean-square
errors (RMSEs) from three types of estimators are illustrated in Figs. 2.1 and 2.2
for the source with 8 = 15 degrees. The mean square errors are calculated with 200

Monte Carlo runs.
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We first examine the performances of the deterministic ML DOA estimator (Algo-
rithm 1). From Figs. 2.1 and 2.2, we observe that the accuracy of the deterministic
estimator does not always increase with iterations going forward. Furthermore, in
the running of our MATLAB program, the deterministic estimator in Algorithm 1
diverged the value of the deterministic log-likelihood function to infinity and intro-
duced errors in MATLAB usually within 10 iterations. Examining the deterministic
log-likelihood function in (2.15), we can see that the deterministic ML DOA estimator
finds the DOA estimate by maximizing —log|C(60, X) ® E| over 8 and X, where
C0,X)=[Y — A(0)X]]Y — A(0)X]"”. Due to the large number of nuisance pa-
rameters in X, no matter what value 0 takes, there always exist X values that make
C(0,X) © E singular and the value of the log-likelihood function in (2.15) infinite.
This introduces severe instability in DOA estimation and explains the phenomena
we observed in the figures and program running. However, the first few iterations of
Algorithm 1 are still able to provide close DOA estimates, as shown in Figs. 2.1 and

2.2, as well as in [24].

We now examine the performances of the stochastic estimator (Algorithm 2) and the
mixed estimator (Algorithm 3). Both algorithms are initialized using the results from
one iteration of Algorithm 1. Specifically, suppose é, Q, and X are the estimates
from one iteration of Algorithm 1. Then @ and @ are initialized as 6y,;; = 0 and
Qi = Q for both estimators. For the stochastic estimator, P is initialized as

~ o H
P, = XX /N. For the mixed estimator, b and @Q are initialized as

N
_ 1
bt =& = — Y &(1), (2.101)

N
P — % S et — 2] [a(t) — )" (2.102)
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Figure 2.1: Cramér-Rao bounds and root-mean-square errors as functions of the
number of measurements from stochastic signal one-dimensional DOA estimation.

The optimizations over 8 in Steps 3 of both algorithms are implemented iteratively,
starting from 6y,;; or the 0 value from the previous iteration. The error tolerance
used is 1072 degree for both Figs. 1 and 2. Algorithms 2 and 3 both converge with

an average number of 3 iterations or so in our simulations for either Fig. 1 or 2.

From Fig. 2.1, we see that for DOA estimation of stochastic signals, the performances
of the stochastic and the mixed estimators are similar to each other and are normally
better than that of the deterministic estimator. From Fig. 2.2, we observe that for
DOA estimation of the mixed signals, the mixed estimator provides higher accuracy

than either the deterministic or the stochastic estimator.

In our second example, we consider a 2D DOA estimation problem of a single source
using a uniform linear acoustic vector-sensor (AVS) array [11]. The array consists
of six vector sensors and lies on the z axis. FEach vector sensor consists of four
sensors measuring acoustic pressure and three acoustic particle velocity components,

respectively. The two adjacent vector sensors are 0.5\ apart from each other. The
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Figure 2.2: Cramér-Rao bounds and root-mean-square errors as functions of the
number of measurements from mixed signal one-dimensional DOA estimation.

elevation and azimuth angles of the source are 15 and 30 degrees, respectively. We
assume the noise is correlated among the four sensors within one vector sensor but
uncorrelated between different vector sensors. Furthermore, we assume the 4 x 4
noise covariance matrices from different vector sensors are equal. This noise scenario
matches the situation of an underwater fast-towed linear AVS array, where the flow
noise is the dominant noise on the array. When the distance between vector sensors
is not smaller than 0.5\, the covariance matrix of the noise can be well approximated
by a block-diagonal matrix with all blocks equal [45]. The realistic modeling of flow
noise is not the topic of this dissertation. Herein, we assume the 4 x 4 noise covariance
matrix on each vector sensor follows equation (2.98) with 0% = 2 and ¢ = 0.5. We
consider both stochastic and mixed signals, and apply the deterministic, stochastic,
and mixed ML DOA estimators to each of them. For the stochastic signal case, we
assume the noise power is 0.5. For the mixed signal case, we assume the signal mean is
0.3 and the signal variance is 0.1. The estimation errors from three types of estimators

are illustrated in Figs. 2.3 and 2.4 for the elevation angle. The mean-square errors are
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Figure 2.3: Cramér-Rao bounds and root-mean-square errors as functions of the
number of measurements from stochastic signal two-dimensional DOA estimation
with the diagonal blocks equal in the noise covariance matrix.

also computed with 200 Monte Carlo runs. The error tolerance used is 1072 degree for
both Figs. 3 and 4. In our simulations for either Fig. 3 or 4, Algorithm 1 converges

with an average number of 4 iterations or so, and both Algorithms 2 and 3 converge

with an average number of about 3 iterations.

From Figs. 2.3 and 2.4, we observe that the mixed estimator performs as well as
the stochastic estimator in the stochastic signal case and better in mixed signal case.
These results are similar to those in our first example. The phenomenon distinguish-
ing this example from the first one is that with all diagonal blocks equal in the noise
covariance matrix, the deterministic ML DOA estimator converges with ongoing it-
erations and provides estimation accuracy close to that of the stochastic estimator,
as shown in Figs. 2.3 and 2.4. The conditions that guarantee the convergence of the

deterministic estimator are not within the scope of this dissertation.
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Figure 2.4: Cramér-Rao bounds and root-mean-square errors as functions of the
number of measurements from mixed signal two-dimensional DOA estimation with
the diagonal blocks equal in the noise covariance matrix.

So far, we only gave the numerical results produced by Algorithm 2 for the stochastic
ML estimator. We also ran the simulations using the pure-EM algorithm based on
(2.43)-(2.46) as the stochastic ML estimator. The results showed that the pure-
EM algorithm is able to provide similar performance to that of Algorithm 2, but it
normally requires smaller error tolerances and more iterations and running time to
do so. As expected, the pure-EM algorithm is less efficient than Algorithm 2. The
estimation results from the pure-EM algorithm are omitted here since they are just

similar to those of Algorithm 2. The detailed comparisons for these two algorithms

are not within the interest of this dissertation.
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2.6 Summary

We considered the problem of narrow-band DOA estimation under spatially colored
noise using sparse sensor arrays and proposed new methods for ML DOA estimation
of stochastic and mixed signals based on an EM framework. We gave the CRB on
DOA estimation of mixed signals. We also derived the asymptotic error covariance
matrix of applying the stochastic DOA estimator on mixed signal DOA estimation.
We presented both analytical and numerical comparisons for the performances of
the deterministic, stochastic, and mixed estimators. Our results showed that: (i)
the performance of the deterministic estimator is normally inferior to those of the
stochastic and mixed estimators; (ii) for DOA estimation of stochastic signals, the
mixed estimator provides similar performance to that of the stochastic estimator; (iii)
for DOA estimation of mixed signals, the mixed estimator yields better performance

than the stochastic estimator.
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Chapter 3

Narrow-Band Direction-of-Arrival
Estimation of Hydroacoustic

Signals From Marine Vessels 2

As a topic in Chapter 2, we considered the direction-of-arrival (DOA) estimation
of mixed signals, which are mixtures of non-zero means with the typical zero-mean
Gaussian signals assumed by the many existing DOA estimators. In this chapter,
we consider the DOA estimation problem of another type of mixed signals — the
underwater acoustic signals (hydroacoustic signals) from marine vessels like ships,
submarines, or torpedoes, which contain both sinusoidal and random components.
We model this type of signals as the sum of deterministic sinusoidal signals and zero-
mean Gaussian signals, and derive the maximum likelihood (ML) DOA estimator
for them under spatially white noise. We compute the asymptotic error covariance
matrix of the proposed ML estimator, as well as that of the typical ML estimator

assuming zero-mean Gaussian signals, for DOA estimation of this type of signals. Our

2Based on T. Li and A. Nehorai, “Maximum Likelihood Direction-of-Arrival Estimation of Un-
derwater Acoustic Signals Containing Sinusoidal Components,” IEFE Trans. Signal Process., vol.
59, pp. 5302-5314, Nov. 2011. (©[2011] IEEE.
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analytical comparison and numerical examples show that the proposed ML estimator
improves the DOA estimation accuracy for the hydroacoustic signals from marine

vessels compared with the typical ML estimator assuming zero-mean Gaussian signals.

3.1 Introduction

Direction-of-arrival (DOA) estimation plays an important role in underwater sonar
applications such as the localization and tracking of ships and submarines. Among
diverse parameter estimation techniques, maximum likelihood (ML) estimation is
distinguished by its excellent asymptotic estimation performance often able to achieve
the Cramér-Rao bound (CRB) [42], which is highly desirable in many underwater
DOA estimation scenarios where the signal-to-noise ratios (SNRs) are usually low

whereas high DOA estimation accuracy is required.

ML methods estimate the DOA by maximizing the likelihood functions, which vary
with the models describing the signals. Among existing signal models, the determin-
istic and the stochastic models are the most widely exploited in ML DOA estimation
(see [7], [8], [10], [19], [20], and [24] for examples). The deterministic signal model
(see [7], [8], [19], and [24]) considers the signal values at all snapshots as deterministic
unknown parameters. As a result, the number of unknown parameters in the likeli-
hood function increases with the number of measurements, such that the ML DOA
estimator based on this model turns out not to be able to achieve the deterministic
CRB [8]. In contrast, the stochastic signal model (see [8], [10], and [20]) considers the
signals to be random processes following specific probability density functions (pdfs).
As a consequence, the unknown signal parameters in the likelihood function are fixed

in size with respect to the change in the number of measurements. The ML DOA
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estimator based on the stochastic signal model achieves the stochastic CRB and is
shown to be able to provide better performance than the ML estimator based on the

deterministic signal model [8].

In most existing ML DOA estimation works using stochastic signal models, the signals
are assumed to follow Gaussian distributions with zero means (see [8], [10], and [20]
for examples). Though the zero-mean Gaussian distribution is able to well describe
a wide range of signals in practice, there exist applications where the signals cannot
be accurately characterized in this way (see [14] and [25]), and better estimation
accuracy may be achieved by using more precise signal models. In this chapter, we
consider the DOA estimation problem of hydroacoustic signals containing sinusoidal

components, which cannot be well described by the zero-mean Gaussian distribution.

The hydroacoustic signals from ships, submarines, or torpedoes are known to consist
of two parts ( [31], [48], [49]): the noise-like part with continuous spectra, and the
sinusoidal part with discrete frequencies. In this chapter, we call this type of sig-
nals “mixed signals”, and model them as the mixture of a zero-mean Gaussian part
with unknown covariance matrix and a sinusoidal part with unknown coefficients and
frequencies, which correspond to the noise-like part with continuous spectra and the
sinusoidal part with discrete frequencies, respectively. For simplicity of notation and
presentation, in the rest of this chapter, we use “stochastic signals” to represent zero-
mean Gaussian signals. We use “stochastic” and “mixed” estimators or CRBs to
represent the ML estimators or CRBs derived under the assumptions of “stochastic”

and “mixed” signals, respectively.

In this chapter, we derive the ML estimator and its asymptotic error covariance matrix

for DOA estimation of mixed signals. In addition, we compute the asymptotic error
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covariance matrix of applying the stochastic estimator to DOA estimation of mixed
signals. We provide both analytical and numerical comparisons for the stochastic
and the proposed mixed estimators. The results show that the proposed mixed signal

model and estimator improve the DOA estimation accuracy for mixed signals.

The remainder of this chapter is organized as follows. We first give our measurement
model in Section 3.2, and derive the ML estimator in Section 3.3. Section 3.4 provides
the results of analytical performance analysis. Numerical examples and conclusions

appear in Sections 3.5 and 3.6, respectively.

3.2 Measurement Model

In this chapter, we limit our problem to narrow-band DOA estimation of mixed sig-
nals. Recall that the signal can be considered as narrow-band if D/c < 1/B, where
D, ¢, and B are the array length, the signal propagation speed, and the signal band-
width, respectively. Consider the mixed signals from L far-field sources impinging on

an array of M sensors. We write the narrow-band array output as

y(t) = A0) [Cp(w,t) +x(t)] +€(t), t=1,...,N, (3.1)

where y(t) is the M x 1 measurement vector at the ¢-th snapshot,

A(0) = [a(by),- -, a(0)] (3.2)

is the array steering matrix, a(6;) is the steering vector corresponding to the [-th

source, @ = [0y,...,0.]7 is the DOA vector with 6, the DOA of the I-th source,
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{-}T denotes the matrix transpose, w = [wy,...,ws]7 with J the total number of
sinusoidal components with different frequencies in the received signals and w,, the
radian frequency of the m-th sinusoidal component, p(w,t) = [e?1t . /T with
j2 = —1, C is the L x J matrix containing the coefficients of ¢(w,t) for all sources,

x(t) is the L x 1 Gaussian signal vector, €(t) is the M x 1 Gaussian noise vector, and

N is the total number of measurements.

In equation (3.1), the mixed signals are represented by the sum of Cp(w,t) and
x(t), which correspond to the parts with discrete frequencies and continuous spectra,
respectively. We assume x(t) and €(t) follow zero-mean circularly complex Gaussian
distributions with unknown covariance matrices P and @Q, respectively. We further
assume x(t) and €(t) are both temporally white and uncorrelated with each other.
Additionally, we assume L is known, which is a quite common assumption in existing
DOA estimation research (see [7], [8], [10], [19], [20], and [24] for examples). Also,
we assume J is known, which is a quite common assumption as well in existing
sinusoidal frequency estimation research (see [33], [34], [36], [50], [51] for examples).

The unknown parameters in (3.1) are those from 6, C, w, P, and Q.

3.3 Maximum Likelihood Estimation

In this section, we present the ML estimator for DOA finding of mixed signals, which
is called the mixed estimator in this chapter. For simplicity, we omit 8 and w in

notations, and use A and ¢(t) to represent A(0) and ¢(w,t), respectively.

Combining measurements from all snapshots, we rewrite the narrow-band measure-

ment model in (3.1) as
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Y = AC¢ + AX +E, (3.3)

where Y = [y(1)7 T ay(N)]v ¢ = [90(1)7 T ’SO(N)]v X = [CL’(l), T 7w(N)]7 and
E =[e(1), -+ ,e(N)]. Vectorizing both sides of (3.3), we obtain

y=[¢p" ® A] vec{C} +vec{AX + E}, (3.4)

where y = vec{Y'} = [y7 (1), ,y"(N)]*, ® denotes the Kronecker product, and
vec{-} denotes the vectorization operator stacking all the columns of a matrix, one
below another, into a vector. Note that in the derivation of (3.4), we use the property
that

vec{ABC} = [C" @ A]vec{B} (3.5)
for any matrices A, B, and C that can make ABC' [44].

From (3.4), we have
y~CN ([¢" @ Alvec{C}, Iy @ (APA" +Q)), (3.6)

where CN(+) denotes the complex Gaussian distribution, Iy is the N x N identity
matrix, and {-}# denotes the conjugate transpose. From (3.6), we obtain the ML

estimate for vec{C'} as

VeC{é} = {[¢T®A]H[IN® (APAHjLQ),l]
X [¢T®A]}_1[¢'T®A]H[1N® (APAH+Q)71}y
= {[(#0") "o7] o { |a"(aPA" + Q)4 -

xAT(APAT 4 Q)_l}}y, (3.7)
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where {-}* denotes the complex conjugate.

In Appendix G, we show that
[AH (APA"Y Q)*lA} CAM(APAT £ Q) = (ATQA)ATQ. (38)
As a result, equation (3.7) becomes
vee{Cr={[(#°6") 9| (4" @1 4) 4" Q [}y, (39)

from which we obtain the ML estimate for C as

~

C = (AHQ_IA)_IAHQ_1Y¢H(¢¢H)_1

= (A"A)" A"y ¢ (po") ", (3.10)

where A = Q_%A and Y = Q_%Y. We can see that the ML estimate of C is a
function of @, w, and Q but independent of the signal covariance matrix P. This

result is important for the further reduction of P from the likelihood function.

By omitting constant terms, the log-likelihood (LL) function can be written as

L(O,C,w,P,Q)=—1log|APA" + Q‘ — trace{ [APAH + erRyy}, (3.11)

where | - | denotes the matrix determinant, and
1
Ry, =~ (Y — AC9) (Y — ACo)". (3.12)

Substituting (3.10) into (3.11), we rewrite the LL function as
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L(6,w, P,Q) = —log|APA" + Q| - trace{ [APAY + Q] Ryy} (3.13)

1 Ryy}, (3.14)

= —log|Q| — log |APAH —|—IM‘ —trace{ [APAH +IM}

where

Ry =~ (Y _ AC’¢> (Y _ AC’gb)H, (3.15)

and

1 ~ ~ ~ - H
== <Y—HAYH¢H> (Y—HAYHd)H) , (3.16)

in which TT; = A(A"4) 4"

In (3.14), the last two terms on the right-hand side of the equality constitute a
function similar to the Gaussian LL function for stochastic signals under spatially
white noise [10]. Following procedures similar to those in [10], we have the ML

estimate for P as

. g 11 s~ ~Tepg~-1-1 g ~1-1

P—|a"a] a"R,a|a"a] -[a"a] (3.17)
which is a function of 8, w, and Q.

Replacing P in (3.14) with the estimate in (3.17), we can obtain a reduced LL function
L(6,w,Q), which depends on 0, w, and Q only. L(0,w,Q) can hardly be further
reduced, except in some special cases (see [20] and [52], and [53] for examples from
DOA estimation of stochastic signals). One such special case is DOA estimation
under spatially white noise, which has been widely addressed for deterministic and

stochastic signals (see [7], [8], [10], [52], and [54] for examples). In the following, we
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give the expression of the further reduced LL function under spatially white noise

Q = oI for DOA estimation of mixed signals.

