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Research Advisor:  Professor David Peters 

 

Wind turbine power output is a function of not only wind speed but many other 

constraints such as attitude with respect to the wind and blade pitch settings.  

Optimizing power output with respect to these parameters is accomplished by 

optimizing the rotary system's power coefficient.  A primary objective of this research is 

to optimize the power coefficient in a design space that includes collective and cyclic 

pitch in the presence of axial or yawed wind inflow.  The model developed to perform 

this analysis uses blade element theory and a nonlinear version of the Pitt Peters 

dynamic inflow model.  The model was compared to the National Renewable Energy 

Labs WT_Perf wind turbine simulation and showed an acceptable match for the 

domain being analyzed.  A secondary objective of this research is to investigate the 

effect of continuous cyclic pitch on the power coefficient when used to control the 

instantaneous moments of a wind turbine at a specific yaw angle with respect to the 

wind.  Wind-turbine power output and attitude with respect to the wind is generally 

controlled through collective pitch and\or tower yaw, via a vane or actuator.  

Hohenemser suggested the possibility of control by means of rotor yaw via moments 

generated by cyclic pitch. (Wind turbines generally do not have cyclic pitch).   For the 

purposes of this dissertation, the investigation focuses on the feasibility of 

Hohenemser’s idea by evaluating the change of the optimal power coefficient when 

cyclic pitch is also being used to reduce the magnitude of the system’s instantaneous 

moments. 
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Collective blade pitch control is an accepted practice to optimizing power 

output by setting the turbine to the optimal collective pitch settings as the wind 

magnitude changes.  This research shows that the extension of using cyclic pitch can 

further increase the optimal power coefficient by using optimal values for collective and 

cyclic pitch in yawed inflow conditions.  Secondly this research supports the feasibility 

of Hohenemser’s idea that cyclic pitch can be used to simultaneously optimize the 

power coefficient and minimize the instantaneous moments in yawed inflow.  The 

results present numerical values for the optimal collective and cyclic pitch values that 

can optimize the power coefficient and keep the system moments below a design 

threshold.  The results also show that the optimal power coefficient is not seriously 

degraded when cyclic pitch is both minimizing system moments and optimizing the 

power coefficient. 
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Nomenclature 
 

a slope of lift curve 

b number of blades 

c chord length, (m)  

CD drag coefficient, FD/(ρπR2W2/2) 

CL lift coefficient, FL/(ρπR2W2/2) 

CLL Roll Moment Coefficient 

CM Pitch Moment Coefficient 

CP Power coefficient, P/(ρπR3W2/2)  

dF1 thrust on blade element, which is normal to the plane of rotation, (N) 

dF2 drag on blade element,  tangential to the circle swept by rotor, (N) 

dF1 
i thrust on element of the ith blade, which is normal to the plane of rotation, (N) 

dF2 
i  drag on element of  ith blade, tangential to the circle swept by the ith blade, (N)    

FD profile drag force parallel to the wind direction, (N) 

F1 thrust on blade, which is normal to the plane of rotation, (N) 

F2 drag on blade, which is tangential to the circle swept by the rotor, (N) 

FL lift force on the rotor, (N) 

J normalized tip speed, ΩR/W 

 mass flow rate, (kg/s) 

L aerodynamic roll moment on rotor (N-m) 

M aerodynamic pitch moment on rotor (N-m) 

P power extracted from wind, (Watts) 

R radius of blade, (m) 

T thrust on the rotor, (N) 

ν induced flow, (m/s) 

w induced flow coefficient, ν /W 

W wind speed, (m/s) 

W1 component of the initial wind speed normal to the plane of rotation, (m/s) 

W2 component of the initial wind speed parallel to the plane of rotation, (m/s) 
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WP component of relative wind speed normal to plane of rotation, (m/s) 

WT component of relative wind speed tangential to circle swept by rotor, (m/s)    

WP 
i component of relative wind normal to plane of rotation for ith blade (m/s) 

WT 
i component of relative wind tangential to the circle swept by ith blade, (m/s)  

x  radial location of a blade element, (m)  

ρ density of air, (kg/m3) 

α angle of attack, (rad) 

γ angle between the wind direction and the rotor axis, (rad) 

θ blade pitch angle, (rad) 

θO collective pitch angle, (rad) 

θS lateral cyclic pitch angle, (rad) 

θC longitudinal cyclic pitch angle, (rad) 

θt blade twist angle, (rad) 

ϕ angle between the relative wind and the plane of rotation, (rad)  

Ω blade angular velocity, (rad/s) 

ψi angle between W2 and the ith blade, (rad)  

σ rotor property parameter, bc/(πR) 
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Chapter 1  Introduction 

 
 

Introduction 

 

1.1 Recent Growth in Wind Energy Research 
 

The United States Department of Energy published a report outlining the 

ambitious plan to make 20% of the total U.S. consumption of electricity supplied by 

wind energy by the year 2030 [1].  The report details the motivation for the ambitious 

initiative as that of reducing the county's reliance on fossil fuels, or specifically, 

“vulnerability to fluctuating prices, energy supply chain uncertainties and adverse 

environmental impacts”.  The report concludes that it is feasible to increase wind 

energy's contribution to the U.S. electric supply to 20% by 2030.  However major 

challenges must be overcome.  Among them are improvements on how the electricity is 

absorbed into the country's electric supply chain, how the power could be transferred to 

regions with low wind––preventing new adverse environmental impacts––and, finally, 

improving wind turbine performance, both in terms of reducing cost and increasing 

efficiency. 

This Department of Energy initiative began in the Bush administration and has 

gathered steam under the Obama administration.  The DOE's 2008 Wind Technologies 

Market Report described how 16 billion dollars were spent to increase the county's 

capacity to harness wind energy and to make improvements through research [2].  The 

department also awarded additional tens of millions of dollars to various companies or 

research groups in 2009 all focused on improving wind turbine technology and 

electricity transmission.  As a result of the department's financial investments and long 

term objectives, wind energy research has once again started to grow. 
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With this recent surge in political and financial investment, new and innovative 

approaches to harnessing wind energy have emerged.  One promising area is that of 

High Capacity Wind Turbines (HCWTs), which are described as 4 Mega Watt (MW) or 

above.  One example of such machines is a tehtered turbine that is capable of absorbing 

the higher wind magnitudes at high altitudes and are connected to earth by tethers that 

both hold the turbine in place and transmit electricity to a plant.  Feasibility studies have 

been conducted by companies such as Baseload Energy Inc. that indicate the HCWT 

configuration could make significant contributions to the Department of Energy's goal 

of increasing the contribution of wind energy to the overall electricity consumption of 

the United States[3].  Currently the company is still developing a prototype to collect 

data and validate their projections [4].  The company is using their own engineers with 

the contribution of researchers and faculty from The Georgia Institute of Technology 

to perform this work. 

Wind power harnessed from a turbine, flying or fixed to a tower, is proportional 

to the velocity cubed.  Thus the primary motivation of flying turbines is to put these 

machines where the wind speeds are the strongest - the jet stream.  A general formula 

for computing the expected wind energy from a turbine is: 

 

Power in Watts (Joules per Second) = 1/2 (ρ)(A)(V3)(E)    (1.1) 

 

where ρ is the air density, A is the area, V is the cubed of wind velocity, and E is the 

efficiency of capturing the wind energy.  The technical term used to denote the 

efficiency for the wind turbine system is the power coefficient.  The power coefficient is 

a non-dimensional measure of how well a turbine converts wind energy to electricity.  

Therefore regardless of all the system losses, optimizing the total energy that can be 

harnessed means optimizing the system's power coefficient. 

 

1.2 Problem Statement 
 

The focus of this research is to investigate how a windmill's power coefficient 

can be optimized by opening the control space of the wind turbine––that is, using both 
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collective and cyclic pitch to increase the optimal power coefficient.  Traditionally, wind 

turbines only use collective pitch to regulate airflow and optimize power output.  The 

use of cyclic pitch is relevant to wind turbine systems that want optimal power while 

controlling the wind turbine's orientation to the wind direction.   

It is widely know that a wind-turbine rotor is designed to accommodate a 

specific range of wind speeds.  Traditionally wind turbines run within a defined range of 

wind speeds with the understanding that if the inflow through the wind turbine disc 

becomes too low or high, the system would not be operating optimally.  In very high 

winds, the system runs the risk of failure.  To avoid damage, current wind turbine 

systems can apply brakes or turn the blades out of the wind such that it is turned off.  

Modern wind turbine designs have improved power output by implementing a 

controller.  The controls can implement collective pitch or tower yaw via an actuator to 

limit the rotor's Revolutions Per Minute (RPMs) that can either run the system 

optimally or in adverse conditions, protect the system hardware.   

To maximize power output, a wind turbine that operates continuously must 

optimize system power by finding the optimal attitude with respect to the wind, such 

that the magnitude of the inflow is optimal for the ideal rotor RPM.  Although this is 

currently accomplished through a combination of collective pitch and tower yaw, 

Hohenemser suggested the possibility of control of tower yaw by means of rotor yaw 

moments generated by cyclic pitch.[5]  If such an application were feasible, then a 

system could be designed to continuously optimize power output by means of 

automatic feedback control.  The idea would be to use the increased control space to 

optimize power by controlling the system’s attitude with respect to the wind and to 

simultaneously apply the optimal collective and cyclic pitch settings. 

The primary objective of this dissertation is to investigate the effect of cyclic 

pitch on the optimal power coefficient.  This will be done by numerically determining 

the parameters required to optimize the power of a wind turbine for a test case in the 

presence of axial and yawed inflow with the use of collective and cyclic pitch.  Leading 

up to Hohenemser’s larger idea, it would first be useful first to know if the increased 

control space of cyclic pitch can increase the optimal power coefficient for conditions 

such as yawed inflow.  The model developed to perform the computation uses: 1.) a 
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blade-element theory to compute the system moments and forces, and 2.) a nonlinear 

version of the Pitt Peters dynamic inflow model to compute the induced velocities.  The 

model is compared against a simulation that is developed and used by the National 

Renewable Energy Lab (NREL) to verify a reasonable output for the domain being 

analyzed.   

A secondary objective of the research is to further investigate the effect of cyclic 

pitch on the optimal power coefficient when it is being used to minimize the 

instantaneous moments of the wind turbine at some specific yaw angle.  This will be 

accomplished by studying trends in the power coefficient for an equivalent case where 

the cyclic pitch is being used to optimize the power coefficient while simultaneously 

keeping the system moments below a design threshold.   
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Chapter 2 Literature Review 
 

 

Literature Review 

 

 

Research relevant to this problem includes the aerodynamic theory of wind 

turbines, including unsteady effects.  This covers research in deriving and optimizing the 

power coefficient, plus limited work done regarding cyclic pitch control for wind 

turbine applications.  Extensive research on hardware modeling, blade design 

manufacturing improvements, sensor modeling and environmental effects is ongoing 

but is beyond the scope here.  Previous research for optimizing the power coefficient 

predominantly exists for Horizontal Axis Wind Turbines (HAWTs) with some work on 

Vertical Axis Wind Turbines (VAWTs).  At the time of this publication, little  research 

has been found on tethered wind turbines with the exception of Peters et. al. [28] that 

will be covered in this review. 

Models for free stream aerodynamics and collective pitch have been published 

for wind turbines, but no work to date has been found in modeling cyclic pitch with the 

intent of studying optimal power output. The organization of this literature review will 

fall into four sections: early works in wind turbine modeling, applied aerodynamics to 

wind turbines, optimization of the power coefficient and development of wind turbine 

codes. 

 

2.1 Early Work in Wind Turbine Modeling 
 

Early work in wind turbine theory came from logical extensions of research on 

propellers.  Researchers focused on modeling the airflow through a disk simply to 

advance the understanding of screw propellers for fixed wing aircraft.  Researchers such 
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as Rankin, Froude, Betz, Glauert, Joukowski and Prandtl made the more classic 

contributions to the understanding of airflow through a rotary wing system, whether it 

be a propeller or wind turbine. 

According to Wilson and Lissaman [6], the original momentum theory for fluid 

flow through a turbine was derived for naval applications by Rankine [7] and Froude [8, 

9].  This model was simplified assuming one dimensional, steady state axial flow and 

considered no rotational effects.  Using a simplified one dimension model, Betz used 

basic fluid dynamic momentum theory and derived the ideal power coefficient, that is, 

the maximum percent of power that can be extracted from a steady state, axial wind 

flow through a disk [10].  He showed that the maximum power is extracted when the 

wind speed decelerates to 2/3 its original speed across the rotor plane and that no 

turbine can capture more than 59.3 percent of the kinetic energy of the wind.  Frederick 

Lanchester, a British Scientist, had also derived this result, thus it is sometimes referred 

to as the Betz Lanchester limit.  This momentum theory does not make any 

assumptions about the effects of wake behavior or unsteady flow.  Yet it is classic in 

applying energy methods to derive the theoretical ideal values for the power coefficient. 

Glauert [11, 12] and Joukowski [13] expanded on the simple momentum theory 

to account for wake effects including expansion and rotation.  They initiated theory to 

begin to account for why the ideal power coefficient could not be achieved.  Their work 

predominantly focused on propellers but did address the subject of windmills where 

induced flow is extracted rather than pumped.  The simple momentum theory assumes 

perfect streamlines through the turbine disk plane whereas the rotational momentum of 

the actuator disk affects the wake.  Glauert discussed that the rotation of the disk 

imparts and equal and opposite angular momentum on the wake.  This loss in kinetic 

energy reduces the static pressure drop across the disk and reduces the extracted energy.  

