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Chapter 1

Introduction

Let R (along with all other rings throughout) be a commutative Noetherian ring.

We will denote the set of units in R by R∗, and use R[n] to denote the polynomial

ring in n variables over R. By GAn(R), we denote the general automorphism group

AutSpecR(SpecR[n]). This group is naturally anti-isomorphic to the group AutRR
[n].

We will abuse this correspondence somewhat; given φ ∈ GAn(R), and f ∈ R[n],

we will write φ(f) ∈ R[n]. We will use ◦ for multiplication in GAn(R), so given

φ1 = (F1, . . . , Fn), φ2 = (G1, . . . , Gn) ∈ GAn(R), we have the natural composition

φ1 ◦ φ2 = (F1(G1, . . . , Gn), . . . , Fn(G1, . . . , Gn)).

GAn(R) contains many important subgroups. Among those of interest to us are

• GLn(R), the group of all linear automorphisms (each component is homoge-

neous of degree one)

• Afn(R), the group of all affine automorphisms (each component is of degree

one)

• GAkn(R) (k ∈ N), the tangent preserving automorphism groups. This group

consists of all automorphisms of the form φ = (F1, . . . Fn) where Fi = Xi + Pi,

and Pi has order1 at least k + 1.
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• EAn(R), the group generated by elementary automorphisms (automorphisms

that fix n− 1 variables)

• EAkn(R) = EAn(R) ∩ GAkn(R) (k ∈ N), the elementary tangent preserving

groups

• TAn(R), the group of tame automorphisms, generated by GLn(R) and EAn(R).

Equivalently, it is generated by Afn(R) and EA1
n(R).

We are also sometimes interested in MAn(R) := EndSpecR(SpecR[n]) ∼= (R[n])n,

the monoid of all algebraic endomorphisms of SpecR[n]. We of course then have

GAn(R) ⊂MAn(R).

The structure of GAn(R) is a question where surprisingly little is known. The

question of how to identify and construct automorphisms has been the subject of

much study over the last half century, but not much is known beyond n = 2.

Definition 1.1. A set of polynomials f1, . . . , fm ∈ R[n] is called a partial system of

coordinates if there exist gm+1, . . . , gn ∈ R[n] such that (f1, . . . , fm, gm+1, . . . , gn) ∈

GAn(R). When m = 1, f1 is simply called a coordinate.

We can now state precisely the overarching question motivating much of the work

in the field of affine algebraic geometry.

Question 1.1. Given f1, . . . , fm ∈ R[n], what conditions are sufficient to guarantee

that f1, . . . , fm is a partial system of coordinates?

At one extreme, m = n, lies the famous Jacobian Conjecture, first posed by Keller

(for n = 2 and R = Z) in 1939:

Jacobian Conjecture. Let f1, . . . , fn ∈ R[n]. (f1, . . . , fn) ∈ GAn(R) if and only if

the Jacobian determinant is a unit, i.e. det( ∂fi

∂xj
) ∈ R∗.

1The order of a polynomial f is the minimum of the degrees of the monomials with nonzero
coefficients appearing in f . We will denote this by ord f .
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This is false in positive characteristic; in characteristic zero it is known only for

n = 1. When n = 2, although the Jacobian Conjecture is unknown, we do have the

following:

Theorem 1.1 (Jung-van der Kulk). Let k be a field. Then TA2(k) = GA2(k).

Elements of TA2(k) are algorithmically recognizable (this can be seen from the

Abhyankar-Moh-Suzuki epimorphism theorem), so this gives a very nice structure on

GA2(k). However, in 2001 Shestakov and Umirbaev [17] showed that while elements

of TA3(C) are algorithmically recognizable, TA3(C) 6= GA3(C).

At the other extreme, m = 1, an important idea is the notion of hyperplanes In

this case, a single polynomial f ∈ R[n] is called a hyperplane if R[n]/f ∼= R[n−1].

Embedding Conjecture (Abhyankar-Sathaye). Hyperplanes are coordinates

This also fails in positive characteristic; it was proven over a field of characteristic

zero with n = 2 by Abhyankar and Moh [1], and Suzuki [19] independently. This

was later generalized for R a polynomial ring in a single variable over a field of

characteristic zero (with n = 2) by Russell and Sathaye [14]. It remains open for

n ≥ 3.

For arbitrary m, we require the notion of affine fibrations.

Definition 1.2. An inclusion of R-algebras A ↪→ B is called an affine fibration or an

Ar-fibration if

1. B is flat over A

2. B is finitely generated over A

3. B ⊗A κ(p) ∼= κ(p)[r] for each p ∈ SpecA (where κ(p) denotes the residue field

Ap/pAp)
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Remark 1.1. If A,B are both polynomial rings over a field, then one only needs to

check the third condition to see that A ↪→ B is an affine fibration (c.f. [6] Lemma

2.1).

The simplest examples of affine fibrations are polynomial rings A ↪→ A[r]. Dol-

gachev and Weisfeiler, working in the context of group schemes [22], were led to

conjecture

Dolgachev-Weisfeiler Conjecture. Let k be a field and B = k[t]. Then A ↪→ B is

an Ar-fibration if and only if B = A[r].

Asanuma [2] produced counterexamples in positive characteristic (for r = 2). He

also showed

Theorem 1.2 (Asanuma). Suppose A ↪→ B is an Ar-fibration. Then ΩB/A is a

projective B-module. If ΩB/A is free (as a B-module), then there exists s ∈ N such

that A[r+s] = B[s].

The Quillen-Suslin theorem provides the following corollary:

Corollary 1.3. Let k be a field, B = k[t], and let A ↪→ B be an Ar-fibration. Then

there exists s ∈ N such that A[r+s] = B[s].

To see how this relates to identifying partial coordinate systems, we define

Definition 1.3. If R[f1, . . . , fm] ↪→ R[n] is an An−m-fibration, we say f1, . . . , fm are

a partial system of residual coordinates; in the case m = 1, we call f1 a residual

coordinate.

We will frequently be concerned with the case when R is a C[x]-algebra. In this

case, we have the notion of strongly residual coordinates:

Definition 1.4. Let R be a C[x]-algebra, and f1, . . . , fm ∈ R[n]. Then f1, . . . , fm is

called a partial system of strongly x-residual coordinates if
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1. R[n] is flat over R[f1, . . . , fm]

2. f̄1, . . . , f̄m, the images modulo x, form a partial coordinate system over R̄

3. f1, . . . , fm is a partial system of coordinates over the localization Rx = R ⊗C[x]

C[x, x−1]

Remark 1.2. This definition depends on the choice of the variable C[x] = C[1]; if the

choice of variable is clear, we may simply say strongly residual.

Remark 1.3. If R is a polynomial ring over a field, then the flatness condition follows

from the latter two conditions. Most of our examples will be in this situation.

Remark 1.4. We use C merely for convenience; C can be replaced by any field of

characteristic zero.

The term strongly x-residual is motivated by the following.

Proposition 1.4. Let R be a C[x]-algebra, and f1, . . . , fm ∈ R[n]. If f1, . . . , fm is a

partial system of strongly x-residual coordinates, then it is a partial system of residual

coordinates.

We now formulate a special case of the Dolgachev-Weisfeiler conjecture

Dolgachev-Weisfeiler Coordinate Conjecture (DWC(R,m,n)). Let R be a poly-

nomial ring over a field of characteristic zero, and let f1, . . . , fm ∈ R[n]. This forms a

partial system of coordinates if and only if it is a partial system of residual coordinates.

Once again, this fails in positive characteristic; we summarize what is known in

the following:

Theorem 1.5. Let k be a field of characteristic zero. The following cases of the

Dolgachev-Weisfeiler coordinate conjecture are known:

1. DWC(k[r],m,m) is true for all r ≥ 0, m ≥ 1

2. DWC(k[r],m,m+ 1) is true for all r ≥ 0, m ≥ 1.
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3. DWC(k,1,3) is true.

Proof. The first statement can be shown directly using the Formal Inverse Function

Theorem. The arguments for the latter two are laid out in [6]. To show (2), suppose

f1, . . . , fm ∈ k[r+m+1] is a partial system of residual coordinates over k[r]. Then B =

k[r+m+1] is an A1-fibration over A = k[r][f1, . . . , fm]. By Corollary 1.3, A[s+1] = B[s]

for some s ∈ N; a theorem of Hamann [10] then implies A[1] = B.

The third part follows from Sathaye’s theorem [16].

Theorem 1.6 (Sathaye). Let A be a DVR of characteristic zero, and A ↪→ B an

A2-fibration. Then B = A[2].

Assume k[f1] ↪→ k[3] is an A2-fibration. Since k[f1] is a PID, Sathaye’s theorem

yields that f1 is locally a coordinate in B = k[3]; thus by the Bass-Connell-Wright

theorem [3], B is a symmetric k[f1]-algebra of a projective rank 2 B-module. But

since k[f1] is a PID, this is actually a free module, hence B = k[f1]
[2].

Remark 1.5. For m = 1 and R = k a field, the hypothesis “k[f1] ↪→ k[n] is an affine

fibration” implies that f1−λ is a hyperplane for all λ ∈ k (f1 is then sometimes called

a general hyperplane or a hyperplane fibration). In this case, DWC(k,1,n) is implied

by the Sathaye Conjecture [15], which is in turn slightly weaker than the Embedding

Conjecture. For n ≤ 3 and Q ⊂ k, Kaliman (for k = C in [11], and generalized to

arbitrary k ⊃ Q with Daigle in [7]) showed something in between the latter two: If

f − λ is a hyperplane for all but finitely many λ ∈ k, then it is a coordinate.

Remark 1.6. It is easy to check that DWC(k[r],m,n) implies DWC(k[r+1],m−1,n−1).

We are generally interested in constructing coordinate-like polynomials. The mo-

tivating example is the Nagata automorphism

σ := (x, y + x(xz − y2), z + 2y(xz − y2) + x(xz − y2)2) ∈ GA3(C) (1.1)
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This map was written down by Nagata in 1972 [13] as an example of an automor-

phism which was not known to be tame. While Smith [18] and Wright (unpublished)

gave elementary proofs that it is stably tame, it was not shown to be wild until the

work of Shestakov and Umirbaev [17] some 30 years later. Nagata constructed this

map by observing the following (an easy application of the Formal Inverse Function

Theorem):

Theorem 1.7. GAn(C[x]) = {φ ∈ GAn(C[x, x−1]) ∩MAn(C[x]) | Jφ ∈ C}

Remark 1.7. This is a special case of the overring principle ([20] Prop. 1.1.7)

Perhaps the simplest thing one can then do is choose α, β ∈ EAn(C[x, x−1]) with

Jα, Jβ ∈ C∗ such that α−1 ◦ β ◦ α ∈ MAn(C[x]). If α ∈ GLn(C[x, x−1]) or n = 1, it

is easy to see that the composition is always tame over C[x]; so really the simplest

interesting thing is Nagata’s map, which can be written

σ = (x, y, z +
y2

x
) ◦ (x, y + x2z, z) ◦ (x, y, z − y2

x
)

We are mainly interested in studying residual coordinates that arise from this kind

of construction. For (f1, . . . , fn) ∈ GAn(C[x, x−1][y]), consider

φ = (y + xmQ, z1, . . . , zn) ◦ (y, f1, . . . , fn) ∈ GAn+1(C[x, x−1])

If xmQ(f1, . . . , fn) ∈ xC[x, y][n], then φ(y) = y + xmQ(f1, . . . , fn) is a strongly x-

residual coordinate over C[x]. From Theorem 1.5, we see that these must be coor-

dinates if n = 1, but the question of whether such things are coordinates is open

for n ≥ 2 (the n = 1 case gives y + x(xz − y2), the y component of the Nagata

automorphism (1.1)). With minimal effort, we can see that if m is sufficiently large,

you do in fact have a coordinate.
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Theorem 1.8. Let ψ = (y, f1, . . . , fn) ∈ GAn+1(C[x, x−1]) and Q ∈ C[x][n]. Then

for all m >> 0, y+ xmQ(f1, . . . , fn) is a C[x]-coordinate. To be precise, write ψ−1 =

(y, g1, . . . , gn) and define, for k > 0 and 1 ≤ j ≤ n,

qj,k = min{q|xqk ∂
kgj
∂yk

(y, f1, . . . , fn) ∈ C[x, y][n]}

Also define

m1 := max
1≤j≤n; 0<k

{qj,k} (1.2)

m2 := min{m ∈ N|xmQ(f1, . . . , fn) ∈ C[x, y][n]} (1.3)

Then y + xmQ(f1, . . . , fn) is a coordinate if m ≥ m1 +m2.

Proof. This is just an application of Taylor’s formula. Let

φ = ψ−1 ◦ (y + xmQ, z1, . . . , zn) ◦ ψ

and compute

φ(zj) = gj(y + xmQ(f1, . . . , fm), f1, . . . , fn)

=
∑
k=0

1

k!

∂kgj
∂yk

(y, f1, . . . , fn)(xmQ(f1, . . . , fn))k

= zj +
∑
k=1

1

k!
xk(m−m2−m1)

(
xkm1

∂kgj
∂yk

(y, f1, . . . , fn)

)
(xm2Q(f1, . . . , fn))k

It is now immediate from (1.2) and (1.3) that φ(zj) ∈ C[x, y][n]. One quickly checks

that Jφ = 1, so by Theorem 1.7 φ ∈ GAn(C[x]).