The LL function in (3.13) has a form similar to the Gaussian LL function for stochastic

signals. Thus, following procedures and results similar to those for stochastic signal

DOA estimation under spatially white noise [8], [52], we can obtain the ML estimates

of 02 and P, along with the further reduced LL function under spatially white noise

as

1 .
6% = U Ltrace {Hijy} ,

P=(A"A)'A"R, A(AT A — 52(ATA),

L(0,w) = —log |APA" + 21|,

where Hj = I,; — I14. Note that when Q = 01, we have

. 1

Ry = (Y — T YT) (Y — TLAYTLx)" .

N

We thus are able to simplify (3.18) as

1
62 = trace {Hj

YY#?
M — L '

N

Substituting (3.19), (3.21), and (3.22) into (3.20), we have

L(0,w) = —log |A15AH + 671 |

= —log |HARyyHA + 62Hj‘
HAYI'IiHYHHA

= —log N + 6Tl .

20

(3.18)
(3.19)

(3.20)

(3.21)

(3.22)

(3.23)



As a result, the mixed DOA estimator under spatially white noise can be implemented
by maximizing (3.23) with respect to @ and w. When the noise is not spatially white
and @ cannot be reduced, the implementation of the mixed estimator requires the
maximization of L(0,w, Q) over Q as well as € and w (see [20] and [67] for examples

of the maximization over Q for stochastic signal DOA estimation).

3.4 Analytical Performance Analysis

In this section, we present analytical results on the performances of the stochastic

and the mixed estimators. For convenience of formulation, we define the following

notations:
da(6,) da(6s) da(0r)
D= e 3.24
{ o, = dfy, T 7 dfp |’ (3.24)
P=cc?” + P, (3.25)
dQ
P = =1,..,0 3.26
Q'L dO',L7 ? Y 3 ? ( )
Q=Q:QQ: i=1,..1, (3.27)
A= [V@C{Q;},'-' ,VQC{Q;J}} , (3.28)
E = [vec{eie]}, - vec{ere] }] (3.29)
where o = [0y, 09, ...,0,,]7 is the vector of length I, containing all the real unknown

parameters from @, and e; is a L x 1 vector with the ¢-th element 1 and all the
other elements 0. We also let ¢, p, and p be the real column vectors containing the
unknown parameters from C, P, and P, respectively. Note that p consists of the

diagonal elements of P, and the real and imaginary parts of all the upper-triangular
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elements above the diagonal in P. The vector p is composed similarly of those from

P.

In the following Proposition 1, we give the CRB on DOA estimation of mixed signals.

Proposition 8. For DOA estimation of mized signals, the mized CRB matrit CRB\ g

on DOA can be written as

CRB, = [CRB;} + CRB; L], (3.30)
where CRBp g 1s the deterministic CRB matriz on DOA estimation with the mea-
surement at snapshot t, t = 1,..., N, following CN(ACgo(t), Q), in which 0, w,
c, and o are the unknown parameters, and CRBg ¢ s the stochastic CRB matriz
on DOA estimation with each of the N measurements following CN (O, R), in which

R = APA" + Q and the unknown parameters are 0, p, and o.

Proof: See Appendix H.
The equations for CRBp g and CRBg ¢ have been addressed in [56], [57], and [43].

Though we now have the CRB for DOA estimation of mixed signals, it is not appropri-
ate to simply assume that the mixed ML estimator achieves the CRB asymptotically.
Since the measurements are not temporally stationary due to the sinusoidal compo-
nents, the conclusion that the error covariance matrix of the ML estimator asymp-
totically achieves the CRB (see [42]), which is typically based on the assumption of
independent and identically distributed measurements, can not be directly applied
here. Note that a similar concern has been addressed in [50] for ML estimation of si-

nusoidal frequencies, in which the measurements are not temporally stationary either
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and a proof was given to show that the ML frequency estimator achieves the CRB

asymptotically.

In the following Proposition 9 and its proof in Appendix I, we confirm the asymptotic

efficiency of the mixed estimator.

Proposition 9. For DOA estimation of mized signals, the error covariance matrix

T T T]

of the mized estimator on a = [OT,pT, ol e, wh" achieves the mized CRB matrix

asymptotically.

The following Theorem 1 (Lindeberg-Feller central limit theorem) [58] is used in our
proof of Proposition 2. Note that the setup of our problem and thus the proof of

Proposition 2 are absolutely different from those in [50].

Theorem 3. Let v, - ,vy be independent random wvectors, each of which are de-

pendent on N, such that as N — oo,

N
Sl h v, 0 (3:31)
n=1 H nH>€

for arbitrary € > 0 and SN cov{v,} — Q, where || - || denotes the Euclidean

norm of a vector, fy (7,) is the pdf of 7, and cov{-} denotes the covariance matriz

N

of a random vector. Then ) = _,

(v, — E{v,.}), where E{~,} is the expectation of
v, converges in distribution to a random vector following the normal distribution

N(0,Q) as N — o.

Now we examine the performance of applying the stochastic estimator to DOA es-
timation of mixed signals. In Appendix J, we show that the stochastic estimator

provides consistent estimate for & = [@7,a”, pT]7 if it is used for mixed signal DOA
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estimation, and we give the expression for the asymptotic error covariance matrix of

the stochastic estimator on €. We also show the following proposition in Appendix J.

Proposition 10. If the stochastic estimator is applied to DOA estimation of mixed
signals, the asymptotic error covariance matriz on p = [OT,JT]T equals CRBg ,,
which is the stochastic CRB matrix on the estimation of p with each of the N mea-
surements following CN'(0, R), where R = APA" + Q and the unknown parameters
are 0, p, and o. As a result, the asymptotic error covariance matrix on 0 equals

CRBg,.

We can see from Proposition 3 that the stochastic and the mixed signals provide

similar asymptotic accuracy for the estimation of p using the stochastic estimator.

We now compare the performances of the stochastic and the mixed estimators. Let
M_p De the asymptotic error covariance matrix on p of the mixed estimator. We

show the following proposition in Appendix K.

Proposition 11. For DOA estimation of mized signals, Cy; , < CRBg ,. As a
result, C3 9 < CRBg .

Note that p consists of all the common unknown parameters that appear in both
the mixed and the stochastic LL functions, and can be estimated by both the mixed
and the stochastic estimators. We cannot make comparisons of the two estimators
for the parameters not included in p. Compared with the stochastic estimator, the
mixed estimator has two extra sets of parameters to estimate: the coefficients and
the frequencies of the sinusoidal components. However, from Proposition 11, we see
that with the same correlation matrices of signals and noise, the mixed signals and
estimator provide higher accuracy than the stochastic ones for common parameter

estimation as well as DOA estimation.
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3.5 Numerical Examples

In this section, we compare the performances of the stochastic and the mixed estima-

tors through two numerical examples.

In the first example, we consider a DOA estimation problem of two sources under
spatially white noise using a uniform linear array of 10 sensors with the inter-sensor
distance equal to 0.5\, where X is the wavelength of the narrow-band signals. The
linear sensor array lies on the z axis, and the elevation angles of the two sources are
15 and 20 degrees, respectively. We assume there are two sinusoidal waves incident
on the array, one from each source, with radian frequencies —0.47 and 0.37 and
coefficients 0.8 and 0.7, respectively. For the random signal part, we assume the

covariance matrix is

04 0.2
P = . (3.32)
02 0.5

We assume the noise power is 0 = 10, and apply both the stochastic and the mixed
estimators to DOA estimation. The optimization for the proposed mixed estimator
is implemented iteratively, starting from selected initial values of @ and w. The DOA
vector 0 is initialized using the result from the stochastic estimator. The radian
frequency vector w can be initialized using many well-developed techniques for fre-
quency estimation of sinusoidal signals (see [33]- [51] for examples). For instance, we
can obtain the initial value for w by maximizing the likelihood function based on the

following measurement model:

y(t) = Go(t) + €(), (3.33)
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Figure 3.1: Cramér-Rao bound and root-mean-square errors as functions of the num-
ber of measurements from mixed signal DOA estimation under spatially white noise
using uniform linear array.

where y(¢) is still the measurement at time ¢, G is a matrix of the same size as AC,
and €(t) is the noise assumed to be spatially white. The unknown parameters in
(3.33) consist of w, G, and the noise power. However, the matrix G and the noise
power can be easily reduced in the likelihood function, which, as a result, is able to
be fully concentrated on w, and can be maximized accurately using ML frequency
estimation methods (see [50] and [51]). Efficient and accurate frequency estimation is
not within the scope or interest of this dissertation. For simplicity, in this example,

we maximize the reduced likelihood function from (3.33) using a uniform grid search

to obtain the initial estimate of w.

The root-mean-square errors (RMSEs) of the two DOA estimators, which were com-
puted with 200 Monte Carlo runs, are illustrated in Fig. 3.1 for the source with

6 = 15 degrees.
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In our second example, we consider a DOA estimation problem under spatially colored
noise using a linear array consisting of separated sub-arrays. In this type of DOA esti-
mation problems (see [21], [24], [67], and [59] for examples), the noise is considered as
uncorrelated between the widely separated sub-arrays such that the noise covariance
matrix @ of the whole array has a block-diagonal structure, in which each diagonal
block is assumed to be arbitrarily positive definite and unknown. In this example, we
examine a DOA estimation problem of two sources using a linear array consisting of
four separated sub-arrays, which are composed of 3, 2, 3, and 2 sensors, respectively.
The distance between any two adjacent sub-arrays is 3A. Within each sub-array, the
spacing between adjacent sensors is 0.5\. The linear sensor array lies on the z axis.
The elevation angles of the two sources are 15 and 30 degrees. The (k,)-th element

of Q;, which is the noise covariance matrix of the i-th sub-array, is generated by [24]

Qi = i exp { — (k= 1)*G:}, (3.34)

with 02 =7, 02 =6,02=5,07=28,(; =06, (=07, (= 0.7, and {4 = 0.6. We
assume there are two sinusoidal waves incident on the array, one from each source,
with radian frequencies —0.37 and 0.47 and coefficients 0.5 and 0.6, respectively. For

the random signal part, we assume the covariance matrix is

0.2 0.0
P= . (3.35)
0.0 0.5

Unlike the case of spatially white noise, the block-diagonal array noise covariance
matrix @ in this example cannot be reduced from L(0,w, Q). To obtain the DOA

estimate, the iterative optimization needs to be implemented over Q as well as 8 and
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Figure 3.2: Cramér-Rao bound and root-mean-square errors as functions of the num-
ber of measurements from mixed signal DOA estimation under spatially colored noise
using linear array consisting of separated sub-arrays.

w. In one iteration of such optimization, we first maximize L(0,w, Q) over € and
w starting from their values obtained in the previous iteration, with @ fixed at its
value from the previous iteration. Then with @ and w fixed at their newly updated
values, we obtain the improved estimate for @, which can be achieved using the
Expectation-Maximization method proposed in [67]. We implement such iterations
until the Euclidean norm of the change in 8 from two consecutive iterations is smaller
than 1072 degree. The DOA estimation errors of the mixed estimator computed from
200 Monte Carlo runs are shown in Fig. 3.2 for the source with § = 15 degrees.
We obtain the initial values of @ and Q for the mixed estimator using the stochastic
estimator proposed in [67], whose errors calculated from 200 Monte Carlo runs are
also shown in Fig. 3.2. We use the same rule as for the mixed estimator to stop
the optimization iterations of the stochastic estimator. We initialize w for the mixed

estimator using the same method as in the first example.
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From the results in Figs. 3.1 and 3.2, we can see that since the mixed model describes
the signals more accurately, the mixed estimator evidently provides better DOA esti-
mation performance than the stochastic estimator. This matches the result from our

analytical performance analysis.

3.6 Summary

We considered the narrow-band DOA estimation problem of hydroacoustic signals
from marine vessels containing both sinusoidal and random components, for which
we presented a mixed signal model and gave ML estimation results. We derived the
asymptotic error covariance matrix on ML DOA estimation of the mixed signals,
as well as that of applying the typical stochastic estimator on DOA estimation of
the mixed signals. We presented both analytical and numerical comparisons for the
performances of the typical stochastic and the proposed mixed estimators for mixed
signal DOA estimation. The results showed that the proposed mixed signal model
and estimator improve the mixed signal DOA estimation accuracy compared with the
typical stochastic ones. In practice, the hydroacoustic signals from marine vessels are
usually wide-band. We will address the wide-band DOA estimation of such signals in

the following two chapters.
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Chapter 4

Direction-of-Arrival Finding of
Wide-band Hydroacoustic Signals
From Marine Vessels: An
Extension of the Narrow-Band

Case

In this chapter, we consider the problem of wide-band maximum likelihood (ML)
direction-of-arrival (DOA) finding of underwater sources like ships, submarines, or
torpedoes, which emit hydroacoustic signals containing sinusoidal waves. These sig-
nals, which we call mixed signals, are modeled as the mixture of sinusoidal waves and
stochastic Gaussian signals in Chapter 3 for narrow-band DOA estimation. In this
chapter, we generalize the narrow-band results in Chapter 3 to the wide-band case,
and give the wide-band ML DOA estimator for the mixed signals under spatially

white noise. We derive the asymptotic error covariance matrix of the ML estimator,
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as well as that of the typical stochastic estimator assuming zero-mean Gaussian sig-
nals, for DOA estimation of wide-band mixed signals. Our results demonstrate that
compared with the typical stochastic estimator, the proposed ML estimator provides

better DOA estimation accuracy for wide-band mixed signals.

4.1 Introduction

Direction-of-arrival (DOA) estimation has important applications in the localization
and tracking of underwater acoustic sources like ships and submarines. This chapter
develops a wide-band ML method for DOA estimation of hydroacoustic signals from
ships, submarines, or torpedoes, which are found to consist of two parts (see [31], [48],
and [49]): the noise-like part with continuous spectra, and the tonal or sinusoidal part

with discrete frequencies.

In Chapter 3, these signals are called “mixed signals”, and are modeled as the mixture
of a zero-mean Gaussian part with unknown covariance matrix and a sinusoidal part
with unknown coefficients and frequencies. The work in Chapter 3 only considered the
narrow-band DOA estimation of the mixed signals, which, however, are usually wide-
band in practice. Therefore, the results developed in Chapter 3 cannot be directly
applied to mixed signal DOA estimation in practice. In this chapter, we extend the
narrow-band results in Chapter 3 to the wide-band case. We give the wide-band ML
DOA estimator for mixed signals and derive its asymptotic error covariance matrix.
Additionally, we derive the asymptotic error covariance matrix of applying the typical
stochastic estimator, which assumes zero-mean Gaussian signals, to wide-band mixed
signal DOA estimation. Our analytical comparison and numerical example show that

the proposed ML estimator improves the DOA estimation accuracy for mixed signals.
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The remainder of this chapter is organized as follows. We give the wide-band mea-
surement model and ML estimator in Section 4.2. Section 4.3 presents the results of
analytical performance analysis. The numerical example and conclusions appear at
last in Sections 4.4 and 4.5, respectively. For simplicity of presentation, in the rest
of this chapter, we use “stochastic signals” to represent zero-mean Gaussian signals.
We use “stochastic” and “mixed” estimators or CRBs (Cramér-Rao bounds) to rep-
resent the ML estimators or CRBs derived under the assumptions of “stochastic” and

“mixed” signals, respectively.

4.2 Measurement Model And Maximum Likelihood

Estimation

In this section, we give the wide-band measurement model and ML estimator for

DOA finding of mixed signals.

4.2.1 Measurement Model

Consider the wide-band mixed signals from L far-field sources impinging on an array
of M sensors. We decompose the frequency band into a set of non-overlapping (or
roughly non-overlapping) sub-bands, each of which is a narrow band. We make mea-
surements from each sub-band following the narrow-band measurement model (see

(1) in [67]), and formulate the wide-band measurement model as

Yp(t) = Ag(0) [Crepy(wi, t) + i (t)] + €x(t), t=1,..., Ny, k=1,...,K, (4.1)
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where y,(t) is the M X 1 measurement vector at the ¢-th snapshot from the k-th
sub-band, @ = [0;,...,0]" is the DOA vector with 6, the DOA of the [-th source
and {-}T denoting the matrix transpose, A(0) = [ax(61), - ,ar(0L)] is the array
steering matrix with steering vector ax(6;) focused on the carrier frequency of the k-th
sub-band, wy = [wg 1, .. ., Wk, Jk]T with J, the total number of sinusoidal components
and wy, ,,, the radian frequency of the m-th sinusoidal component in the k-th sub-band,
o (wp, t) = [e?ort et i tT with j2 = —1, C}, is the L x J;, coefficient matrix of
P (wg, 1), xk(t) is the L x 1 Gaussian signal vector from the k-th sub-band, € (t)
is the M x 1 Gaussian noise vector from the k-th sub-band, NN, is the number of
measurements from the k-th sub-band, and K is the total number of sub-bands. We
assume xy(t) and €,(t) are temporally white and uncorrelated with each other, and
that they follow circular complex Gaussian distributions CA (0, Py) and CN (0, Q,),

respectively, with unknown covariance matrices Py and Q).