He notes that the rotation also results in a radial pressure gradient to balance centrifugal 

forces.  This results in yet another pressure drop in addition to the static axial drop 

across the disk. Joukowski derived models that estimated the power loss due to 

rotational effects.  He also was one of the first to derive equations that relate the 

downstream axial and radial velocities to the velocities at the disk.   
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Another reason that ideal power cannot be achieved is losses at the blade tip.  

Prandtl [14] is well known for his work on tip losses, the energy losses due to radial 

wake flow around the tip of the turbine blades.  Prandtl provided methods to account 

for tip loss, which amounts to a scale factor that shortens the radius of the blade and 

thereby reduces the system's effectiveness.  In rotorcraft the scale factor would reduce 

the lift and can account for 6-9% loss of the available power.  Prandtl and others used 

different methods to determine the scale factor, however a value commonly used is 

0.97. 

 

2.2 Applied Aerodynamics to Wind Turbines 
 

Wilson and Lissaman provided much of the early development of wind turbine 

theory in their NTIS report, "Applied Aerodynamics of Wind Turbines" [6].  In this 

work and "Applied Aerodynamics of wind power machines" the authors review many 

types of wind power machines and evaluate their aerodynamic characteristics.  Since the 

early development of rotary wing aerodynamic theory, most research conducted focused 

on propellers, specifically as they apply to rotorcraft.  Wilson and Lissaman appear to be 

the first to thoroughly apply the theory to windmills. They evaluate their efficiency and 

present advantages and disadvantages for the different configurations such as Savonius, 

Madarus and Darrieus rotors, Gyromills, ducted rotors, the Smith-Putnam design, 

circulation-controlled rotors and more.  Tethered windmills were not evaluated.   

Additional work was spent on analyzing hub fairings, spinners and tip vanes.  Regarding 

horizontal axis windmills, the theory reviews general momentum theory, presents the 

effects of wake rotation, blade element theory and also discusses vortex strip theory.  

All this provides the theoretical background they used for evaluating the overall 

efficiency of different turbine configurations. 

Arguably, Wilson and Lissaman are the most-cited read early researchers in 

applying aerodynamic theory specifically to wind turbines.  Their research expanded 

into experimental techniques for analyzing aerodynamic performance in wind turbines 

[15, 16].  And on the subject of developing wind turbine codes (Section 2.4) they are 
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well known for their “Prop-Code” [6], which has become a popular benchmark for 

Blade Element Momentum theory comparisons in most contemporary papers 

concerned with accurately modeling the aerodynamics and power output of wind 

turbines.  They also extended their work in a paper in 1981 that provided a simple 

aerodynamic model for the turbulent windmill\vortex ring state and for yawing 

moments on a wind turbine that result from blade coning [17].  Their focus of applied 

aerodynamics to specifically wind turbines advanced knowledge more than any other 

during their time.   

Textbooks such as The Wind Handbook [18] and Wind Energy Explained [19] do a 

thorough job of presenting the categories of research and deriving the fundamental 

equations in aerodynamic modeling of wind turbines.  They provide alternate sources 

and approaches to applying momentum theory, blade element theory, vortex strip 

theory, tip losses, the effect of collective pitch on the power coefficient, blade coning 

and flapping. 

 

2.2.1 Dynamic Inflow and Yawed Flow 
 

A contemporary of Wilson and Lissaman was A. Swift who worked with 

Hohenemser on modeling yaw dynamics in the early 1980’s.   Swift’s dissertation, “The 

Effects of Yawed Flow on Wind Turbine Rotors” presented an early approach to 

computing yawed dynamics using knowledge of steady state behavior and iterative 

methods via a computer algorithm [20].  He is also one of the early researchers to 

include a dynamic inflow model, such as the Peters Pitt model [21], into the 

aerodynamic modeling of wind turbines.  Two limitations documented by Swift were 

accounting for the effects of stall and modeling performance as the rotor approached 

the vortex ring state [22].  Swift extended the Wilson-Lissaman model to regions with 

high tip speed ratios near the vortex ring state and addressed the effects of dynamic 

flow regimes.  At issue was the fact that at higher tip speed ratios, the computed 

"induced flow velocity exceeds one-half of the free stream velocity, contradicting the 

momentum theory assumption of the model."   Swift found the methods developed by 
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Viterna and Corrigan [23] sufficient in accounting for the effects of dynamic stall, which 

is largely neglected in his research. 

Snel and Scheppers published a large body of theory and experimental data 

focused on the implementation of dynamic airflow effects in wind turbine modeling 

throughout the 1990s.  In their JOULE 1 project, the “Joint Investigation of Dynamic 

Inflow Effects and Implementation of an Engineering Method” [24], the authors 

document much of their work and data.  The paper was part of an effort to validate 

engineering models of dynamic inflow using wind turbine field data and wind tunnel 

data.  Several contributors provided data in the papers and the authors compared free 

wake and “engineering models” to the experimental data in the Appendices of the 

report.   

Snel and Scheppers show from both theoretical models and experimental data 

the importance of accounting for dynamic inflow in wind turbine models, showing the 

inability of BEM to account for the overshoot of various parameters during some 

controlled blade pitch changes.  The authors divide unsteady aerodynamics on the blade 

into two categories:  “instationary profile aerodynamics”, also called dynamic stall, and 

dynamic inflow.  The paper states that dynamic inflow is of primary importance as the 

time constants are larger.  They approximate the dynamic stall time constant as 

approximately the chord divided by the velocity at that blade section (c/Ωr), or 

approximately 0.2 seconds at blade root and 0.1 seconds at the blade tip.  They 

approximate the dynamic inflow time constant as the rotor diameter divided by free 

stream wind velocity (D/V), or on the order of 5-10 seconds, a time constant so large 

they call it, “quasi-steady”.  Thus along with Swift, researchers consider dynamic stall a 

second order effect in the dynamic effects of airflow through a wind turbine. 

That paper reviews the modeling successes and leaves much open for future 

work, citing the importance of modeling yawed airflow conditions.  The authors showed 

a clear presence of dynamic inflow in several experimental data sets and were able to 

accomplish a “general” validation of their model.   For yawed conditions, the authors 

note that dynamic inflow effects were present for wind turbines with larger loads and 

faster tip speed ratios. 
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A paper published by Suzuki [25] in 2000, presents an implementation of the 

Generalized Wake Theory, originally developed for rotorcraft by He and Peters[26] that 

is applicable to wind turbines.  The paper compares BEM, a Pitt-Peters model and a 

Generalized Dynamic Wake model to wind turbine data measured in Denmark.  Suzuki 

was a advisee of Dr. Craig Hansen, who published works on yawed flow in wind 

turbines [ 27].  He is also a key contributor to the wind turbine code, YAWDYN, that is 

documented in the codes section of this brief review (2.4).    

Since Wilson and Lissaman a great deal of work has gone into learning the 

importance of both dynamic inflow and the need to match wind turbine data to models.  

The codes sections will review some of the well known codes used by government 

agencies and in industry.  But it is clear that contemporary code developers still work to 

accurately model yawed flow through wind turbines. 

 

2.2.2 Optimizing the Power Coefficient without Fixed 
Boundary Conditions 

 

As wind turbine designs become more complex, it cannot always be assumed 

that that the rotor plane will have a fixed boundary condition via being attached to a 

tower.  VAWT and various other configurations have been discussed by Wilson and 

Lissaman among others.  A configuration of interest in this dissertation is a wind 

turbine with a tethered boundary condition.  Previous work on this subject has been 

performed by Peters, Ahaus, Chan and Loyet [28]. 

That work uses momentum theory equations to derive the feasible design space 

for a tethered, yawed wind turbine.  Beginning with the case of a horizontal tether and 

progressing to the generalized case where the tether angle is a variable, equations for the 

power coefficient are derived.  A closed-form expression was derived for the case of a 

horizontal tether, but numerical iteration was required to solve the equations for the 

case of a general tether.  The paper provides extensive plots of how the power 

coefficient is related to the induced flow, tether angle with respect to the wind and 

weight coefficient.  Design charts show the power that can be expected for various 
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tether angles based on the system weight of the tethered wind turbine.  Trend plots are 

also provided for the normalized induced flow (by wind speed) in the directions normal 

and parallel to the cable.  The paper also provides results that account for the weight of 

a long, heavy cable and rotor efficiency showing what design limits exist for cables of 

various weight and length.   

As expected, the higher the weight of the cable means the greater the overall 

weight of the system and the more thrust is required thereby reducing the power 

coefficient.  The derived equations show that the weight per unit length also limits the 

feasible tether angles that are capable of extracting power from the wind.  An efficiency 

term was implemented in the equations for the power coefficient to represent rotor and 

transmission losses in taking power from the wind, which reduce the power coefficient 

and the feasible design space of the system.  The case of perfect efficiency, e=1, 

matches the ideal case shown in the paper.   

Although an application of momentum theory alone, that work is one of the 

first in understanding both what physical limitations exist and what geometric 

orientations must exist between the angles of the wind, the cable and the rotor plane in 

order to optimize power extraction.  The researchers conclude that with reasonable 

efficiencies and weight restrictions, extracting power from a tethered, yawed wind 

turbine is indeed feasible. 

Peters and Rong extend this body of research by implementing blade element 

theory to compute moments and forces while using momentum theory to compute 

induced velocities [29].  The equations in the paper are derived to enable feasibility 

analysis of yawed flow.  The results show the design space for where the power 

coefficient was optimal for various pitch settings, tip speed ratios, induced velocities and 

yaw angles.  Although the induced velocities were computed using only momentum 

theory, the results did show a feasible design space demonstrating the need for 

continued study. 
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2.3 Optimizing the Power Coefficient in 
Yawed Flow 

 
An understanding how the power coefficient changes with yawed flow is of 

primary importance to optimizing the performance of any wind turbine system.  A 

familiar problem with turbine generators is that the rotor is typically designed to 

accommodate a specific range of RPMs based upon the expected wind speeds of the 

site and lift of the airfoil blades.  This range of RPM defines the design space for which 

the power coefficient can be optimized and steady state electricity can be harnessed.  

Clearly if the wind speed is too light, then the rotor will not turn, and if the wind speed 

gets too great, then the rotor can exceed the maximum RPM and must be shut off or it 

will endanger the turbine itself.  Yawed flowed wind turbines were designed to address 

this constraint.  These turbines are designed and manufactured to adjust the yaw angle 

with respect to the wind direction to control the rotor RPM and thereby optimize the 

power coefficient.   

A large body of work was done by Hohenemser and Swift on the topic of using 

the wind turbine yaw angle to control the desired RPM and optimize the power 

coefficient.  A paper by Hohenemser, Swift and Peters provided an analysis showing the 

feasibility of rotary sail wind systems in 1979 [30].  Hohenemser and Swift demonstrated 

torque control by yaw of a constant-speed two bladed wind turbine in 1983 [5].  In 1987 

Hohenemser published analysis and test results for a passive cyclic pitch wind turbine 

[31].   

In 1995 Hohenemser summarized the analysis and test results from a five year 

effort at Washington University in St. Louis that studied a two blade horizontal-axis 

wind turbine with a teetering hub [32].  It was called a passive cyclic pitch (PCP) wind 

turbine, which is defined as "a teeter rotor with a large delta-three angle of the teeter 

axis".  All results in the research are largely specific to the case of teetered, two-bladed 

wind turbines, however much work was performed on the concept of using active yaw 

control and free yaw control (with a nacelle) to achieve aerodynamic rotor breaking.  

The active yaw control employed a mechanism that physically turned the rotor axis in 

the horizontal plane with respect o the tower.  The free yaw could rotate freely in the 
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horizontal plane with respect to the tower.  Comparisons are made between upwind and 

downwind configurations, concluding that for this specific system the downwind 

configuration was more stable and suitable for free yaw control.  Limitations of a 

horizontal axis wind turbine mounted to a tower were discussed, such as the coupling 

between the yaw dynamics and tower bending.  The authors showed these dynamics 

result in instability if the yawing center of gravity did not coincide very well with the 

tower center and if the first natural bending mode of the tower is above the minimum 

operating rotor rotational frequency.  Thus the structural dynamics of the tower create 

additional complications for a rotating turbine as it yaws. 

That body of work was significant in that it showed that output power could be 

regulated by yaw control.  The analysis techniques used to evaluate the yaw dynamics 

were developed by Swift [20].  Hohenemser went on to suggest that both the concepts 

of collective and cyclic blade pitch variations could be used to regulate yaw control and 

thus output power. 

Many contemporary wind turbines that yaw control employ a controller on the 

tower base to rotate the rotor plane with respect to the wind direction.  Currently the 

World’s Largest Wind Turbine (7 + Megawatts), the Enercon 126 in Emden, Germany, 

uses this technique; they call “side furling” [33].  In this case no collective pitch control 

is used; the power optimization is completely achieved by turning the rotor plane with 

respect to the wind. Typically the optimal wind angle for a specific wind speed is 

computed and the controller can rotate the tower to a desired yaw angle in order to 

optimize the power coefficient, and thus the output power.   

Hohenemser’s observation is relevant to tethered wind turbines whose 

boundary conditions will not necessarily be fixed.  More dynamic control would be 

required not only to optimize the power coefficient but to provide vehicle stability. 

 

2.4 Relevant Wind Turbine Codes 
 

There are a great number of wind turbine codes and especially amongst 

engineering research circles, countless small specific routines to model specific wind 
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turbine features.  This review focuses on wind turbine codes that have matured to the 

point that they are used to aid in development and\or certification of wind turbine 

designs in industry.   The evolution of these codes has been slow over the past two 

decades, but with the increased interest in wind energy, they have become the focus of 

greater study and scrutiny today. 