The most well known example of these kinds of strongly residual coordinates are

called the Vénéreau polynomials, first written down in 2001 by Vénéreau ([23], [12])

and Berson ([4]) independently. They are given by
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bm := y + xm(xz + y(yu+ z2)) ∈ C[x, y][2] (1.4)

Vénéreau noted that the bm are hyperplanes as well as residual coordinates for

each m ≥ 1. Furthermore, doing essentially the same thing as Theorem 1.8, he showed

that for m ≥ 3, bm is a coordinate. Freudenburg [9] was able to show that b1 and b2

are 1-stable coordinates; however, the question of whether b1 and b2 are coordinates

remained open.

In chapter 2, we investigate the Vénéreau polynomials. We show that b2 is in fact

a coordinate. We introduce a related class of strongly residual coordinates, which we

term Vénéreau-type polynomials. We show that all of these are also hyperplanes; we

show that many of them are coordinates, and the remainder are 1-stable coordinates.

This gives many more potential counterexamples to DWC(C,1,4), DWC(C[1],1,3), and

the Embedding Conjecture.

One of the obstructions in dealing with the Vénéreau polynomials is that they arise

from a wild automorphism; indeed, they appear as φ(y) where φ = (y+ x(xz), z, u) ◦

(y, f1, f2) where (y, f1, f2) ∈ GA2(C[x, x−1, y]) is wild. In chapter 3, we thus restrict

our attention to considering tame strongly residual coordinates; that is, strongly

residual coordinates that arise as the y-component of an automorphism of the form

(y+xQ, z1, . . . , zn)◦(y, f1, . . . , fn) where (y, f1, . . . , fn) ∈ TAn(C[x, x−1, y]). Our main

result is an improvement in the required m via a modification of the conjugation ap-

proach of Theorem 1.8. In addition, we show that in the case of GA2(C[x, x−1, y]),

the Vénéreau polynomials can be characterized as the simplest strongly residual co-

ordinates which cannot be shown to be coordinates.

9



Chapter 2

Vénéreau and Vénéreau-type

Polynomials

2.1 The Vénéreau Polynomials

Throughout this chapter, we will let R = C[x] and S = C[x, x−1]. In addition, when

working with C[3], R[3], or S[3], we will use the variables C[3] = C[y, z, u]. Define a

derivation on C[y, z, u] by

D := y
∂

∂z
− 2z

∂

∂u
(2.1)

D is triangular and thus locally nilpotent. We also define

p := yu+ z2 v := xz + yp w := x2u− 2xzp− yp2 (2.2)

Note that kerD = C[y, p], and exp(pD) ∈ GA3(C) is essentially the Nagata map

(1.1). By defining Dx = 0, D naturally extends to a derivation on R[3] and thus S[3]

with kernel S[y, p] (c.f. [8]). Thus we may consider ψ := exp( p
x
D) ∈ GA3(S). One

quickly computes

ψ =
(
y,
v

x
,
w

x2

)
(2.3)

10



We note that since ψ fixes p, we quickly obtain the relation

yw + v2 = x2p (2.4)

From (2.3), we see the Vénéreau polynomials naturally as S-coordinates; indeed,

recall from the introduction (1.4) that (with m ≥ 1), they are defined by

bm = y + xmv (2.5)

Thus we have (y + xm+1z, z, u) ◦ ψ = (bm,
v
x
, w
x2 ) ∈ GA3(S). Noting that bm ≡ y

(mod x), we see that each bm is a strongly x-residual (and hence residual) coordinate.

Vénéreau [23] also showed that each bm is a C[x]-hyperplane; thus they satisfy the

hypotheses of both the Dolgachev-Weisfeiler and Embedding Conjectures. Vénéreau

also showed that form ≥ 3, bm is a coordinate. Similar to Theorem 1.8, he constructed

φm ∈ GA3(S) by

φm = ψ−1 ◦ (y + xm+1z, z, u) ◦ ψ (2.6)

As in the proof of Theorem 1.8, one can check that φm ∈ GA3(R) for m ≥ 3 and

φm(y) = bm. However, Vénéreau was unable to resolve b1 and b2. We first show that

b2 is a coordinate.

Theorem 2.1. The second Vénéreau polynomial b2 = y + x2(xz + y(yu + z2)) is a

coordinate.

Proof. We make use of Theorem 1.7. Define ϕm ∈ GA3(S) by

ϕm = ψ−1 ◦ (y, z − 1

2
xm+1u, u) ◦ (y + xm+1z, z, u) ◦ ψ (2.7)

One quickly checks that ϕm(y) = bm, and Jϕm = 1. So it now suffices to check that

ϕm ∈ MA3(R) for m ≥ 2. We show this by direct computation. We first compute

ϕm(v), ϕm(w), and ϕm(p), and use these to derive that ϕm(z), ϕm(u) ∈ R[3]. Set

11



α = (y + xm+1z, z − 1
2
xm+1u, u) (so ϕm = ψ−1 ◦ α ◦ ψ).

ϕm(v) = (ψ−1 ◦ α ◦ ψ)(v) ϕm(w) = (ψ−1 ◦ α ◦ ψ)(w)

= (α ◦ ψ)(xz) = (α ◦ ψ)(x2u)

= ψ
(
xz − 1

2
xm+2u

)
= ψ(x2u)

= v − 1

2
xmw = w

Now, using (2.4),

ϕm(p) =
1

x2
ϕm(yw + v2)

=
1

x2

(
(y + xmv)w +

(
v − 1

2
xmw

)2
)

= p+
1

4
x2m−2w2

ϕm(z) =
1

x
ϕm(v − yp)

=
1

x

((
(v − 1

2
xmw

)
− (y + xmv)

(
p+

1

4
x2m−2w2

))
= z − xm−1

(
1

2
w + vp

)
− 1

4
x2m−3w2bm

ϕm(u) =
1

x2
ϕm(w + 2vp− yp2)

=
1

x2

(
w + 2

(
v − 1

2
xmw

)(
p+

1

4
x2m−2w2

)
− (y + xmv)

(
p+

1

4
x2m−2w2

)2
)

= u− xm−2p(w + pv) +
1

2
x2m−4w2(v − bmp)−

1

4
x3m−4w3 − 1

16
x4m−6w4bm

Clearly if m ≥ 2, then ϕm(z), ϕm(u) ∈ R[3].

To see how b1 is different, we need the following notation.

Notation 2.1. Let α ∈ GAn(S). Define

α∗(GAn(R)) = {α−1 ◦ φ ◦ α | φ ∈ GAn(R)} ⊂ GAn(S)

12



In this notation, we see immediately from (2.6) and (2.7) that φm, ϕm ∈ ψ∗(GAn(R)).

In fact, we have something stronger: let ψ̃ ∈ GA3(S) be given by

ψ̃ = (y, xz, x2u) ◦ ψ = (y, v, w) (2.8)

Then ϕm, φm ∈ ψ̃∗(GAn(R)); indeed, one can check that φm = ψ̃−1◦(y+xmz, z, u)◦ψ̃

and ϕm = ψ̃−1◦(y+xmz, z−1
2
xm−1u, u)◦ψ̃. So form ≥ 2, ϕm ∈ GA3(R)∩ψ̃∗(GA3(R)).

It turns out that this is too much to ask for b1, however.

Theorem 2.2. There is no automorphism φ ∈ GA3(R)∩ψ̃∗(GA3(R)) with φ(y) = b1.

This follows from the following technical result, whose proof we defer:

Theorem 2.3. Let α ∈ GA3(R).

1. If ψ̃−1 ◦ α ◦ ψ̃ ∈ GA3(R), then α(p) ∈ (p, x2).

2. Suppose that α(y) ≡ y (mod x). Then ψ̃−1 ◦ α ◦ ψ̃ ∈ GA3(R) if and only if

α(p) = p + x2F + xpA + x3B for some A,B ∈ R[3] and F ∈ C[y, p] such that

α ≡ exp(FD) (mod x) (recall D = y ∂
∂z
− 2z ∂

∂u
from (2.1)).

3. Suppose that α(y) ≡ y (mod x), φ = ψ̃−1 ◦ α ◦ ψ̃ ∈ GA3(R), and φ(p) ≡ p

(mod x). If α is stably tame over R, then φ is stably tame over R as well.

Proof of Theorem 2.2. Suppose φ ∈ GA3(R) ∩ ψ̃∗(GA3(R)) and φ(y) = b1. Then

φ = ψ̃−1 ◦ α ◦ ψ̃ for some α ∈ GA3(R). In particular, since φ(y) = b1, we may write

α =

(
y + xz,

∑
i=0

xiGi,
∑
i=0

xiHi

)
(2.9)

for some Gi, Hi ∈ C[3]. By Theorem 2.3 (2), we have α ≡ exp(FD) (mod x) for some

F ∈ C[y, p]. Thus

G0 = z + yF H0 = u− 2zF − yF 2 (2.10)
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Write α(p) =
∑
i=0 x

iPi for some Pi ∈ C[3]. On the one hand, we can compute directly

from (2.9)

P0 = yH0 +G2
0

P1 = yH1 + zH0 + 2G0G1 (2.11)

P2 = yH2 + zH1 + 2G0G2 +G2
1 (2.12)

On the other hand, from Theorem 2.3 (2), we must have P0 = p, P1 ∈ (p), and P2 ≡ F

(mod p). We will use these to derive a contradiction.

Claim 2.4. G1 ≡ −1
2
u (mod y, z).

Proof. Since P1 ≡ 0 (mod p), we apply (2.11) and compute

0 ≡ yH1 + zH0 + 2G0G1 (mod p)

≡ yH1 + z(u− 2zF − yF 2) + 2(z − yF )G1 (mod p)

with the second line following from (2.10). Noting that p = yu + z2 ∈ (y, z2), we

may go modulo (y, z2) and obtain 0 ≡ z(u + 2G1) (mod y, z2), hence G1 ≡ −1
2
u

(mod y, z).

Now, since P2 ≡ F (mod p), we apply (2.12) and compute

F ≡ yH2 + zH1 + 2(z + yF )G2 +G2
1 (mod p)

Similar to above, since p ∈ (y, z), we see F ≡ G2
1 (mod y, z). Applying Claim 2.4, we

then have

F ≡ 1

4
u2 (mod y, z)
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However, F ∈ C[y, p], so F ≡ a (mod y, z) for some a ∈ C, a contradiction.

So while b1 cannot be a coordinate of an automorphism of GA3(R)∩ ψ̃∗(GA3(R)),

we pose the following:

Conjecture 2.1. b1 is a coordinate if and only if it is a coordinate of an automor-

phism φ ∈ GA3(R) ∩ ψ∗(GA3(R)).

We devote the rest of this section to proving Theorem 2.3. First, we require a

couple lemmas.

Lemma 2.5. C[y, v, w]∩(x)R[y, z, u] = C[y, v, w]∩(x2)R[y, z, u] = (yw+v2)C[y, v, w]

Proof. Clearly the relation yw + v2 = x2p (from (2.4)) guarantees

C[y, v, w] ∩ xR[y, z, u] ⊃ C[y, v, w] ∩ x2R[y, z, u] ⊃ (yw + v2)C[y, v, w]

So we simply need to see C[y, v, w] ∩ xR[y, z, u] ⊂ (yw + v2)C[y, v, w]. Note that

we have a map α : C[y, v, w] → C[y, yp,−yp2] obtained from going mod x. Clearly

yw + v2 is in the kernel of this map, so it descends to the quotient. Observing that

C[y, v, w]/(yw + v2) ∼= C[y, v, −v
2

y
], we have the following commutative diagram:

C[y, v, w]
α
- C[y, yp,−yp2]

C[y, v,
−v2

y
]

β
?

γ
-

Note that γ is in fact an isomorphism; hence ker β = kerα. But β is the quotient

map, so ker β = (yw + v2), and kerα = C[y, v, w] ∩ (x)R[y, z, u].

Corollary 2.6. ψ̃−1(x2R[y, z, u]) ∩R[y, z, u] = (x2, p)R[y, z, u]
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Proof. Applying ψ̃ throughout, this is equivalent to showing

x2R[y, z, u] ∩R[y, v, w] = (x2, yw + v2)R[y, v, w]

That the right side is contained in the left is immediate (recall from (2.4) that yw+

v2 ∈ x2R[y, z, u]). For the opposite containment, suppose A ∈ x2R[y, z, u]∩R[y, v, w]

and write A =
∑
i=0 x

iAi for some Ai ∈ C[y, v, w]. It suffices to assume that A =

A0 + xA1. Since A ∈ x2R[y, z, u] ⊂ xR[y, z, u], and (trivially) xA1 ∈ xR[y, z, u], we

must also have A0 ∈ xR[y, z, u]. So A0 ∈ xR[y, z, u]∩C[y, v, w] = (yw+ v2)C[y, v, w]

by Lemma 2.5. Thus, we may now assume A = xA1. Since A ∈ x2R[y, z, u], we see

A1 ∈ xR[y, z, u], and again applying Lemma 2.5 yields A1 ∈ (yw + v2)C[y, v, w].