In (4.1), the mixed signals are represented in the k-th sub-band by the sum of
Crp(wy, t) and xk(t), which correspond to the parts with discrete frequencies and
continuous spectra, respectively. We assume the number of sources is known. Also
we assume the number of sinusoidal components in each sub-band has been estimated
and known, which is a common assumption in existing sinusoidal frequency estima-
tion research (see [33], [50], [51], and [68]). We further assume the signals or noise
from different sub-bands are uncorrelated since different sub-bands do not overlap
in frequency. The value of N, may vary for different sub-bands. This is often true
when sub-bands with different band widths are sampled at Nyquist rates. However,
the ratio Ny/N,, should roughly remain constant at 7,,/7; as Ni,..., Ng increase,
where 7, is the sampling period of the k-th sub-band. The unknown parameters in

the wide-band model (4.1) are those from 0, Cy, wi, Py, and Q;, k=1,..., K.
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4.2.2 Maximum Likelihood Estimation

In this sub-section, we present the mixed DOA estimator for wide-band mixed signals.
For simplicity, we omit 6 and wj in notations, and use Ay and ¢, (t) to represent

A (0) and @, (wy, t), respectively.

Recall that in our wide-band model, the measurements are captured separately from
each sub-band following the narrow-band measurement model, and recall that the
measurements from different sub-bands are uncorrelated. As a consequence, the wide-
band log-likelihood (LL) function is the sum of the narrow-band LL functions from

all sub-bands, which, by omitting constant factors, can be written as
- 1
L) = Z Nk{ —log ‘AkPkAkH—i—Qk‘ —trace{ [AkPkAf + Qk] Rykyk}}, (4.2)

k=1

where a is the real vector containing all the unknown parameters in the wide-band

model, | - | denotes the matrix determinant, and
1
Ryewe= 3 > [wi(t) — AxCrpi )]y, () — AxCrpy ()] (4.3)
t=1

Applying the same narrow-band analysis as from equations (2) to (22) in [67] to each
sub-band, we can obtain the wide-band ML estimation results as in the following

paragraph.

For arbitrary proper noise covariance matrices Q,, kK = 1,..., K, the ML estimates

for Cy and Py, as functions of 8, wy, and @, can be found as

= (A0 A) AV el (ou0f!) (44)
P, = (4] A AR, . A, (4] ~ 4] (4.5)
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~ _1 ~ 1
where Ak = Qk: QAk; Yk = Qk QYk with

Y= [y(1), - yp(Ne)], (4.6)
& = [pr(1), -+ pr(Ne)], (4.7)

and
RykykzNik(Yk T4, YTl (Vi - T Akifknd,g)H (4.8)

_1AkH. Substituting (4.4) and (4.5) into (4.2), we can obtain

the reduced LL function dependent on 6, wy, and Q,, k =1,..., K. For the special
case of spatially white noise Q, = 021y, where I, is the M x M identity matrix,

the noise parameters can be further reduced and the LL function becomes

K Y, I, Y
L(O,@) =Y Nylog [Ty, ]f;k TLa, + 67105, (4.9)
k
k=1
with @ = [w], ..., wk]", Iy =TIy —Il4,, and
Y, Y/
67 = Vi trace {ij ?\7 & } (4.10)
- k

The wide-band mixed DOA estimator under spatially white noise can be achieved by
maximizing (4.9) with respect to @ and w. If noise parameters cannot be reduced
from the LL function, the wide-band mixed estimator requires maximizing the LL

function over Q, k =1,..., K, as well as 8 and w.
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4.3 Analytical Performance Analysis

In this section, we present analytical results on the performances of the stochastic

and the mixed estimators. For convenience of formulation, we let

_ dak(el) dak(ﬁg) o da,k(@L)
ao,  dfy Todfy ’
P, =C,C{ + Py, (4.12)

D, (4.11)

and ¢, P, Pi, and o be the real column vectors containing the unknown parameters
from C, Py, Py, and Q. respectively. Note that p, consists of the diagonal elements
of Py, and the real and imaginary parts of all the upper-triangular elements above

the diagonal in Pj. The vector p,, is composed similarly of those from P

In the following Proposition 1, we give the CRB on DOA estimation of mixed signals.

Proposition 12. For DOA estimation of wide-band mized signals, the mixed CRB

matric CRBy\ 9 on DOA can be written as

-1

K
CRByo = | > (CRBp!,+CRBg'p)| | (4.13)
k=1

where CRBp, ¢ s the deterministic CRB matriz on DOA estimation with the mea-
surement at snapshot t, t = 1,..., Ny, following CN(Akagok(t),Qk), in which 6,
¢y, wi, and oy, are the unknown parameters, and CRBg, ¢ is the stochastic CRB
matrix on DOA estimation with each of the Ny measurements from the sensor array
following CN (0, Ry), in which Ry, = ALPLAY + Q, and the unknown parameters

are 8, p,., and oy.

Proof: See Appendix L.
66



The expressions of CRBp, ¢ and CRBg, ¢ can be formulated using the results in
[56], [57], and [43]. As stated in [67], it is not appropriate to simply assume the
mixed ML estimator achieves the CRB asymptotically, since the measurements are not
temporally stationary due to the sinusoidal components. In the following Proposition
13 and its proof in Appendix M, we verify the asymptotic efficiency of the wide-band

mixed estimator.

Proposition 13. For DOA estimation of wide-band mized signals, the error covari-
ance matrix of the mized estimator on o achieves the mized CRB matrix asymptoti-

cally.

We also examine the performance of applying the stochastic estimator to DOA esti-

mation of wide-band mixed signals.

Proposition 14. If the stochastic estimator is applied to DOA estimation of wide-
band mized signals, the asymptotic error covariance matriz on p = [OT, a'f, e ,U;(]T
equals CRBg ,,, which is the stochastic CRB matriz on the estimation of p with each
of the Ny measurements from the k-th sub-band, k = 1, ..., K, following CN(O,Rk),

where Ry, = AkPkAkH + Q,, and the unknown parameters are 0, p,, and o. As a

result, the asymptotic error covariance matriz on 0 equals CRBg 4.

We now compare the performances of the mixed and the stochastic estimators. Let
Mo be the asymptotic error covariance matrix on @ of the mixed estimator. We

have the following proposition proved.

Proposition 15. For DOA estimation of wide-band mized signals, C3; g < CRBg 4.

Proof: According to Propositions 1 and 2, and the results in their proofs, we have

e = (X4, C3s) |, where O35 = CRBS ) + CRBg!, and CRB3 , is
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the asymptotic value of CRBp, ¢ that can be obtained by replacing Rd’kd)k in (L.11)
with its asymptotic value, which is an identity matrix. From Proposition 4 in [67],

we have Cy; g < CRBg 4, k=1,..., K. We thus have the proposition holds.

From Proposition 15, we see that with the same correlation matrices of signals and
noise, the mixed signals and estimator provide better DOA estimation than the

stochastic ones.

4.4 Numerical Example

In this numerical example, we consider a wide-band DOA estimation problem of
two sources under spatially white noise using a uniform linear array consisting of
10 sensors. The linear sensor array lies on the z axis, and the elevation angles of
the two sources are 15 and 20 degrees, respectively. The wide frequency band of
the signals is composed of three narrow sub-bands, and the inter-sensor distance
d = 0.5\ = 0.4\ = 0.3\3, where A\{, A\, and A3 are the wavelengths of the narrow-
band signals from three sub-bands. In each sub-band, there are two sinusoidal waves
incident on the array, one from each source, with radian frequencies —0.47 and 0.37
and coefficients 0.8 and 0.7, respectively. For the random signal part and noise, we

assume

04 0.2
P, =P,=P;= (4.14)
02 0.5

and 0? = 02 = ¢2 = 10. In addition, we sample the same number of measurements

from each sub-band.
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Figure 4.1: Cramér-Rao bound and root-mean-square errors as functions of the num-
ber of measurements from wide-band mixed signal DOA estimation under spatially
white noise.

We apply both the stochastic and the mixed estimators on DOA estimation. The
optimization for the mixed estimator is implemented iteratively starting from selected
initial values of @ and @. The DOA is initialized using the result from the stochastic
estimator. The initial radian frequency estimates are obtained in each sub-bands
using the method given in the first numerical example in [67]. The performances of
two estimators are illustrated in Fig. 4.1 for the source with 8 = 15 degrees. In Fig.

4.1, the root-mean-square errors (RMSEs) are calculated with 200 Monte Carlo runs.

From Fig. 4.1, we observe that the mixed estimator provides better DOA estima-

tion performance than the stochastic one. This matches the result of our analytical

performance analysis.
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4.5 Summary

We considered the wide-band DOA estimation problem of the hydroacoustic signals
from marine vessel sources. We gave the ML DOA estimator. We computed the
asymptotic error covariance matrices of the proposed ML and the typical stochastic
estimators for DOA finding of such signals. Our analytical and numerical comparisons
showed that the proposed ML estimator improves the DOA estimation accuracy of

such signals compared with the typical stochastic estimator.
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Chapter 5

Direction-of-Arrival Estimation of
Hydroacoustic Signals From
Marine Vessels: An Approach

From Fourier Transform

In Chapter 4, we considered the wide-band direction-of-arrival (DOA) estimation
problem for the hydroacoustic signals from marine vessels. In this chapter, we
reconsider this problem following a Fourier-transform-based approach, which is a
quite useful and common technique widely adopted in wide-band DOA estimation
(see [54], [69], and [70] for examples). We set up new wide-band measurement models
from the Fourier transform (FT) of the hydroacoustic signals from marine vessels,
based on which we give the maximum likelihood (ML) DOA estimator. We compute
and compare the asymptotic error covariance matrices of the proposed estimator, and
that of the typical stochastic estimator assuming zero-mean Gaussian signals. The
results show that the proposed estimator provides better DOA estimation than the

typical stochastic estimator.
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The remainder of this chapter is presented as follows. The wide-band measurement
models and estimator are presented in Section 5.1. Section 5.2 gives analytical perfor-
mance analysis. The numerical example and conclusions appear in Sections 5.3 and
5.4, respectively. For simplicity, we use “mixed signals” to represent the wide-band

hydroacoustic signals containing both random and sinusoidal components.

5.1 Measurement Models And DOA Estimation

In this section, we present the measurement models and DOA estimator based on the

Fourier decomposition of the mixed signals.

5.1.1 Measurement Model

Assume L mixed signals from the far field incident on an array of M sensors. We

write the L incident signals at the ¢-th snapshot as

5(t)=Ce(v,t) +x(t), t=1,...,N, (5.1)

where 8(t) = [51(t), ..., 5..(t)]7 with 5,(¢) the signal value of the I-th source and {-}T
denoting the matrix transpose, ¢(v,t) = [e/ ... e/V%!|T contains the K sinusoids
from all sources with j2 = —1 and v = [vy,...,vk|T, v is the frequency of the k-th
sinusoid, C is an L x K matrix containing the coefficients of ¢(v,t), and &(t) =
[Z1(t), ..., 2 (t)]T is the random part of the signals, which is assumed to zero-mean
complex Gaussian. Here the mixed signals are represented in (5.1) as the sum of the

sinusoidal part C¢(v,t) and the random part &(t).
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To apply Fourier decomposition to the mixed signals, we divide the total N snapshots
of signals into Ty subintervals, each of which consists of N4 snapshots, i.e., N = NqTjy.

For each subinterval, we implement a discrete Fourier transform (DFT) and obtain
sp(i) =Co,(v,i) +x,(i), i=1,...,T4, n=1,..., Ny, (5.2)

where s,(i) and x,(i) are L x 1 vectors containing the DFT coefficients of s(¢) and

Z(t), respectively, from the i-th subinterval and n-th Fourier basis function, and
¢, (V,1) = [pn(v1,1), ..., dn(vi,1)]T with

1
0 i DNl -) ot (5.3)

~ VNa t=1

(bn(ykv Z)

where
ej(C’n_Nde) I ej(l_Nd)Cn

hgn = : : 5.4
B/ Na(e i) — 1) (5.4)

and ¢, is the frequency of the n-th Fourier basis function. Therefore, we can write

the DFT-based measurement model as

y, (i) = A (0) [C,(v,i) + 2u(i)] + €u(i), i=1,.... Ty, n=1,..., Ny (55)

where y,,(¢) and €,(i) are M x 1 vectors, which respectively contain the array out-
put and array noise DFT coefficients from the i-th subinterval and n-th Fourier
basis function, 8 = [0y,...,0]7 with 6, the DOA of the I-th source, A,(0) =
[an(01),- -+ ,a,(0)] is the array steering matrix with the M x 1 steering vector a,,(6;)
focused on frequency (,, I = 1,..., L. We assume the number of sources is known.
Also we assume the number of sinusoidal components in each sub-band is known

(see [33] and [68] for similar assumptions). We assume x, (i) and €,(i) are temporally
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white and uncorrelated with each other, and follow circular complex Gaussian distri-
butions CN(0, P,,) and CN(0,021,,), respectively, where Iy is an M x M identity
matrix. We further assume the DF'T coefficients from different Fourier basis functions
are independent [54]. The unknown parameters in (5.5) are 8, C, v, P, and o,,

n=1,..., Ngq. For simplicity, we omit 8 and v is the following notations.

5.1.2 DOA Estimation From A Modified Model

We first consider the ML estimation based on the model in (5.5), for which we rewrite
(5.5) as
Y.=A,C¢,+A,X,+E, n=1,... Ny, (5.6)

where Y, = [y, (1), -+, y,(Ta)], @, = [@, (1), -+, &, (T0)], X = [ma(1), - -+ @n(T4)],
and E, = [€,(1),--- ,€,(Ty)]. Noting that vec{ABC} = [CT ® A]vec{B} for any

matrices A, B, and C that can produce ABC', we have
y, = ¢, ® A, vec{C} +vec{A, X, + E,}, n=1,...,Ng (5.7)

where y,, = vec{Y .} = [yL(1), - ,yl(Ty)]", ® denotes the Kronecker product,
and vec{-} is the vectorization operator stacking all the columns of a matrix, one
below another, into a vector. Stacking the coefficients from all Fourier basis functions
together, we have

y=Agc+n, (5.8)

where y = [y],--,yk,]", Ag = (o1 @ A", (¢, ©® An)T]", € = vec{C},
and n = [vec{ A1 X1 + E\}7, -+, vec{An, X n, + En,}"]".
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Therefore, we have y ~ CN<A¢C, E), where ¥ = blkdiag{Ir, ® (AnPnAf +
Qn)} Ny, which is a block-diagonal matrix with the n-th diagonal block equal to
I, ® (AnPnAf + Qn), n=1,..., Ng. Thus, the ML estimate of ¢ as a function of

0, v,0, and P,,n=1,...,Nyqis

e = (Als7A,) Az 1y

_ {iwmb © [A)(AP, A + Qn)_l"‘"]}_l

n=1

Ng
X Z{‘f’i ® [A (AP, AL + Qn)‘l]}yn, (5.9)
n=1

where {-}* denotes the complex conjugate.

In addition, we have the log-likelihood (LL) function from (5.6) as

Ngq
L) :Z Td{— log |AnPnA£I + Qn‘ — trace{ [AnPnAf + Qn} _1Rynyn}},(5.10)
n=1

where « is the real vector containing all the unknown parameters in (5.5), |- | denotes
the matrix determinant, trace{-} denotes the matrix trace, and

1 &

Rynyn= 7, ;[yn(t) — A, Co,(1)][y,(t) — AuC,,(1)]". (5.11)

Substituting (5.9) back into From (5.10), we obtain a reduce LL function dependent
on 0, v, as well as 0, and P, , n = 1,..., Ngq. To the best of our knowledge, the
nuisance parameters P, , n = 1,..., Ng, cannot be further reduced from the LL
function. Alternatively, we can first find the ML estimates of P,, as a function of
0,v,C,and o,, n=1,..., Ny, following the narrow-band estimation result in [67].

Substituting these estimates back into the LL function, we obtain another reduced
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LL function dependent on 0, v, C, and o,, n = 1,..., Ng. Again, the nuisance

parameters in C' cannot be further reduced from the LL function.

To seek further reduction of nuisance parameters, we proposed the modified model

based on that in (5.5) as follows.

I
—_

Y, (1) = A, (0) [Crp(w,i) + x,(i)] +€,(i), i=1,...,T74, n=1,...,Nyg, (5.12)

where C,, = CH,,, H,, = diag{h1 ..., hkn}, which is a diagonal matrix with di-
agonal elements Ay, . .., hin, and p(w,i) = [p(w1,1), ..., o(wk, )]’ with p(w, i) =
e’k and wy being the remainder of Ngvy,/(27). The unknown parameters in (5.12)
consist of 0, w, C,, P,, and 0,, n = 1,..., Ng. Note that Cy,---,Cy, are are
considered as arbitrarily unknown here. So the modified model in (5.12) has more
unknowns than the original model in (5.5). For simplicity of formulation, we omit 6

and w in the following notations.

Note that the LL function from (5.12), which can be readily obtained using (5.10),
is the sum of N4 narrow-band LL functions, each of which is of the same form as
the narrow-band LL function in [67]. Thus, the ML estimates of C,,, P,,, and o, for
(5.12) can be found as functions of € and w following the similar procedures in [67]

as

C, = (A7A,) " ATY 0" (pp™) ", (5.13)
P,=(AA,) A'R, . A, (AlA,) =52 (AlA,)] (5.14)
a1 LY, Y#?