In 2007 an international team of industry experts in wind turbine simulations 

participated in a benchmark exercise called “Offshore Code Collaboration Exercise” 

(OC3) [34].   The codes, considered the state of the art turbine simulation codes 

amongst wind energy experts, were evaluated against experimental data and all 

compared generally well in the benchmark exercises.  The codes evaluated were:  GH 

Bladed, FAST, ADAMS, HAWC, HAWC2, BHAWC and Flex5.  The paper presents all 

the details of each software’s modeling capabilities and other characteristics of the 

codes.   All of these codes output a full range of data relevant to wind turbine design, 

such as, blade loads, tip deflections, tower vibration predictions, structural dynamics and 

more.  Each program uses a subroutine to model the rotor aerodynamics.  BHAWC and 

Flex5 rely exclusively on Blade Element Momentum theory (BEM).  The rest of the 

codes use both BEM and Generalized Dynamic Wake (GDW) theory to account for 

dynamic inflow. 

NREL developed and is custodian for the WTPERF, FAST and ADAMS 

routines.  Their website provides a great deal of detail on the use of these programs, 

along with preprocessing programs to set up input data and post processing programs 

to generate results [35].  WT Perf is a wind turbine performance tool developed by M 

Buhl at NREL that is based on Wilson Lissaman PROP code developed at Oregan State 

University [36].   The FAST and ADAMS programs are accepted as tools that can 

certify a wind turbine in the United States.  In 2003, NREL received recognition from 

Germanischer Lloyd (GL), the German wind turbine certifying agency, that these codes 

were suitable for wind turbine design amongst international circles [37]. 

Both ADAMS (ADAMS2AD is the latest) and FAST use program called 

AeroDyn to compute the aerodynamic forces along the wind turbine blades and 

performance characteristics of the model.   The AeroDyn program is specific to 

Horizontal Axis Wind Turbines.  It relies on Blade-element Momentum theory and can 
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account for dynamic stall and dynamic inflow [38].  The software is developed and 

maintained by Windward Engineering company [39].  Recently NREL removed support 

of a similar program YawDyn that was released with AeroDyn version 12 and was 

developed to improve accuracy of modeling wind turbine performance in the presence 

of yawing motion.  Although it is unclear why they dropped support for this program 

the primary certification programs (ADAMS and FAST) rely exclusively on AeroDyn to 

perform the aerodynamic computations. 
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Chapter 3 Model Development 

 
 

Model Development 

 

This chapter outlines the existing theory used to develop the model for analysis.  

The sections define the physical system and notation in the wind and rotor frame.  

Equations for computing the forces and moments on the rotor plane are developed.  A 

dynamic inflow model is presented as well as control terms that will be used to define 

blade twist, collective and cyclic pitch. 

 

3.1 Free Body Diagram 
 

In previous work on yawed wind through a turbine Peters and Rong [29] 

defined the wind frame relative to the rotor plane as shown in Figure 3.1. 
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Figure 3.1  Physical system of wind flowing into the rotor plane with (a) a top view, (b) front view 
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In Figure 3.1, W is the magnitude of the initial wind speed flowing toward rotor 

plane at an angle defined by γ and shown in (a).  The wind magnitude can be 

decomposed into normal and parallel components in the rotor plane as: 

 

W1= Wcosγ  (3.1) 

W2 = Wsinγ  (3.2) 

 

where W1 is the normal component and W2 is the component parallel to the rotor plane.  

Figure 3.1 (a) shows that the total wind on the downwind side of the rotor plane is W1-

ν, where ν is the induced flow.   

Figure 3.1 (b) shows the front view of the rotor plane and defines the 

coordinate system of the blades.  The frame defines the 0º azimuth angle, ψ, as being 

parallel to W2.  Then the angle between W2 and the ith blade in the rotor plane is 

defined as ψi.  Ω is the angular velocity of the rotor, dF1
i defines the thrust on the blade 

element of the ith blade normal to the rotor plane and dF2
i defines the drag on the blade 

element of the ith blade tangential to the rotor plane.  Figure 3.1 (b) shows the notional 

ith blade where b is the total number of blades for the specific wind turbine system.  It 

is noted that the system analyzed here fixed at the rotor but that other boundary 

conditions such as tethers could be applied. 

To determine the system thrust, lift, drag, moments and generated power it will 

be necessary to know the resultant force obtained from all the blades.  This can be 

accomplished using blade-element concepts. 

 

3.2 Blade Element Representation 
 

Blade element theory determines the total system forces and moments on a 

rotor by breaking down each blade into elements.  The wind speed normal and parallel, 

W1 and W2, can be used to determine the lift and drag on an airfoil at any specific 

location along the blade.  The ith blade can be broken down into elements and the 
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forces and moments can be computed for each element, and then summed to get the 

total along each blade. 

The blade element representation used here will be consistent with previous 

work performed by Peters and Rong.  Figure 3.2 shows an airfoil for one blade element 

in the plane of rotation. 
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Figure 3.2  Airflow over airfoil of one blade element for (a) front view of blade, (b) top view 
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WP
i is the component of the wind at the ith blade perpendicular to the rotor disk 

and WT
i is the component of the ith blade parallel to the rotor disk.  WT

i and WP
i  can be 

defined from the geometry in figure 3.2: 

 

WT
i = Ωx + W2sinψi  (3.3) 

WP
i = W1 – ν   (3.4) 

 

where the resultant wind relative wind speed at the ith blade, WR
i, is: 

 

WR
i =    (3.5) 

 

The geometry of figure 3.2 (b) also shows: 

          (3.6) 

          (3.7) 

where φ is the angle between WR
i, and the plane of rotation.    

 

Figure 3.2 is the blade element representation of the blade element shown in 

Figure 3.1.  The blade element is exposed to lift dFL and profile drag dFD forces which 

are perpendicular and parallel to WR
i respectively.  These forces can be defined for each 

element as: 

dFL = (WR
i
)
2
CL  (3.8) 

dFD = (WR
i
)
2
CD  (3.9) 
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where ρ is the air density, and the cross section of the blade element is the product of c, 

the chord length, and dx, the radial length of the blade element shown in 3.2 (a).  CD is 

the profile drag coefficient and the profile lift CL is: 

 

CL = a[sin( )]              (3.10) 

 

 

Where “a” is the slope of the lift curve and   is the angle of attack.  Since the angle of 

attack is defined in figure 3.2 as the difference between the airflow and the blade pitch 

angle,  it is useful to note that: 

 

 (3.11) 

 

where θ is the pitch angle between the chord line and plane of rotation.   

 

 The lift and drag forces can be projected into forces perpendicular and tangential to the 

plane of rotation as: 

 = dFLcosϕ + dFdsinϕ   (3.12) 

 = dFLsinϕ – dFdcosϕ   (3.13). 

 

From (3.6) – (3.13) it is possible to obtain the force dF1
i
 perpendicular to the plane of 

rotation and the drag force dF2
i
 tangential to the circle of rotation.  With some 

simplifying assumptions presented in Appendix A, the equations become: 

 

 = dx[–( )
2
θ + ]     (3.14) 

 = dx[–( )
2

  –  + ( )
2
] (3.15) 

 

Substituting in (3.1) – (3.4) into (3.14) and (3.15) the elemental forces expressed as: 
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 = dx[–θ(Ω
2
x

2
 + W

2
sin

2
γsin

2
ψi + 2ΩxWsinγsinψi)  

+ (ΩxWcosγ – Ωxν + W
2
sinγcosγsinψi – νWsinγsinψi)] 

 

 = dx[– (Ω
2
x

2
 + W

2
sin

2
γsin

2
ψi + 2ΩxWsinγsinψi) – 

 θ(ΩxWcosγ – Ωxν + W
2
sinγcosγsinψi – νWsinγsinψi) + 

 (W
2
cos

2
γ +ν

2
 – 2νWcosγ)] 

 

which can be computed and summed to find the forces for the ith blade.  The system 

forces and moments on the entire rotor can then be obtained with the following 

relationships: 

 

T =   𝑑𝐹1
𝑖𝑅

0
𝑏
𝑖=1    (3.18) 

FD =   𝑑𝐹2
𝑖𝑅

0
𝑏
𝑖=1    (3.19) 

M  = −  𝑥 𝑑𝐹1
𝑖  cos 𝜓𝑖

𝑅

0
𝑏
𝑖=1     (3.20) 

L  = −  𝑥 𝑑𝐹1
𝑖 sin 𝜓𝑖

𝑅

0
𝑏
𝑖=1      (3.21) 

P =   Ω𝑥 𝑑𝐹2
𝑖𝑅

0
𝑏
𝑖=1    (3.22) 

 

 

where b is the number of blades, R is the rotor radius, T is the instantaneous thrust, FD 

the instantaneous drag force, M the instantaneous pitch moment, L the instantaneous 

roll moment and P is the instantaneous power.  Using this blade element representation 

it is possible to compute the instantaneous forces, moments and extracted power for 

the system. 

 

3.3 Dynamic Inflow Model 
 

In the blade element representation above, the induced flow is assumed to be 

constant as is assumed in momentum theory.  But even under steady state conditions, 

(3.17) 

(3.16) 
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the rotor can induce unsteady effects resulting in the need for dynamic inflow modeling.  

The subject of dynamic inflow and relevance to rotary wing systems is discussed 

extensively by Gaonkar and Peters [40]. 

For the purposes of this research the Pitt Peters dynamic inflow model will be 

used due to its computational simplicity.  The initial Pitt Peters model was a linearized 

version useful for evaluating perturbations to the system due to quasi-unsteady effects.  

Peters and HaQuang [41] derived a nonlinear version of the Pitt and Peters dynamic 

inflow model, which is a more useable format for this problem in that it can be 

dimensionalized and solved using time-marching methods in a simulation. 

The inflow distribution ν(x, ψ) is a function of both the radial coordinate x and 

azimuth position ψ and is defined as: 

 

𝜈 𝑥, 𝜓 =   𝜈𝑜 + 𝜈𝑠
𝑥

𝑅
sin 𝜓  +  𝜈𝑐  

𝑥

𝑅
cos 𝜓   (3.23) 

 

 

where νo, νs, and νc are the uniform, lateral and longitudinal variations in flow through 

the rotor plane respectively.  These values will be time varying and can be computed 

with the first order differential equation: 
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−𝐶𝐿𝐿

−𝐶𝑀

       (3.24) 

 

where [M], the apparent mass terms that represent a time delay due to unsteady flow, is : 

 

     (3.25) 

 

and  [L]nl is the nonlinear version of the inflow gain matrix: 
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   (3.26) 

In this form, the equation is non-dimensional using CT, CM and CL, the instantaneous 

thrust pitch and roll coefficients.  The above equation is in helicopter form, being 

normalized on ΩR.  For the purposes of this research the nonlinear Pitt Peters model 

can be expressed as shown in (3.27), the dimensional form to reduce computational 

steps. 

 

   (3.27) 

The matrix [L]nl is defined in (3.26) where [L] is: 

 

     (3.28) 

d is the wake angle with respect to the rotor plane shown in (3.29), 

 

   

and the matrix [V] is: 

 

 

where VT is the resultant of the total flow through the disk and V is a parameter that 

varies with the cyclic disturbances through the rotor plane.  Both can be obtained from 

momentum theory: 

(3.29) 

(3.30) 
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  (3.31) 

  (3.32) 

 

Substitution into (3.1), (3.2), yields VT and V as: 

 

  (3.33) 

   (3.34) 

3.4 Control Terms 
 

For most wind turbines, the pitch angle of the blade will be fixed as each blade 

is swept around the rotor plane.  However, for this problem, this assumption is not the 

case.  It has been shown that collective pitch can be controlled to optimize the extracted 

power from the wind.  This research will also examine if cyclic pitch can further 

optimize power extraction through balancing the pressure of the airflow through the 

rotor plane.   

Implementing cyclic pitch will mean that the blade pitch angle is a function of 

the azimuth position ψ.   Typically there is blade twist from the hub to the blade tip so 

the pitch angle will also be a function of the radial position.  Thus the blade pitch angle 

with control terms can be expressed as: 

 

 (3.35) 

 

where θo is the collective pitch angle,  θs is the longitudinal pitch angle and θc is the 

lateral pitch angle.   
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Chapter 4 Model Comparison to the WT 
Perf  Simulation 

 

Model Comparison to the 
 WT_PERF Simulation 
 

Chapter 3 outlined the theory that will be used to study how the power 

coefficient is optimized in yawed flow.  It defined a free body diagram, the blade 

element representation for computing power, forces and moments, the dynamic inflow 

model used to compute induced velocity as well as representation of the control terms 

that can be used to study the effects of collective and cyclic pitch.  Closed form 

solutions can be found for simplified cases but due to the large number of variables, but 

solving for the power coefficient quickly becomes an iterative process.  Furthermore, 

the blade element and dynamic inflow models are coupled in that each time step the 

forces and moments change as do the induced velocities with blade radius and azimuth.  

Thus to study trends over a larger domain, a non-linear time based simulation will be 

implemented. 