Lemma 2.7. Suppose φ ∈ GA3(C) with φ(y) = y and φ(p) ∈ (p). Then φ =

(y, cz, c2u) ◦ exp(PD) for some c ∈ C∗, P ∈ C[y, p].

Proof. Write φ = (y, F1, F2) for some F1, F2 ∈ C[3]. Since φ(p) ∈ (p) and p is

irreducible, we see yF2 + F1 = rp for some r ∈ C∗. Set c = 1
r
Jφ ∈ C∗. Now we

compute

cy =
1

r
yJ(y, F1, F2) =

1

r
J(y, F1, yF2 + F 2

1 ) = J(y, F1, p)

Observe that J(y, ·, p) = D (recall from (2.1) D = y ∂
∂z
− 2z ∂

∂u
), so we may rewrite

this as D(F1) = cy ∈ kerD; thus F1 = cz + P̃ for some P̃ ∈ kerD = C[y, p]. We now

recompute

rp = φ(p) = yF2 + (cz + P̃ )2

Comparing the z2 terms on each side, we deduce r = c2. We also must have y|P̃ . Set

P = P̃
cy
∈ C[y, p]. Plugging this back in to the relation φ(p) = rp = c2p, we obtain

c2yu = yF2 + 2c2yzP + c2y2P 2

Thus F2 = c2(u− 2zP − yP 2), and we have φ = (y, c(z + yP ), c2(u− 2zP − yP 2)) =

16



(y, cz, c2u) ◦ exp(PD).

We now have the required tools, and may proceed with the proof of Theorem 2.3.

Proof of Theorem 2.3. Define φ = ψ̃−1 ◦ α ◦ ψ̃. For (1), suppose φ ∈ GA3(R); in

particular, φ(p) ∈ R[3]. We thus compute, noting that (2.8) and (2.4) imply ψ̃−1(p) =

p
x2 ,

(ψ̃−1 ◦ α ◦ ψ̃)(p) ∈ R[y, z, u]

(α ◦ ψ̃)(
p

x2
) ∈ R[y, z, u]

α(
p

x2
) ∈ ψ̃−1(R[y, z, u])

α(p) ∈ ψ̃−1(x2R[y, z, u])

Since α ∈ GA3(R), we thus have α(p) ∈ ψ̃−1(x2R[y, z, u]) ∩ R[y, z, u]. Applying

Corollary 2.6, we thus have α(p) ∈ (x2, p)R[y, z, u], establishing assertion (1) of the

theorem.

We now assume for the remainder that α(y) ≡ y (mod x). Write

α = (y + xQ,
∑
i=0

xiGi,
∑
i=0

xiHi)

for some Q ∈ R[3],Gi, Hi ∈ C[3]. Let

Q =
∑
i=0

xiQi α(p) =
∑
i=0

xiPi (2.13)

for some Qi, Pi ∈ C[3]. Direct computation shows

P0 = yH0 +G2
0 P1 = yH1 +Q0H0 + 2G0G1 (2.14)

For one direction of (2), assume φ ∈ GA3(R). In particular, φ(p) ∈ R[3]. We then
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compute, using (2.13),

φ(x2p) = (ψ̃−1 ◦ α ◦ ψ̃)(x2p) = (α ◦ ψ̃)(p) = ψ̃

(∑
i=0

xiPi

)

Since φ(x2p) ∈ x2R[3], we thus see P0 + xP1 ∈ ψ̃−1(x2R[3]) ∩ R[3] = (x2, p)R[3] by

Corollary 2.6. Since P0, P1 ∈ C[3], we then see P0 + xP1 ∈ pR[3], whence P0, P1 ∈

(p)C[3].

Consider ᾱ = (y,G0, H0) ∈ GA3(C), the image modulo x; Since p is irreducible

and ᾱ(p) = P0 ∈ (p), by Lemma 2.7 ᾱ = (y, cz, c2u) ◦ exp(FD) for some c ∈ C∗,

F ∈ C[y, p]. Thus we have

G0 = c(z + yF ) H0 = c2(u− 2zF − yF 2)

In particular, we see from (2.14) that we must have P0 = c2p. Since α(p) ∈ (p, x2) by

part (1) and P1 ∈ (p)C [3], we can write α(p) = c2p+xpA′+x2B′ for some A′, B′ ∈ R[3].

Now,

φ(xz) = φ(v − yp)

= (ψ̃−1 ◦ α ◦ ψ̃)(v − yp)

= (α ◦ ψ̃)(z − y p
x2

)

= ψ̃

(∑
i=0

xiGi − (y + xQ)(
p

x2
(c2 + xA′) +B′)

)

=
∑
i=0

xiψ̃(Gi)− (y + xψ̃(Q))
(
p(c2 + xψ̃(A′)) + ψ̃(B′)

)

with the first equality arising from (2.2). Since φ(z) ∈ R[3], we must have φ(xz) ∈
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xR[3], and thus

0 ≡ ψ̃(G0)− y(pc2)− yψ̃(B′) (mod x)

0 ≡ ψ̃(c(z + yF ))− y(pc2)− yψ̃(B′) (mod x)

0 ≡ c(v − ypc) + yψ̃(cF −B′) (mod x)

0 ≡ cyp(1− c) + yψ̃(cF −B′) (mod x)

Observing that ψ̃(R[3]) ⊂ (x, y)R[3] (coming from the fact that y, v, w ∈ (x, y)R[3]),

we must have c = 1. We also must have F −B′ ∈ R[3] ∩ ψ̃−1(xR[3]) = (x, p)R[3] (from

Corollary 2.6). Thus we write B′ = F + xB + pA′′ for some B ∈ R[3]. Setting

A = A′ + xA′′ gives α(p) = p+ x2F + xpA+ x3B as required.

For the converse, assume α(p) = p+x2F+xpA+x3B and ᾱ ≡ exp(FD) (mod x).

In particular, we have

G0 = z + yF H0 = u− 2zF − yF 2 (2.15)

Since Jφ = Jα = Jᾱ = 1, it suffices to check that φ ∈MA3(R); compute

φ(y) = (ψ̃−1 ◦ α ◦ ψ̃)(y) = (α ◦ ψ̃)(y) = y + xQ(y, v, w) ∈ R[3]

Next, we show φ(xz) ∈ xR[3]. Again, using (2.2),

φ(xz) = (ψ̃−1 ◦ α ◦ ψ̃)(v − yp)

= (α ◦ ψ̃)
(
z − y p

x2

)
= ψ̃

(∑
i=0

xiGi − (y + xQ)
(

1

x2

) (
p+ x2F + xpA+ x3B

))

=
∑
i=0

xiψ̃(Gi)−
(
y + xψ̃(Q)

) (
p+ ψ̃(F ) + x(pψ̃(A) + xψ̃(B))

)
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So φ(xz) ∈ R[3]. Going modulo x, and recalling from (2.15) that G0 = z + yF (and

thus ψ̃(G0) = v + yψ̃(F )), we obtain

φ(xz) ≡ (v + yψ̃(F ))− y(p+ ψ̃(F )) ≡ 0 (mod x)

So we have φ(xz) ∈ xR[3] and thus φ(z) ∈ R[3]. Since φ(y) /∈ xR[3], it suffices to check

that φ(p) ∈ R[3] as well (as then φ(u) ∈ R[3]).

φ(p) = (ψ̃−1 ◦ α ◦ ψ̃)(p)

= (α ◦ ψ̃)(
p

x2
)

= ψ̃
(

1

x2
(p+ x2F + xpA+ x3B)

)
= p+ ψ̃(F ) + x(pψ̃(A) + ψ̃(B))

So φ(p) ∈ R[3], and thus φ ∈ GA3(S) ∩MA3(R). Since Jφ = Jα = 1, by Theorem

1.7 φ ∈ GA3(R).

For the final part, we appeal to recent results of Berson, van den Essen, and

Wright [5]; the following is Theorem 4.5 of that paper applied to R = C[x].

Theorem 2.8 (Berson, van den Essen, and Wright). Let φ ∈ GAn(R) with Jφ = 1.

If φ ∈ TAn(S), and φ̄ ∈ EAn(C) (where φ̄ denotes the image modulo x), then φ is

stably tame.

We also use the following well known result of Smith [18]:

Smith’s formula. Let A be a Q-algebra and D be a triangular derivation of A[n].

Then for any P ∈ kerD, exp(PD) is 1-stably tame.

Suppose φ, α are as in (3). While φ /∈ TA3(S), Smith’s formula shows that ψ̃ is

1-stably tame (over S), hence φ is stably tame over S. One also quickly checks that

Jφ = Jα ∈ C∗. So we only need to see that φ̄ is stably a composition of elementaries.
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By Lemma 2.7, since φ̄(y) = y and φ̄(p) = p, a composition with a diagonal map

allows us to assume φ̄(p) = exp(PD) for some P ∈ C[y, p] (and thus Jφ = Jφ̄ = 1).

Again appealing to Smith’s formula, we thus have φ̄(p) ∈ EA4(C). Thus by Theorem

2.8, φ is stably tame.

2.2 Exponentials

It is often useful to express a given automorphism as an exponential when possible.

We thus give an expression of ϕn as an exponential in Proposition 2.10 below. In [9],

Freudenburg showed that the automorphism exp(xn−3vd) contained bm as a coordi-

nate (m ≥ 3), where d = J(v, w, ·) ∈ LNDRR[y, z, u]. We observe that this is the

same as our φm:

Proposition 2.9. φm = exp(xm−3vd)

Proof. Let D′ = xm+1z ∂
∂y

= xm+1zJ(z, u, ·). Note that since Jψ = 1, we have

ψD′ψ−1 = xmv(ψJ(z, u, ·)ψ−1) = xm−3vJ(v, w, ·)
(

1

Jψ

)
= xm−3vd

Thus φm = ψ−1 ◦ exp(D′) ◦ ψ = exp(ψD′ψ−1) = exp(xm−3vd).

Similarly for ϕm, let e = J(p+ 1
2
xm−2vw,w, ·).

Proposition 2.10. ϕm = exp(1
2
xm−1e)

Proof. Let E ′ = xm+1
(
(z + 1

4
xm+1u) ∂

∂y
− 1

2
u ∂
∂z

)
= 1

2
xm+1J(p + 1

2
xm+1zu, u, ·). As

above, observe that

ψE ′ψ−1 =
1

2
xm+1

(
ψJ

(
p+

1

2
xm+1zu, u, ·

)
ψ−1

)
=

1

2
xm−1J

(
p+

1

2
xm−2vw,w, ·

)(
1

Jψ

)

=
1

2
xm−1e
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So we see ϕm = ψ−1 ◦ exp(E ′) ◦ ψ = exp(ψE ′ψ−1) = exp(1
2
xm−1e).

2.3 Vénéreau Complements

A näıve approach to showing b1 is a coordinate is to simply attempt to compose an

element of GA3(S) with ϕ1 that knocks off the terms with negative x-degree; if we

could do this with an automorphism that fixed y, we would have b1 is a coordinate.

This appears to be quite difficult. However, if we drop our insistince on fixing y, we

can obtain an element of GA3(R) quite easily, at the expense of no longer having

φ(y) = bm. Indeed, by Theorem 2.3, we seek an α ∈ GA3(R) with α(p) ∈ (x2, p).

Perhaps the closest1 one to that used in constructing ϕm is

αm = (y + xmz − 1

4
x2mu, z − 1

2
xmu, u)

Define

θm := ψ̃−1 ◦ αm ◦ ψ̃ (2.16)

One easily checks that αm(p) = p for all m ≥ 1; thus, by Theorem 2.3 (2),

θm ∈ GA3(R) for all m ≥ 1, and we have θm(y) = y + xmv − 1
4
x2mw.

Definition 2.2. The polynomials cm := y + xmw (m ≥ 1) are called Vénéreau

complements

This definition is motivated by the following:

Theorem 2.11. The Vénéreau polynomial bm is a coordinate if and only if the

Vénéreau complement c2m is.

Proof. Since θm ∈ GA3(R) and θm(y) = bm− 1
4
x2mw, it follows that bm is a coordinate

if and only if y + 1
4
x2mw is. Consider the automorphism βm ∈ GA4(C) given by

1The careful reader will note that this αm essentially drops out of the proof of Theorem 2.2
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βm = (λx, y, λz, λ2u) where λ2m+4 = 4. One easily checks that βm(w) = λ4w and

thus βm(y + 1
4
x2mw) = c2m. Thus conjugation by βm shows that c2m is a coordinate

if and only if y + 1
4
x2mw is as well.

This motivates the following:

Question 2.2. Are cm = y + xmw coordinates?

It turns out the answer is “yes” if m ≥ 3. So this slightly stronger fact gives an

alternate proof of the fact that bm is a coordinate for all m ≥ 2. The proof of this is

given in more generality below in Theorem 2.12.

Remark 2.1. Theorem 2.11 can be generalized slightly: let P (w) ∈ R[w]. Then

y + xvP (w) is a coordinate if and only if y + x2wP (w)2 is. The proof is almost

identical.

It turns out that like the Vénéreau polynomials bm, the complements cm are very

coordinate like: they are hyperplanes; strongly x-residual coordinates; and stably

tame, 1-stable coordinates.2 This is shown in more generality in the subsequent sec-

tion. We mention these in particular here because of their special relationship to the

Vénéreau polynomials via Theorem 2.11.