On = 77— Ltrace {HAn T, : (5.15)
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where

Rynyn:Tid(Yn — T4, Y, T) (Y, — T0a, Y )" (5.16)

withII; = Iy—1I14, andI14, = A,(AJA,) _1AnH. Substituting the ML estimates

in (5.13)-(5.15) into the LL function from (5.12) and omitting constant terms, we

obtain the reduced LL function dependent on @ and w = [w?, ..., wk]T as
Na L H
Y Il »Y,
L(8,w) =~ Tylog HAH%HM + 62105 |. (5.17)
n=1

Remark: The maximization of the LL functions are usually implemented through an
iterative optimization method. Compared with the LL function in (5.17), the reduced
LL functions from the original model in (5.5) always have nuisance signal parameters
irreducible. This definitely introduces more optimization burden and less estimation
efficiency. Moreover, to guarantee a correct convergence, the iterative optimization
ought to start from initial parameter estimates close to the true parameter values.
However, we have not found an efficient method at present to initialize the frequencies
v and the nuisance signal parameter C or P,,. Due to the multiplication factor Ny in
the exponent in (5.3), the initialization errors in v can be significantly enlarged in the
LL function. This introduces additional challenge in initializing the nuisance signal
parameters C or P,,. In contrast, the LL function in (5.17) from the modified model
does not contain or require optimization over the nuisance signal parameters, and it
only needs the initialization of @ and the remainder of Nyvy/(27) for iterative opti-
mization, which can be readily obtained from existing techniques. So the ML DOA

estimator based on the modified model is definitely more computationally efficient.
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Though the ML estimator based on the original model in (5.5) may be able to give
better performance than that based on the modified model in (5.12), its efficient
implementation remains an unsolved problem to us mainly due to the initialization
problem of the frequencies and nuisance signal parameters. Moreover, the derivations
of the Cramér-Rao bound (CRB) and the asymptotic error covariance matrix of the
ML estimator based on the original model seem quite challenging, and we have not
been able to make the analytical performance analysis for the ML estimator based
on the original model. So the ML estimator based on the original model will be left
open as a topic of our future work, and will not be examined in this correspondence.
Instead, we will concentrate on the performance analysis of the ML estimator from
the modified model in (5.12) in the following sections. We will show that the ML DOA
estimator from the modified model still provides much better estimation performance

than the typical ML estimator assuming zero-mean Gaussian signals.

5.2 Analytical Performance Analysis

In this section, we present analytical results on the performances of different esti-
mators. For simplicity, we use “stochastic” estimator and CRB to represent the ML
estimator and CRB derived under the assumption of zero-mean Gaussian signals, re-
spectively (see [8] for examples). We use “mixed” estimator and CRB to represent the
ML estimator and CRB derived from the modified model in (5.12). Also, we define
P, = CnCnH + P, and ¢,, p,, and p, to be the real column vectors containing the

unknown parameters from C,,, P,, and P, respectively. Note that p, consists of the

diagonal elements of P,,, and the real and imaginary parts of all the upper-triangular
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elements above the diagonal in P,. The vector p,, is composed similarly of those

from P,. In Appendix O, we prove the following proposition.

Proposition 16. For DOA estimation based on the model in (5.12), the mized CRB
matric CRBy g on DOA can be expressed as
Ny -1

CRByo = |Y (CRB;',+CRBg'y)| . (5.18)

n=1

where CRBp, ¢ is the CRB matriz on DOA estimation with the measurement at
snapshot t, t = 1,..., Ty, following CN(AnCncp(t), Qn), in which 0, ¢,, w, and o,
are the unknown parameters, and CRBg, ¢ is the stochastic CRB matriz on DOA
estimation with each of the Ty measurements following CN(O,Rn), in which R, =

A, P, A +Q, and the unknown parameters are 0, p,,, and o,,.

The expressions for CRBg, 9 and CRBp, ¢ can be found in [8]-[57]. As explained
in [67], since the measurements are not temporally stationary, we cannot take it for
granted that the mixed estimator achieves the mixed CRB asymptotically. However,
it is shown in [67] for the narrow-band case that the mixed estimator asymptotically
achieves the CRB. Since our LL function from the modified model in (5.12) is simply
the sum of a set of narrow-band LL functions, each of which is in the same form as the
narrow-band LL function in [67], we can easily show following the narrow-band results
in [67] that the error covariance matrix of the mixed estimator achieves the mixed
CRB matrix asymptotically for the wide-band case in (5.12). Similarly, following the
narrow-band results in [67] (see Propositions 3 and 4 in [67] and their proofs), we can

show the following two corollaries.
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Corollary 1. If the stochastic estimator is applied to mized signal DOA estimation,
the asymptotic error covariance matriz on 0 is equal to CRBg o, which is the stochas-
tic CRB matriz on DOA estimation with each of the Ty measurements from the n-th
sub-band, n = 1,..., Ny, following CN'(0, R,,), where R, = A, P, A" + Q, and the

unknown parameters are 8, p,, and o,.

Corollary 2. For DOA estimation of the mized signals, C3; g < CRByg p, where

C11 ¢ denotes the asymptotic error covariance matriz on @ of the mizved estimator.

Corollary 1 examines the performance of the stochastic estimator when it is used
for DOA estimation of the mixed signals. Corollary 2 shows that the mixed esti-
mator provides higher accuracy than the stochastic estimator for mixed signal DOA

estimation.

5.3 Numerical Example

In this numerical example, we consider a DOA estimation problem under spatially
white noise using a uniform linear array of 10 sensors. The array lies on the z axis,
and the elevation angles of the two sources are 15 and 20 degrees, respectively. The
wide-band measurement model is constructed with 8 Fourier basis functions (Ng = 8).
The inter-sensor distance d = 0.5A; = 0.45 5 = 0.4X3 = 0.35)\; = 0.3)\5 = 0.25)g =
0.2A\7 = 0.15)\g, where Aq, ..., A\g are the wavelengths of eight Fourier basis functions.
There are two sinusoidal waves incident on the array, one from each source, with

frequencies 0.6 and 1.27 and coefficients 0.6 and 0.7, respectively. For the random
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Figure 5.1: Cramér-Rao bound and root-mean-square errors as functions of the num-
ber of subintervals N4 for mixed signal DOA estimation.

signal part and noise, we assume

0.4 0.2
P1:P2:"':P8: (519)
0.2 0.5

2 _ 2 _ 2 _
and 0] =05 = ... =0z = 10.

Both the stochastic and the mixed estimators are applied to DOA estimation. The
maximization of the LL function in (5.17) is implemented iteratively starting from
initial estimates of @ and w. The initial DOA estimate is selected using the estimate
from the stochastic estimator. The initial frequency estimates are obtained using
the method given in the first numerical example in [67]. The performances of two
estimators are illustrated in Fig. 5.1 for the source with § = 15 degrees, with the

root-mean-square errors (RMSEs) calculated with 200 Monte Carlo runs.
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We can see in Fig. 5.1 that the mixed estimator provides higher estimation accuracy
than the stochastic estimator. This matches our analytical performance analysis in

Section III.

5.4 Summary

We considered the DOA estimation problem of the hydroacoustic signals from marine
vessels. We derived the wide-band measurement model based on Fourier decompo-
sition, from which we further proposed a modified measurement model and its ML
DOA estimator that greatly simplify the estimation procedure. Both our analytical
and numerical results demonstrated that in comparison with the typical stochastic
estimator, the proposed estimator improves the DOA estimation accuracy for the

hydroacoustic signals considered.
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Chapter 6

A Barankin-Type Bound on

Direction-of-Arrival Estimation °

From the numerical examples and figures in the previous chapters, we can see that the
the Cramér-Rao bound (CRB) is able to predict the performance of the maximum
likelihood (ML) estimator only when the number of measurements is large. The
similar phenomenon occurs to the performance of the ML estimator with respect
to the signal-to-noise ratio (SNR). The CRB can predict the performance of the
ML estimator only at high SNR values. When the SNR is low, the mean-square
errors of the ML estimator deviate from the CRB. The SNR region below which
the performance of the ML estimator deviates rapidly from the CRB is called the
SNR threshold region. The CRB is not able to provide any information about this

threshold region.

In this chapter, we derive a Barankin-type bound (BTB) on the mean-square er-
ror (MSE) in estimating the directions of arrivals (DOAs) of far-field sources using

acoustic sensor arrays. We consider narrow-band and wide-band deterministic source

3Based on T. Li, J. Tabrikian, and A. Nehorai, “A Barankin-Type Bound on Direction Estima-
tion Using Acoustic Sensor Arrays,” IEEE Trans. Signal Process., vol. 59, pp. 431-435, Jan. 2011.
(©[2011] IEEE.
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signals, and scalar or vector sensors. Our results provide an approximation to the
threshold of the SNR below which the performance of the maximum likelihood es-
timation (MLE) degrades rapidly. For narrow-band DOA estimation using uniform
linear vector-sensor arrays, we show that this threshold increases with the distance
between the sensors. As a result, for medium SNR values the performance does not

necessarily improve with this distance.

6.1 Introduction

The Barankin bound is the tightest lower bound on the mean square errors of any
unbiased estimator [71]-[75], and it is a useful tool in estimation problems for pre-
dicting the threshold region of SNR [76]-[79], below which the accuracy of the MLE
degrades rapidly. Identification of the threshold region enables to determine the oper-
ation conditions, such as observation time and transmission power, to obtain a desired

performance.

In the recent years many works have been carried out for identification of the threshold
region of the MLE. One approach is based on the method of interval estimation (MIE)
[80] in which the performance of the MLE in the threshold region is approximated.
However, it does not provide a performance lower bound. Another well investigated
approach is the use of the non-Bayesian bounds which can predict the threshold region
and provide a performance lower bound. In this chapter, we derive a Barankin-type
bound (BTB) on the DOA estimation of acoustic signals based on measurement
models with deterministic unknown parameters. The derived bound provides an
approximation for the threshold SNR even in the case of a high-dimensional unknown

parameter vector, for which computing the Barankin bound is usually formidable. We
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examine the performance of the derived bound for both wide-band and narrow-band

DOA estimation problems.

In addition, we examine the effect of the distance between the acoustic vector sensors
(AVSs) in a uniform linear array on the narrow-band DOA estimation error. Unlike
scalar sensors, AVSs measure not only the sound pressure but also the components
of particle velocity [11]. One of the advantages of the AVS arrays over the scalar
ones is that the distance between adjacent AVSs can be larger than half of the signal
wavelength without introducing spatial ambiguities in narrow-band DOA estimation.
Thus, we may design the distance between the AVSs to achieve better estimation
results. Our examination of the derived BTB and actual MLE error shows that the
threshold SNR increases with the distance between the AVSs, and that enlarging this
distance does not always improve the estimation accuracy. Compared with the CRB,
which consistently decreases with the increase of inter-AVS distance, the derived
BTB provides more accurate reference for the optimal distance determination, as it

incorporates the effect of large estimation errors.

The remainder of this chapter is organized as follows. In Section 6.2, we formulate the
model for data collected by acoustic sensor arrays. In Section 6.3, we derive the BTB
for source localization. Section 6.4 presents the numerical examples. The conclusion

of this paper appears in Section 6.5.

6.2 Measurement Model

In this section, we present the measurement models for both wide-band and narrow-

band sources for uniform linear AVS arrays. The measurement models for other types
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of sensor arrays can be formulated in the same way using the corresponding steering

vectors.

We first present the measurement model for wide-band sources. Consider signal waves
from K distant wide-band acoustic sources impinging on a uniform linear array of
M AVSs, each of which consists of m components. In similar to [69], [70], using the

wide-band harmonic signal model, we approximate the incident signal from the k-th

source as
J
= crihs(t) (6.1)
7j=1
where (), ..., ,(t) are the monochromatic waves representing Fourier series ker-
nels and ¢y, . .., ¢y are their coefficients. Assuming the frequency of v;(t) is f;, we

write the measurement model as

Za] (Or)crj(t) + e(t)

1 k=1

M-

yt) =

J

AJ(O)C]@Z)](ZS) + 8(t)7 t= 17 ey N, (62)

M-

1

J

where y(t) is the Mm x 1 measurement vector, 6y is the one- or two-dimensional

DOA of the k-th source, e(t) is the Mm x 1 noise vector, 8 = [0],...,0%]7, ¢; =
[c1jy .- ,cKj]T, “I” denotes the transpose operation, N is the number of temporal
measurements, A;(0) = [a;(01)---a;(0k)], and a;(0}) is the steering vector for the
k-th source given by

a0) =m0y | | (63)
u(6y)

where “®” donotes the Kronecker product, h;(0y) = [1,e™im00) e"Q’Tfj(M*l)T(ek)}T

with 7(6}) the differential time delay of the k-th source signal between two adjacent

86



AVSs, and u(60y) is the (m — 1) x 1 unit-norm direction vector from the array to the
k-th source. We assume the noise is zero-mean circular Gaussian with known spatial

covariance matrix X and is temporally white.

For narrow-band sources, the steering vectors can be assumed to be constant over the
signal bandwidth with frequency fixed on the carrier frequency of the narrow-band

sources, i.e., a;(0) = a(@), and the measurement model (6.2) then becomes

y(t) = > a(by) (Z ij%(t)) + e(?)
A e)cq,z;(t): et), t=1,... N, (6.4)

where C is a K x J matrix whose (k,j)th entry is c;, ¥(t) = [¢1(t),...,¥s()]7,

A(0) =[a(6y)---a(Bk)], and

1
a(0;) = h(6;) ® 7 (6.5)
u(6y)
where h(0,) = [1,e? /70 ,e”’rf(M*l)T(Ok)}T and f is the carrier frequency of the

narrow-band signals. Note that in (6.4), Z}]:1 crj;(t) is the complex amplitude of

the k-th incident signal approximated by Fourier series expansion.

6.3 Barankin-Type Bound

In this section, we derive a BTB on the DOA vector 8 based on the measurement

models in Section II.
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An analytical form of the Barankin bound is generally not available. We use the
Barankin-type lower bound developed in [72]-[74] to approximate the actual Barankin
Bound. For an unbiased estimator c}b of an unknown deterministic parameter vector

¢, this lower bound can be formulated as
cov{gp} > T(B—11")"'17, (6.6)

where T = [, — ¢p--- ¢, — @], b,,..., ¢, are the test points selected from the
parameter space of ¢, 1 is a column vector of dimension L with all entries equal to

1, and B is the L x L Barankin matrix whose (I, n)th entry is

By, = E{T<ya$l7¢)r(yagbnv¢>}a (67)

where E{-} denotes the expectation operation, r(y, ¢, ¢) = f(y;d,)/f(y; P), and
f(y; @) is the probability density function (pdf) of y with parameters ¢. The supre-
mum of the BTB given in (6.6) approaches the actual Barankin bound when the

number of test points tends to infinity [81].

In the following, we first derive the BTB on 8 based on the wide-band measurement

model (6.2).

Stacking all measurements together, we rewrite (6.2) as
J
Y =) A0 +E, (6.8)
j=1

where Y = [y(1) -+ y(N)], E = [e(1) - - e(N)], and ¢p; = [3(1), ..., ¢ (N)]". Vec-

torizing both sides of (6.8), we obtain
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where y = [y7(1),...,yT(N)]T, e = [eT(1),...,e"(N)]", ¢ = [c],...,c}]T, and

R(0) = [, © A1(0) -, ® A,(0)].

The unknown parameter vector in (6.9) is ¢ = [OT, Re{c"} ,Im {c"} }T, in which
Re {CT} and Im {CT} are the real and imaginary parts of ¢! respectively. The prob-

ability density function of y with parameters ¢ is

1

f:9) = quirreas) o0 (- - RO (Ive27) y— RO)e)}  (6.10)

where det(-) denotes the determinant of a matrix and Iy is the unit matrix of size

N.
Substituting (6.10) into (6.7), we obtain

1

By, =
" det(nly @ %)

/ exp {(y — R(0)e)" (Iy © =) (y — R(6)c)—

where [élT, Re{¢f'} ,Im{e]} ]T is the [th selected test point for ¢ and

1
Cdet(rIy®@ X

[ e {(u—RO)a - RO)e, + RO))" (1o 27)

x (y — R(8))¢, — R(6,)e, + R(0)c) }dy — 1 (6.12)

Thus, we have
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By, = exp {zRe { (R(0)c — R(0)e)" (Iy © =) (R(6)c — R(én)én)}} . (6.13)

To obtain a tight bound, we ought to choose the test points that maximize the right
side of (6.6). Observe that in many cases ¢ is a high-dimensional vector, which
generally requires a huge amount of test points to produce a tight bound. This would

inevitably augment the burden in computing the inverse of B — 117

We employ the approximation method proposed in [78] to reduce the required number

of test points. This method is adapted as follows for DOA estimation:

e Select L candidate test points 01, ..., 07 for the DOA parameter 6.

e For each selected ), I = 1,..., L, select test point ¢ forc;, j=1,...,J such
that By is minimized at ¢, = [9;[, Re{e¢]} ,Im {e]'} }T = [élT, Re{[e],...,e}]},

Im{[éﬂv""égl]}}T'

e From ¢,,..., ¢z, choose the L test points producing the L smallest values in
By, ..., Brp as the test points to compute the bound [78]. Alternatively, choose
the test points at the L highest lobe peaks of B;', ..., BE’% provided that the

values of B}, ... ,Bg% exhibit evident sidelobes.

To obtain the BTB according to the above method, we first find the test point ¢; that
minimizes By for a given 0;. Taking the derivative of By with respect to ¢;, we have

the test point ¢; minimizing By is
él = G_l(él, él)G(él, 9)(3, (614)

where G(0;,0) = RY(0))(Iy @ ") R(9).
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The general result provided by (6.14) can be further simplified if we have

Vil = bk (6.15)

with d;; the Kronecker delta function, which is a general property of the problem at
hand since ¢y(t),..., 1 (t) can be chosen using the kernels of the Fourier series or
by Karhunen-Loeve transform. Using (6.14) and (6.15), we can further obtain (see

Appendix P) the test point ¢; that minimizes By
éjl :Pj_l(él,él)Pj<él,0)Cj, j: 1,...,J, (616)

where P;(0,,0) = AT (6,)%7"A;(6).