As two of the primary objectives of this research are to learn how the power 

coefficient changes with yawed flow and to study the effects of cyclic pitch, the code 

used has been generated in MATLAB’s Simulink software to allow user friendly control 

over the varying parameters.  A number of industry codes exist that model wind turbine 

performance, but typically include models for tower effects, vibration, complex wind 

patterns such as turbulence and shear which are not required for this research at this 

time.  And based upon initial review of the codes listed in the literature review, none of 

them explicitly model cyclic pitch (although some allow the pitch for each blade to be 

varied independently).  For this reason it was decided to use Simulink where such 

control terms are easily implemented. 
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To build confidence in the simulation results of this model, benchmark cases are 

compared to code that has been developed and is currently maintained by the National 

Renewable Energy Lab (NREL).  As mentioned, NREL’s FAST and ADAMS codes 

enjoy the most international recognition as they were certified by Germanischer Lloyd 

(GL) (the German wind turbine certifying agency) as suitable for wind turbine design 

[37].  The codes use a subroutine called AeroDyn to model the turbine’s aerodynamic 

performance.  AeroDyn itself is not a standalone program and cannot be executed 

without interfacing with a system level dynamics software such as FAST or ADAMS.   

NREL does maintain a code that focuses specifically on wind turbine 

aerodynamic performance called WT_PERF.  For comparable cases, WT_PERF has 

been described as “almost identical to AeroDyn” and has been shown to match 

AeroDyn very well as is described on the “WT_PERF Verification Page” [42].  

WT_PERF is a standalone program which makes it easier to use as a benchmark for 

comparison.  WT_PERF uses blade element theory and is basically an implementation 

of the Wilson Lissaman PROP code.  It contains models for hub loss, tip loss, swirl, 

skew wake, rotor shaft tilt or preconing, all of which can be turned off for research 

comparisons.  The code allows the user to change the yaw angle of the free stream wind 

and vary the collective pitch (but not cyclic pitch).  WT_PERF does not use a dynamic 

inflow model however cases can be generated for which the dynamic inflow model 

behaves like the momentum theory like that used in the Wilson Lissaman PROP code.  

For these reasons, WT_PERF is used for benchmark comparisons to add confidence to 

the simulation results. 

This chapter will describe the model setup, specifics about the benchmark cases 

being run and comparison results between the Simulink non-linear simulation being 

developed and WT_PERF simulation. 
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4.1 Model Implementation 
 

The Simulink simulation being developed for this research his called 

WT_3DOF, a short name for this simple 3 Degree of Freedom (CT, CM, CLL) Wind 

Turbine aerodynamic model.  The Matlab environment makes it possible to initialize 

parameters, run the simulation, and post-process the results.  Although the current 

WT_3DOF simulation is implemented in a simple way, it is set up to be expanded on in 

the future with more advanced wind models, rigid body dynamics, control inputs etc.  

For the scope of understanding and plotting the aerodynamic behavior of this plant, the 

model should be sufficient.   

WT_3DOF runs in dimensional time at a variable step size that is determined by 

MATLAB depending on the system dynamics.  All subroutines within the simulation, 

namely the blade element and the dynamic inflow routines, are set up dimensionally to 

run with time (as opposed to converging on solutions in non-dimensional form.)   

The simulation currently is set up to evaluate the power coefficient in yawed 

flow and the feasibility of using cyclic pitch to optimize performance.  As with many 

feasibility studies, it must be proven that there is a feasible design space in the best of 

circumstances before the necessity of investing effort in investing additional fidelity to 

the model.  With that being said, there are many real world features not modeled such 

as rigid body dynamics of the boundary conditions or rotor, dynamic stall of the airfoil, 

wind turbulence or shear, blade coning, shaft tilt and hub losses.  Tip losses can be 

accounted for in the simulation by adding a scale factor such as 0.97 to the radial length 

of the blade.  Another current limitation is that the simulation is only set up to run in 

the windmill state and so the design space being evaluated will avoid the propeller, 

vortex ring or propeller brake states (i.e. the results are only valid when the normalized 

induced velocity remains between 0 and 1). 

All the simulation values are relative to the rotor tip path plane.  Peters and 

HaQuang [41] have shown a convenient way to transform wind magnitudes and 

directions from a real world wind frame to the rotor tip plane.  For this simplified 

simulation, W and gamma are always relative to the rotor tip plane.  The sign 

conventions for the simulation are shown in Figure 4.1. 
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Figure 4.1  Sign Conventions for WT_3DOF 

 

For this simulation, thrust should always be positive.  Azimuth angle is assumed to be 

zero in the direction of W2 as defined in chapter 3. Facing forward toward an azimuth 

position of 180 degrees, the roll Moment is positive with advancing blade down on the 

right side and pitch moment is positive with nose up.  The sign conventions for the side 

to side cyclic induced velocity, vs, and the fore to aft cyclic induced velocity, vc are the 

same: positive with leading edge down.    

Table 4.1 shows what inputs are currently required to run the WT_3DOF 

simulation. 
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Table 4.1 Input Variables required to run WT_3DOF 

 

 

 

Note that the initial blade positions define the number of blades and should be 

equally spaced throughout the 360 degree rotor plane.  For example two blades could 

have az1=0º & az2=180º, three blades could have az1=0º, az2=120º and az3=240º.  In 

its current form, the simulation reads the initial values from the MATLAB workspace 

through a script but as its expanded the variables could become real-time inputs to a 

single block.  The Blade Section Array defines the number of blade elements that the 

blade is broken into as well as the element sizes and centroid locations.  The algorithm 

was adapted from the WT_Perf simulation to make sure that the differences in the 

blade element computations did not create differences between WT_3DOF and 

WT_Perf.   

Table 4.2 shows the simulation outputs. 

Table 4.2 Simulation outputs from WT_3DOF 
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The current implementation makes specific assumptions on the lift and drag 

coefficients as described in chapter 3.  The lift coefficient was defined in (3.10) and 

substituted for a*sin(α).  The drag coefficient is assumed to be a constant and currently 

does not vary with alpha.  These assumptions are built into the blade element equations 

that compute the local power, thrust, roll pitch moments along the blades.  The 

simulation could be reworked to read in a lift and drag coefficient for a specific airfoil 

from a lookup table, but for the parametric work at this phase, the assumptions should 

suffice for this feasibility study.  Figures of the system blocks can be found in Appendix 

B 

 

4.2 Case Study Description 
 

In order to gain confidence in the simulation results, a case study was put 

together that could be run in both the WT_3DOF and WT_Perf simulations.   

WT_Perf is set up to allow for parametric analysis.  All of the WT_3DOF results are 

compared to WT_Perf version 3.10.  Many of its features, such as hub losses, tip losses, 

skew wake corrections, blade coning and shaft tilt can be turned off for research 

comparison purposes.  NREL has published a short user’s manual to execute WT_Perf 

that is available on their website and describes in detail how to set up an input file to 

evaluate the aerodynamic performance of a wind turbine [36]. 

Figure 4.2 shows a sample input file used to compare WT_3DOF to WT_Perf. 
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-----  WT_Perf Input File  -----------------------------------------------------

WT_Perf Test01 input file.  Concept Airfoil (dimen, English, Space, PROP-PC).

Compatible with WT_Perf v3.00f

-----  Input Configuration  ----------------------------------------------------

False                Echo:                      Echo input parameters to "<rootname>.ech"?

True                DimenInp:                  Turbine parameters are dimensional?

False                Metric:                    Turbine parameters are Metric (MKS vs FPS)?

-----  Model Configuration  ----------------------------------------------------

1                   NumSect:                   Number of circumferential sectors.

5000                 MaxIter:                   Max number of iterations for induction factor.

1.0e-6               ATol:                      Error tolerance for induction iteration.

1.0e-6               SWTol:                     Error tolerance for skewed-wake iteration.

-----  Algorithm Configuration  ------------------------------------------------

False                TipLoss:                   Use the Prandtl tip-loss model?

False                HubLoss:                   Use the Prandtl hub-loss model?

False                Swirl:                     Include Swirl effects?

False                SkewWake:                  Apply skewed-wake correction?

False                AdvBrake:                  Use the advanced brake-state model?

False                IndProp:                   Use PROP-PC instead of PROPX induction algorithm?

False                AIDrag:                    Use the drag term in the axial induction calculation?

False                TIDrag:                    Use the drag term in the tangential induction calculation?

-----  Turbine Data  -----------------------------------------------------------

3                    NumBlade:                  Number of blades.

16.5                 RotorRad:                  Rotor radius [length].

3.2                  HubRad:                    Hub radius [length or div by radius].

0.0                  PreCone:                   Precone angle, positive downwind [deg].

0.0                  Tilt:                      Shaft tilt [deg].

0.0                  Yaw:                       Yaw error [deg].

48                   HubHt:                     Hub height [length or div by radius].

16                   NumSeg:                    Number of blade segments (entire rotor radius).

   RElm      Twist      Chord  AFfile  PrntElem

  3.713      0.000     1.5032     1      False

  4.537      0.000     1.5032     1      False

  5.3625     0.000     1.5032     1      False

  6.1875     0.000     1.5032     1      False

  7.0125     0.000     1.5032     1      False

  7.8375     0.000     1.5032     1      False

  8.6625     0.000     1.5032     1      False

  9.4875     0.000     1.5032     1      False

  10.3125    0.000     1.5032     1      False

  11.1625    0.000     1.5032     1      False

  11.9875    0.000     1.5032     1      False

  12.8125    0.000     1.5032     1      False

  13.6375    0.000     1.5032     1      False

  14.4625    0.000     1.5032     1      False

  15.3125    0.000     1.5032     1      False

  16.1375    0.000     1.5032     1      False

-----  Aerodynamic Data  -------------------------------------------------------

0.0019749                                Rho:                 Air density [mass/volume].

0.0001625                                KinVisc:             Kinematic air viscosity

0.0                                      ShearExp:            Wind shear exponent (1/7 law = 0.143).

False                                    UseCm:               Are Cm data included in the airfoil tables?

1                                        NumAF:               Number of airfoil files.

"simplified_airfoil.dat"  AF_File:             List of NumAF airfoil files.

-----  I/O Settings  -----------------------------------------------------------

True                 TabDel:                    Make output tab-delimited (fixed-width otherwise).

True                 KFact:                     Output dimensional parameters in K (e.g., kN instead on N)

True                 WriteBED:                  Write out blade element data to "<rootname>.bed"?

False                InputTSR:                  Input speeds as TSRs?

"fps"                SpdUnits:                  Wind-speed units (mps, fps, mph).

-----  Combined-Case Analysis  -------------------------------------------------

0                    NumCases:                  Number of cases to run.  Enter zero for parametric analysis.

WS or TSR   RotSpd   Pitch                      Remove following block of lines if NumCases is zero.

-----  Parametric Analysis (Ignored if NumCases > 0 )  -------------------------

3                    ParRow:                    Row parameter    (1-rpm, 2-pitch, 3-tsr/speed).

2                    ParCol:                    Column parameter (1-rpm, 2-pitch, 3-tsr/speed).

1                    ParTab:                    Table parameter  (1-rpm, 2-pitch, 3-tsr/speed).

True                 OutPwr:                    Request output of rotor power?

True                 OutCp:                     Request output of Cp?

False                OutTrq:                    Request output of shaft torque?

False                OutFlp:                    Request output of flap bending moment?

True                 OutThr:                    Request output of rotor thrust?

-5, 5, 1              PitSt, PitEnd, PitDel:     First, last, delta blade pitch (deg).

70, 70, 0            OmgSt, OmgEnd, OmgDel:     First, last, delta rotor speed (rpm).

12, 50, 1            SpdSt, SpdEnd, SpdDel:     First, last, delta speeds.

 

Figure 4.2  Sample WT_Perf input file used for case study 

 
 

The input file is set up to be consistent with the output of WT_Perf.  The input and 

output variables are dimensional, tip loss, hub loss, swirl, skew wake, advanced braking 

are all disabled.  The turbine data section of the input file defines the number of blades, 

rotor radius, hub radius (required by WT_Perf), cone angle, shaft tilt, nacelle yaw, hub 

height and number of blade elements.  The array at the end of this section defines the 

radial element locations of each blade element, the twist angle and chord length for each 

blade element section.  This data array of blade element locations, twist angles and 

chord lengths can be loaded into WT_Perf to maintain consistency.   
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The aerodynamic data section defines the air density, the airfoil data file.  The airfoil file, 

defined as AF_File, provides WT_Perf the lookup table to find the lift and drag 

coefficients as a function of angle of attack.  Values are provided for angles of attack 

from -180 to 180 degrees.  There is an option to look up a pitch moment coefficient but 

this featured is disabled for this comparison.  The syntax for the airfoil file is identical to 

the one used by AeroDyn.  WT_Perf does not model dynamic stall.  To make the airfoil 

data consistent between WT_3DOF and the WT_Perf input configuration, an airfoil 

was created that can be executed by WT_Perf.  WT_3DOF assumes CL=a*sin(alpha) 

and a fixed value for CD.  Thus files were created for angles of attack from -180 to 180 

degrees where CL is computed as in (3.10), CD is a static value independent of angle of 

attack that can be varied (i.e. 0.00, 0.02, 0.04, etc), and CM is defined as zero. 

The remainder of the input file show in Figure 4.2 defines the format of the 

output files as well as the variables to be studied in the Parametric Analysis.  The 

Parametric Analysis section defines what simulation outputs are to be studied as well as 

what range of variation is desired for each parameter.   In 4.2, pitch angles of -5 to 5 

degrees are specified in increments of 1 degree.  Rotor speed is fixed for this study at 70 

RPM and the wind speed is varied from 12 to 50 in increments of 1 meter per second.   

This provides the means to obtain data sweeps of power, the power coefficient 

and thrust as a function of tips peed or wind speed for a variety of pitch settings.  The 

equivalent case was then run in the WT_3DOF simulation being developed and 

compared to WT_Perf to increase confidence that the results are reasonable. 