2.4 Vénéreau-type Polynomials

Instead of only considering the Vénéreau polynomials and the complements defined

in the preceding section, one may generalize these slightly and still retain all the

coordinate-like properties.

Definition 2.3. A Vénéreau-type polynomial is a polynomial of the form y + xQ for

some Q ∈ R[v, w].

2To be precise, there exist φ′
m ∈ GA4(R) with φ′

m(y) = cm, and φm is stably tame.
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Note that Q = xm−1v gives the Vénéreau polynomials bm, while Q = xm−1w

gives the complements cm. We first give a sufficient condition for a Vénéreau-type

polynomial to be a coordinate.

Theorem 2.12. If Q = x2Q1 + xvQ2 for some Q1 ∈ R[v, w] and Q2 ∈ C[v2, w], then

the Vénéreau-type polynomial y + xQ is a coordinate.

Proof. Write Q2 =
∑
αa,bv

2awb for some αa,b ∈ C. Define α ∈ GA3(R) by

α =
(
y + xQ(z, u), z − 1

2
x2
∑

αa,b(−1)ayaua+b+1, u
)

Direct computation shows

α(p) ≡ (y + xQ(z, u))u+
(
z − 1

2
x2
∑

αa,b(−1)ayaua+b+1
)2

(mod x3)

≡ (yu+ z2) + x2z
(
uQ2(z, u)−

∑
αa,b(−1)ayaua+b+1

)
(mod x3)

≡ p+ x2z
(∑

αa,bu
b+1(z2a − (−yu)a)

)
(mod x3)

Noting that z2a−(−yu)a ∈ (z2+yu) = (p), we thus have that α(p) ≡ p (mod (xp, x3)).

Thus, by Theorem 2.3 (2), φ := ψ̃−1 ◦ α ◦ ψ̃ ∈ GA3(R), and one quickly checks

φ(y) = y + xQ.

It is interesting to note that the above automorphisms are stably tame; more-

over, any automorphism of the above type, with a Vénéreau-type polynomial as a

coordinate, must be stably tame.

Theorem 2.13. If Q = x2Q1 + xvQ2 for some Q1 ∈ R[v, w] and Q2 ∈ C[v2, w], any

ϕ ∈ GA3(R) with ϕ(y) = y + xQ is stably tame.

Proof. First, note that the φ constructed in the proof of Theorem 2.12 is stably tame;

indeed, the fact that α(p) ≡ p (mod (xp, x3)) guarantees φ(p) ≡ p (mod x), thus φ

is stably tame by part 3 of Theorem 2.3. Now, consider arbitrary ϕ ∈ GA3(R)
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with ϕ(y) = y + xQ. Then (ϕ ◦ φ−1)(y) = (φ ◦ φ−1)(y) = y. In other words,

ϕ ◦ φ−1 ∈ GA2(R[y]). The main result of [5] states that any automorphism in two

variables over a regular ring is stably tame; since R is regular, so is R[y], thus the

composition ϕ ◦ φ−1 is stably tame. Since φ is also stably tame, we thus see that ϕ

is stably tame.

The remainder of this section is devoted to showing that all Vénéreau-type poly-

nomials satisfy a variety of coordinate-like properties that are known to hold for the

Vénéreau polynomial. In particular, we show that they are strongly x-residual coordi-

nates (Theorem 2.14), hyperplanes (Theorem 2.17), hyperplane fibrations (Theorem

2.19), and stably tame 1-stable coordinates (Theorem 2.27).

Theorem 2.14. Let f = y + xQ, Q ∈ R[v, w] be a Vénéreau-type polynomial. Then

f is a strongly x-residual coordinate.

Proof. Since Q ∈ R[v, w], φ = ψ̃−1 ◦ (y + xQ(z, u), z, u) ◦ ψ̃ ∈ GA3(S) and φ(y) =

y + xQ, so y + xQ is an S-coordinate. Clearly f̄ ≡ y (mod x), so f is a strongly

x-residual coordinate.

To see that Vénéreau-type polynomials are hyperplanes, we use the following fact

(pointed out to me by Arno van den Essen), which also appears (with b = 0) in [12].

A special case of this was used in [23] to show that f1 is a hyperplane.

Lemma 2.15. Let A be a commutative ring, a, b ∈ A, and g ∈ A[y]. Then A[y]/(y+

ag(y)− b) ∼= A[y]/(y + g(ay + b)).

Proof. We compute below, where the first isomorphism is given by sending y to ay+b;

we then identify t = −g(ay + b), and use this to rewrite the relation in terms of t
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only.

A[y]/(y + ag(y)− b) ∼= A[ay + b]/ (a(y + g(ay + b)))

∼= A[ay + b, t]/ (a(y + g(ay + b)), t+ g(ay + b))

∼= A[ay + b, t]/ (a(y − t), t+ g(ay + b))

∼= A[t]/ (t+ g(at+ b))

Corollary 2.16. Let A be a commutative ring, a, b ∈ A[n] and g ∈ A[n][y]. Then

y + ag(y)− b is a hyperplane (over A) if and only if y + g(ay + b) is as well.

Theorem 2.17. Let f = y+ xQ, Q ∈ R[v, w], be a Vénéreau-type polynomial. Then

f is an R-hyperplane of R[3]; that is, R[3]/(f) ∼=R R
[2].

Proof. Similar to (2.2), define

p0 = xyu+ z2 v0 = z + yp0 w0 = xu− 2v0p0 + yp2
0 (2.17)

Claim 2.18. It suffices to check that y+ xQ0 is a coordinate for any Q0 ∈ R[v0, w0].

Proof. Applying Corollary 2.16 to f (with a = x and b = 0) yields that f is a

hyperplane if and only if f0 = y+Q(xv0, xw0) is. We can write Q(xv0, xw0) = xQ0+λ

for some Q0 ∈ R[v0, w0] and λ ∈ C; hence f0 = y + xQ0 + λ. Thus, if y + xQ0 is a

coordinate, so is f0, hence f0 is a hyperplane and (by Corollary 2.16) so is f .

We have thus reduced the theorem to showing that y+xQ0 is a coordinate for any

Q0 ∈ R[v0, w0]. The proof of this is quite analagous to that of Theorem 2.1. First,

define D0 = xy ∂
∂z
− 2z ∂

∂u
, and observe that kerD0 = R[y, p0]. Also define

ψ0 = exp
(
p0

x
D0

)
=
(
y, v0,

w0

x

)
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In particular, since ψ0 fixes p0, we see

yw0 + v2
0 = p0 (2.18)

Also define

α0 := (y + xQ0(z, u), z, u) φ0 := ψ−1
0 ◦ α0 ◦ ψ0

One immediately sees that φ0 ∈ GA3(S), Jφ0 = 1, and φ0(y) = y + xQ0. So by

Theorem 1.7, we need only see that φ0 ∈MA3(R). We first compute φ0(v0), φ0(w0),

and φ0(p0), and use those to compute φ0(z), φ0(u).

φ0(v0) = (ψ−1
0 ◦ α0 ◦ ψ0)(v0) φ0(w0) = (ψ−1

0 ◦ α0 ◦ ψ0)(w0)

= (α0 ◦ ψ0)(z) = (α0 ◦ ψ0)(xu)

= (ψ0)(z) = (ψ0)(xu)

= v0 = w0

Now from (2.18) we see

φ0(p0) = φ0(yw0 + v2
0) = (y + xQ0)w0 + v2

0 = p0 + xQ0w0

Finally, we compute, using (2.17)

φ0(z) = φ0(v0 − yp0)

= v0 − (y + xQ0)(p0 + xQ0w0)
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and

φ0(u) =
1

x
φ0(w0 + 2v0p0 − yp2

0)

=
1

x

(
w0 + 2v0(p0 + xQ0w0)− (y + xQ0)(p0 + xQ0w0)

2
)

=
1

x

(
w0 + 2v0p0 − yp2

0

)
+Q0(2w0v0 − 2w0yp0 − p2

0)+

− xQ2
0(yw

2
0 − 2w0p0)− x2Q3

0w
2
0

= u+Q0(2w0v0 − 2w0yp0 − p2
0)− xQ2

0(yw
2
0 − 2w0p0)− x2Q3

0w
2
0

Thus φ0 ∈MA3(R) and hence φ0 ∈ GA3(R).

We even have something stronger, namely that all Vénéreau-type polynomials

define hyperplane fibrations. To show this for b1, Vénéreau made use of the fact

that b1 = y + x(xz + y(yu+ z2)) is linear in u; this does not hold for Vénéreau-type

polynomials in general, so we have to do a bit more work.

Theorem 2.19. Let f = y+ xQ, Q ∈ R[v, w], be a Vénéreau-type polynomial. Then

for each c ∈ C, f − c is an R-hyperplane of R[3].

Proof. By Theorem 2.17, we assume c 6= 0. As in the proof of that theorem, we would

like to apply Corollary 2.16. However, now we must do so with b = c (still a = x).

Define

p1 = (xy + c)u+ z2 v1 = xz + (xy + c)p1 w1 = x2u− 2v1p1 + (xy + c)p2
1 (2.19)

Then Corollary 2.16 yields that we need only show y + Q(v1, w1) is a hyperplane

(in fact, we show it is a coordinate). The general idea is as follows: construct an

automorphism (y + Q(v1, w1), ∗, ∗) ∈ GA3(S), then compose on the left with auto-

morphisms fixing y until it is also in MA3(S). Then we apply Theorem 1.7. We start
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by defining a derivation over S by

D1 = (xy + c)
∂

∂z
− 2z

∂

∂u

D1 is triangular, and hence locally nilpotent. One easily checks that kerD1 = R[y, p1].

Define

φ0 = exp(
p1

x
D1) = (y,

v1

x
,
w1

x2
)

Since x2p1 ∈ kerD1, we must have φ0(x
2p1) = x2p1 and thus obtain

(xy + c)w1 + v2
1 = x2p1 (2.20)

Our first step is to define

φ1 = (y +Q(xz, x2u), z, u) ◦ φ0 = (y +Q(v1, w1),
v1

x
,
w1

x2
)

Next, we set

φ2 = (y, z, u+ c−1z2) ◦ φ1

=

(
y +Q(v1, w1),

v1

x
,
cw1 + v2

1

cx2

)

=
(
y +Q(v1, w1),

v1

x
, c−1p1 −

yw1

cx

)
(2.21)

with the last equality following from (2.20). For the next step, we require the follow-

ing:

Claim 2.20. For any G ∈ R[2], G(v1,−c−1v2
1) ≡ G(v1, w1) + xyG′(v1, w1) (mod x2)

for some G′ ∈ R[2].
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Proof. This is a straightforward computation, appealing to (2.20). Indeed, note that

−c−1v2
1 = w1 + c−1x(yw1 − xp1)

We thus compute, applying Taylor’s formula at the second step,

G(v1,−c−1v2
1) ≡ G(v1, w1 + c−1xyw1) (mod x2)

≡ G(v1, w1) + c−1xyw1
∂G

∂w1

(v1, w1) (mod x2)

Setting G′ = c−1w1
∂G
∂w1

(v1, w1) yields the claim.

Claim 2.21. For any H ∈ R[3], G ∈ R[2], there exists H ′ ∈ R[3] such that

H(y+G(v1, w1)−G(v1,−c−1v2
1), v1,−c−1v2

1) ≡ H(y, v1, w1)+xH
′(y, v1, w1) (mod x2)

(2.22)

Moreover, if x|H, then x|H ′.

Proof. Let

L := H(y +G(v1, w1)−G(v1,−c−1v2
1), v1,−c−1v2

1)

First, apply Claim 2.20 to G, obtaining L = H(y + xyG′(v1, w1) + x2T1, v1,−c−1v2
1)

for some T1 ∈ R[3]. Next, apply Taylor’s formula in the first component, obtaining

for some H ′ ∈ R[y, v1, w1] and T2 ∈ R[3],

L = H(y, v1,−c−1v2
1) + xH ′(y, v1, w1) + x2T2

= H(y, v1, w1 + xyw1 − x2p1) + xH ′(y, v1, w1) + x2T2

with the second equality following from (2.20). We now apply Taylor’s formula in the
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third component, obtaining

L ≡ H(y, v1, w1) + xH ′′(y, v1, w1) (mod x2)

This is precisely the desired claim.

Claim 2.22. Suppose φ ∈ GA3(S) is of the form

φ =
(
y + F (v1, w1),

v1

x
,A+ xrB +r−2 G(y, v1, w1)

)

for some r ∈ Z, A,B ∈ R[3], F ∈ R[v1, w1], and G ∈ R[y, v1, w1]. Then there exists

τ ∈ GA3(S) such that τ ◦ φ = (y + F (v1, w1),
v1
x
, A+ xrB′) for some B′ ∈ R[3].

Proof. Define

τ =
(
y, z, u− xr−2G

(
y − F (xz,−c−1(xz)2), xz,−c−1(xz)2

))

Now compute

τ ◦ φ =
(
y + F (v1, w1),

v1

x
,A+ xrB+

xr−2
(
G(y, v1, w1)−G

(
y + F (v1, w1)− F (v1,−c−1v2

1), v1,−c−1v2
1

)) )

Applying Claim 2.21, we obtain

τ ◦ φ =
(
y + F (v1, w1),

v1

x
,A+ xrB′ + xr−1G′(y, v1, w1)

)

Note that, by Claim 2.21, if x|G, then x|G′.