Substituting (6.16) into (6.13), we obtain the following expression for the (I,n)th

entry of B:
By, = exp {Qtr {Re {QH(él, O)E_IQ(én, 0)}}} , (6.17)

where tr{-} denotes the trace of a matrix, Q(6,,6) = [q,(0,,0)---q,(6,,0)], and
q;(6:,0) = (A;(6) — A;(6:)P;(6,,6,)P;(6:,0)) c;

Assuming the noise covariance matrix ¥ = 02T and there is only one source, we are

able to simplify the formula in (6.17) as

— exp{ ZRe{ 0)c,)" A,;(8,,0, )(Aj(o)cj)}}, (6.18)

where

DI

Aj(0:,0,) = (I — A;(0)A](8))/a) (I — A;(8,)A](6,)/a). (6.19)
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In (6.19), « is the square of the Euclidean norm of the steering vector. For scalar-
sensor arrays, we have a = M. For vector-sensor arrays, we have o = 2M (note that

the Euclidean norm of u(0) is 1). The diagonal entries of B can be further simplified

as
J
2 _
By = exp {; > elej(a—|AY(0)A;(0)))% /) } : (6.20)
j=1
where | - | denotes the amplitude of a complex number.

Using the derived expressions of B, we are able to compute the BTB on an unbiased

estimator @ of @, which is given by
cov{B} > Ty(B — 11717, (6.21)

where Ty = [0, —0---0, — 0)].

The bound based on the narrow-band model (6.4) can be derived similarly and herein
we only present the results. For the narrow-band model in (6.4), the test point C,
minimizing By is

C,=P6,6)P6,6)C. (6.22)
where P(6,,0) = A”(6,)X7'A(6). Under the condition in (6.15), the formula of B

for the narrow-band model can be written as

By, = exp {2tr {Re {Q"(6,,0)=7'Q(0,.0)}}}, (6.23)

where Q(él, 9) = (A(O) - A(él)Pil(él, él)P<él, 0)) C.

Note that though our test-point selection method is based on the idea in [78], our

models and derived results are more general than their deterministic counterparts
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in [78] and thus have broader applications. Our derived bounds can be used as well
for some other array-processing problems such as DOA estimation for signals of known

waveforms [15], [16], in which 44, ..., ; denote the known signal waveforms.

6.4 Numerical Examples

To demonstrate the performance of the derived bound, we present numerical examples
of DOA estimation for both scalar- and vector-sensor arrays. For simplicity, we

assume the noise covariance matrix ¥ = oI in all examples.

6.4.1 Examples for Scalar-Sensor Array

We present results of two examples for scalar-sensor array, one for narrow-band and
the other for wide-band signal. For the narrow-band example, we consider a sinusoidal
signal with elevation angle of 0 degree arriving at a uniform linear scalar-sensor array
of 40 sensors. The distance d between the sensors equals half of the signal’s wavelength
A. We took 10 samples of measurement and uniformly selected 30 test points from
[—7/2,7/2] to compute the bound. Note that uniformly selecting test points is a
special case of the proposed test point selection method with L = L. Also for a
uniform linear scalar-sensor array, the distance between adjacent sensors should not
be larger than half of the signal wavelength to avoid ambiguity in the DOA estimation

of a narrow-band signal.

For the wide-band example, we assume the distance between the sensors is 1 meter

and the signal consists of 10 harmonic components, with elevation angle of 0 degree.
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The frequencies of the 10 harmonic components of the signal are 20,40, ..., 180, and
200 Hz, respectively. The linear array consists of 40 sensors. The sound propagation
speed is ¢ = 1500 meters per second. We took 10 measurements at a sampling
period of 5 ms and uniformly selected 60 test points to compute the bound. In this
problem, we have 10 unknown signal parameters, which would make approximating

the Barankin bound challenging.

We present the computed square roots (SRs) of the derived BTB and actual MLE
error in Figs. 6.1 and 6.2. It can be seen that the derived bounds predict the true
threshold SNRs with differences about 2 to 3 dB in these two examples.

T
—*—BTB
—— MSE of MLE

10" ¢ : : : : :

10 T T T T

e

SRs of BTB and MLE MSE (deg)

-17 -16 -15 -14  -13  -12 -11  -10 -9
SNR (dB)

Figure 6.1: Square roots of the derived Barankin-type bound and maximum likelihood
estimation mean-square error versus signal-to-noise ratio for narrow-band direction
of arrival estimation using uniform linear scalar-sensor array.
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Figure 6.2: Same as in Fig.1, but for the wide-band direction of arrival estimation.
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6.4.2 Examples for Vector-Sensor Array

AVS arrays outperform the standard scalar-sensor arrays, as they utilize measure-
ments from the components of the acoustic particle velocity as well as the pressure [11].
They resolve end-fire and conical ambiguities [82] and a single AVS can identify up
to two sources in three-dimensional space [83]. Clearly, since a single AVS is able to
provide DOA information, the distance d between the AVSs in a uniform linear array
is not limited to be smaller than half of the wavelength of the narrow-band impinging

signal.

Since d can be larger than half the signal wavelength, it is possible to improve the
estimation accuracy through adjusting the distance between the AVSs. The lower
bounds on the mean-square estimation error should provide useful information about
the choice of the optimal distance. We examined the effect of the distance between
the AVSs on the derived BTB, CRB, and actual MLE error for a narrow-band one-
dimensional DOA estimation problem (see Fig. 6.3). In our example, we consider a
narrow-band signal with DOA = 0 degree impinges on a uniform linear array consist-
ing of 10 AVSs. The vector sensors measure the pressure and only two velocity com-
ponents such that h(f) = [1, gixdsing - oi5(M—1)dsin® ! and u(0) = [cos,sin O]
in (6.5), where 6 is the one-dimensional DOA and X is the wavelength of the narrow-
band signal. We selected the test points at the peaks of the B; 1 values over 200
uniformly sampled candidate points, and computed the bounds and MLE errors us-
ing one measurement for d = A, 2\ and 3\, respectively. According to [84], selecting
test points at the peaks of B,/ ! is equivalent to selecting test points at the lobes of

the maximum likelihood ambiguity function (MLAF).
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Figure 6.3: Square roots of the derived Barankin-type bound, Cramér-Rao bound,
and maximum likelihood estimation mean-square error versus signal-to-noise ratio
for narrow-band direction of arrival estimation using uniform linear acoustic vector-
sensor arrays with d = A\, 2\, and 3\, respectively.

Observe from the results of the BTB and MLE error in Fig. 6.3 that the SNR
threshold increases with the distance between the AVSs, and that increasing the
distance between the AVSs does not always improve the estimation accuracy. From
the MLAF plots in Fig. 6.4, we can see that with the increase of d, the main lobe
width of the MLAF decreases whereas the number and level of side lobes increase.
Therefore, when the d value increases, the asymptotic ML estimation error decreases
while the threshold SNR increases. This explains the phenomena observed in Fig.
6.3. Since the MLE search includes ambiguities from side lobes, we must use a global
error bound like the BTB to capture the threshold effect impact of these ambiguities
often observed at medium to low SNRs. From Fig. 3, we can see that the derived

BTB provides better estimation of the optimal distance than the CRB, which is a

local error bound and consistently decreases with the increase of inter-AVS distance.
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Figure 6.4: Variation of maximum likelihood ambiguity functions with respect to the
inter-sensor distance d.

Note that although the derived bound correctly predicts that the threshold SNR
increases with the distance between the sensors, the true threshold SNRs are about
6 to 7 dB larger than the predicted ones due to the approximation in computing the
bound. We found similar differences between the true and predicted threshold SNRs
in the wide-band DOA estimation with an AVS array of 10 sensors and the same

setup as above for the wide-band signal.

6.5 Summary

We derived a BTB on DOA estimation using acoustic sensor arrays. Numerical
examples show that this bound closely predicts the threshold SNR for DOA estimation
using scalar-sensor arrays. For the narrow-band DOA estimation using AVS arrays,
the distance between the sensors is not required to be lower than half a wavelength to

avoid ambiguity. Numerical results from the derived BTB demonstrate that increasing
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the distance between the AVSs improves the DOA estimation accuracy consistently
only at high SNRs, and it increases the threshold SNR as well. As a result, at medium
SNR values the estimation accuracy does not necessarily improve with this distance.
This predicts the behavior of the actual MLE error. The derived BTB exhibits evident

advantage over the CRB in determining the optimal distance between the AVSs.
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Chapter 7

Conclusions

In this dissertation, we proposed new signal models, maximum likelihood (ML) es-
timators, and performance analysis results for some selected topics in underwater
direction-of-arrival (DOA) estimation. In the following, we first summarize the key

contributions of this dissertation, and then discuss possible topics for future research.

7.1 Key Contributions

We first considered the DOA estimation problem in spatially colored noise using
sparse sensor arrays, for which we developed new ML DOA estimators for both zero-
mean and non-zero-mean Gaussian signals based on an Expectation-Maximization
framework. We derived the CRB on DOA estimation of non-zero-mean Gaussian
signals, and the asymptotic error covariance matrix of using the typical stochastic
estimator, which assumes zero-mean Gaussian signals, for DOA estimation of non-
zero-mean Gaussian signals. Our analytical comparison and numerical examples show

that the non-zero means in the signals improves the accuracy of DOA estimation.
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Next, we considered the narrow-band DOA estimation of hydroacoustic signals from
marine vessels containing both sinusoidal and random components, for which we
presented a new signal model and derived the ML estimator for DOA finding of such
hydroacoustic signals. We computed the asymptotic error covariance matrices of
the proposed ML estimator and the typical stochastic estimator assuming zero-mean
Gaussian signals on DOA finding of such hydroacoustic signals, which, together with
our analytical and numerical comparisons, showed that the proposed signal model
and estimator improve the DOA estimation accuracy for the hydroacoustic signals

from marine vessels in comparison with the typical stochastic ones.

We then generalized the narrow-band DOA estimation results to the wide-band case
for hydroacoustic signals from marine vessels through narrow-band decomposition
and Fourier series expansion. We proposed the wide-band measurement models and
ML estimators. We showed that compared with the typical stochastic estimators, the
proposed ML estimators provide better performance for wide-band DOA finding of

the hydroacoustic signals from marine vessels.

At last, to identify the SNR threshold region, we derived a Barankin-type bound on
DOA estimation using acoustic sensor arrays. Numerical examples show that this
bound closely predicts the threshold SNR for DOA estimation using scalar-sensor
arrays. The derived Barankin-type bound also demonstrated that increasing the dis-
tance between the acoustic vector sensors improves the DOA estimation accuracy
only at high SNRs, and it increases the SNR threshold as well, and the estimation
accuracy does not necessarily improve with this distance at medium SNR values.
This predicts the actual behavior of the ML estimation error. In addition, the de-
rived Barankin-type bound exhibits evident advantage over the Cramér-Rao bound

in determining the optimal distance between the acoustic vector sensors.
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7.2 Future Work

In our future work, we will develop new schemes to improve the efficiency of DOA
estimation in spatially colored noise using sparse sensor arrays. Sparse modeling
techniques [85]-[89] have been shown to be quite efficient and accurate in DOA es-
timation under spatially white noise. However, concrete sparse modeling methods
for DOA estimation using sparse sensor arrays under spatially colored noise have not
been addressed yet to the best of our knowledge. We will develop novel and efficient
sparse-modeling-based estimators for DOA finding under spatially colored noise using

Sparse Sensor arrays.

Also in our future work, we will develop new methods to improve the accuracy and
efficiency for DOA estimation of hydroacoustic signals from marine vessels. We will
develop new DOA estimation methods based on the sparse modeling on both DOA
and sinusoidal frequencies to improve the estimation efficiency. For the wide-band
estimation based on Fourier transform, we will develop efficient estimation schemes
based on the measurement model proposed in (5.5) to improve the estimation per-
formance. This model is more accurate than the one in (5.12), based on which the
current estimator in Chapter 5 is developed. We expect it to introduce a better

estimator than the current one proposed in Chapter 5.

For the Barankin-type bound, we will develop more accurate computation of the
Barankin bound for high-dimensional unknown parameter vectors as well as better
signal models such as those assuming Gaussian signals. We will aim to improve the
approximation of the Barankin bound on DOA estimation by developing new test
point selection methods and considering alternative approximation approaches of the

Barankin bound such as the one in [81].
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Appendix A

Proof of Theorem 1

Let 3 = [OT, o7, l_)T]T be the real column vector containing all the unknown param-
eters, where 9 is the real column vector containing the unknown parameters from P
and Q, and b is the real column vector containing those from b. According to the

Fisher information matrix equation [42], we have

[FIMy]i = 2NRe {G[A(e)b]HRla[A(e)b] }

9By 9B,
OR OR
+Nt Rl—Rl—} , Al
race { a5, 5 (A.1)

where FIM); is the mixed Fisher information matrix, [FIMy]y is the (k, [)-th element

of FIMy;, Re{-} denotes the real part of a complex number, and (5 is the k-th element
of 3.

Let F4 be the matrix whose entries are from the first term on the right side of (A.1).

If 3, is a parameter from d, we have

9[A(0)b]

o5~ (A.2)

As a result, we obtain
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Fie0 Faoes Fgyop Fi90 0 Fyg

Fa=| Foso Fass Fasp | = O 0 O : (A.3)
Fage Fass Fab Fage 0 Fagp
where F'y g9, Fqs,--.,F 455 are the sub-matrices of Fq containing the elements

related to the parameters specified in their subscripts.

Similarly, let F's be the matrix whose entries are from the second term on the right

side of (A.1). Since

OR
— =0 A4
35, (A.4)
if By is a parameter from b, we have
Fgsg9 Fso5 Fgop Fsg9 Fsgs5 0
Fs=| Fsso Fsss Fssp | = | Fsso Fsass O |- (A.5)
Fsio Fsps Fspp 0 0 0

Combining the results from (A.3) and (A.5), we obtain

Fy90+Fsgo Fsos Fqop
FIMy=F,+ Fq = Fq 50 Fgss 0 . (A'6)

F d_bo 0 F d_bb

Therefore, we have

-1

. stg 0 FS,&O
CRB, 'y = Faoo + Fs oo — [Fsos Fqop)
0 Fip Fi 5o
= Fd,GO — Fd,ﬂl_)Fd_},BF(Ii{,BI_) + FS,GO - FS,95FS_7155F§[,957 (A7)
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where
Fs 99 — Fs0sFg 55F§ g5 = CRBg . (A.8)
For 1D DOA estimation, we have

0[A(0)b] _ , da(b)

=b A9
89[ 1 d@l ) ( )

where b; is the [-th element of b. As a result,
—a[gég)b] =DH, (A.10)

where H = diag{b} is a diagonal matrix with diagonal elements from vector b.

According to the results in [19], we have

Faoo — FoosF 3 ;F o5 =2NRes H'D

RIIZR > = Q *1I:Q . (A.12)

For 2D DOA estimation, we have

A0 da@) [t 07 [da(6) da(@)] [ b 0
o6; 06/ [0 bl]_{dqf)z’ dleO bl]’ (A.13)

104



and thus
J[A(0)b]

80T == DQHQ, <A14)

where Hy = H ® I, and I, is the 2 x 2 identity matrix.

Therefore, for 2D DOA estimation,

Faoo— FogsF L F 0 = 2NRe {Hf DY HJA;DQHQ}
—2VRe {( D, TIED; )0 [(067) @ A]"}
—2VRe {( D, TIED; )0 [(06™) @ A]"}
= CRB}, (A.15)

We thus prove Theorem 1.
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Appendix B

Proof of Theorem 2

If the stochastic ML estimator is used for DOA estimation of mixed signals, as the
number of measurements N increases, the stochastic log-likelihood function tends to
the asymptotic stochastic log-likelihood function with signal covariance matrix equal
to Ry = P + bb" , and we are still able to obtain consistent estimators for 8, R,

and Q.

Let f(Y; «) be the pdf based on the stochastic measurement model with a the real
column vector containing all the unknown parameters from 0, R,,, and Q. Assuming
& is the ML estimator of o, we apply a Taylor expansion as follows around the true

value of a, which is denoted by «.

Oln f(Y; ) Ol f(Y;«)
Ja s Do oo
*In f(Y; ) .
LA — a:d( —ay) =0, (B.1)

where & is a vector value between oy and &. Thus we have

a

e [LPWf(Yi0)]
o = N  OdadaT

10lnf(Y; @)
& {N da ]

a= a=ag
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Using equations (15.47) and (15.48) in [42], we can show that

Ol f(y(t); @) _
{ (e } o B3
9*In f(y(t); o) __10R _ _10R
E { darden aao} =trace {R (?osz 8al} (B.4)

Note that the expectations in (B.3) and (B.4) are computed under the pdf of the
mixed measurement model. This also holds for the all the following expectations in

this proof.

According to the central limit theorem, the second term on the right side of (B.2)

follows a Gaussian distribution with mean

1 0ln f(Y; o)
E{N Oa

} ~0 (B.5)

a=ag }

1S omfy®)o) [ o f(y(s); @)
N2E{[z altye) |52 falphe

and covariance matrix

B 1 0nf(Y;0)0ln f(Y; )
N? O oaT

s=1

a:ao}

:L {alnﬂ y(t); ) 9l f(y(t); o) }
N? —1 oaT o
alnf o) 0ln f(y(1); @)
N { 9ol . } (B.6)

Using equations (15.47) and (15.48) in [42], and after some algebraic manipulations,

we obtain
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. {8lnf(y(t); o) 9l f(y(t); o)
Oy, Jdoy

:E{yH()R gffz vy (R 2R <>}

__10R __10R
—trace {R 57&;6} trace {R a—al} . (B.7)

Applying Lemma 2 to the first term on the right side of (B.7), we obtain

a=Qo }

{8lnf( y(t); @) dln f(y(1); )

8% 8041
= trace{ R~ 16RR 10R — traces R~ laRR
80% 804; aak
cAbb At R OB B AbeAH} (B.8)
Qy

Thus, we have

. {mnf(y(t);a) Ol f(y(1); @)

da oaT

}:FSS_Fba (B.9)
a=Q

where [Fssli and [Fp)p are equal to the first and second terms on the right side of
(B.8), respectively. Note that Fgg is the Fisher information matrix for e under the

single measurement pdf f(y(t); c).