 

4.3 Comparison of Results 
 

This section presents the comparison of the simulations, WT_Perf and 

WT_6DOF for a basic parameter analysis.  Although the simulation codes are different 

the objective is to verify that the WT_Perf code is generating reasonable results for the 

power output and power coefficient.  For that reason special attention will be paid to 

those outputs. 
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Because this section is interested in benchmarking, the comparisons chosen are 

those for which WT_Perf (which does not include a dynamic inflow model) are 

expected to match.  A progression was put together to help make the comparison 

between the simulations.  For each case shown, the WT_3DOF was run with two 

different methods for computing the induced velocities.  The first method uses 

momentum theory which is consistent with the WT_Perf implementation.  In the 

following plots, this is called out as WT_3DOF with momentum theory or "WT_3DOF 

w/MT".  This result is expected to show nearly exact match with WT_Perf for wind 

turbine systems in the windmill state (i.e. normalized induced velocity between 0 and 

0.5-0.6).  The second method implements the nonlinear Peters Pitt dynamic inflow 

model outlined in Chapter 3.  This is called out as WT_3DOF with dynamic inflow 

theory, or "WT_3DOF w/ DI" in the plots.  For yawed flow, it is not necessarily 

expected that the results should always match WT_Perf closely.  (In fact WT_Perf has 

additional code to account for swirl in yawed flow.)  For cases such as purely axial flow, 

the dynamic inflow model is expected to converge to momentum theory and thus show 

a good match for those cases.  When the flow becomes yawed or cyclic pitch is input 

into the system, the match would of course break down.  The dynamic inflow model 

would model the collective and cyclic variation in the induced velocities and the result in 

power, thrust, roll and pitch moments would differ. 

The following figures show comparisons of the power coefficient and power 

output for a variety of settings on the drag coefficient and pitch magnitudes. 
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Figure 4.3  Comparisons of (a) CP and (b) Power as a function of tip speed for CD=0.00, θO=3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.4  Comparisons of (a) CP and (b) Power as a function of tip speed for CD=0.04, θO=3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.5  Comparisons of (a) CP and (b) Power as a function of tip speed for CD=0.08, θO=3 

(a) (b) 

(a) (b) 

(a) (b) 
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Figure 4.6  Comparisons of (a) CP and (b) Power as a function of tip speed for CD=0.00, θO=1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.7  Comparisons of (a) CP and (b) Power as a function of tip speed for CD=0.04, θO=1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.8  Comparisons of (a) CP and (b) Power as a function of tip speed for CD=0.08, θO=1 

 

(a) (b) 

(a) (b) 

(a) (b) 
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Figure 4.9  Comparisons of (a) CP and (b) Power as a function of tip speed for CD=0.00, θO=-1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.10  Comparisons of (a) CP and (b) Power as a function of tip speed for CD=0.04, θO=-1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.11  Comparisons of (a) CP and (b) Power as a function of tip speed for CD=0.08, θO=-1 

(a) (b) 

(a) (b) 

(a) (b) 
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Figures 4.3, 4.4 and 4.5 show the results for a pitch setting of 3 degrees, for a 

drag coefficient of 0.00, 0.04 and 0.08 respectively.  Figures 4.6-4.8 show the results for 

a pitch setting of 1 degree with the same drag coefficients.  Figures 4.9-4.11 show the 

results for a pitch setting of -1 degree and the same progression of values for the drag 

coefficient. 

In general a close match is observed between the simulations.  Areas where the 

match degrades are when the power output becomes very small and when the drag 

coefficient is also small.  The power output decreases with tip speed, that is, as the wind 

magnitude decreases.  This test case assumes a fixed value for rotor speed so as the 

wind speed decreases the simulation naturally expects power to maintain the rotor speed 

in the presence of light wind and enters the propeller state, a region for which the 

comparisons here are not valid.  A zero drag coefficient was chosen as a setting for the 

purposes of parametric study, however in realistic cases the drag coefficient will not be 

zero.   

The research to follow will focus on how the collective and cyclic pitch 

influence the aerodynamic performance of wind turbines.  Although WT_Perf  does not 

model cyclic pitch, it does collective.  Thus a comparison to pitch as a parameter is 

prudent.  Figure 4.12-15 show the power coefficient as a function of pitch for four 

different tip speeds, 2, 4, 5 and 7 for the case shown in Figure 4.11 (a), a drag coefficient 

of 0.08.  The low tip speed shows behavior in the high wind speed region, two points 

near the optimal CP and one in the negative power region. 
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Figure 4.12  Comparisons of CP as a function of theta for tip speed J = 2 and CD=0.08 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13  Comparisons of CP as a function of theta for tip speed J = 4 and CD=0.08 
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Figure 4.14  Comparisons of CP as a function of theta for tip speed J = 5 and CD=0.08 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.15  Comparisons of CP as a function of theta for tip speed J = 7 and CD=0.08 
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Figure 4.12 shows a very good match in high wind conditions between the 

simulations for all theta.  Figures 4.13 and 4.14 compare the performance near the 

optimal values of CP and show a good match for positive pitch.  For negative pitch, the 

match between momentum theory and dynamic inflow is close.  WT_Perf shows more 

optimistic numbers as theta becomes very negative.  One reason for the discrepancy is 

that the normalized induced velocity is exceeding 0.5 which is on the verge the turbulent 

windmill state for which momentum theory and dynamic inflow are not valid; and there 

are additional code differences to handle this transition in WT_Perf.  For the purposes 

of this research, WT_3DOF is slightly pessimistic and can still be used to identify where 

the power coefficient is above zero.  Figure 4.15 shows a comparison for a negative 

power region.  It shows further degradation in match as is expected for the propeller 

state; however the match is still decent and sufficient as a benchmark check case for this 

feasibility analysis.   
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Chapter 5 Preliminary Results 
 

 

WT_3DOF Simulation Results of CP for 
Varying Collective and Cyclic Pitch 
 

The simulation developed in chapters 3 and 4 will be the code used to find the 

design space of power coefficient for winds at different yaw angles and using collective 

and cyclic pitch.  Before putting an optimizer around the code, this chapter provides 

aerodynamics plots of the systems behavior.  The section will consist of two parts: (1) 

parameter sweeps and (2) surface plots of the control space.  The objective of doing (1) 

is to make sure the results make sense and to observe where the design space shows 

potential for optimizing the power output.  The objective of (2) is to evaluate examples 

of the surface of CP as the control terms are varied.  This will present how CP varies 

with both θS and θC and will give insight into the risks of local minimums and 

maximums preventing an optimization routine from finding the true optimal settings. 

5.1 Parameter Sweeps of the Power Coefficient 
 

Previous work has shown the design space of CP for a variety of parameters 

using momentum theory to compute the axial induction and assuming a zero hub radius 

[29].  The results presented will show similar plots to outline the design space using the 

nonlinear dynamic inflow model.  The progression shows how CP changes with 

tipspeed, induced velocity then collective pitch, cyclic pitch and gamma.   

Figures 5.1-5.3 show the power coefficient as a function of tipspeed.  The 

optimum power varies with drag and pitch settings as is shown and depending upon 

these parameters, the optimal power coefficient occurs somewhere between 2-7.  

Figures 5.4-5.6 show the power coefficient as a function of the normalized induced 

velocity, w, for 3 pitch settings.  For an ideal rotor in axial flow, the optimal induced 
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flow is expected to be 1/3, however the plots show that this is not always the optimum 

as the drag increases and pitch settings are varied.  As the collective pitch is increased to 

4 degrees, the behavior of the induced flow becomes more complex showing the 

possibility of 2 different power coefficients for one induced flow when the drag is very 

small.  However as drag is increased the performance degrades more gracefully. 

 

 
Figure 5.1  CP as a function of tip speed, γ=0º, θO=0º, θS=0º, θC = 0º 
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Figure 5.2  CP as a function of tip speed, γ=0º, θO=2º, θS=0º, θC = 0º 

 

Figure 5.3  CP as a function of tip speed, γ=0º, θO=4º, θS=0º, θC = 0º 
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Figure 5.4  CP as a function of w, γ=0º, θO=0º, θS=0º, θC = 0º 

 

Figure 5.5  CP as a function of w, γ=0º, θO=2º, θS=0º, θC = 0º 
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Figure 5.6  CP as a function of w, γ=0º, θO=4º, θS=0º, θC = 0º 

 

Figures 5.7 through 5.9 show the power coefficient as a function of the 

collective pitch for tip speeds of 2, 4, and 6 respectively.  The results illustrate that the 

power coefficient can be improved by variations in collective pitch and that the trends 

vary with tip speed.  In the case of a low tip speed, a negative collective pitch increases 

the power coefficient, yet as the tip speed increases the trend changes such that positive 

pitch settings may be required.  Figures 5.10-5.12 show the power coefficient as a 

function of the side to side cyclic pitch for tip speeds of 2, 4 and 6 respectively. Figures 

5.13-5.15 show the power coefficient as a function of the fore to aft cyclic pitch for tip 

speeds of 2, 4 and 6 respectively.  In all cases, the flow is axial––that is gamma is zero––

so the optimal cyclic pitch settings occur at zero regardless of the tip speed. 
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Figure 5.7  CP as a function of θO, J=2, γ=0º,  θS=0º, θC = 0º 

 

Figure 5.8  CP as a function of θO, J=4, γ=0º,  θS=0º, θC = 0º 
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Figure 5.9  CP as a function of θO, J=6, γ=0º,  θS=0º, θC = 0º 

 

Figure 5.10  CP as a function of θS, J=2, γ=0º θO=0º, θC = 0º 
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Figure 5.11  CP as a function of θS, J=4, γ=0º, θO=0º, θC = 0º 

 

Figure 5.12  CP as a function of θS, J=6, γ=0º, θO=0º, θC = 0º 
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Figure 5.13  CP as a function of θC, J=2, γ=0º, θO=0º, θS = 0º 

 
Figure 5.14  CP as a function of θC, J=4, γ=0º, θO=0º, θS = 0º 
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Figure 5.15  CP as a function of θC, J=6, γ=0º, θO=0º, θS = 0º 

 

Figures 5.16-5.18 show the power coefficient as a function of the side to side 

cyclic pitch for tip speeds of 2, 4 and 6 respectively with yawed flow of 60 degrees.  

Figures 5.19-5.21 show the power coefficient as a function of the fore to aft cyclic pitch 

for tip speeds of 2, 4 and 6 respectively with yawed flow of 60 degrees.  Although the 

magnitudes are small for the cases shown, it is observed that varying the cyclic pitch can 

increase the power coefficient in the presence of yawed flow.  As for the case of 

collective pitch in axial flow, the cyclic pitch settings that optimize the power vary with 

tip speed. 
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Figure 5.16  CP as a function of θS, J=6, γ=60º θO=0º, θC = 0º 

 
Figure 5.17  CP as a function of θS, J=4, γ=0º, θO=0º, θC = 0º 
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Figure 5.18  CP as a function of θS, J=6, γ=0º, θO=0º, θC = 0º 

 
Figure 5.19  CP as a function of θC, J=2, γ=60º, θO=0º, θS = 0º 
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Figure 5.20  CP as a function of θC, J=4, γ=60º, θO=0º, θS = 0º 

 
Figure 5.21  CP as a function of θC, J=6, γ=60º, θO=0º, θS = 0º 
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Figures 5.22-5.24 show the power coefficient as a function of gamma (the 

yawed inflow angle of the free stream wind) for tips speeds of 2, 4, and 6, respectively.  

These plots show that the power coefficient will decrease with yaw angle.  The figures 

also show that the range of feasible yaw angles for which power can be extracted is a 

function of tip speed.   

 
Figure 5.22  CP as a function of γ, J=2, θO =0º,  θS=0º, θC = 0º 
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Figure 5.23  CP as a function of γ, J=4, θO =0º,  θS=0º, θC = 0º 

 
Figure 5.24  CP as a function of γ, J=6, θO =0º,  θS=0º, θC = 0º 
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5.2 Surface Plots of the Control Space 
 

Optimization problems typically have challenges working well over very 

complex dynamically changing surfaces or design spaces.  Surfaces that fluctuate can 

result in an optimizer finding a local minimum or maximum as opposed to the global 

value.  For this reason it is worthwhile to make some surface plots of the control space 

that will be optimized to gain some insight into how the power coefficient will change 

with control increments being added to the system.  Since there are three control terms 

in the optimization, θO, θS, and θC , it makes sense to look at some surface plots of the 

power coefficient varying two of the terms at a time.  The following surface plots will 

show an example for axial flow and for a yawed flow case and a couple different tip 

speeds for evaluation.   

Figures 5.25-5.30 shows the two dimensional surface plot of the power 

coefficient as a function of θS, and θC.  The plots are intended to give insight into the 

behavior of the power coefficient as a viable parameter in a cost function. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.25  CP as a function of θS, θC with J=3, θO = 4º, for (a) γ = 0º (b) γ  = 40º 
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Figure 5.26  CP as a function of θS, θC with J=3, θO = 0º, for (a) γ = 0º (b) γ = 40º 

 

 

 

 

 

 

 

 

 

 

Figure 5.27  CP as a function of θS, θC with J=3, θO = -4º, for (a) γ = 0º, (b) γ = 40º 

 

 

 

 

 

 

 

 

 

 

Figure 5.28  CP as a function of θS, θC with J=5, θO = 4º, for (a) γ = 0º, (b) γ = 40º 

(a) (b) 

(a) (b) 

(a) (b) 
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Figure 5.29  CP as a function of θS, θC with J=5, θO = 0º, for (a) γ = 0º, (b) γ = 40º 

 
 

 

 

 

 

 

 

 

 

 

Figure 5.30  CP as a function of θS, θC with J=5, θO = -4º, for (a) γ = 0º, (b) γ = 40º 

 

Figures 5.25-5.30 show that the value of the power coefficient changes smoothly 

as θS and θC are varied.  Furthermore, plots show the general trend that there are not 

numerous local minimums or maximums, especially in the windmill state of positive 

power for which this model will be evaluating.  In addition to inspecting the surface,  

contours are projected into the X-Y plane.  They show another general trend regarding 

the location of the global maximum.  In the presence of yawed flow, the global 

maximum can occur at a non zero value for the side to side cyclic pitch term, θS, or the 

fore to aft cyclic pitch term, θC, indicating that the optimum power coefficient is 

(a) (b) 

(a) (b) 
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achieved with non-zero cyclic pitch terms.  Thus for the given collective pitch settings, 

these grids show a reasonable design space in which to optimize cyclic pitch. 