Now we can apply an induction step (replacing B with B′ and G with xG′) to

obtain the desired result.
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Now, apply the preceding claim to φ2 (2.21) to obtain

φ3 :=
(
y +Q(v1, w1),

v1

x
, c−1p1 + xB

)

for some B ∈ R[3]. Finally, set

φ4 = (y, z − c2u

x
, u) ◦ φ3

=
(
y +Q(v1, w1),

v1

x
− c

x
(p1 + xcB), c−1p1 + xB

)
=
(
y +Q(v1, w1), z + yp1 − c2B, c−1p1 + xB

)

with the last equality coming from (2.19). Thus we have φ4 ∈ MA3(R) ∩ GA3(S),

hence φ4 ∈ GA3(R) and φ4(y) = y + Q(v1, w1), i.e. y + Q(v1, w1) is a coordinate as

required.

Before proceeding, we remark that Corollary 2.16 raises an interesting question:

Conjecture 2.3. Let A be a Q algebra, a, b ∈ A[n], and g ∈ A[n][y]. Then y+g(ay+b)

is a coordinate, if and only if y + ag(y)− b is.

This is weaker than the Embedding Conjecture, but a proof of this conjecture

would make every Vénéreau-type polynomial a coordinate.

The next thing we prove is a generalization of a fact about f1 from [21]. The

motivation is the following well known lemma:

Lemma 2.23. Let A be a ring, and f ∈ A[n]. Then the following are equivalent

1. f is a coordinate

2. A[n] ∼=A[f ] A[f ][n−1]

3. A[c][n]/(f − c) ∼=A[c] A[c][n−1], where c is an additional indeterminate

In light of this, we may observe that
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Corollary 2.24. Let P (x, c) ∈ C[x, c] = R[c], and set R̃ = R[c]/(P ). Let f be

a Vénéreau-type polynomial. If f is a coordinate of R[y, z, u], then f − c is a R̃-

hyperplane; i.e. R̃[y, z, u]/(f − c) ∼=R̃ R̃
[2].

So if we found one such P for which a Vénéreau-type polynomial f is not a R̃-

hyperplane, then it could not be a coordinate.

Theorem 2.25. For any of the following polynomials Pi ∈ R[c] and any Vénéreau-

type polynomial f = y + xQ, f − c is a R̃i-hyperplane (where R̃i := R[c]/(Pi)).

1. P1 := x− x0 (where x0 ∈ C)

2. P2 := c− c0 (where c0 ∈ C)

3. P3 := x2 − c3

Proof. For (1), first suppose x0 = 0. Then f − c ≡ y − c (mod x) is obviously a

coordinate, hence a hyperplane. If x0 ∈ C∗, then since f − c is a S coordinate, f̄ − c

is a coordinate when we go mod x − x0, and hence is a hyperplane. For part (2),

note that R[3][c]/(c − c0, f − c) ∼= R[3]/(f − c0). By Theorem 2.19, we thus have

R[3]/(f − c0) ∼= R[2] ∼= (R[c]/(c− c0))[2] as required.

For (3), we follow the approach sketched in [21] for the Vénéreau polynomials;

this requires Corollary 2.16 and the following (Corollary 1.31 from [12]), which is an

application of the Abhyankar-Moh-Suzuki theorem:

Lemma 2.26. Let α(y, z, u) ∈ C[t][y, z, u] be a C[t]-coordinate, and let β ∈ C[t]. If

α(y, z, βu) is a C[t]-residual coordinate, then it is also a C[t]-coordinate, and hence a

C[t]-hyperplane.

The key idea from [21] is that R̃3
∼= C[t2, t3], and using the main theorem from

that paper, it suffices to show the image of f−c in C[t2, t3] is a C[t]-hyperplane. Note
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that the image of f − c is

f0 = y + t3Q(t3z + yp, t6u− 2t3zp− yp2)− t2

As in the proof of Theorem 2.17, we apply Corollary 2.16 with a = b = t2; hence, it

suffices to show

f1 = y + t3Q(tz + (y + 1)p1, t
4u− 2tzp1 − (y + 1)p2

1)

is a coordinate over C[t], where p1 = t2(y + 1)u+ z2. In order to apply Lemma 2.26,

we first establish that f1 is a strongly t-residual coordinate, and hence a residual

coordinate over C[t]. Clearly it is a coordinate modulo t; to see it is a coordinate

over C[t, t−1], define D1 = t2(y + 1) ∂
∂z
− 2z ∂

∂u
, and set φ1 = (y + t3Q(tz, t4u), z, u) ◦

exp(p1
t3
D1). One may quickly check that φ1(y) = f1.

Now, taking β = t2 in Lemma 2.26, it suffices to show that y + t3Q(tz + (y +

1)p2, t
2u − 2tzp2 − yp2

2) is a coordinate, where p2 = (y + 1)u + z2. But aside from

replacing t by x, we recognize this as y+ x3Q(v, w) conjugated by (y− 1, z, u), so we

are done since y + x3Q(v, w) is a coordinate by Theorem 2.12.

Contained in the work of Freudenburg and Daigle [6] is the fact that all Vénéreau-

type polynomials are stable coordinates (we can see this using Theorem 2.14 and

Corollary 1.3). However, no bound was given on the number of additional variables

needed. It was previously shown by Freudenburg [9] that for f1 and f2, only one

additional variable is needed. It turns out one is sufficent for all Vénéreau-type

polynomials.

Theorem 2.27. Let f = y + xQ, Q ∈ R[v, w] be a Vénéreau-type polynomial. Then

there exists φ ∈ GA4(R) with φ(y) = f and φ stably tame.

This follows from Theorem 3.14 in Chapter 3. The proof will be given there.
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Chapter 3

Tame Strongly Residual

Coordinates

Throughout this chapter, R will denote a C[x]-algebra, and S will be the localization

S = R ⊗C[x] C[x, x−1]. The aim of this chapter is to show that a class of residual

coordinates are in fact coordinates. In particular, we will require that they be tame

strongly x-residual coordinates.

Definition 3.1. Let f ∈ R[n] = R[y, z1, . . . , zn−1] be a strongly x-residual coordinate.

Then there exist φ ∈ GAn(C) with φ(y) ≡ f̄ (mod x), and ψ ∈ GAn(S) with ψ(y) =

f . We call f a tame strongly x-residual coordinate if φ−1 ◦ ψ ∈ TAn(S).

Remark 3.1. If f is a tame strongly residual coordinate, then (φ−1 ◦ ψ)(y) ≡ y

(mod x). For this reason, we restrict our attention to the case f = y + xQ, for some

Q ∈ R[n], noting that this simply reflects a choice of coordinates of C[n].

The chapter is organized as follows: Section 1 contains the necessary preliminary

computations; section 2 contains the main results; and section 3 is a discussion of

some interesting examples. The reader may wish to proceed immediately to section

2, and refer back to section 1 as necessary.
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3.1 Preliminaries

Throughout this section, we will use the variables R[n] = R[z1, . . . , zn] (similarly for

S[n]). Given ψ ∈ EAn(S), we can write ψ =
∏q
i=1 Φi where for each 1 ≤ i ≤ q, Φi is

elementary (fixing n− 1 variables). For convenience, we will write

ψa,b := Φa ◦ · · · ◦ Φb

Given such a factorization, define, for each 0 ≤ a ≤ q, 1 ≤ k ≤ n

ta,k := min{t | ψa+1,q(x
tzk) ∈ R[n]}

Aa := R[xta,1z1, . . . , x
ta,nzn]

Aa[ẑk] := Aa ∩R[n][ẑk]

By convention, ψq+1,q = id, whence tq,k = 0 for each k and Aq = R[n]. If Φa is

elementary in zk, we define

δa := ta−1,k − ta,k

εa := max{ε ∈ Z|Φa(x
ta−1,kzk)− xta−1,kzk ∈ xεAa}

We can write each Φa in a canonical form; suppose it is elementary in zk. Then

we write

Φa =
(
z1, . . . , zk−1, zk + x−ta−1,1+εaPa(ẑk), zk+1, . . . , zn

)
(3.1)

for some Pa(ẑk) ∈ Aa[ẑk]. Moreover, by the definition of εa, Pa /∈ xAa[ẑk].

Definition 3.2. Let ψ ∈ EAn(S), and write ψ =
∏q
i=1 Φi. We call this a reducing

factorization if, for each 1 ≤ a ≤ q,

1. δa ≥ 0
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2. ψa+1,q(Pa) ∈ Aq \ xAq

Lemma 3.1. Let ψ =
∏q
i=1 Φi ∈ EAn(S) be a reducing factorization. Let 1 ≤ a ≤ q.

Then

1. εa ≥ 0

2. Φa(Aa−1) = Aa−1 ⊂ Aa.

Proof. Suppose that Φa is elementary in zk. Observe that

ψa,q(x
ta−1,kzk) = xδaψa+1,q(x

ta,kzk) + xεaψa+1,q(Pa) ∈ Aq \ xAq (3.2)

Since δa ≥ 0 and ψa+1,q(x
ta,kzk), ψa+1,q(Pa) ∈ Aq \ xAq, we must have εa ≥ 0. Part

(2) follows immediately from (3.1), noting that Pa(ẑk) ∈ Aa[ẑk] = Aa−1[ẑk].

The following is a straightforward application of Taylor’s formula.

Lemma 3.2. Let 1 ≤ a ≤ q and P (ẑ1) ∈ Aa[ẑ1], and set wk = zk + xzkGk + xHk for

some Gk, Hk ∈ Aa (2 ≤ k ≤ n). Then there exist Q0 ∈ Aa[ẑ1] and Q1 ∈ Aa such that

P
(
xta,2w2, . . . , x

ta,nwn
)

= P (ẑ1) + x
(
Q0(ẑ1) + (xta,1z1)Q1

)

It will be convenient to have the following definition. Note that this depends on

a given Aa.

Definition 3.3. Given Aa, we define the subgroup IAan(R) ⊂ GAn(R) to be the set

of all automorphisms of the form

α = (z1 + xz1G1 + xH1, . . . , zn + xznGn + xHn)

where G1, H1, . . . , Gn, Hn ∈ Aa.
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A priori, IAan(R) is simply a subset, but one quickly checks that is indeed mul-

tiplicatively closed and closed under inversion. The following properties of any

α ∈ IAan(R) are immediate:

1. α ≡ id (mod x)

2. α(Aa) = Aa

Remark 3.2. Given any τa ∈ Nn, one can write τa = (ta,1, . . . , ta,n) and, abusing our

notation, define Aa = R[xta,1z1, . . . , x
ta,nzn]. The definition of IAan(R) depends only

on the choice of τa. All statements from Corollary 3.3 through Lemma 3.8 continue

to hold in this context. We will make use of this in the proof of Theorem 3.17 below,

particularly in the context of (3.14).

With this definition in hand, Lemma 3.2 has a few useful corollaries. The first is

immediate.

Corollary 3.3. Let α ∈ IAan(R) and P (ẑ1) ∈ Aa[ẑ1]. Then α(P (ẑ1))− P (ẑ1) ∈ xAa.

Corollary 3.4. Let α ∈ IAan(R) and Φ = (z1 + x−sPa(ẑ1), z2, . . . , zn) ∈ EAn(S) for

some Pa(ẑ1) ∈ Aa[ẑ1]. If s ≤ ta,1, then there exists α′ ∈ IAan(R) and Φ′ = (z1 +

x−s+1P ′a(ẑ1), z2, . . . , zn) ∈ EAn(S) such that P ′a(ẑ1) ∈ Aa[ẑ1] and Φ−1 ◦α◦Φ = α′ ◦Φ′.

Moreover, if Φ ∈ EA1
n(S), then Φ′ ∈ EA1

n(S).