For the first term on the right side of (B.2), according to the law of large numbers

and the consistency of &, we have the following result as N — oo:

1 f(Y; o) 10 f(Y;a)
N OJa0o _ N OJa0q a—a
In f(y(t); @)
—E { Darde ol (B.10)
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From the result in (B.4), as N — oo, we obtain

i@z In f(Y; o)
N  OdadaT -

a=o

— Fgs. (B.11)

According to Slutsky’s Theorem, as N — oo, & — a asymptotically follows the

Gaussian distribution N'(0, C 4), where the covariance matrix

1 _ 1 _ _ _
Cy= NFSSI<FSS - Fb)Fss1 = N(Fss1 - FslebFssl)- (B.12)

Now let us consider the asymptotic error covariance matrix ACg_g for DOA estima-

tion, which is a sub-matrix of C'4. According to (B.12), we have
ACsg=Cs9—Cha, (B.13)

where C's g and C} g are the sub-matrices related to 8 in FgSI/N and Fg;Fngsl/N,
respectively. Note that Cg g is the stochastic CRB on DOA estimation with mea-

surements from CN(0, R). Thus, to prove this theorem, we need to show Cp_9 = 0.

We first reformulate F' as follows.

[Fylu = trace{ g—RRlAbeAHng—RRlAbeAHRl}

73 QY

_ ( or )H [(R‘lAbeAHR‘l)T

day,

o (R Abb" AR ) } ( or ) , (B.14)

doy

where 7 = vec{R}. The following equation [44] is used in the derivation of (B.14):

trace{ ABCD} = (Vec{AT})T(DT ® B)vec{C}, (B.15)
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which holds for any matrices A, B, C, and D that can make the product ABCD.

Thus, from (B.14) we can formulate F'y as

Fy = (%)H { (R_lAbeAHR_1>T ® <R_1AbeAHR—1> ] %
::¢H{(Abﬁﬂl) QMmHA_>1¢
=o{[(an e av)] (an o a0 o -
where
A=RA, (B.17)
@::<Rg®1%%)§%%- (B.18)

Let a = [07, p”, q"]", where p and q are real column vectors containing the unknown

parameters from R, and @, respectively. We partition ® into [43]

Y or | or Or
=U¥|=|R ? Q@R ? B.19
ot = (R om0 (B.19)
where W can be further partitioned into
_ T 1\ [ or | OF
= = (R QR 2 B.20
viw) = (R o r ) [T, (B.20)
Similarly, we partition Fsg into [43]
U v uv"w
Fgs = U, ¥| = ) (B.21)
wh vy o
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According to the results from (B.16)-(B.21) and after some matrix manipulations, we

can express Cp g as

Cro=T_TYH

where

T = (UTIRU) U [(Ab) @ (Ab)] .

From the result in [43], we have
Iy = Iy — W [WH I W~ ' wig,
where IIy; can be expressed as
My =M. 4 =TI + 11, @ I - I3 © 5.
Then we obtain

Iy | (Ab)" @ (Ab)|
— [[en} + T @ T - I 1] [(Ab)” @ (Ab)]
= (Ab)" ® (T3 Ab) + (I3 A'b") ® (Ab)

— (- A'b") ® (I Ab) = 0.

Therefore we have X = 0 and Cp ¢ = 0. The theorem is proved.
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Appendix C

Proof of Lemma 2

From Theorem 1 in [46], we have

E {a:HBazmHDaz} = E{:cHBa:}E{mHD:B}

+E{z" © 2"} E{(Dz) © (Bz)}

+E{z"E{Bzz" } Dz} — 2E{z" }E{Bx}E{z" }E{Dz}.

Note that

E{z" Bz} = trace{ B(C + pp")},

E{z" @ 2"} E{(Bz)® (Dxz)} = (u" ® p")
x[(Bp) ® (Dp)] = p"' Bpp" Dy,

E{z"E{Bzxz"} Dz} = E{z"B(C + pp")Dx}

= trace{ B(C + pp" )E{Dzz"}}

= trace{ B(C + pp")D(C + pp")}.
Substituting (C.2), (C.3), and (C.4) into (C.1), we obtain (2.92).
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Appendix D

Proof of Proposition 5

For 1D DOA estimation of mixed signals, according to the result in [19], we have

— CRB}, + 2NRe { (Df ijb) ® PT} . (D.1)

Note that 2INRe { (Df Hﬁf)g) ® PT} is the inverse of the asymptotic deterministic
CRB on DOA estimation with signal and noise correlation matrices equal to P and

Q. In [43], it was shown that
CRB;., < 2NRe { (bf HﬁDQ) ® PT} . (D.2)

According to (2.79) and (D.2), we obtain (2.94) for 1D DOA estimation.

For 2D DOA estimation, we have

ACRB;!, = CRB;} + QNRe{ (D
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According to Proposition 2, we have

CRBs, > %9—1, (D.4)
where
%Ql = %Re{ (DimiD,) o <PAHR_1AP)T @A } 1
> %Re{(bfl’[ﬁf)g) © (P A)}_l, (D.5)
since P> PA"R AP [8]. Thus we get (2.94) for 2D DOA estimation.
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Appendix E

Proof of Proposition 6

The first inequality in (2.95) was proved for 1D DOA estimation in [8]. For the 2D

case, since both R,, and R, + o> (AH A)_1 are nonsingular, we have
T
N{RY, ® A} =N { (Rew + 0*(474) ") @ A} .

Note that

l(Rm + aQ(AHA)_1>T ® A] ' (Rew + 0 (AHA)_1>_T @ Al

According to Proposition 3 and Lemma 3, we have

ACp o > %{Re{ (D§ Hj-,DQ) © [(R;;
-1

+02R;;(AHA)’1R;;> - ® A} }} = ACgy.

The last equality in (E.3) holds from (2.88) and the results in [§].

(E.1)

(E.2)

(E.3)

We now prove the second inequality in (2.95) for 1D DOA estimation. The 2D case

can be proved in a similar way. When @ = oI, we have the asymptotic deterministic
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CRB as [7]

2
ACRBp = ;—Nﬁe{(pgf 4D, © R}

According to the results in Theorems 1 and 2, we obtain

ACRB;!, — CRB;/, = Q(I—J;TRe{ (DHIT4 D)
o|P-PA"(APA" +5°T) 1AP} T}

— 2NRe{ (D"I4D) © (o*P~' + A7 A) _T},

ACRBj, — ACZ), = i—fRe{ (D"TID) © | Reo
~Roa A" (AR, A" + 0°T) _IARM] T}

_ 2NRe{ (D"TI4D) © (02R;; + AHA) _T}.

The second equalities in (E.5) and (E.6) hold from the results in [§].

For mixed signals, we have

R,, =P +bb > P.

Thus, we have

ACRB;!, - CRB,;/, < ACRBy!, — ACg},

from which we obtain the second inequality in (2.95).
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Appendix F

Proof of Lemma 3

We first present the following lemma [47] before proceeding to the proof.

Lemma 4. Suppose a Hermitian matrix

T S
W = (F.1)
s D

1s partitioned symmetrically such that T and D are also Hermitian matrices. Then

W >0 if and only if T >0, D — ST'S >0, and N{T} C N{SH}.

Using Lemma 4, we can easily show that the matrix

C B
>0 (F.2)
B BC'B
As a result,
AoC AOB A A C B
Re = Re ®©
A®B A0 (BC'B) A A B BC'B
> 0. (F.3)



Thus, it holds that
Re{A® (BC'B)} —Re{A® B} {Re{A® C}} 'Re{A® B} >0, (F.4)

from which we obtain (2.96).
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Appendix G

Proof of Equation (3.8)

Using the Woodbury matrix identity [60], we have
(APAH _’_Q)*l — Qfl o QflA(Pfl _’_AHQflA)*lAHQfl’
from which we have

AT(APAT 1 Q)" = ATQ ' - ATQ A
><(P—l + AHQ—IA)*lAHQ—l

— AfQ! [P T (AHQ—lA)*l} “patgt
and

AT(APA" + Q) 'A=ATQ A - ATQ'A
x (P + ATQA) ' ATQ A
—AQTA(P T + AMQ AT P

_ [P + (AHQ‘lA)_I]_I
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We thus have

[AH(APAH -+ Q)_lA] T (APA" + Q)7
_ [P n (AHQ‘lA)_l]{IL - [P + (AHQ—lA)_l] _1P}AHQ—1

= (AHQflA)_lAHQfl' (G4)
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Appendix H

Proof of Proposition 8

Let a = [BT,(ST,bT]T, where § = [p?,07]T, and b = [c!,w?]?. According to the

Fisher information matrix equation [42], we have

[FIMu|mn = 2Re{ Z aHH(t)R_1 ont) } + Ntrace {R_lg—RR_1 OR } , (H.1)

(9ozm aOén aOém, aan
t=1

where FIM)y; is the Fisher information matrix for a, [FIMy,, is the (m,n)-th
element of FIM);, Re{-} denotes the real part of a complex number, pu(t) = ACep(t),

and «y, 1s the m-th element of .

Let Fp be the matrix of the same size as FIMy;, with [Fp|,., equal to the first term

on the right side of (H.1). If o, is a parameter from 4, we have %‘fT(mt) = 0. Therefore,

Fp o0 Fpoes Fpoos Fp oo 0 Fp gy
Fo=|Fpse Fpss Fpep | = 0O 0 O , (H.2)

Fppe Fpoos Fpop Fppe 0 Fp gy

where F'p g9, F'p gs, - - -, Fpwp are the sub-matrices of F'p containing the elements

related to the parameters specified in their subscripts.
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Similarly, let F's be the matrix of the same size as FIM), with [F's],,, equal to the

second term on the right side of (H.1). Since

OR

0
ooy,

if o, is a parameter from b, we have

Fgs g9 Fsg5 Fsop Fgs 99 Fsg5 0
Fs=| Fss0 Fsss Fsso | =| Fs.so Fsss 0
Fsvo Fsps Fgspp 0 0 O

From the results in (H.2) and (H.4), we obtain

Fpo9 + Fs oo Fsos Fpop
FIMM: FD+ FS: FSJsg FSJsa 0
Fp e 0 Fpuw

from which we have

CRBy'y = Fpoo + Fse0 — [Fsos Fp_ov)

-1

Fsss O F's 50
X

0 Fpa Fp 46

—1
= Fp oo — FpovF'py o0 F'D v

+Fs.00 — Fs 05 F3 55Fs 50,

where

Fs00 — Fs 05 F5 55Fs.506 = CRBg .
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Using the result in [57], we have

Fpoo — Fp oo Fp'y Fbobe
— 2NRe { (p"miD) e <CR¢¢CH>T}
— 2NRe { (D"miD) o <CR¢¢CH>T}

— CRB;,, (H.8)

where D =R :D, A=R ?A, D =Q D, and Ry = % Zi\il p(t)p(t), and ©
denotes the Hadamard product. The second equality in (H.8) holds from the following

result given in [43]:

N

R:MGR™: = Q:I5Q =, (H.9)

Substituting (H.7) and (H.8) into (H.6), we obtain (3.30).
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Appendix 1

Proof of Proposition 9

We first give a proof that the ML estimation is consistent, which we believe is neces-
sary since the typical conclusion (see [42]) that the ML estimation is consistent does

not straightforwardly hold here due to the temporally non-stationary measurements.

Let ag = [0L,60,ct, wl]” be the vector of true parameter values. Also we let

Ay = A(0y) and ¢y = P|w—w,- According to (3.11), we have the LL function as

L(a) = —log |R| — trace { R"' Ry, } , (I.1)
where
1
Ryy = N[Y - AC¢] [Y - AC¢]H
1
= N[Y - AOCO¢0 + AOCO¢0 - AC¢]
XY — AgCop, + AgCopy — AC )"
= Ryy,O + Ryy,l + Ryy72 + ng,Qv (1-2)
in which
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1

Ryy,O = N[Y - AOCO¢O][Y - AOCO¢0]H7
Ry = [40Codsy — ACB[ACosy — ACH)",
Ryyo =Y — ACoy ]| ArCogyy —~ ACH". (13)

Let r,, be the m-th column of the matrix +[Y — AgCoe,][AeCo]”, which can be

expressed as

ro = 1 S (1)~ ACopo(v (1), (14)

where v,, is the m-th column of (A¢oCy)”. Note that the auto-covariance matrix of
y(t) — AgCopy(t) is Ry, the true value of R. Therefore, we have
N * T
T Zt:l %o (t)SOO (t) * (15)

cov{r,} = Ryv,, N7 v

21]5\7:1 P (t)¢g(t)

3 — 0 as N — oo, we have

Since
TIY = A0Coty[4sCod )" 0 (16
in probability when N — oo. Similarly, we can show
S — ACuJ[AC" - 0 (17)
in probability as N — oco. Therefore, we have

Ryy» — 0 (1.8)

in probability as N — oo.
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Since the limits of %qf)oq’)g] , %q’)cﬁH , and %cbq’)g] exist when N — oo, the asymptotic
value of R, also exists as N — oo. For instance, %(ﬁoqbé{ converges to I; as
N — oo. We hence have the asymptotic value of Ry, ; when w = wy as

as [A()C() — AC] [A()CO — AC]H (19)

yy,l —

As a result of (1.8), (1.9), and the fact that R,,, — Ry in probability as N — oo,
we have

R,, — Ry + R®

yy,1

(1.10)

in probability as N — oo. We thus obtain L(a) converges in probability to its
asymptotic value L**(a) from the continuous mapping theorem [58]. Using the Lévy’s

Theorem [61], we have L(a) also converges with probability 1 to L*(a).

Note that

L*®(a) = —log |R| — trace { R (Ro + R, ) }

yy,1

< —log|Ry + R™,,| — M, (L11)

yy,1

where the inequality holds from the following Lemma 1 [37].

Lemma 5. Let 3 be an M x M positive definite matriz. Then, for a > 0 and b > 0,
|R| " exp{—atrace{ R"'Z}} < |aX/b| " exp{—Mb} (I.12)

for all M x M positive definite matrices R. The equality holds if and only if R =
aX/b.
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When a = oy, we have R = Ry, R, ; = 0, and thus

L*¥(ay) = —log |Ry| — M > L®(ax), (I.13)

from which we can see that the asymptotic LL function achieves its maximum at
a = . Assuming a unique maximum point for the LL function, we obtain the ML

estimation is consistent since the LL function is differentiable [62].

We now derive the asymptotic error covariance matrix of the mixed ML estimator.
Let a = a; + ay be the length of o, and a; and a, be the lengths of [87, 67, c’]” and
w, respectively. We first define a new matrix I'y, which is a a x a diagonal matrix
with the first a; diagonal elements equal to v/N and the last ay diagonal elements
equal to NvV/N.

Assuming fy (Y; «) is the pdf from the narrow-band measurement model and é& is

the ML estimate of a, we apply a Taylor expansion on fy(Y;a) around oy such

that
o fy(Y; o) Ol fy(Y;a)
da e Do aaq
?In fy(Y; a) X B
Sodo’ - (& —ap) =0, (I.14)

where a is a vector value between g and &. Thus we have

-1

Pinfy(Yie)
dadal N

FN(d - ao) = — I‘]_Vl

{F;@ln fgLY; a)}

a=&

Let
o1 fyi0(y(1); @)

— T ‘ .
T N 8a a=oag

(1.16)
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Using the results in [42], we have E {v,} = 0 and

B opt(t) _ Op(t)
[COV{I‘NPYt}]mn_ 2Re{ 8am R aan a=ayp
—l—trace{R_l—aaf R_lgolz:i} 7 o

We let F4(t) and Fg be matrices with [Fq(t)]m, and [Fg|,, equal to the first and
the second terms on the right side of (1.17), respectively. For simplicity, we omit the

subscript a = oy in the following equations.

The formula of F, which is not dependent on w, ¢, and t, has been well addressed

in [43]. We now consider the expression of Fq4(t). Since

(t) Delwm?

T Acy, o Ac,, - jtelmt, (I.18)
where ¢, is the m-th column of C, we have
op(t y
&‘)(T) = (pit)® A)C, (1.19)

where @4 (t) = [jte’t, ... jte’*!|T and C = blkdiag{c,, ..., c;} is a block diagonal

matrix with the J diagonal blocks equal to ¢y, ..., ¢c;. From the results in [57], we
have
o (t
M~ [(¢"()C") © Iu] Da, (1.20)
op(t)

9cr [1L,jl@e' ()@ A, (I.21)

where D 4 = dvec{A} /00" . Therefore,
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= 2Re{C"|(Cot)pf (1)) @ (A"R™)| D4}, (1.22)
Lile (eWeli )" @ (A"R7A)|}, (123)

)" @ (A"R4)|C}. (1.24)

The expressions for Fq ge(t), Fqec(t), and Fg c.(t) are given in [57] as

Fq0(t)= 2Re{D§{ [(Ccp(t)cpH(t)CH)T@) R—l}DA}, (1.25)

Fooo(t) = 2Re{[L] @ [D] ((e(e”0C™) @ RA) |} (126)

chc(t):2Re{ 1. / ®[(<,o(t)<pH(t))T® (AHR—lA)] } (1.27)
—j 1

From the results in (1.22)—(1.27), we have the covariance matrix of the second term

on the right side of (I.15) as

N

Z cov{vy,} = Fq+ F, (1.28)
t=1
where
Fi00 0 Fyoc Faoo
N 0 0 O 0
Fy=) Ty'Fy(t)Ty'= : (1.29)
t=1 Fd,ce 0 Fd,cc Fd,cw
Fd,wﬂ 0 Fd,wc Fd,ww
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Fag9 =+ Zi\il Fae(t), Faoc = ~ Zi\;l Faoc(t), Face =~ Zz{il Fyco(t), Fawe =
SN Fawe(t), Fawe = w5 >y Fawe(t), and Fauww = w5 >0 Fawelt). We
can see that the expressions for Fq g9, F'q 6c, - - -, Fla.we can be obtained by replacing
()" (1), (1)1 (1), and i, (D)l (¢) in (1.22) (1.27) with Ry = & T, 0(t)0" (1),

Ryg, = = > ()@l (t), and Ry 4, = 15 Sy @a(t)pl (t), Tespectively.