It is also insightful to see how collective and cyclic pitch interacts.  To do this, 

we can plot grids showing the variation of the power coefficient with collective and 

each cyclic pitch term.  Figures 5.31-5.33 show the power coefficient as a function of 

collective and side to side cyclic pitch θS. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.31  CP as a function of θO, θS with J=3, θC = 4º, for (a) γ = 0º, (b) γ = 40º 

 
 

 

 

 

 

 

 

 

 

 

Figure 5.32  CP as a function of θO, θS with J=3, θO = 0º, for (a) γ = 0º, (b) γ = 40º 
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Figure 5.33  CP as a function of θO, θS with J=3, θC =-4º, for (a) γ = 0º, (b) γ = 40º 

 

Figure 5.31-33 show smooth change in the windmill state for the power 

coefficient as θO and θS are varied.  The plots show that even though the collective pitch 

term is dominant that the optimal power coefficient in yawed flows is for non-zero 

cyclic pitch. 

Figures 5.34-5.36 show the power coefficient as a function of collective and fore 

to aft cyclic pitch θC. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.34  CP as a function of θO θC with J=3, θS = 4º, for (a) γ = 0º, (b) γ = 40º 
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Figure 5.35  CP as a function of θO, θC with J=3, θS = 0º, for (a) γ = 0º, (b) γ = 40º 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 5.36  CP as a function of θO, θC with J=3, θS = -4º, for (a) γ = 0º, (b) γ = 40º 

 

Figures 5.34-5.36 also show smooth change in the windmill state for the power 

coefficient when θS and θC. are varied.  These examples also suggest that varying θC may 

increase the optimum power for the system. 

The surface plots shown have presented some examples that focus 

predominantly on the windmill state, which is the domain for which this model is valid 

and the research is interested.  An area that may give the optimization process some 

(a) (b) 

(a) (b) 
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challenges will be transition states, specifically, the transition from the propeller to 

windmill state.  Figure 5.37 shows an example of the transition from the propeller to the 

windmill state. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.37  CP as a function of θO and θS with J=5, θC = 0º, for γ = 0º 

 

Figure 5.37 shows an abrupt change in the power coefficient as the collective 

pitch is varied.  As the pitch is decreased, and depending on the operating conditions 

such as wind speed, RPM or yaw inflow angle, the total lift along the blades will switch 

sign.  For twisted blades it is possible that this transition may change more gracefully, 

but this study uses fixed theta.  Although the transition can result in transient results this 

behavior should not prevent an off-the-shelf optimizer from finding an optimal solution 

so long as the final results are watched closely when small values for the power 

coefficient are being analyzed. 
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Chapter 6  Results for Optimal Power 
Coefficient with Varying Controls 

 
 
Results for Optimal Power Coefficient 
with Varying Controls 
 

In this chapter an optimizing routine will finally be wrapped around the 

WT_3DOF simulation to study the behavior of the optimal power coefficient as a wind 

turbines control space is opened.  The section will consist of two parts, discussion with 

checkout of the optimizer being used and the optimization results.  The results section 

will show a progression of increasing the control space by comparing a fixed pitch case, 

a case where only collective pitch is optimized and a case where both collective and 

cyclic pitch are optimized.  Previous research and test data have shown that varying 

collective pitch with wind speed can improve power optimization so this progression 

should help provide an appreciation of any improvements plausible by extending the 

results for cyclic pitch. 

 

6.1 Optimization Set up and Check out 
 

Optimization problems take the general form of: 

 

minimize fO(x)       

subject to fi(x) ≤ bi, i = 1, 2,…m 

 

where x = (x1, x2,….xn) is the vector of variables, fO is the objective function to 

be minimized and fi is the constraint function with boundaries bi [43].  The optimal 

solution is the vector x that minimizes the objective function subject to the constraint 

(6.1) 
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function and boundary values.  In our case the variables being optimized are the control 

terms, θO, θS and θC.  The objective function will be the minimizing the resulting power 

coefficient (multiplied by -1) as computed by the WT_3DOF simulation.     

For this phase of research, the problem will be set up without a constraint 

function with corresponding boundary values.  Constraints such as blade rotation limits 

or dynamic stall may be added to the optimization problem for a given wind turbine or 

blade; but at this point is the research objective is to find the optimal solution without 

constraint. 

As noted in chapter 5, a common challenge in optimization problems is finding 

global minimums where the value of the cost function is highly nonlinear.  Optimizers 

can get stuck in local minimums and not find the global result.  However the plots in 

chapter 5 show that the general change in the power coefficient is quite smooth as the 

control terms are varied.  For such surfaces, techniques such as gradient search have 

success.  These results support the use of using commercially available tools such as the 

MATLAB optimization toolbox set.  For systems with many local minimums, such 

simple tools may not be appropriate, however for this defined system and feasibility 

study, the MATLAB optimizer is sufficient.  (The specific function being used is fminunc 

for which a complete description can be found in the MATLAB documentation.) 

Chapter 5 also shows that there are some limited areas where the behavior of 

the power coefficient can jump erratically, namely, when transitioning between the 

propeller and windmill state.  This jump is observed to only be along one dimension of 

the optimal variables, the collective pitch θO.  The gradient search approach is still well 

suited to handle the transition, however the results will be monitored for any erratic 

results where the power coefficient can be unrealistic due to division by a small number.   

Before running the optimization program for the larger domain being studied, 

some test cases were conducted to verify the optimizer provided reasonable results.  

The test case was set up with the same parameter values used during the benchmark 

exercise with the NREL WT_PERF simulation.  For this set of values, test cases were 

run to evaluate two of the control terms at a time and compared to the surface plots 

that were presented in chapter 5.  Testing two parameters at a time provides some 

ability to visually inspect the results.   The first test case presented here will evaluate the 
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cyclic pitch results for a fixed collective value for axial and yawed flow.  The second 

case presented here will evaluate the results for varying collective and side to side cyclic 

pitch for a fixed value of fore to aft cyclic pitch. 

Figure 6.1 shows the power coefficient as a function of θS and θC for fixed 

values of collective pitch, tipspeed and yawed angle of the inflow. 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 6.1  CP as a function of θS and θC with J=5, CD = 0.08, θO = -4º, for  

(a) γ = 0º, and (b) γ = 40º 

 

For each case shown in Figure 6.1 (a) and (b), the optimization was performed 

fixing the variable θO = -4 deg..  For case (a), the optimizer reported the optimal 

solution of θS = 0 deg and θC = 0 deg for a maximum value of CP = 0.273.  For case (b) 

optimal solution found was θS = 1.9 deg and θC = -5.2 for a maximum value of CP = 

0.205.  Figure 6.2 shows a two dimensional plot of the power coefficient as a function 

of (a) θS and (b) θC for the test case shown in Figure 6.1(b). 
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Figure 6.2  CP as a function of (a) θS, (b) θC with J=5, CD = 0.08, θO = -4º, γ = 40º     

 

Figure 6.2 is intended to provide some graphical confirmation of a sample test 

case run to check out the optimization routine.  Over 15 cases were evaluated with 

varying values of collective pitch, wind speed, and yaw angle (gamma)––all verifying the 

optimal solution was found for each grid case. 

Figure 6.3 shows the power coefficient as a function of θO and θC for fixed 

values of side to side cyclic pitch, tipspeed and yawed angle of the inflow.  This case is 

one in which the transition region from propeller to windmill state causes some 

fluctuation in the value of the power coefficient as the control terms are varied. 

 

 

 

 

 

 

 

 

 

 

Figure 6.3  CP as a function of θO and θC with J=5, CD = 0.08, θS = 0º, for  

(a) γ = 0º, and (b) γ = 40º 
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For each case shown in Figure 6.3 (a) and (b), the optimization was performed 

fixing the variable θS = 0.  For case (a), the optimizer reported the optimal solution of 

θO = -0.2 deg and θC = 0 deg for a maximum value of CP = 0.343.  For case (b) optimal 

solution found was θS = -6.2 deg and θC = -6.4 for a maximum value of CP = 0.209.  

Figure 6.4 shows a two dimensional plot of the power coefficient as a function of (a) θO 

and (b) θC for the test case shown in Figure 6.3(b). 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4  CP as a function of (a) θO, (b) θC with J=5, CD = 0.08, θO = 0º, γ = 40º   

 

Figure 6.4 is intended to provide some graphical confirmation of a sample test 

case run to check out the optimization routine.  Over 15 cases were evaluated varying 

collective pitch, and both side to side and fore to aft cyclic pitch with wind speed and 

yaw angle (gamma), all verifying the optimal solution was found for each grid case.  

Thus the test cases have shown that for this system being evaluated, the MATLAB 

optimization tool is sufficient. 
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6.2 Optimization Results 
 

With the optimization routine chosen and some checkout performed with test 

cases, the optimization routine was run and data recorded on the optimal power 

coefficient and corresponding optimal solution (i.e. the optimal θO, θS and θC).  The 

results can be evaluated with parameter sweeps of tipspeed, yaw angle (gamma) and 

drag coefficient.  As discussed in the introduction, the results section will show a 

progression of increasing the control space by comparing a fixed pitch case (θO  = 0), a 

case where only collective pitch is optimized and a case where both collective and cyclic 

pitch are optimized.   

The value of θO = 0 for the fixed theta case was arbitrarily chosen, thus in any 

condition it may or may not be optimal.  For the second case, optimizing the collective 

pitch only, the same optimization routine discussed in Section 6.1 was used with fixed 

values of θS  = 0 and θC  = 0.  Optimizing θO alone has been studied and proven useful 

in increasing power output for axial flow with variable wind speeds.  Systems that use 

feedback control to adjust collective pitch to the optimal solution for the real-time wind 

speed produce more power than conventional systems with a fixed pitch angle.  The 

third case will vary both collective and cyclic pitch without limitation on the magnitude 

of the optimal solution.   

It is not expected that opening up the cyclic pitch control space will help in axial 

flow, but rather in yawed flow.  The theoretical hypothesis is that the power coefficient 

will be improved by maintaining a smooth, balanced flow of air across the disk plane.  

The results should answer the question of whether cyclic pitch can improve the 

smoothness of flow (fewer gradients) through the disk in yawed flow. 

Figures 6.5 – 6.7 shows the optimal power coefficient as a function of tip speed 

for drag coefficients of 0.02, 0.04 and 0.08 respectively.  The black line is the fixed theta 

case, the green line shows the results for collective pitch optimization and the blue line 

shows the results for both collective and cyclic pitch optimization. 
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Figure 6.5  Optimal CP as a function of tip speed, J, for CD = 0.02, and  

(a) γ = 0º, (b) γ = 20º, (c) γ = 40º, (d) γ = 50º, (e) γ = 60º, (f) γ = 80º 
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(c) (d) 
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Optimal θO 
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Figure 6.6  Optimal CP as a function of tip speed, J, for CD = 0.04, and  

(a) γ = 0º, (b) γ = 20º, (c) γ = 40º, (d) γ = 50º, (e) γ = 60º, (f) γ = 80º 

(a) (b) 

(c) (d) 

(e) (f) 

Fixed θO=0º 
Optimal θO 

Optimal θO, θS, θC 
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Figure 6.7  Optimal CP as a function of tip speed, J, for CD = 0.08, and  

(a) γ =  0º, (b) γ = 20º, (c) γ = 40º, (d) γ = 50º, (e) γ = 60º, (f) γ = 80º 

(a) (b) 

(c) (d) 

(e) (f) 

Fixed θO=0º 
Optimal θO 

Optimal θO, θS, θC 
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The results indicate that inclusion of the cyclic pitch terms in the optimization 

routine does result in an increased optimal power coefficient.  Figures 6.5 – 6.7(a) show 

the expected results for axial flow in which the optimization results match for varying 

collective only and varying all control terms.  Figures 6.5 – 6.7 (f) show that as the yaw 

angle increases to a near perpendicular orientation to the wind, that the optimal power 

coefficient decreases to zero and no increase in control space can help in that condition.   

In Figures 6.5 – 6.7 plots (b) through (e) show the relative improvement in the 

optimal power coefficient for varying degrees of yaw angle.  The increase in the optimal 

power coefficient due to the implementation of cyclic pitch peaks at around a 15-20 % 

improvement over collective pitch alone.  The relative improvements for using cyclic 

pitch diminish for low tip speeds (less than 3), when the RPM is small relative to the 

wind.   

It should be noted that the relative improvement of using optimal control values 

is significant in both magnitude and domain compared to the fixed theta case.  Peak 

improvements in the optimal power coefficient for the collective only or cyclic and 

collective cases, double the value compared to the fixed pitch case.  In terms of domain, 

improvements can be observed for a wider variety of both tip speeds and yaw angles 

with respect to the wind.  So the improvements are observed not only seen in peak 

performance conditions, but in much wider variety of operating conditions. 