Proof. This is a straightforward computation, the key hypothesis being that s ≤ ta,1

gives Φ(Aa) = Aa. Write, for some Fi, Gi ∈ Aa,

α = (z1 + xz1G1 + xH1, . . . , zn + xznGn + xHn)

For 2 ≤ k ≤ n, we have

(Φ−1 ◦ α ◦ Φ)(zk) = (α ◦ Φ)(zk) = Φ(zk + xzkGk + xHk) = zk + xzkG
′
k + xH ′k (3.3)
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where G′k = Φ(Gk) ∈ Aa, H ′k = Φ(Hk) ∈ Aa. Next, from Corollary 3.3, we write

α(Pa(ẑ1)) = Pa(ẑ1) + xQ

for some Q ∈ Aa. Letting Φ(G1) = P̃0(ẑ1) + xta,1z1G̃1 and Φ(Q) = Q̃0(ẑ1) + xta,1z1Q̃

for some P̃0(ẑ1), Q̃0(ẑ1) ∈ Aa[ẑ1] and G̃1, Q̃ ∈ Aa, we compute

(Φ−1 ◦ α ◦ Φ)(z1) = (α ◦ Φ)(z1 − x−sPa(ẑ1))

= Φ
(
z1 + xz1G1 + xH1 − x−sα(Pa(ẑ1))

)
= Φ

(
z1 + xz1G1 + xH1 − x−s (Pa(ẑ1) + xQ)

)
=
(
z1 + x−sPa(ẑ1)

)
+ x

(
z1 + x−sPa(ẑ1)

)
Φ(G1)+

xΦ(H1)− x−s (Pa(ẑ1) + xΦ(Q))

= z1 + xz1

(
Φ(G1) + xta,1−s(Pa(ẑ1)G̃1 + Q̃)

)
+

xΦ(H1) + x−s+1T (ẑ1) (3.4)

where T (ẑ1) = Pa(ẑ1)P̃0(ẑ1) + Q̃0(ẑ1) ∈ Aa[ẑ1]. Note that ord Q̃0(ẑ1) ≥ ordPa(ẑ1),

and thus ordT (ẑ1) ≥ ordPa(ẑ1). We require a brief lemma:

Lemma 3.5. Let G,H ∈ Aa and P (ẑ1) ∈ Aa[ẑ1]. If s ≤ ta,1, then there exist

G′, H ′ ∈ Aa, P ′(ẑ1) ∈ Aa[ẑ1] such that

z1 + xz1G+ xH + x−sP (ẑ1) = (z1 + x−sP ′(ẑ1)) + x(z1 + x−sP ′(ẑ1))G
′ + xH ′

Moreover, ordP ′(ẑ1) ≥ ordP (ẑ1).

Before proving this, let us first note that this completes the proof of the corollary:

applying the lemma to (3.4), we may then write

(Φ−1 ◦ α ◦ Φ)(z1) =
(
z1 + x−s+1P ′(ẑ1)

)
+ x

(
z1 + x−s+1P ′(ẑ1)

)
G′1 + xH ′1 (3.5)
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for some G′1, H
′
1 ∈ Aa and P ′(ẑ1) ∈ Aa[ẑ1]. Setting

Φ′ = (z1 + x−s+1P ′(ẑ1), z2, . . . , zn)

α′ = (z1 + xz1(Φ
′)−1(G′1) + x(Φ′)−1(H ′1), . . . , zn + xzn(Φ′)−1(G′n) + x(Φ′)−1(H ′n))

we easily see from (3.5) and (3.3) that Φ−1◦α◦Φ = α′◦Φ′. We note that α′ ∈ IAan(R)

since Φ′(Aa) = Aa.

To see the moreover statement, note that Lemma 3.5 gives us ord(P ′(ẑ1)) ≥

ord(T ) ≥ ord(Pa(ẑ1)). Thus Φa ∈ EA1
n(S) implies Φ′ ∈ EA1

n(S).

Proof of Lemma 3.5. We proceed by downward induction on s. First, define

β := (z1 + x−sP (ẑ1), z2, . . . , zn) (3.6)

Since s ≤ ta,1, we have β(Aa) = Aa. In particular, β−1(G) ∈ Aa, so we may write

β−1(G) = Q0(ẑ1) + xta,1z1G1 (3.7)

for some Q0(ẑ1) ∈ Aa[ẑ1], G1 ∈ Aa. Then, setting G′′ = β(G1) ∈ Aa, we have

G = Q0(ẑ1) + xta,1

(
z1 + x−sP (ẑ1)

)
G′′

To see the base case of the induction, suppose s ≤ 0. Then we have (letting

w1 := z1 + x−sP (ẑ1))

z1 + xz1G+ xH + x−sP (ẑ1) = w1 + x(w1 − x−sP (ẑ1))G+ xH

= w1 + xw1G+ x(H − P (ẑ1)G)

= w1 + xw1

(
G− xta,1−sP (ẑ1)G

′′
)

+

x
(
H − x−sP (ẑ1)Q0(ẑ1)

)
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Since s ≤ 0, we can set G′ = G−xta,1−sP (ẑ1)G
′′ ∈ Aa and H ′ = H−x−sP (ẑ1)Q(ẑ1) ∈

Aa to achieve the desired result.

Now suppose s > 0. Define G0, H0 ∈ Aa and P0 ∈ Aa[ẑ1] by

G0 = β−1(G)− xta,1−sP (ẑ1)G1

H0 = β−1(H)

P0(ẑ1) = −P (ẑ1)Q0(ẑ1)

Observe ordP0(ẑ1) ≥ ordP (ẑ1). Note that these definitions combined, with (3.6) and

(3.7), yield

β−1
(
z1 + xz1G+ xH + x−sP (ẑ1)

)
= z1 + xz1G0 + xH0 + x−s+1P0(ẑ1) (3.8)

By the induction hypothesis, there exists G̃, H̃ ∈ Aa and P̃ (ẑ1) ∈ Aa[ẑ1] (with

ord P̃ (ẑ1) ≥ ordP0(ẑ1)) such that (letting w̃ = z1 + x−s+1P̃ (ẑ1))

z1 + xz1G0 + xH0 + x−s+1P0(ẑ1) = w̃ + xw̃G̃+ xH̃

Since from (3.8), the left hand side is equal to β−1(z1 + xz1G+ xH + x−sP (ẑ1)),

it suffices to show that applying β to the right hand side produces something in the

desired form: indeed, if we define P ′ := P + xP̃ , G′ := β(G̃),and H ′ := β(H̃), we

need only note that β(w̃) = z1 + x−sP ′(ẑ1). Since β(Aa) = Aa, we have G′, H ′ ∈ Aa

as required. It is also clear that ordP ′(ẑ1) ≥ ordP (ẑ1).

The following will be the crucial ingredient in the proof of Theorem 3.14.

Corollary 3.6. Let α ∈ IAan(R) ∩ EAn(S) and Φ = (z1 + x−sPa(ẑ1), z2, . . . , zn) ∈

EAn(S) for some Pa(ẑ1) ∈ Aa[ẑ1]. If s ≤ ta,1, then there exists Φ′ ∈ EAn(S) such that

Φ′◦α◦Φ ∈ IAan(R)∩EAn(S). Moreover, if α,Φ ∈ EA1
n(S), then Φ′◦α◦Φ ∈ EA1

n(S)
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as well.

Proof. The proof is by induction downward on s. If s < 0 then Φ ∈ IAan(R) and

the claim is immediate. If s ≥ 0, then by Corollary 3.4, Φ−1 ◦ α ◦ Φ = α̃ ◦ Φ̃ for

some α̃ ∈ IAan(R)∩EAn(S) and Φ̃ = (z1 +x−s+1P̃a(ẑ1), z2, . . . , zn). By the induction

hypothesis, there exits Φ̃′ such that Φ̃′ ◦ α̃ ◦ Φ̃ ∈ IAan(R) ∩ EAn(S). Then setting

Φ′ = Φ̃′ ◦ Φ−1, we have

Φ′ ◦ α ◦ Φ = Φ̃′ ◦ Φ−1 ◦ α ◦ Φ = Φ̃′ ◦ α̃ ◦ Φ̃ ∈ IAan(R) ∩ EAn(S)

giving the claim. For the moreover statement, note that by Corollary 3.4, if Φ ∈

EA1
n(S) then so is Φ̃; if α ∈ EA1

n(S) as well, then so is α̃, so by induction Φ̃′ ◦ α̃◦ Φ̃ ∈

EA1
n(S) giving the desired statement (as Φ′ ◦ α ◦ Φ = Φ̃′ ◦ α̃ ◦ Φ̃).

We now rephrase this slightly for use in the proof of Theorem 3.12 below.

Corollary 3.7. Let Φa = (z1 + x−ta,1Pa(ẑ1), z2, . . . , zn) ∈ EAn(S) for some Pa ∈

Aa[ẑ1] and α ∈ IAan(R). Suppose that Aa−1 ⊂ Aa. Then there exists α′ ∈ IAa−1
n (R),

and Φ′a = (z1 +x−ta,1P ′a(ẑ1), z2, . . . , zn) (where P ′a ∈ Aa[ẑ1]) such that Φa ◦α = α′ ◦Φ′a.

Proof. By Corollary 3.4, there exists α′ ∈ IAan(R) with Φa ◦ α ◦ Φ−1
a = α′ ◦ Φ′. Since

we assume Aa ⊂ Aa−1, we see IAan(R) ⊂ IAa−1
n (R) and thus α′ ∈ IAa−1

n (R). Letting

Φ′a = Φ′ ◦ Φa, we thus have Φa ◦ α = α ◦ Φ′a.

The remainder of this section is devoted to results that will help us in the n = 2

case.

Lemma 3.8. Suppose δa+1 = 0 and let Φ1 = (z1 + x−ta,1P (ẑ1), z2) ∈ EA1
2(S) and

Φ2 = (z1 + x−ta,1+1F1, z2 + x−ta,2+1F2) ∈ GA2(S) for some P ∈ Aa[ẑ1], F1, F2 ∈ Aa =

Aa+1. Then there exists Φ′1 = (z1 + x−ta,1P ′(ẑ1), z2) ∈ EA1
2(S) (with P ′(ẑ1) ∈ Aa[ẑ1])

, Φ′2 = (z1, z2 + x−ta,2+1Q′(ẑ2)) ∈ EA1
2(S) (with Q′(ẑ2) ∈ Aa+1[ẑ2]), and α ∈ IAa2(R)

such that Φ1 ◦ Φ2 = α ◦ Φ′2 ◦ Φ′1.
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Proof. First, note that Φ1(Aa) = Aa = Φ2(Aa). This follows from Lemma 3.5 and

Taylor’s formula. First, we compute

Φ1 ◦ Φ2 =
(
z1 + x−ta,1

(
xF1 + P (xta,2z2 + xF2)

)
, z2 + x−ta,2+1F2

)
=
(
z1 + xz1G1 + x−ta,1P1(x

ta,2z2), z2 + xz2G2 + x−ta,2+1Q(xta,1z1)
)

for some G1, G2 ∈ Aa,P1 ∈ Aa[ẑ1], Q ∈ Aa[ẑ2] by Taylor expansion. Next, we

apply Lemma 3.5 in the z1 coordinate to obtain G′1, H
′
1 ∈ Aa and Φ′1 = (z1 +

x−ta,1P ′(ẑ1), z2) ∈ EA1
2(S) such that

Φ1 ◦ Φ2 =
(
Φ′1(z1) + xΦ′(z1)G

′
1 + xH ′1, z2 + xz2G2 + x−ta,2+1Q(xta,1z1)

)

We thus compute

Φ1 ◦ Φ2 =
(
Φ′1(z1) + xΦ′(z1)G

′
1 + xH ′1, z2 + xz2G2 + x−ta,2+1Q(xta,1z1)

)
◦ (Φ′1)

−1 ◦ Φ′1

=
(
z1 + xz1G

′′
1 + xH ′′1 , z2 + xz2G

′
2 + x−ta,2+1Q(xta,1z1 − P ′(ẑ1))

)
◦ Φ′1

where G′′1 = (Φ′1)
−1(G′1), H

′′
1 = (Φ′1)

−1(H ′1), and G′2 = (Φ′1)
−1(G2). Note since

Φ′1(Aa) = Aa, we have G′′1, H
′′
1 , G

′
2 ∈ Aa. Now applying Taylor’s formula to Q(xta,1z1−

P ′(xta,2z2)), we obtain

Q(xta,1z1 − P ′(xta,2z2)) = Q(xta,1z1) + xta,2z2G
′′
2

for some G′′2 ∈ Aa. Thus, we have

Φ1 ◦ Φ2 =
(
z1 + xz1G

′′
1 + xH ′′1 , z2 + xz2G

′′
2 + x−ta,2+1Q(xta,1z1)

)
◦ Φ′1

We now apply Lemma 3.5, this time in the second component, to obtain G′′′2 , H
′′′
2 ∈
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Aa and Φ′2 = (z1, z2 + x−ta,2+1Q′(ẑ2)) ∈ EA1
2(S) such that

Φ1 ◦ Φ2 = (z1 + xz1G
′′
1 + xH ′′1 ,Φ

′
2(z2) + xΦ′2(z2)G

′′′
2 + xH ′′′2 ) ◦ (Φ′2)

−1 ◦ Φ′2 ◦ Φ′1

= (z1 + xz1G
′′′
1 + xH ′′′1 , z2 + xz2G

′′′′
2 + xH ′′′′2 ) ◦ Φ′2 ◦ Φ′1

whereG′′′1 = (Φ′2)
−1(G′′1), H ′′′1 = (Φ′2)

−1(H ′′1 ), G′′′′2 = (Φ′2)
−1(G′′′2 ), andH ′′′′2 = (Φ′2)

−1(H ′′′2 ).

Now we simply set α = (z1 + xz1G
′′′
1 + xH ′′′1 , z2 + xz2G

′′′′
2 + xH ′′′′2 ); noting that Φ′2(Aa) =

Aa yields α ∈ IAa2(R) and thus the desired result.

We would like to generalize EAn(S) slightly. The idea is that elements of IAan(R)

can be inserted at the a-th step and essentially nothing changes. This will prove to

be of great utility in showing tame strongly residual coordinates to be coordinates.