As N — oo, we can easily show that ﬁ¢¢, R¢,¢ > and R¢ 1bq all converge to finite

matrices. Therefore, as N increases, Fq converges to a finite matrix F'3’ and

N
Z cov{vy,} = F¥ + F. (1.30)

t=1

Let 4, = v/ N=,. Examining the results in (1.22)—(1.27), we can see that cov{#,},...,
cov{%x} remain finite as N increases. Therefore, for arbitrary ¢ > 0, we have as

N — oo,

a)d 5,12 5, (3 @) dy, — 0. (131
Z/ ||>e”7tH f‘n Vi a)dry, = NZ/ oV 12| f‘yt(’)/t,a) v, — ( )

From (1.30) and (I1.31), we can see that the sequence 74, -+, satisfies the condi-
tions in Theorem 3. As a consequence, we have Zi\il ~,, which is the second term on

the right side of (1.15), asymptotically follows NV (0, F3* + F).

We now consider the first term on the right side of (I.15). Using the result in [42], we

have

O0ln fy(t)<y(t>; ) = —trace{Rla—R} + [y(t) — M(t)]H

ooy, O,
xR_l(aaa—iR_l[y(t) — p(t)] + [y(t) — w(®)]"
0 ) oy ) ), (1.32)
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Taking the second order partial derivative for (1.32), which resorts to equation (15.48)
in [42], we can obtain after some algebraic operations that (detailed derivation, which
is lengthy but simple, is omitted here)

82 In fY(Y7 a) I\fl

1-\71
N dadal N

— —(F* + F.) (1.33)

a=&

as N — oo. Note that & — ay as N — oo due to the consistency of a.

According to Slutsky’s theorem, the result in (1.33), and the fact that S  ~, asymp-
totically follows N(0, F%’ + F), we conclude that & — ey asymptotically follows
N(0, T (F¥ + F,)~'T'y"). From (L17) and (1.28), we can see that I'y(Fq+ F)T'y
is the Fisher information matrix for a.. Using the fact that Fq converges to Fg as
N increases, we obtain that the asymptotic CRB also equals Ty (F% + F)~'T'y'.
We thus prove the proposition. The asymptotic CRB on 8 can be obtained by using

(3.30) and replacing Ryg in (H.8) with an identity matrix of the same size.
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Appendix J

Proof of Proposition 10

If the stochastic estimator is used for DOA estimation of mixed signals, the objective

function to be maximized is the stochastic LL function

(J.1)

" J2¢ L YYH
L(6,P,Q) = —log }APA + Q| — trace{ [APA + Q} }

N

As N increases, YY /N converges to the true value of APA® + Q. Thus, the

stochastic estimator provides consistent estimates for 8, P, and Q.

Let fy(Y;€) be the pdf based on the stochastic measurement model. Assuming £ is
the stochastic estimate of &, we apply a Taylor expansion as follows around the true

value of €, which is denoted by &,.

Ol fy(Y;€)| _ 0lnfy(Y;§) 0 lnfy(Y;E)‘

85 Lé ag '550 aéagT (€ - EO) == O, (JQ)

£=¢

where é is a vector value between &, and é . Thus we have

£=¢

5 O fy(Y; €)1
V- &)=~ | s

R IR
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For simplicity, we omit the subscript & = &, in the following equations. Using equa-

tions (15.47) and (15.48) in [42], we can show that

Ol fyg)g(y(t% & _ —trace{R_lgTR} + trace{R_lgTRR_ly(t)yH(t)}, (J.4)

I fyw(y(t);€) . _1OR . _10R .1 OR
9€,. O€, —trace{R 0§_mR 6—£ﬂ}—trace{R 8§m8§n}
—trace{R_lg—gR_l%R_ly(t)yh’(t)}
1 OR . "
B R w0

—trace{RlgTRRIgTRRIy(t)yH(t)}. (J.5)

—l—trace{R

Thus we have

E{aln fyg)g(j(t);@} = trace{KmR(t)} - trace{R_I%}, (3.6)

where K,, = R 1596_1:12—1 and R(t) = R+ p(t)u™(t). Note that the expecta-
tion in (J.6) is computed under the pdf of the mixed measurement model. This
also holds for the all the following expectations in this proof. Using the fact that

~ Zi\il y(t)y*(t) = R as N — oo and the consistency of €, we have

1 0%In fy(Y;€) __10R ._10R

N—aﬁmafn Lg — —trace{R ER 0_571}7 (J.7)
as N — oo.
Let

'Yt:\/_N’Yt—\/N € )

and [, be the m-th element of 4,. Using the results in (J.4) and (J.6), we have

133



il = E{[Film } = trace{ K. [y(t)y" (t) — R(1)] }

= trace{ K, [g(t)g" (t) + g()u" (t) + u(t)y" () — R] }, (J.9)

where g(t) = y(t) — p(t). Using (J.9) and algebraic manipulations, we have the

covariance of [%,],, and [¥,], as

cov { il Fln} = 32 Gul0), (1.10)
where
Gy ( E{trace{Kmy( )" () }trace{ K, y(t )yH(t)}}
= trace{ K, R}trace{ K, R} + trace{ K,,RK R}, (J.11)

Gs(t) = —E{trace{ K, R}trace{ K, y(t)y" (1)} }
= —trace{ K,, R}trace{ K, R}, (J.12)
Gs(t) = B{trace{ K[y (t)u" (t) + n(t)y" (1)1}

xtrace{ K, [g(t)p" (t) + p()g" (1)) }}

= trace{ K,, RK ,u(t) ™ ()} + trace{ K, u(t) u" (t) K, R}, (J.13)
Gy(t) = —E{trace{ K,y (t)y" (1) }trace{ K, R} }

— —trace{ K, R}trace{ K, R}, (J.14)
G5(t) = trace{ K, R}trace{ K, R}, (J.15)
Go(t) = E{trace{ K ,.[g(t)u" (t) + ()" ()] }trace{ K,y (t)g" (1)} }, (J.16)
Gr(t) = E{trace{ K,,g(t)§" (t) Htrace{ K ,[g(t)u" (t) + O}, (3.17)

Note that we obtain (J.13) by the fact that E{g(t)g" (t)} = 0, and equation (J.11)
comes from Appendix 15C in [42]. Substituting the results in (J.11)-(J.17) into (J.10),
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we have

cov{ [Felm: [Yiln} = Go(t) + Gr(t) + trace{ K, RK ,R}

+trace{ K, RK ,u(t)p" (1)} + trace{ K, u(t)u” () KR}, (J.18)

Since +~ S pu(t) = 0 and & SN (1) (1) — I, as N — oo, we have

(J.19)
t=1
1 N
~ > Gq(t) =0, (J.20)
t=1
and
1 N
N ,u ) — AcCcH? A" (J.21)

as N — oo. From (J.18)-(J.21), we obtain

N
Zcov{'yt} — Fs— F
t=1

(J.22)
as N — oo, where
[F&limn = trace{R_l g? R g?} (J.23)
[F)mn = trace{KmACCHAHKnACCHAH}. (J.24)

In addition, we can see that <, is a random vector with finite correlation matrix
Therefore, as N — oo,

el v v = / Yill* £, (13 )y, — 0. (J.25
S [ b= X[ G0 02
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From Theorem 1, we have S | [v: — E{7,}] asymptotically follows N'(0, Fg — F,).

According to (J.6), we have

E{[¥/m} = trace{ K,, R(t)} — trace{ K, R}

= trace{ K, AC[p(t)p" (t) — I,J]C" A"}, (J.26)

from which we have S | E{~,} = 0 as N — oo since \/—% SV [p(t) (t)—1,] — 0
as N — 0o. As a result, we can see that Zi\; 1 V¢, which is the second term on the
right side of (J.3), asymptotically follows N (0, Fg — F,). From this result and the

result in (J.7), we have £ — &, asymptotically follows N (0, w)

N

Using the property that
trace{ ABCD} = (vec{AT})T(DT ® B)vec{C} (J.27)

for arbitrary matrices A, B, C, and D that can produce ABCD [63], we rewrite

[F ) = trace{gTRRIACCHAHngTRRIACCHAHRI}

_ <§%) ’ [ (R‘lACCHAHR‘l)T

® (RlACCHAHR1>] (g—;) , (J.28)

where 7 = vec{R}. Thus we can formulate F, as

or " .1 . _\T
F,= <—T) {(R AcCAMR)
o€

® (R‘IACCHAHR‘I) ] %
_ ol [(ACCHAH) '® (ACCHAH) }@, (J.29)
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where A = R_%A, and
1N Or
) ar (1.30)

Thus, we have
F'F,F' =WwW", (J.31)

where W = F'®"[(A"C") ® (AC)].

We partition @ into

__r .\ [Oor Or | or
o = —(R*aR> 32
[U|V] (R ®R ) [aeT’aaT apT}’ (J.32)
and partition Fg (note that Fig = ®”@® from (J.27)) into
u” v'v u'v
Fg— U, V] = . (J.33)
v viu viv

Applying the block-wise matrix inversion (see equation (2.8.17) in [63]) to F'g and

employing some algebraic matrix operations, we obtain
W, = (U'TLU) UG [(A'C) ® (AC)], (J.34)

where W, is the matrix consisting of the first I, rows of W, and [, is the length of

p.

According to the result in [43] that

My =Ty, = TOI; + I, © T — 1T, @ II, (J.35)
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we have IT; [(A*C*) ® (AC)] = 0 and Wy, = 0. However, checking the value of
W(zp+1):zg7 we find that it is not 0 in general. Therefore, Fg_lF#FS_1 is a matrix with
the bottom-right [; x [; sub-matrix non-negative definite, while all other elements
equal to 0. Note that l; and [l are the lengths of p and &, respectively. Thus,
the asymptotic error covariance matrix on p equals the upper-left [, x [, sub-matrix
related to p in FT?, which is CRByg ,, and the asymptotic error covariance matrix

on 0 equals CRBg ,. The asymptotic error covariance matrix on p should generally

not be larger than CRBg ;.
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Appendix K

Proof of Proposition 11

Applying block-wise matrix inversion (see (2.8.17) in [63]) to (H.5) and using the

results in (H.8) and [43], we have

1 —1
1 CRB,,+F M
ORBy/, = N b6 (K.1)
MT T
where
1 -1
F= N (Fs.00 — Fs,ost,ppFS,pe)
- - - -1 o~ T
- 2Re{ (DHnﬁp) © (PAHR 1AP) } (K.2)
1 _
M = N (Fs.o — FsopFg . Fs po)
one{=1(B"ms) o (P1A"R )|, o
1
T= N(FS,G'O' - FS,a'pFSilppFS,pa)
_ T
—2Re{ A" (R0 T4 ) A} + A7(TI5 "0 115 )A, (K.4)

and R = Q*%RQ*%. From (K.1) and the results in Proposition 2, we have
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1 as —1
1 ~CRB +F M
SO = , (K.5)
M" T
where
CRBy,' = 2NRe{ (D"TI4D) © (cC™)}. (K.6)
Also from the results in [43], we have
1 F M
NCRBS’L =l . | (K.7)
: M T

where the expressions of ', M, and T can be obtained by replacing P and R in
(K.2)-(K.4) with P and R, respectively.

In the following we first show that
1 as — -
N(CMJ} — CRBg ) =[S, 0"II[S, 0] > 0, (K.8)
where H = A" ® A with A = R*%A, O is an M? x [, matrix with the m-th column

0, = —vec{R2(Q,Q 'AB" A" + ABA"Q'Q!)R 3}, (K.9)

and S is an M? x L matrix with the m-th column s, = vec{Z,, + ZZ} in which
Z., = AbmdﬁR_%, d,, is the m-th column of D, and b,, is the m-th column of an

L x L matrix B satisfying B?AP R"'AB = A with

—(P'+A7A) >0 (K.10)
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We show the equality in (K.8) holds by showing that the matrices on the two sides of

the equality are blockwise equal. Using the fact that PA"R AP =P - (P_1 +
~H ~\—1

A" A)

[8], we can obtain

1

~CRBy;' +F— F = 2Re{ (D"TI5D) © AT}, (K.11)

Following similar derivations in (27) and (30)-(32) in [43], we can obtain that
N N H -1~ AT
SUILL S = 2Re{ (DHH;;D> © (BAHR 1AB) } (K.12)

which equals the result in (K.11).

From the result in [8] that R'A= A(PAHA + IL)_I, we can obtain R AP =
A(AHA + P_l)f1 and

M — M = —2Re{="[(D"11}) @ (44)"]| A"}, (K.13)
Following the derivation of (27) in [43], we can similarly obtain
gs,, = vec{ll; Z2 + 7,114} (K.14)
Using (K.14) and the property that
trace{ XY} = vec{ X }vec{Y} (K.15)

for any matrices X and Y that can make XY [64], we obtain
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siTIg0, = —vec{lI3 Z% + Z, 115}
xvee{ R 3(Q.Q"AB" A" y ABA"Q'Q),)R"})
— —2Re{trace{Q,Q 'AB" A" R Ab,dQ:TTILQ*}}
= —2Re{traee{Q;AAeme§DHH§}}
= —2Re{vec{Q;}Hvec{AAemeleHHfi}}
— —2Re{vec{Q,}[(D"TI4)" ® (AA)]vec{en el }}

— —2Re{vec{enel } (D" TT4)® (AA) vec{Q,}*}. (K.16)

Note that in the derivation of the second equality in (K.16), we resort to the result in
(H.9) and the fact that 115 Z,, = 0. From (K.16), we can see that S"TI5O equals

the result in (K.13).

Using the Woodbury matrix identity, we have R = I, — A(P_1 + A

As a result,
T - T =2Re{A"|(AAA")" @115}, (K.17)

Using the property in (3.5), the facts that TI5 A = 0 and II3. = (II5)7, and the

result in [43] that
Myeoa =Ty QL + 5. @ Iy — 4 @ I3, (K.18)
we can obtain after some algebraic manipulations

o0, = —vec{II{R Q. Q 'AB"A"R™>

+RABA"Q'Q R °11}}, (K.19)
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from which we can further obtain using (K.9) and (K.15) that

oMo, = 2Re{trace{R_%ABAHQ_lQ;nR_%Hj
xR :Q,Q ' AB"A"R %}

= 2Re{trace{Q:ﬂHfiQ;ABHAHRflABAH}}

= 2Re{trace{Q;1HfiQ;AAAH}}

= 2Re{vec{Q;}Hvec{HjQ;AAAH}}

— 2Re{vec{Q, }"[(AAA")T @ TT4]vec{Q)}}, (K.20)

from which we can see that OPIIHO is equal to the result in (K.17). We thus prove

that the equality in (K.8) holds, and show Cf; , < CRBg , and C}j < CRBg,.

If the noise is spatially white, we have M = 0 and M = 0 [43]. The proof of

1o < CRBg 4 simplifies into

1 1 .
+(Ciio' — CRBg,) = -CRBy,' + F — F
_ 2Re{ (bHHJjD) © AT} > 0. (K.21)
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Appendix L

Proof of Proposition 12

Let a = [OT,ET,BT}T, where 6 = [8],---,0%]" with 6, = [pl,o}]", and b =
b, - bi]" with by = [e], wl]”. According to the Fisher information matrix equa-

tion [42], we have

K Ny,
Opef (t) 1 Oy (t)
[FIM ], Z {Z P R; o

k=1 t=1

_4,O0Ry, __0R
+ Z Nytrace {R . R,C1 8ak} , (L.1)
k=1 "

where FIM,; is the Fisher information matrix for a based on the wide-band model,
[FIM]imy, is the (m, n)-th element of FIMy, Re{-} denotes the real part of a complex

value, p,(t) = ArCrpi(t), and «,, is the m-th element of .