Figure 6.8 shows the optimal power coefficient as a function of yaw angle 

(gamma) for various tip speeds for a drag coefficient of 0.04.  Figure 6.9 shows the 

optimal power coefficient as a function of yaw angle (gamma) for various tip speeds for 

a drag coefficient of 0.08. 
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Figure 6.8  Optimal CP as a function of Yaw Angle, γ, for CD = 0.04, and  

(a) J = 3, (b) J = 5, (c) J = 7 and (d) J = 8 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

Fixed θO=0º 
Optimal θO 

Optimal θO, θS, θC 

(c) (d) 



 

74 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9  Optimal CP as a function of Yaw Angle, γ, for CD = 0.08, and  

(a) J = 3, (b) J = 5, (c) J = 7 and (d) J = 8 

 

Figures 6.8 and 6.9 show the relative improvements in the power coefficient as a 

function of yaw angle.  Improvements in the optimal value of the power coefficient are 

observed for nearly all yaw angles and tip speeds over the fixed pitch case.  The 

improvements are more pronounced between the tip speed range of 3-6.  The 

optimization of the collective pitch alone does increase the power coefficient in yawed 

flow, however the data also shows using cyclic pitch extends the improvements over a 

wide range of yawed wind conditions. 
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In addition to the trends of the optimal power coefficient it is insightful to 

review the data trends for the optimal solutions as well, namely the optimal values for 

θO, θS and θC.  Figures 6.10 – 6.13 show the optimal values computed as a function of 

tip speed for yaw angles of 0, 20, 40 and 60 degrees respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10  Optimal Values as a function of tip speed, J, for CD = 0.08, and γ = 0º 
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Figure 6.11  Optimal Values as a function of tip speed, J, for CD = 0.08, and γ = 20º 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.12  Optimal Values as a function of tip speed, J, for CD = 0.08, and γ = 40º 
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Figure 6.13  Optimal Values as a function of tip speed, J, for CD = 0.08, and γ = 60º 

 

Figure 6.10 shows again that for axial flow, the optimal values match for the 

collective only case and collective with cyclic pitch case.  Figures 6.11 – 6.13 show the 

results for yawed flow and as expected, the optimal values of all control terms vary 

when both collective with cyclic pitch are part of the control space.  The collective pitch 

tends to decrease (to a greater negative value) with small tip speed.  The optimal value 

for the cyclic pitch terms θS and θC actively change with tip speed.   

It is important to remember that, for this unconstrained optimization problem, 

the cost function seeks only to optimize the power coefficient (that is to minimize 

negative CP).  There are no additional limitations put on a realistic value for theta or a 

design goal of having small moments.  The side to side cyclic pitch term θS tends to 

peak on the positive side at a tip speed of about 3, which corresponds with the peak of 

the power coefficient when plotted with tip speed for this case.  As the tip speed 

decreases from 3 to 0, θS decreases until it becomes negative.  As for θC, the optimal 

results for this model indicate that it will remain negative.  The optimal values obviously 

Fixed θO=0º 
Optimal θO 

Optimal θO, θS, θC 
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vary more at tip speeds of 5 and smaller as the power coefficient is changing rapidly in 

this tip speed range. 

It should be noted that for this unconstrained case, the magnitude of the control 

terms has increased to a point where it is likely they would encounter stall.  As the pitch 

value increases the corresponding angle of attack will increase and at some large value 

(depending on the airfoil being analyzed) the linear assumption of lift with angle of 

attack will break down.  In practice additional steps are taken to address stall such as 

adding twist to the blade.  Some preliminary work was done with this model to 

determine if twist would help reduce the magnitude of the control terms for the 

unconstrained case.  However the dynamic inflow model used, the non-linear Pitt Peters 

model, does not have a radial component so the positive effects of twist would not 

show up in the results. 

The results for this unconstrained case provide a solid starting point for further 

investigation into improving the optimal power that can be realized in a system by 

opening the control space.  Future work can be done to implement an alternative 

dynamic inflow model, such as the Generalized Dynamic Wake Model, to evaluate if 

twist can reduce the magnitude of the optimal values and preserve the improvements of 

the power coefficient.   
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Chapter 7  Results for Optimal Power 
Coefficient in Trimmed State 
 

 

Results for Optimal Power Coefficient 
in Trimmed State 
 

The previous chapter showed that opening a wind turbine’s control space does 

indeed improve the achievable power coefficient for a system by increasing the control 

space.  For some boundary conditions then, such as a fixed tower, it may be useful to 

use cyclic pitch to improve power output, especially with varying wind direction.  As 

posited by Hohenemser, another possible use for cyclic pitch is to control the yaw angle 

by controlling the moments of the system and using them to trim at a specific attitude 

relative to the wind.  The intent of selecting a specific yaw angle is to keep the induced 

flow through the disk within a desired design range that works best for the turbines 

rotor capacity.  Too little induced velocity results in low power, too high can result in 

hardware damage.   

A broader study on this problem would require a validated plant in a real-time 

simulation with feedback control, which is one of the long-term development goals of 

WT_3DOF.  In the near term, it is useful to know what happens to the optimal power 

curves when the blades are also being used to trim the system.  For any desired state 

(RPM, yaw angle relative to the wind), the collective and cyclic pitch settings will be 

required to drive the pitch and roll moments to zero.  This will compete with the 

settings which could result a larger power coefficient.  This chapter will add to the 

progression in chapter 6 by adding a case where the power coefficient is being 

optimized, varying collective and cyclic pitch but with an additional constraint – the 

optimal solution should also have small pitch and roll moments.      
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7.1 Optimization Set up and Check out 
 

This optimization problem will again take the general form of: 

 

minimize fO(x)       

subject to fi(x) ≤ bi, i = 1, 2,…m 

 

where x = (θO, θS, θC), fO is the objective function to be minimized and fi is the 

constraint function with boundaries bi..  To gain understanding of what the optimal 

values and power coefficient are for various conditions when the system is in a pseudo-

trimmed state, the objective function can be modified to minimize the pitch and roll 

moments.  The objective function to be minimized is: 

 

fO(x) =  – CP + k*(M2+L2) 

 

where CP is the power coefficient, M is the system pitch moment, L is the 

system roll moment and k is a scale factor to adjust the weight of the moment 

minimization.  For this study there again will be no constraints on the system such as 

pitch magnitude limits or assumptions of dynamic stall.  It is at this point an 

investigation into what design space exists in an idealized case. 

It would be helpful––before starting any optimization––to see how the second 

term (M2+L2) changes with the variables θO, θS and θC.  To do this, the scalar k is 

defined as k = 1 just to gain an appreciation of how this term in the objective cost 

function behaves and the term will be plotted.  Figure 7.1-7.3 shows a plot of this term 

that squares the moments as a function of the control terms θO, θS and θC. 

(7.1) 

(7.2) 
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Figure 7.1  M
2
+L

2
 as a function of θS, θC, for J=3, CD = 0.08, θO = 0º and (a) γ= 0º and (b) γ= 40º 

 

 

 

 

 

 

 

 

 

 

Figure 7.2  M
2
+L

2
 as a function of θS, θO, for J=3, CD = 0.08, θC = 0º and (a) γ= 0º and (b) γ= 40º 

 

 

 

 

 

 

 

 

 

Figure 7.3  M
2
+L

2
 as a function of θO, θC, for J=3, CD = 0.08, θS = 0º and (a) γ= 0º and (b) γ= 40º 
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It is observed that the square of the moments changes smoothly as the control 

terms are varied.  Just as in Chapter 6, this moment term in the objective function is 

well suited to the gradient search type optimization. 

The value of k is a design choice that will have some bearing on the results.  A 

very large value for k will reduce the importance of the power coefficient while a value 

of 0 would result in the chapter 6 results.  A small trade study was performed to choose 

an appropriate value.  The design goal was to keep the weighting of k as small as 

possible (while not being zero) and keep all the moments less than 1-2% of the system 

thrust times rotor radius.  Reviewing Figures 7.1-7.3 shows that the pitch moment 

squared plus the roll moment squared can increase to a magnitude of 107 within the 

analysis domain.  Thus a weight of 1e-7 would scale the moment terms to be close 

enough to the scale of the power coefficient.  Figure 7.4 shows the objective function 

defined in equation 7.2 with k = 1e-7. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4  fO(x) as a function of θS, θC, with k=1e-7, for J=3, CD = 0.08, θO = 0º and (a) γ= 0º and 

(b) γ= 40º 
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Figure 7.5  fO(x)  as a function of θO, θS, with k=1e-7, for J=3, CD = 0.08, θC = 0º and (a) γ= 0º 

and (b) γ= 40º 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6  fO(x)  as a function of θO, θC, with k=1e-7,for J=3, CD = 0.08, θS = 0º and (a) γ= 0º and 

(b) γ= 40º 

 

This objective function will be satisfactory for this feasibility study as the 

objective function changes smoothly, appears suitable to find a global minimum with a 

gradient search technique and it puts the power coefficient and the magnitude of the 

moment terms on approximately the same scale.   

Before running the optimization routine over the entire domain, some test cases 

were run to verify that the optimization routine did successfully find the optimal 

solution for the new objective function defined in equation 7.2.  The routine ran for 15 

(a) (b) 

(a) (b) 
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or more test grid cases such as those plotted in Figures 7.4 – 7.6 and results compared 

well with the graphical plots upon inspection.  For example the results for Figure 7.4 

were (a) θS = 0º and θC = 0º, (b) θS = 5.1º and θC = -0.3º.  The results for Figure 7.6 were 

(a) θO = -14º and θC = 0º, (b) θO = 0.4º and θC = -2.3º.  In both cases, the resultant 

moments verified to be less than 1% of the system thrust times rotor radius.  Test cases 

such as this indicate that the optimization routine is working as intended. 

The final concern is that the scale factor k=1e-7 may not successfully reduce the 

resultant moments of the system sufficiently across the entire domain.  Using data from 

Chapter 6 a “worst case” example was chosen for having large moments and analyzed 

for several values of k.  A sample worst case chosen was for a drag coefficient of 0.08, 

tip speed of 8 and a yaw angle of 40 degrees.  Figure 7.7 shows a plot of the moment 

design criteria as a function of log10(k). 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.7  Moment design criteria as a function of log10(k) for J=8, CD = 0.08, γ= 40º 

 
Again the design criteria, keeping the resultant moments less than ~1% of the 

system thrust times rotor radius, is shown in red on Figure 7.7.  While the value k=1e-7 

generally will reduce the moments below the design criteria across the domain, there do 

exist some worst cases that will require a larger value of k and a greater weigh on the 

moments in the objective function.  Thus the analysis steps taken are to run the 

optimization with k = 1e-7, and if the moments violate the design criteria, to change k 

to 1e-5 and re run that test point to find the optimal values.  Note this constraint is only 

Design Limit 
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placed on the case where both collective and cyclic pitch terms are variables for 

optimization.  Collective pitch alone is not able to meet the defined design criteria. 

7.2 Optimization Results 
 

With the checkout complete, the optimization routine as formed in Section 7.1 

was run and data recorded on the optimal power coefficient and corresponding optimal 

solution (i.e. the optimal θO, θS and θC).  The results are evaluated here with parameter 

sweeps of tip speed and yaw angle (gamma).  The optimal value for the control terms 

will be reviewed with tip speed as well.   

The plots in this section show a progression of three curves to observe the 

impact of first imposing the moment constraint, then the change that occurs when the 

full control space is available.  The three curves represent:  (1) the chapter 6 results that 

optimize the power coefficient only for the case where only collective pitch is a variable, 

(2) the optimal results where only collective pitch is a variable but using the objective 

function in this chapter, equation 7.2 (minimizing the negative power coefficient and 

moments) and (3) the optimal results using equation 7.2 but with collective and cyclic 

pitch as variables.   

The rational for starting with the collective only case is that varying collective 

pitch to improve power output is already an established practice in industry and 

provides a reasonable benchmark for the results.  As a stepping stone to the final result, 

the collective only case is recomputed using the new objective function 7.2, or 

attempting to put the system in a pseudo-trimmed state.  Then the results present what, 

if any, improvements can be realized by opening up the control space, using collective 

and cyclic pitch for this new constraint of system trim. 

Figures 7.7 – 7.9 show the optimal power coefficient as a function of tip speed 

for drag coefficients of 0.02, 0.04 and 0.08 respectively.  The black line is case 1, when 

collective pitch is a variable and only CP is optimized, the green line shows the results 

for collective pitch-trim optimization and the blue line shows the results for both 

collective and cyclic pitch-trim optimization. 
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Figure 7.8  Optimal CP as a function of tip speed, J, for CD = 0.02, and  

(a) γ =  0º, (b) γ = 20º, (c) γ = 40º, (d) γ = 50º, (e) γ = 60º, (f) γ = 80º 
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Figure 7.9  Optimal CP as a function of tip speed, J, for CD = 0.04, and  

(a) γ =  0º, (b) γ = 20º, (c) γ = 40º, (d) γ = 50º, (e) γ = 60º, (f) γ = 80º 
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Optimal θO 

Optimal θO, Trimmed 
Optimal θO, θS, θC, Trimmed 
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Figure 7.10  Optimal CP as a function of tip speed, J, for CD = 0.08, and  

(a) γ =  0º, (b) γ = 20º, (c) γ = 40º, (d) γ = 50º, (e) γ = 60º, (f) γ = 80º 
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(c) (d) 

(e) (f) 

Optimal θO 

Optimal θO, Trimmed 
Optimal θO, θS, θC, Trimmed 
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 In Figures 7.8-7.10, plots (a) verify that the solutions are the same in axial flow 

which is expected as the grid plots show that both the optimal power coefficient and 

the smallest moments exist for zero cyclic pitch in axial flow.  Plots (f) show the point 

of diminishing return in yawed flow, namely, there is some large yaw angle (in this case 

80º), for which the increased control cannot help increase power output.   