Definition 3.4. ψ ∈ GAn(S) is said to have a generalized elementary factorization if

there exist q ∈ N, and for each 1 ≤ a ≤ q, τa = (ta,1, . . . , ta,n) ∈ Nn, αa ∈ IAa−1
n (R),

and Φa ∈ EAn(S) such that

1. τa−1 − τa = (0, . . . , 0, δa, 0, . . . , 0) for some δa = ta−1,k − ta,k ∈ Z

2. Φa = (z1, . . . , zk−1, zk+x−saPa(ẑk), zk+1, . . . , zk) for some Pa(ẑk) ∈ Aa[ẑk], where

sa = max{ta−1,k, ta,k}.

3. ψ =
∏q
i=1 αi ◦ Φi

4. ψa,q :=
∏q
i=a αi ◦ Φi satisfies ψa,q(x

ta−1,jzj) ∈ R[n] \ xR[n] for each 1 ≤ a ≤ q,

1 ≤ j ≤ n.

If in addition, δa ≥ 0 for each 1 ≤ a ≤ q, we call this a generalized reducing factor-

ization.

Observe that if ψ ∈ EAn(S) can be written ψ =
∏q
i=1 Φi, then our previous

notion of ti,j satisfies this definition (with each αi = id), justifying our conflation of

notations.
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Lemma 3.9. Let ψ ∈ GA2(S) have a generalized elementary factorization ψ =∏q
i=1 αi ◦ Φi. Let 1 ≤ a ≤ q, and without loss of generality suppose Φa is elementary

in z1.

1. If δa > 0, then Φa = (z1 + x−ta−1,1Pa(ẑ1), z2) for some Pa ∈ Aa[ẑ1] \ xAa[ẑ1]

2. If δa < 0, then Φa = (z1 + x−ta,1Pa(ẑ1), z2) for some Pa ∈ Aa[ẑ1] \ xAa[ẑ1].

Moreover, we may assume Φa+1 is elementary in z2; and if Φa ∈ EA1
2(S), then

δa+1 ≤ 0.

Proof. First, note that ψa,q(x
ta−1,jzj) ∈ R[2] \ xR[2] implies (Φa ◦ ψa+1,q)(x

ta−1,jzj) ∈

R[2] \xR[2] (since αa ≡ id (mod x) and αa(Aa−1) = Aa−1). Without loss of generality,

assume Φa is elementary in z1. Similar to (3.2), we thus compute

(Φa ◦ ψa+1,q)(x
ta−1,1z1) = xδaψa+1,q(x

ta,1z1) + xta−1,1−saψa+1,q(Pa(ẑ1)) (3.9)

Since Pa ∈ R[xta,2z2], we must have ψa+1,q(Pa) ∈ R[2], with ψa+1,q(Pa) ∈ xR[2] only

if Pa ∈ xR[xta,2z2]. Note also that ψa+1,q(x
ta,1z1) ∈ R[2]. Thus, if δa > 0, ta−1,1− sa =

0, and we must have Pa /∈ xAa[ẑ1] in order to have (Φa ◦ ψa+1,q)(x
ta−1,1z1) /∈ xR[2]

(from (3.9)). If instead δa < 0 , we must have ta−1,1 − sa = δa (whence sa = ta,1).

Thus as before, we must have ψa+1,q(Pa) /∈ xR[2] and thus Pa /∈ xAa[ẑ1].

For the moreover statement of part (2), suppose δa < 0 and Φa ∈ EA1
2(S). We

assume for contradiction that δa+1 > 0. Since δa < 0, we may assume αa+1 = id (by

Corollary 3.7, we have αa ◦Φa ◦ αa+1 = (αa ◦ α′a+1) ◦Φ′a with αa ◦ α′a+1 ∈ IAa−1
n (R)).

Thus, if Φa+1 is elementary in z1, we can replace Φa by Φa ◦Φa+1; so we may assume

Φa+1 is elementary in z2 and write

Φa+1 =
(
z1, z2 + x−ta,2Q(xta+1,1z1)

)
ψa+2,q =

(
z1 + x−ta+1,1F1, z2 + x−ta+1,2F2

)
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where Q ∈ R[1]\xR[1] (by part (1)) and F1, F2 ∈ R[2]\xR[2] (from part (4) of Definition

3.4). We then compute

(Φa ◦ ψa+1,q)(x
ta−1,1z1) = (Φa ◦ Φa+1 ◦ ψa+2,q)(x

ta−1,1z1)

= (Φa+1 ◦ ψa+2,q)
(
xta−1,1z1 + xδaPa(x

ta,2z2)
)

= ψa+2,q

(
xta−1,1z1 + xδaPa(x

ta,2z2 +Q(xta+1,1z1))
)

= xta−1,1z1 + xδa
(
F1 + Pa

(
xta,2z2 + xδa+1F2 +Q(xta+1,1z1 + F1)

))

Since ψa,q(x
ta−1,1z1) ∈ R[2] \ xR[2], we must also have (Φa ◦ ψa+1,q)(x

ta−1,1z1) ∈

R[2] \ xR[2], and thus have

F1 + Pa
(
xta,2z2 + xδa+1F2 +Q(xta+1,1z1 + F1)

)
∈ x−δaAq (3.10)

Since Φa+1 is elementary in z2 and δa < 0, we must have ta+1,1 = ta,1 > 0. Since we

assumed δa+1 > 0, we also have ta,2 > ta+1,2 ≥ 0. Thus, taking (3.10) modulo x , we

have

F1 + Pa(Q(F1)) ≡ 0 (mod xAq) (3.11)

Note that since ψa+2,q(x
ta+1,1z1) ∈ R[2] \ xR[2], F1 6= 0 (F1 denotes the image modulo

x). We also have Q,Pa /∈ xR[1]; but since Φa ∈ EA1
2(S), degPa(Q(F1)) > degF1,

contradicting (3.11).

Lemma 3.10. Let ψ ∈ GAn(S) have a generalized reducing factorization ψ =∏q
i=1 αi ◦ Φi. Then for 1 ≤ a ≤ b ≤ q, there exists F1, G1, H1, . . . , Fn, Gn, Hn ∈ Ab

such that

ψa,b =
(
z1 + xz1G1 + xH1 + x−ta−1,1F1, . . . , zn + xznGn + xHn + x−ta−1,nFn

)

46



Proof. We induct on b− a. Assume

ψa,b−1 =
(
z1 + xz1G̃1 + xH̃1 + x−ta−1,1F̃1, . . . , zn + xznG̃n + xH̃n + x−ta−1,nF̃n

)

for some G̃j, H̃j, F̃j ∈ Ab−1. Since αb ∈ IAb−1
n (R), we have αb(Ab−1) = Ab−1. It is

thus easy to see that ψa,b−1 ◦ αb is in the same form as ψa,b−1, so without loss of

generality we assume αb = id. Without loss of generality, assume Φb is elementary

in z1, and by Lemma 3.9, write Φb = (z1 + x−tb−1,1Pb(ẑ1), z2, . . . , zn). For 2 ≤ j ≤

n, set Gj = Φb(G̃j), Hj = Φb(H̃j), and Fj = Φb(F̃j). Then Gj, Hj, Fj ∈ Ab and

ψa,b(zj) = zj + xzjGj + xHj + x−ta−1,jFj. We now just need to compute ψa,b(z1).

Note that Φb(G̃1) ∈ Ab−1, so we may write Φb(G̃1) = Qb(ẑ1) + (xtb−1,1z1)G
′
1 for some

Qb ∈ Ab−1[ẑ1] = Ab[ẑ1] and G′1 ∈ Ab−1 ⊂ Ab. Thus we compute

ψa,b(z1) = (ψa,b−1 ◦ Φb)(z1)

= (z1 + x−tb−1,1Pb(ẑ1)) + x(z1 + x−tb−1,1Pb(ẑ1))Φb(G̃1)+

xΦb(H̃1) + x−ta−1,1Φb(F̃1)

= z1 + xz1

(
Φb(G̃1) + Pb(ẑ1)G

′
1

)
+ xΦb(H̃1)+

x−ta−1,1

(
Φb(F̃1) + xta−1,1−tb−1,1Pb(ẑ1)(1 + xQb(ẑ1))

)

Since it is a generalized reducing factorization and a − 1 ≤ b − 1, we thus have

ta−1,1 ≥ tb−1,1. Hence ψa,b is in the desired form, with G1 = Φb(G̃1) + Pb(ẑ1)G
′
1 ∈ Ab,

H1 = Φb(H̃1) ∈ Ab, and F1 = Φb(F̃1) + xta−1,1−tb−1,1Pb(ẑ1)(1 + xQb(ẑ1)) ∈ Ab.

Lemma 3.11. Let ψa,b =
∏b
i=a Φi ∈ EA1

2(S), and suppose δi = 0 and εi = 0 for

a < i ≤ b. Suppose also that Φa is elementary in z2. Then ψa,b = (z1 +x−ta−1,1F1, z2 +

x−ta−1,2F2) for some F1, F2 ∈ Ab. Moreover, letting F̄k denote the image modulo xAb,

we have

1. If deg F̄2 > 0, then deg F̄2 > deg F̄1
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2. If deg F̄2 ≤ 0, then deg F̄1 ≤ 0

Proof. We induct on b − a. If b = a, ψa,b = Φa and the claim follows from (3.1). So

assume b > a. Then by the induction hypothesis, we have

ψa+1,b = (z1 + x−ta,1F1, z2 + x−ta,2F ′2)

for some F1, F
′
2 ∈ Ab. From (3.1), we can write Φa = (z1, z2 + x−ta−1Pa(ẑ2)) for some

Pa ∈ Aa[ẑ2]\xAa[ẑ2] (since εa = 0 by assumption). Set F2 = F ′2 +Pa(x
ta−1,1z1 +F1) ∈

Ab. We compute, noting ta−1,j = ta,j,

ψa,b = Φa ◦ ψa+1,b

=
(
z1 + x−ta−1,1F1, z2 + x−ta−1,2Pa(x

ta−1,1z1 + F1) + x−ta−1,2F ′2
)

=
(
z1 + x−ta−1,1F1, z2 + x−ta−1,2F2

)

thus giving the first claim. For the remainder, we note that (since ta−1,1 = tb,1)

F̄2 = F̄ ′2 + P̄a(x
tb,1z1 + F̄1) (3.12)

First, we note that if deg F̄1 ≤ 0, (1) and (2) are both immediate. So assume deg F̄1 >

0. Note that since each Φi ∈ EA1
2(S), we have

F̄1 =
∑
i+j>1

αi,j(x
tb,1z1)

i(xtb,2z2)
j

for some αi,j ∈ C. Thus we must have deg(xtb,1z1 + F̄1) ≥ deg F̄1. Observing that

Φa ∈ EA1
2(S), we see

deg(P̄a(x
tb,1z1 + F̄1)) ≥ 2 deg(xtb,1z1 + F̄1) ≥ 2 deg F̄1 > deg F̄1 (3.13)

48



By the induction hypothesis, we must have deg F̄1 > deg F̄2
′
. Thus, from (3.12)

and (3.13)

deg F̄2 = deg(P̄a(x
tb,1z1 + F̄1) > deg F̄1

Thus deg F̄2 > 0 and deg F̄2 > deg F̄1 as desired.

The remainder of this section is the proof of the following proposition, which

provides the main ingredient in the proof of Theorem 3.17

Theorem 3.12. Let ψ =
∏q
i=1 Φi ∈ EA1

2(S). Then ψ admits a generalized reducing

factorization ψ =
∏q′

i=1 αi ◦ Φ̃i.

Proof. Let a ≤ q be minimal such that δa < 0. In particular, we must have a ≤ q−2.

We induct on q − a, with the base case coming when ψ has a reducing factorization.

By the induction hypothesis, we can write ψa+1,q =
∏q̃
i=a+1 αi ◦ Φ̃i. We will use t̃i,j, δ̃i,

etc. to distinguish the respective quantities for this generalized reducing factorization

from those of the original ψ =
∏q
i=1 Φi. The induction hypothesis guarantees δ̃i ≥ 0

for each a+ 1 ≤ i ≤ q̃.

Without loss of generality, assume that Φa is elementary in z1. By Lemma 3.9,

we have for some Pa ∈ Aa[ẑ1],

Φa =
(
z1 + x−ta,1Pa(ẑ1), z2

)

Let b > a be minimal such that t̃b,1 < ta,1. By part (2) of Definition 3.4, for some

Qb ∈ Ãb[ẑ1] \ xÃb[ẑ1], we have

Φ̃b =
(
z1 + x−ta,1Qb(ẑ1), z2

)

Claim 3.13. δ̃i = 0 for each a+ 1 ≤ i ≤ b− 1.
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Proof. Suppose not, so ta,2 > tb,2. By Lemma 3.10 we can write

ψ̃a+1,b−1 =
(
z1 + xz1G1 + xH1 + x−ta,1F1, z2 + xz2G2 + xH2 + x−ta,2F2

)

where F1, G1, H1, F2, G2, H2 ∈ Ãb−1. Since ta,1 > tb,1, we must have ψ̃a,b(x
ta,1z1) ∈

xÃb. Compute

ψ̃a,b(x
ta,1z1) = (Φa ◦ ψ̃a+1,b−1 ◦ Φ̃b)(x

ta,1z1)

= (ψ̃a+1,b−1 ◦ Φ̃b)(x
ta,1z1 + Pa(ẑ1))

= Φ̃b

(
xta,1z1 + F1 + x(xta,1z1G1 +H1) + Pa

(
xta,2z2 + F2 + x(xta,2z2G2 +H2)

))

Applying Φ̃b and going modulo xÃb,we obtain

ψ̃a,b(x
ta,1z1) ≡ Qb + F1(Qb, x

ta,2z2) + Pa(x
ta,2z2 + F2(Qb, x

ta,2z2)) (mod x)

≡ Qb + F1(Qb, 0) + Pa(F2(Qb, 0)) (mod x)

with the second line following since ta,2 > tb,2. But note that F1(t, 0) and Pa(F2(t, 0))

must have t-order at least 2, since ψ ∈ EA1
2(S), thus giving ψ̃a,b(x

ta,1z1 /∈ xÃb, a

contradiction.