Let Fp be a matrix of the same size as FIMy; with [F'p|,,, equal to the first term on

the right side of (L.1). If «, is a parameter from &, we have 85 8 — 0. Therefore,

Fpeg F'y g5 Fpogp Fpgo 0 Fp g5
Fp=|Fps Fpss Foss|=| 0 0 0 |, (L.2)
Fpo Fpps Fpgp Fp0 0 Fpp g



where F'p g, F'p g5, - - -, Fp g5 are the sub-matrices of F'p containing the elements
related to the parameters specified in their subscripts. Similarly, let F's be a matrix
of the same size as FIMy with [Fs],., equal to the second term on the right side of

(L.1). Since ngL = 0 if o, is a parameter from b,

Fs 99 Fg 5 Fs gp Fs g9 Fg g5 0
Fs=|Fs30 Fs35 Fssp | = | Fsso Fs550 | - (L.3)

Fg9 Fsps Fspp 0 0 0

From the results in (L.2) and (L.3), we obtain

Fpogo + Fs oo Fg g5 Fpygp
FIMM: FD‘|‘ FS: FS,SO stg 0 ) (L'4)

Fp 50 0 Fpg

from which we have

-1

- Fss 0 Fs 56
CRBy'y = Fpeo + Fseo — [Fs95 Fp op)
0 FD bb FD bo
:FDJQ@ FD GbFD bngGb+FS OO_FS OJFS 55F§06 (L5>

Note that Fp e = > 1, Fp, 06, Fs.o0 = > 11 Fs,.00. Fop = [Fpy 0615+ Fc v,

FS,O(_S = [F5179517 T 7FSK—95K]’ where

[FDk — 9Re { Z 8“1@ k al"’k(t) }7 (L6)

aak m aak,n
OR,, OR;,
[F's, |mn = Nytrace {Rk 1aak mR 1 o } : (L.7)
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with ay,, the n-th element of oy, = [87,8; , b1 ]".

Also we have

FD,BB = blkdia‘g{FDl—blbl’ T 7FDK—beK}’ (LS)

FSJSS = blkdiag{FSL&tﬁv T 7FSK—6K6K}’ (LQ)

which are two block-diagonal matrices with the k-th diagonal blocks equal to F'p, 4,5,

and Fg, 5,5, respectively. We therefore have

K
CRBp =) (F py00 — Fo, o6, Fp, 5,0, FD, ob,
k=1
+Fg, 00 — Fs, 05, F3 5,5 F i,eak>a (L.10)

where Fs, g9 — F's, 05, F3 5.5, F& 95, = CRBg' . Using the result in [57], we have

—1 H
Fp, 60 — Fp, 06, F'p, 5,5, D, o0,

— 2N, Re { <DkHH§ka> O] (CdemmckH)T}
_ ON.Re { (Dims D) e (ckRmcgf)T}

= CRBy, 4, (L.11)

_ _1 - _1 - _1 .
where Dy = R, Dy, Ay = R * Ay, Dy, = Q. "Dy, Ry, = 5 210 (D) (1),
and ©® denotes the Hadamard product. The second equality in (L.11) holds from the
result R;EHJ;;ICR;E = Q;ﬁﬂikQ;E given in [43]. We thus show (4.13).

146



Appendix M

Proof of Proposition 13

We first prove the ML estimation is consistent, since this conventional conclusion does

not straightforwardly holds here due to the temporally non-stationary measurements.

Let Li(ay) = —log | Ry|—trace { R, 'Ry, 4, }, and auyg and oy be the true values of oy,
and a, respectively. From the narrow-band result (see Appendix C in [67]), we have
Li(a) converges with probability 1 as Ny — oo to an asymptotic value L{¥(ay)
satisfying £2%(a) < L£3%(cuo). Let N = Son | Ni, we rewrite the LL function as
Lla) = 38 Bk Ly (o). Since Sk — hy = S 7t as N — oo, we have
L(ex) converges to L¥(a) = Zszl hi L35 (o) with probability 1 as N — oo and

L¥(a) < L*(a). Assuming a unique maximum point for the LL function, we have

the ML estimation of a is consistent since the LL function is differentiable [62].

We now examine the asymptotic error covariance matrix of the mixed estimator. Let
fy.(Y; ar) be the probability density function (pdf) of Y. Applying a Taylor

expansion around oy to L(a), we have
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K —1
R B 0?1 Y. _
I'(a—ay)=—|T 1<§ ngya’“(éaj’f ak))r 1]
k=1 a=&
K
_ 8ln fY (Yk ak)
1 E k ’

where & is the ML estimate of a, & is a vector between oy and &, and I' is a diagonal
matrix with the number of rows (columns) equal to the length of e and the m-th
diagonal element equal to: (i) V/N if ay, is one of 8; (ii) v/Nj if ay, is one of 8 or
cy; (iii) Npv/Ny if oy, is one of wy. For simplicity, we omit the subscript a = ay in

the following equations.

Let I, = lg1 41k be the length of oy, with I and lgo the lengths of [87, 7, ¢F]” and wy,
respectively. Let v, , = I‘,;laln Sy ) (Ye(t); ) /O, where T, is an [, x [}, diagonal
matrix with the first ;; diagonal elements equal to /N, and the last I, diagonal
elements equal to Niy/Nj. According to the narrow-band results in [67], we have
SV cov{vy.} — F§, + F, as N increases and S Y asymptotically follows
N(0,F3 + Fy, ), where expressions of Fi' and F, can be obtained by replacing
all the metrics in the equations of F3® and F in [67] with their counterparts from
the k-th sub-band. Since Fy , 5 =0, Fy _ap, = 0 (see [67]), and N,/N — hy, as
N — o0, we obtain the second term on the right side of (M.1) asymptotically follows

a zero-mean Gaussian distribution with covariance matrix

K as as
Zk:l hk<de,00 + FSkﬁB) Fs,efs Fd,ei,
Fyi= F 50 F.s5 0 | (M.2)

as as
Fise 0 Fi

where
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FPos = IVMFY g5 s VEKFS op,. ), (M.3)
5: V Fsl 0815 \/hKFsK,OEK]v (M4)

stS = blkdiag{Flesllsn T ’FSK—éKéK}' (MG)

Since & is consistent, by the narrow-band result in [67], we have

82 In fyk (Yk, ak)

r;! Yool r;' —(Fy + Fy,) (M.7)
k a=&
as N, — oo. As a consequence,
= fy, (Yisan) s as
I Y ST | - —F3 (M.8)
k=1

when N increases. We therefore have &—ay follows N/ (0, (I‘Ff\‘/sll") _1) asymptotically,

where
Zk | Ni(FE g9 + Fs,00) Fs o5 F1 g5
TF3T= Fs 50 Fgs5 O (M.9)
FT 5o 0 Fpg
with

FaDS,oB = [Nngsl,ecla N12F381,9w17 T aNKngK ey NKFdK HwK] (M.lO)

F3 o5 = blkdiag{ N, F N} F% N FE o s NeFS 0, b(M11)

_cicy) diwiwyr
FS,GS = [NlFsl,%l; e 7NKFSK,95K]a (M12)
Fg 55 = blkdiag{ N1 F, 5,6, "+ s Nk Fs 6565 }- (M.13)
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Note that in the derivation of (M.9), we assume Ni/N = h; without affecting the

asymptotic property.

Using the results in [42], we can check that the covariance matrix of Y5 W,

which asymptotically equals T'FI', is the Fisher information matrix on a. Hence,
(I‘F ijI‘) s the asymptotic CRB on a and we prove the proposition. Note that the
asymptotic CRB on 6 can be obtained by using (4.13) and replacing R¢k¢k in (L.11)

with an identity matrix of the same size.
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Appendix N

Proof of Proposition 14

For DOA estimation of wide-band mixed signals using the stochastic estimator, the

objective function to be maximized is the stochastic LL function

Nk ~ H
= —1 —log |[APLA
L(§) ;N{ og] kP k+Qk‘
. LYY
~trace{ [4x Py Af + Q] X 38 (N.1)
where & = [07, 07, p"|" with p = [p!,....pL]" and o = [o7,...,0%]|". As Ny

increases, YkYk,H /N, converges with probability 1 to the true value of AkPkAkH +Q,;.
As a result, the asymptotic function of £(£) achieves its maximum at the true value

of € and the stochastic estimator is consistent for &.

Let fy,(Y; &) be the pdf of Y, based on the stochastic measurement model, where
&, = [HT, ol pF)T. Assuming é is the stochastic estimate of & and applying a Taylor

expansion to £(£) around &, the true value of &, we have
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VN (€ _50):_[ 1 (i 821ank(Yk;€k))]_l

AT T
NS 0£0¢

K 9l fr, (Y Ek):| ‘ (N.2)
£=¢&o

1
X
N o

where £ is a vector value between &, and é . For simplicity, we omit the subscript
& = &, in all the following equations. From the narrow-band result in [67] and the

consistency of &, we have as N, — oo,

1 &In fy, (Y3 €)) { __10Ry, . -10R, }
- ’ — trace{ R R , N.3
Nk agk,magk,n e=¢ F 8£k’m K agk,n ( )
As a result, we have as N — oo,
K as as
1 (=Pl fy, (Y1 €) 2okt 1 Fs 00 B oy
N Jv ki Sk s — as as as
_N(Z 8£8£T ) - by = FSJG FS,acr FS,ap , (N.4)
k=1
F S_pb F S_po F S_pp
in which
ng,ea = [thS179017 e 7hKFSK,00'K]7 (N5)
ng,a'o' = blkdiag{thgl,alap e 7hKFgK,0'K0'K}7 (NG)
ng,op = [thsl,epla T ahKFsK,apK]y (N.7)
ngﬂp = blkdiag{thglﬁlpl, e ’hKFSKﬁKpK}a (N.8)
F%?pp = blkdiag{thslfplpl’ e hKFgKiprK}, (Ng)

and [F'g |mn equals the expression on the right side of (N.3).
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Let vy, = X/}Tklnfy’f(%(i’“(t);gk). According to the narrow-band result in [67], we have

Zi\i“l Y. asymptotically follows N (0, Fs, — F, ), where

[Fuk]mn = trace{KkmAkaCkHAkHKk,nAkaCkHAkH} (NlO)

with Ky, = R, gf’“ R, '. We thus have the second term on the right side of (N.2)

asymptotically follows N'(0, Fg’ — F°), where

K as as
Zk:l hkF#k—ge F,uﬂa' u-0p

F:“ - Fzs,a'e Fzs,acr FZS,O'ii ) (N]'l)
Filpe  Fipe Fipp
in which

Fzsﬂa' = [thulﬂala T 7hKF,uK,90'K]a (Nl?)
FZSJU = blkdiag{m F 1, o101, s "k F g orog s (N.13)
FZS,BP = [thulfei)lv e 7hKF,uK,Bj7K]; (N14)
Fzsiap = blkdiag{thmialplj . ,hKFuKﬁKpK}, (N.15)
Fzsipjg = blkdiag{thuymim T >hKFuK43KiIK}- (N.16)

Therefore, we have é — &, asymptotically follows N (O, Fy 1 Fy lFqu 1), where the
expressions of Fg and F,, can be obtained by replacing h; with N, in (N.4) and

(N.11), respectively.

Using the results from (108)-(114) in [67], we can similarly formulate F',, = & W . ®,
and Fg, = &P, where
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__r [0y | Oy | Oy
P, — — 2 2 N.1
= GHUWVY = (Re” @ B, )L%)T 5o aﬁ}, (N.17)
W, = (A,C,Cl A ) @ (A,CCH A, (N.18)

. . .1
with 7, = vec{Ry}, Ar = R, > Ay, and vec{-} the vectorization operator stacking
all the columns of a matrix, one below another, into a vector. Substituting the
expressions of F',, and Fg_back into F', and Fg and applying the block-wise matrix

inversion (see (2.8.17) in [63]) to F'g, we obtain after algebraic matrix operations that

B B B Fog Fo, B
[FglFqu Noo = [F'g Too [F'g oo (N.19)
Fga FO'O'

where [Fs’lFqul]pp is the sub-matrix related to p in Fs’lFqul,

K

Foo = Y NGy, W ITy;, Gy, (N.20)
k=1

Fo, = [N\G{ Iy, Wi Iy, Uy, - ,NKGQH%,KWKH%,KUK], (N.21)

F 5o = blkdiag{ N\iU'Ily; W Iy, Uy, -+, NxU Iy, Wil Ug}. (N.22)

From the result in [67], we have H%,kaH‘L,k =0,k =1,..., K. Consequently,
[FS_ lFqu_ l]pp = 0, and the asymptotic error covariance matrix on p equals the
sub-matrix related to p in F'y !, We can readily check that Fq !is equal to CRBg .
We thus prove the proposition. Applying the block-wise matrix inversion to F'g, we

obtain

K -1
CRBg 4= {Z Nk<FSk—90 - Fsk—e% FSkaQkngOQk>:|

k=1

( i CRBS‘kle) _1, (N.23)

k=1
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where g, = [0, p|" and CRByg, , is the stochastic CRB matrix on DOA estimation
based on N, measurements, each of which follows CA/(0, R;) with 8, p,, and &}, the

unknown parameters.
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Appendix O

Proof of Proposition 16

Let B = [A",8", cT]T, where A = [07,w™]", § = [6],--- , 0% ]" with 6, = [pl, 0,]7,

and ¢ = [c], - - ,cﬁd]T. From the Fisher information matrix equation [42], we get
il L9 " 9P '
- LOR, __0R,
+ ;Tdtrace {R a5 — "R, 95, } (0.2)

in which FIMy; is the Fisher information matrix for 3 based on the model in (5.12),
[FIM]py, is the (I, m)-th element of FIM);, Re{-} denotes the real part of a complex

metric, u,, (1) = A, CLep(t), and F; is the [-th element of 3.

Let Fp be a matrix of the same size as FIMy with [F'p];, equal to the first term on

the right side of (0.2). If /5 is in 4, 8“” = 0. Thus, we have

Fpax Fpas Fpoae Fpax 0 Fpye
Fpo=| Fpsx Fpss Fpse | = 0O 0 O : (0.3)

FD,CA FD,cé FD,cc FD,c)\ 0 FD,cc
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where F'p ax, F'p_as,---, Fp.cc are the sub-matrices of Fp containing the elements

related to the parameters specified in their subscripts. Similarly, let F's be a matrix

of the same size as FIMy; with [F];, equal to the second term on the right side of

(0.2). Because 681;" = 0 if ; is in ¢, we have

Fgsax Fsas Fsoac Fsax Fsx 0
Fs=| Fssx Fss6 Fssc |=| Fssx Fsss 0
FS,C)\ FS,CJ FS,cc 0 0 0

Using (0.3) and (O.4), we obtain

Fpx+ Fsax Fsas Fpoac
FIMM:FD+FS: FSJ;)‘ FSjg 0
FD,C)\ 0 FD,cc

and

-1 Fsss O
CRB,[, = Fpax+ Fsax—[Fsxs Fpoac

0 FD,cc

B E— 21 pH
=Fpax — FpoacFp oo FDae + Fsox — FsasFg 55F 55

Let B, = [A",67%,¢l]", Bu. be the I-th element of 3,,, and

Y n»-n

OR OR
Fg lim = Tytrace R, ' "R, ' —" }
[ Sn]l I { aﬁn,l aﬁn,m

Since
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Fsg9 0 2521 Fs, 00 0

FS)\)\ = = s (08)
0 O 0 0
I R T T )
_Fsliwa1 . FSNd—W5Nd 0 e 0
and FSJs(s = diag{anJslgl, et anlsngNd}, we have

St Fg, 11 0

Fs — Fs s F i FE s = : (0.10)
0 0
where
Fs,11=Fs, 00— Fs, 05, F5. 5.5 F& 05, (0.11)
Also, let
Ty
Opa (t) 1 0, (1)
Fp Jim = 2Re n ) g1l L 0.12
[ Dn]l { ; aBn,l aﬂn,m ( )

SinCe FD,CC = blkdia‘g{FD1,clclv T 7FDNd—CNdCNd}’ FD,)\C - [FD1,>\CU e 7FDNd’>‘CNd]7

N, .
and Fpax =Y, % Fp, ax, we obtain

Fp— FpacFp' . Fh . (0.13)
Ng

- Z (FD"’AA - FD”’Ac"FBifcnangnf)\cn) (014)
n=1
Na Fy, 99 Fp, 6. Fyp, o

=2 - Fpl o o [Fp,cio Fo, el | (0.15)
n=1 FDn,wO FDn,ww FDn,wcn

N
< | Fp,11 Fp, 12

=) , (0.16)

n=1 | F'p, 21 Fp, 22
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where

Fp,11="Fp, 00— Fp, 0c,Fp o c. FD 6c.: (0.17)
Fp,12=Ff 5 =Fp, 0o—Fp,0c,Fp .. Fh ., (0.18)
FDn—22 - FDn—ww - FDn—wanBi,cnan}DIn,an' (019)

The expressions for Fp, g, Fp, 0c,, and Fp, ., ., are given in [67]. Substituting
them into (O.18), we can show that F'p, 12 = 0. Therefore, from (0.6), (0.10), and
(0.16), we have

Ng

CRB/y =Y (Fp,11+Fs, 1), (0.20)

n=1

where we can check that Fg, 11 = CRBg ', and Fp, 11 = CRBp! 4 (see [67]).
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Appendix P

Derivation of Equation (6.16)

Note that

G(6,,0) = R(0)" (In®X ") R()
= [p,©4;0)], , (Ivno ™) [, A4,0)],,
= [p,©4,0)], ,[v,®(Z"4;0)],,,

= [(kaquj) ® (Ak(él)HE_lAj(e))]JxJ (P-l)

where [¢; ® A;(6;)] |, s amatrix with 1 x J blocks whose jth block is 9, ® A;(6))
and [(¢ ;) @ (Ak(6,)7=7"A;(0))] s 18 amatrix with Jx J blocks whose (k, j)th
block is (Y1 1,) ® (AR(6,)7 57" A;(8)).

Since ¢kH¢] = 0y, we have

G (0,,0) = diag [A,(6)"S " A,(6)] (P.2)

J?

which is a block-diagonal matrix of J blocks with the jth block equal to A;(8,)¥ X7 A;(8).
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Using (6.14), we obtain

c = G(él,él)_lG(él,O)c
= diag [(Aj(éz)HE_lAj(él))_l (Aj(é,)HE‘lAj(e))}

= diag [P;(6,,6,) ' P;(6,,0)] ¢,

from which we derive (6.16).
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