Plots (b) – (e) show that, when a system uses cyclic pitch, the turbine can 

optimize the power coefficient, reduce the system moments and still meet or exceed the 

peak power coefficient compared to the black line (the notional industry standard).  The 

green line shows the impact of applying the trim constraint, which in some instances is 

severe.  It is observed that the peak power coefficient drops, in some cases, more than 

50%..  This shows that the design objective of trimming a system can significantly 

impact the peak power output of a wind turbine.  The blue line, optimizing collective 

and cyclic pitch while meeting the trim constraint, shows that only with the full control 

space can the system stay trimmed and meet standard expectations for power output.   

One of the principal ideas being studied in this research is whether the use of 

cyclic pitch will enable a system to simultaneously put the turbine at a desired yaw angle 

with the wind, keep the system trimmed and yield a reasonable power output.  

Controlling the yaw angle can effectively control the magnitude of flow through the disk 

and thus keep the system at an optimal tip speed ratio J.  A concern is that in using the 

blades to trim in yawed flow would significantly compete with the objective of 

maximizing power output, making the concept infeasible for practice.  However these 

results suggest that it is feasible for a wind turbine to trim at a desired yawed flow angle 

and achieve nearly the same power coefficient as the notional industry standard, (i.e. 

optimizing collective pitch with disregard for moment constraints).    

It is observed that at low tip speeds (1-2), opening the control space did not 

result as great of an improvement.  In this condition the RPM is very low relative to the 

wind magnitude, applying the trim constraint degrades the performance more 

significantly.  Besides low tip speeds, the use of cyclic pitch generally increases the 

power coefficient elsewhere. 
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Of interest is how the power coefficient changes in yawed flow.  Figures 7.11 – 

7. 12 show the optimal power coefficient as a function of yaw angle (gamma) for a 

variety of tip speeds and for drag coefficients of 0.04 and 0.08 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.11  Optimal CP as a function of Yaw Angle, γ, for CD = 0.04, and  

(a) J = 2, (b) J = 3, (c) J = 5 and (d) J = 7 
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Figure 7.12  Optimal CP as a function of Yaw Angle, γ, for CD = 0.08, and  

(a) J = 2, (b) J = 3, (c) J = 5 and (d) J = 7 

 

In Figures 7.11 – 7.12, plot (a) shows the result that at low tip speeds, the 

objective of finding small moments degrades the power coefficient at all yaw angles.  

The results for tip speeds of 3-7 show that in yawed flow, the use of cyclic pitch 

increases the power coefficient over the case of collective only without trim.  Thus in 

yawed flow, the use of cyclic pitch does increase the feasible power output. 

It is also useful to review the optimal values θO, θS and θC, computed by the 

optimization routine.  Figures 7.13 – 7.16 show the optimal values as a function of tip 

speed for yaw angles of 0, 20, 40 and 60 degrees respectively. 
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Figure 7.13  Optimal Values as a function of tip speed, J, for CD = 0.08, and γ = 0º 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.14  Optimal Values as a function of tip speed, J, for CD = 0.08, and γ = 20º 
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Figure 7.15  Optimal Values as a function of tip speed, J, for CD = 0.08, and γ = 40º 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.16  Optimal Values as a function of tip speed, J, for CD = 0.08, and γ = 60º 
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The data generally show larger blade deflections at lower tip speeds, where the 

system forces and moments are increasing.   As the optimal power changes and system 

forces and moments grow, it is natural to expect more dynamically changing optimal 

values.  The optimal results require all three control terms be active (nonzero) from tip 

speeds of 1-5 to accomplish the pseudo-trimmed state.  Generally the peak deflections 

increase with the yawed flow angle.  It is also observed that the magnitude of the blades 

can become large and thus the results can be degraded should stall be included in the 

model (which is future work for improving WT_3DOF).  Interestingly enough, the 

objective of reducing the moments did decrease the magnitude of the optimal values 

over chapter 6, reducing the potential impact of stall or dynamic stall on these results. 

A final check to be accomplished is to make sure the optimization routine met 

the design criteria for reducing the system moments while optimizing the power 

coefficient.  Figure 7.17 shows the percentage ratio of the system’s resultant moments 

divided by the instantaneous thrust times rotor radius for all data samples presented in 

this chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.17  % Resultant Moment/(T*R) for Optimal Results Using Collective and Cyclic Pitch 

in Trimmed State 
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Figure 7.17 shows that the data meet the design criteria of being less than 1%.  

This result shown is for the case where both collective and cyclic pitch are optimization 

variables.  When only collective pitch is a variable for optimization, the resultant 

moments were quite large and unable to meet this criterion.   

Hohenemser hypothesized that cyclic pitch could be used to control the yaw 

angle of a wind turbine with respect to the wind.  To fully investigate this idea would 

require a feedback control simulation to evaluate the full system performance.  However 

the results in this chapter encourage the idea.  The objective of trimming the system in 

yawed flow did not render impossible the realization of a feasible power coefficient (i.e. 

comparable to a turbine optimizing collective pitch without trim.)  At low tip speed, the 

trimmed condition impacts the power coefficient more significantly.  But the use of 

cyclic pitch increases the range of tip speeds for which a decent power coefficient can 

be achieved in yawed flow.  It is also able to meet the competing objective of reducing 

the system moments.  This increases the design space for further study in control 

methods, such as real-time adjustments to the turbine yaw angle to keep the system in a 

desired tip speed range. 
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Chapter 8  Conclusions and Future 
Work 
 

 

Conclusions and Future Work 

 

The objective of this research is to numerically determine the value of the 

parameters required to optimize a wind turbine's power output using the traditional 

rotary-wing control terms of collective and cyclic pitch.  The primary objective is to 

optimize the power coefficient using collective and cyclic pitch, in the presence of axial 

or yawed wind inflow, and evaluate what effect increasing the control space has on the 

optimal power coefficient.  A secondary objective of this research is to investigate the 

effect of cyclic pitch on the power coefficient if it were being used to both reduce the 

system moments of a wind turbine at a specific yaw angle and optimize the power 

coefficient. 

To accomplish these objectives a literature review was performed documenting 

the relevant previous work.  Special attention was paid to the available wind turbine 

codes that are available for industrial use.  To perform the analysis, a wind turbine 

simulation called WT_3DOF was developed that included a blade element theory and 

the nonlinear form of the Pitt Peters dynamic inflow model.  Although this simulation is 

currently very simple and can be greatly improved, the model showed good agreement 

with NREL’s WT_PERF simulation in axial flow for a set of test cases presented and is 

considered sufficient for use in this feasibility study.  In chapter 5, WT_3DOF was used 

to provide design space plots for the optimal power coefficient.  The results showed 

that varying cyclic pitch could result in larger power coefficients than a case where cyclic 

pitch is fixed.  Grid surface plots were presented to show that the design space was well 

suited for a gradient search type optimization routine. 
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Regarding the primary objective, chapter 6 presents numerical results for the 

optimal power coefficient as the system control space is opened.  Three cases were 

compared to evaluate the change in control space:  a fixed pitch case (θ=0), a case 

where only the collective pitch is a variable and a case where both collective and cyclic 

pitch are variables.  The results show conclusively that in yawed flow, the use of cyclic 

pitch can result in a larger optimal power coefficient.   

Increasing the power coefficient in yawed flow can result in more cumulative 

power output as wind changes direction with respect to a turbine.  As discussed, yaw 

angle can be used as a regulator to control the magnitude of air flowing through the 

turbine disk.  This can be valuable in making sure the airflow is consistent with the rotor 

rating or optimal tip speed for the hardware and operating conditions.  The chapter 6 

results would suggest that for any system using this technique, the use of cyclic pitch 

would produce more power than a fixed pitch turbine or one that optimizes collective 

pitch only.  It was observed that the magnitude of the blade deflections became large 

and could be affected by dynamic stall, which is currently not modeled in WT_3DOF. 

Regarding the secondary objective, chapter 7 extends the results of chapter 6 by 

modifying the objective function in the optimization to reduce the system moments.  

This is intended capture how the optimal power coefficient will generally change when 

the cyclic pitch has competing priorities: optimizing power and holding the system in a 

pseudo-trimmed state.  Three cases were again compared to evaluate how the power 

coefficient changes when blades are trimming the system and the control space opens.  

The first case is the optimal results with only collective pitch as a variable and no trim 

constraint.  The second case is the optimal results with only collective pitch as a variable 

and with a trim constraint.  The third case is the optimal result with collective and cyclic 

pitch as variables with a trim constraint.   

The chapter 7 results show that, except for low tip speeds, it is feasible for cyclic 

pitch to both trim a system and provide the same level of power as the first case, where 

collective pitch is optimized without trim.  This is an interesting result for any turbine 

design that seeks to optimize the power coefficient in axial or yawed flow while keeping 

the moments small.   Hohenemser posited that cyclic pitch could be used to control the 

yaw angle of a wind turbine with respect to the wind.  The chapter 7 results suggest that 
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this could be accomplished without serious degradation to the optimal power 

coefficient.  Although just a feasibility study in its current form, the results do provide 

an encouraging result for Hohenemser’s idea.  As in chapter 6, it is observed that the 

magnitude of the blade deflections became large and could be affected by stall, which is 

currently not modeled in WT_3DOF.  Also the objective of trimming the system did 

degrade the power coefficient at low tip speeds.  Additional study is required to see if 

improvements can be made at low tip to wind speed ratios. 

 

There is no shortage of future work available.  As mentioned, to fully investigate 

this idea would require a feedback control simulation to evaluate the full system 

performance.  Many wind turbine codes are available, however none of them model 

cyclic pitch.  Thus to add fidelity to the results presented in this thesis, and to determine 

how much cyclic pitch can improve power output in a time domain with realistic wind 

models, more simulation work is required.  This can be done using the available turbine 

codes such as those developed at NREL, however they would need to be modified with 

new control terms and recompiled. 

Alternatively, improvements could to be made to WT_3DOF in the MATLAB 

environment.  Improvements to WT_3DOF need start with the wind turbine plant and 

include an improved dynamic inflow model (such as the Generalized Dynamic Wake 

model) to account for radial changes in induced velocity, a dynamic stall model for large 

blade deflections and a code improvements to simplify how airfoil data is loaded into 

the simulation.  Once improvements are made to the plant, the model would need some 

level of validation by comparing the simulation results to actual wind turbine data.  And 

once the plant is validated a control loop could be added for analysis.  This application 

for studying how control methods can optimize power can be used to analyze specific 

turbine systems.  A possible extension of the code is analyzing ocean turbines that 

collect power from strong ocean currents.  Perhaps in such an environment the use of 

improved control methods may result in greater power output as flow through the 

turbine disk is balanced. 
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Appendix A 
 

To compute the element value of dF1
i and dF2

i,  the equations (3.12) and (3.13) 

are used.  Substituting (3.5), (3.10) and (3.11) gives the blade element lift and drag force 

for that section of the blade in terms of WT and WP.  Substituting (3.8) and (3.9) into 

(3.12) and (3.13) yields: 

 

dF1 = dx[cosθWpWT – sinθWT
2] + dx[WP

2 2

T PW W ]CD  (A.1) 

dF2 = dx[cosθWP
2 – sinθWPWT] – dx(WT

2 2

T PW W )CD  (A.2) 

 

which represents of dF1
i and dF2

i in terms of WT and WP (presuming CD,  ρ, a, c and dx 

are known.)  Some simplifying assumptions are: 

 

2 2

T PW W = WT 

sinθ =θ 

cosθ =1 

DC

a
=0 

 

which when put into (A.1) and (A.2) yield: 

 

 = dx[–( )2θ + ]    

 = dx[–( )2   –  + ( )2] 

 

which are equations (3.14) and (3.15). 

(A.3) 

(A.4) 

(A.5) 

(A.6) 

(A.7) 

(A.8) 
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Appendix B 
 

WT_3DOF is a MATLAB Simulink program that, in its current state, simply 

combines a blade element theory and the nonlinear Pitt Peters dynamic inflow model to 

evaluate aerodynamic performance of wind turbines.  This simplified version of a wind 

turbine simulation was developed due to the non-existence of wind turbine code that 

could evaluate cyclic pitch.  Industry codes could be modified to account for cyclic 

pitch, but none of them were, at the time of this thesis work, available to the author for 

use or develop.  Descriptions of the simulation inputs and outputs are shown in Tables 

4.1 and 4.2.  Figure B.1 shows the top level system blocks of WT_3DOF. 

 

 

 

 

 

 

 

 

 

 

 

Figure B.1  Top Level Blocks of WT_3DOF 

 

Figure B.2 shows the BE Theory Block. 
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Figure B.2  Blade Element Theory Block in WT_3DOF 

 

Because the non-linear solution of the Pitt-Peters model is dependent upon the 

instantaneous thrust, pitch and roll moment, the dynamic inflow model and blade 

element theory are coupled.  For each run the simulation is initialized and allowed to 

converge to a solution for the defined parameters.  The “BEM” block in Figure B.2 is a 

simple routine that sums the moments and forces along all the blade elements using all 

the inputs shown.  The clock is used as a simple means to simulate blade rotation. 
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