Now let r > a be minimal such that δ̃r > 0. By Claim 3.13, we must have Φ̃r is

elementary in z1, so we have, for some Qr ∈ Ãr[ẑ1],

Φ̃r = (z1 + x−ta,1Qr(ẑ1), z2)

First, we observe that we may assume αi = id for a + 1 ≤ i ≤ r; since δ̃i ≤ 0 for

a ≤ i ≤ r we can push each αi to the left of each preceding Φ̃j by Lemma 3.7. We

may also assume that Φ̃a+1 is elementary in z2. Note also that if ε̃i > 0 for some

a < i < r, then by Lemma 3.8, we can push Φ̃i past all preceding Φ̃j; so we may
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assume ε̃i = 0 for a ≤ i < r. Then by Lemma 3.11, we may write

ψ̃a+1,r−1 = (z1 + x−ta,1F1, z2 + x−ta,2F2)

for some F1, F2 ∈ Ãr−1 with deg F̄2 > deg F̄1. Note that we must have ψ̃a,r(x
ta,1z1) ∈

xÃr. Compute

ψ̃a,r(x
ta,1z1) = (Φa ◦ ψ̃a+1,r−1 ◦ Φ̃r)(x

ta,1z1)

= (ψ̃a+1,r−1 ◦ Φ̃r)
(
xta,1z1 + Pa(ẑ1)

)
= Φ̃r

(
xta,1z1 + F1 + Pa(x

ta,2z2 + F2)
)

Applying Φ̃r and going modulo xÃb, we obtain

ψ̃a,b(x
ta,1z1) ≡ Qr + F1(Qr, x

ta,2z2) + Pa(x
ta,2z2 + F2(Qr, x

ta,2z2)) (mod x)

Note that the condition deg F̄2 > deg F̄1 implies that F̄2 ∈ I where I = (xta,1z1 −Qr(x
ta,2z2)) Ãr.

However, this forces F̄2 = 0 (and hence F̄1 = 0): For if not, from computing the Jaco-

bian of ψ̃a+1,r−1, one can obtain that F̄1, F̄2 are algebraically dependent; thus F̄1 ∈ I

as well. But note that we must also have, as in Lemma 3.11

ψ̃a+2,r−1 = (z1 + x−ta,1F1, z2 + x−ta,2F ′2)

for some F ′2 ∈ Ãr−1. Then F̄1 and F̄2
′
are also algebraically dependent, so F̄2

′ ∈ I; but

recall from (3.12) that F̄2 = F̄2
′
+ P̃a+1(x

ta+1,1z1 + F̄1, which implies Pa+1(x
ta+1,1) ∈ I,

a contradiction.
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3.2 Main results

Theorem 3.14. Let ψ =
∏q
i=1 Φi ∈ EAn(S) have a reducing factorization (see Defi-

nition 3.2). Suppose that for 0 ≤ i ≤ q, εi > 0 for each Φi that is elementary in any

of zk1 , . . . , zkr . Then there exists θ ∈ GAn(R) with the property

1. θ(zkj
) = ψ(zkj

) for each 1 ≤ j ≤ r.

2. θ is stably tame.

Proof. We first note that as a consequence of ψ =
∏q
i=1 Φi being a reducing factoriza-

tion, δa+1 ≥ 0 and thus IAan(R) ⊂ IAa+1
n (R) for each 0 ≤ a < q. The theorem follows

immediately from the following claim, which we prove by induction.

Claim 3.15. For each a = 0, . . . , q, there exists φa ∈ IAan(R) ∩ EAn(S) such that

φa(zkj
) = (

∏a
i=1 Φi)(zkj

) for each 1 ≤ j ≤ r. Moreover, φa is stably tame.

The a = 0 case is trivial (set φ0 := id). So suppose φa is in the prescribed form.

Without loss of generality, let Φa+1 be elementary in z1. Since we assume ψ has a

reducing factorization, we may write Φa+1(z1) = z1 + x−ta,1+εa+1Pa+1(ẑ1) with Pa+1 ∈

Aa+1[ẑ1] = Aa[ẑ1]. If z1 ∈ {zk1 , . . . , zkr}, then we must have ta,1 = 0 and εa+1 > 0,

in which case Φa+1 ∈ IAan(R) = IAa+1
n (R). Then we may set φa+1 = φa ◦ Φa+1 ∈

IAan(R) = IAa+1
n (R). Otherwise, we may note that since εa+1 ≥ 0, ta,1−εa ≤ ta,1, and

apply Corollary 3.6 to obtain φa+1 := Φ′a+1◦φa◦Φa+1 ∈ IAan(R) ⊂ IAa+1
n (R)∩EAn(S).

Since Φ′a+1 is elementary in z1, for 2 ≤ j ≤ n, φa+1(zj) = φa ◦ Φa+1. Since by the

induction hypothesis, φa(zkj
) = (

∏a
i=1 Φi)(zkj

), in both cases we have φa+1(zkj
) =

(
∏a+1
i=1 Φi)(zkj

) for each 1 ≤ j ≤ r. The stable tameness claim follows immediately

from Theorem 2.8.

One useful application is the following corollary:

Corollary 3.16. Let ψ =
∏q
i=1 Φi ∈ EAn−1(S[y]) be a reducing factorization, and let

F ∈ A0. Then y + xψ(F ) is an R-coordinate of a stably tame automorphism.
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This furnishes the deferred proof of Theorem 2.27, restated here for convenience.

Theorem 2.21. Let f = y + xQ, Q ∈ R[v, w] be a Vénéreau-type polynomial. Then

there exists φ ∈ GA4(R) with φ(y) = f and φ stably tame.

Proof. Define

Φ1 = (y, z + yt, u, t)

Φ2 = (y, z, u− 2zt− yt2, t)

Φ3 = (y, z, u, t+
yu+ z2

x
)

Φ4 = (y, z − yt, u, t)

Φ5 = (y, z, u+ 2zt− yt2, t)

One easily checks that ψ = Φ1◦· · ·◦Φ5 is a reducing factorization andQ(xz, x2u) ∈ A0,

with ψ(Q(xz, x2u)) = Q(v, w). Then the previous corollary gives the theorem.

For the remainder of this section, let B = R[y1, . . . , yn], Bx = B ⊗R S ∼= B ⊗C[x]

C[x, x−1], andB[2] = B[z1, z2]. Consider ψ ∈ 〈EA1
2(Bx), GAn(R[z1, z2])〉 ⊂ GAn+2(S).

Write ψ =
∏q
i=1 Ψi ◦Φi where Ψi ∈ GAn(R[z1, z2]) and Φi ∈ EA1

2(Bx). For 0 ≤ a ≤ q,

1 ≤ j ≤ 2, define

t̃a,j = min{t | (
q∏

i=a+1

Ψi ◦ Φi)(x
tzj) ∈ B[2]}

Ãa = B[xta,1z1, x
ta,2z2]

We will also write ĨAan+2(R) for the subgroup of all automorphisms of the form

α = (y1 + xF1, . . . , yn + xFn, z1 + xz1G1 + xH1, z2 + xz2G2 + xH2)

where Fj, G1, H1, G2, H2 ∈ Ãa.
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Theorem 3.17. Let B = R[y1, . . . , yn] and Bx = B ⊗R S. Let ψ =
∏q
i=1 Ψi ◦

Φi ∈ EAn+2(S) where Φi ∈ EA1
2(Bx) and Ψi ∈ ĨAa−1

n+2(R) ∩ GAn(R[2]). Then ψ is

elementarily equivalent to an automorphism θ ∈ GAn+2(R) and θ(yj) = ψ(yj) for

1 ≤ j ≤ n. Moreover, if each Ψi ∈ EAn(S[2]), then θ is stably tame.

Proof. Similar to the proof of Theorem 3.14, the theorem follows from

Claim 3.18. For each 1 ≤ a ≤ q, there exists Θa ∈ ĨAan+2(R) with Θa(yj) =

(
∏a
i=1 Ψi ◦ Φi)(yj) for each 1 ≤ j ≤ n. Moreover, if Ψi ∈ EAn+2(S) for 1 ≤ i ≤ a,

then Θa is stably tame.

We induct on a, with a = 0 being trivial. First set Θ′a = Θa ◦ Ψa+1. By the

induction hypothesis, Θa ∈ ĨAan+2(R), so Θ′a is as well. So we simply replace Θa by

Θ′a and assume Ψa+1 = id. Since Φa+1 ∈ EA2(Bx), we may write

Φa+1 =
qa+1∏
k=1

ϕk

and define for 0 ≤ b ≤ qa+1, 1 ≤ j ≤ 2

ta+1,b,j = min{t ∈ N|(
qa+1∏
k=b+1

ϕk

q∏
r=a+2

Ψr ◦ Φr)(x
tzj) ∈ B[2]}

Aa+1,b = B[xta+1,b,1z1, x
ta+1,b,2z2] (3.14)

This is simply a reindexing of our usual definition of ti,j. Now by Theorem 3.12,

we may assume Φa+1 has a generalized reducing factorization.

Φa+1 =
q̃a+1∏
b=1

αbϕ̃b

where αb ∈ IAb−1
2 (B) and ϕ̃b ∈ EA1

2(Bx). Thus, by Corollary 3.6, there is some

γ ∈ EA2(Bx) with Θa+1 := γ◦Θa◦Φa+1 ∈ ĨAa+1
n+2(R). Since yj ∈ B and γ ∈ EA2(Bx),
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we have Θa+1(yj) = (Θa ◦ Φa+1)(y). The stable tameness claim follows immediately

from Theorem 2.8.

This has the following nice corollary:

Corollary 3.19. Let ψ =
∏q
i=1 Φi ∈ EA1

2(S[y]) and F ∈ A0 ∩ R[2]. Then y + xψ(F )

is a coordinate of a stably tame automorphism.

This has the following consequence: When considering DW(C[1],1,3), one essen-

tially must either use a wild ψ or an F ∈ ψ−1(R[2]) \ A0 to construct a strongly

residual coordinate if there is any hope of it not being a coordinate as well. Since

Vénéreau-type polynomials arise from perhaps the simplest wild automorphism, they

can thus be considered to be the simplest strongly residual coordinates that are not

known to be coordinates.

3.3 Examples

The Vénéreau polynomial (and Vénéreau-type polynomials) provide examples of

strongly residual coordinates that are not known to be coordinates. However, they are

wild over C[x, x−1]. Here we provide examples of tame strongly residual coordinates

that are not known to be coordinates.

Example 1. Define φ = Φ0 ◦ · · ·Φ6, where

Φ0 = (y + x(z3(xz1)), z1, z2, z3)

Φ1 = (y, z1, z2, z3 −
yz2 + z2

1

x
) Φ4 = (y, z1, z2, z3 +

yz2 + z2
1

x
)

Φ2 = (y, z1 + yz3, z2, z3) Φ5 = (y, z1 − yz3, z2, z3)

Φ3 = (y, z1, z2 − 2z1z3 − yz2
3 , z3) Φ6 = (y, z1, z2 + 2z1z3 − yz2

3 , z3)

Then φ(y) = y + xz3(xz1 + y(yz2 + z2
1)) is a tame strongly residual coordinate.
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However, the composition φ is not a reducing factorization. It is unkown whether

φ(y) is a coordinate (although it is a 1-stable coordinate). Note that this is quite

similar to the Vénéreau polynomial b1.

Example 2. Define φ = Φ0 ◦ · · ·Φ6, where

Φ0 = (y + x(xz3(xz1)), z1, z2, z3)

Φ1 = (y, z1, z2, z3 +
(yz2 + z2

1)2

x
) Φ4 = (y, z1, z2, z3 +

yz2 + z2
1

x
)

Φ2 = (y, z1 + yz3, z2, z3) Φ5 = (y, z1 − yz3, z2, z3)

Φ3 = (y, z1, z2 − 2z1z3 − yz2
3 , z3) Φ6 = (y, z1, z2 + 2z1z3 − yz2

3 , z3)

Then φ(y) = y+x(xz3+(yz2+z2
1)+(yz2+z2

1)2)(xz1+y(yz2+z2
1)) is a tame strongly

residual coordinate. However, the composition φ is not a reducing factorization.

While the previous example failed both conditions of Definition 3.2, this does satisfy

that all δi are nonnegative. It is unkown whether φ(y) is a coordinate.
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59


	Coordinates Arising from Affine Fibrations
	Recommended Citation

	tmp.1337878459.pdf._MYlp

